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WHEN ALL SEMIREGULAR ̂ -CLOSED EXTENSIONS
ARE COMPACT

JACK R. PORTER AND R. GRANT WOODS

It is well-known that compactifications of Tychonoff spaces are
semiregular and //-dosed. Katetov has determined when certain //-dosed
and semiregular //-closed extensions of a Hausdorff space are compact.
In this paper, those Tychonoff spaces in which all semiregular, //-closed
extensions are compact are characterized.

1. Introduction and preliminaries. In 1947, Katetov [K2] de-

termined that the "largest" iϊ-closed extension κXof a, Hausdorff space X
is compact iff X is compact. Since compact spaces are semiregular, a
related problem is to determine when the semiregularization of KX (de-
noted (κX)s) is compact. This was also solved by Katetov [K2]. A natural
extension of this problem is to determine when all of the semiregular,
//-closed extensions of a space are compact.

If Jί{ X) denotes the collection of all semiregular, iZ-closed exten-
sions of a space X and Jf (X) denotes the collection of all compactifica-
tions of X, the problem is to determine those spaces X such that Jί{ X) =
JίT{X\ Since Jt(X)Φ 0 iff X is semiregular and Jf(X) Φ 0 iff X is
Tychonoff, it follows that Jf(X) = Jf (X) = 0 iff X is not semiregular
and Jl{X) Φ Jf{X) when X is semiregular but not Tychonoff. So, the
nontrivial portion of the problem is to characterize those Tychonoff
spaces X such thsitJjf(X) = Jf (X). This problem is completely solved in
this paper.

At first glance, the evidence points to the trivial solution that Jί{ X)
= JΓ( X) iff X is compact, for if D is an infinite discrete space, then

Ji{D) Φ Jt(D) (see [PVJ). However, additional investigation reveals that
ifX=βN\{p} for some/> e jSN\N, then^T(X) = Jf(X).

Some preliminary definitions and concepts are needed. Throughout
the paper, the word "space" will mean "Hausdorff topological space".

A space X is H-closed if X is closed in every space containing it as a
subspace. Recall that set A c X is regular open if A = i n t ^ c l ^ . The
semiregularization of a space X is the topology generated on the underly-
ing set of X by the family of regular open subsets of S, and is denoted as
Xs. A space X is semiregular if X = Xs\ the space Xs is easily verified to be
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semiregular. Obviously, the identity function on the underlying set X,
viewed as a function from space X onto the space Xs, is continuous.

A space X is minimal Hausdorff if there is no strictly coarser Haus-
dorff topology on X. A well-known result [KJ is that a space JΠs minimal
Hausdorff iff X is //-closed and semiregular. If X is //-closed, then Xs is
also //-closed and, hence, minimal Hausdorff [PT]. A space Y is an
extension of a subspace X if c l y X = y; two extensions Y and Z of a space
X are said to be equivalent, denoted as Y = XZ, if there is a homeomor-
phism h: Y -> Z such that A(x) = Λ: for each x e X Henceforth, we
identify equivalent extensions of a space. Another well-known result [S] is
that if y is an extension of a space X, then Ys is a semiregular extension of
Xs; in particular, when Xis semiregular, then Y, is also an extension of X.

If J^is an open filter base on a space X, the set Γ\{c\xF: J F G ^ } is
called the adherence of ^ i n Jf and denoted as ad^^". An open filter base
^"on X is fixed if ad^&Φ 0 otherwise it is free. For each space X let
* * = X U { ̂ : ^ is a free open ultrafilter o n l } . The family ( ί / c l : £/
is open in X) U {{<2f} U U: U is open in X, U <= ty, <%e X*\X} is a
base for a topology on X*; X* with this topology is denoted as KX. For an
open set U c X, let ot/ = ί/ U {<^e X* \X: [/ e ^ } . The family {of/:
£/ open in X) is a base for a topology on JP; X* with this topology is
denoted as σX. The space (κX)s is denoted by μX We now list some
results which are needed in the sequel; these results can be found in
[K l fK2,P fFΓ,PV l fFV2].

(1.1) PROPOSITION. Let Xbe a space. Then:
(a) KX and aX are H-closed extensions of X, and the identity function

from KX onto σX is continuous.
(b) If Y is an H-closed extension of X, then KX > Y9 i.e., there is a

continuous function from KX onto Y which is the identity function on X. [It is
in this sense that KX is the "largest" H-closed extension of X.]

(c) If X is semiregular, then μX is a minimal Hausdorff extension of X,
μ X = (σX)s, the identity function from σXonto μXis continuous, σX\X is
homeomorphic to μX\X, the family {oU: U is a regular open subset of X)
is a base for the topology on μX, and for an open subset U c X, clμ X(oU)
= (clxU)UoU.

For a space X, the spaces KX and σX are respectively called the
Katetov //-closed extension and the Fomin //-closed extension of X; if X
is semiregular, μX is called the Banaschewski-Fomin-Shanin minimal
Hausdorff extension of X. Let Y be an //-closed extension of a space X,
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and let fγ: KX -» Y denote the (unique) continuous function such that
fγ(x) = x for each x e X (see l.l(b)). If X is semiregular and Y = μX,
then fY is denoted as fμ\ since the identity function on the underlying set
of KX is a continuous function from σX onto μ̂ Γ (see l.l(c) above), it
follows that fμ is the identity function on X*. For eachy e y \ X, /y (j>)
is a subset of κX\X = X*\X and, hence a subset of σX\X and
μX\X. Let Pμ(F) = {fγ (y): y e y \ * } . So Pμ(Y) is a partition of
μX\X.

(1.2) PROPOSITION. [P, Th. 05; P\v Th. 3.1 and 3.5; PV2, Th. 5.4]. Let

X be a semiregular space. Then:
(a) // Y is an H-closed extension of X, then Pμ{Y) is a partition of

μX\X into compact subsets.
(b) // P is a partition of μX\X into compact subsets, then there is an

H-closedextension Yof Xsuch thatPμ(Y) = P.
(c) If Y and Z are H-closed extensions ofX, then

So, by 1.2(c), there exists a bijection between the set of minimal
Hausdorff extensions of a semiregular space X and the set of partitions of
μX\X into compact subsets. Let Jΐ{X) denote the set of all minimal
Hausdorf f extensions of a semiregular space X.

Let P be a partition of a space X into compact subsets. A set C c X is
P-saturated if C = U{ B e P: B c C}. We say that P is upper semicontinu-
ous (abbreviated as USC) if, for each open subset U of X and each A e P
for which A c [/, there exists a P-saturated open set V such that A c U
c U. If X is a Tychonoff space, Y is a compactification of X, and gY:
βX -» y is the continuous function such that gγ(x) = x for x e Z, then
P^(y) is used to denote {gγ (p):p e y}. Let Jf (X) denote the set of all
compactifications of X.

(1.3) PROPOSITION. Let X be a Tychonoff space. Then:
(a) [N, Prop. l ] / / 7 e Jf( X), ίλew P,(y) is an USC partition ofβX.
(b) [N, Prop. 1] //P ϋ an USC partition ofβXand{{x}: x e X} c P,

then for some Y<EJT(X),P = Pβ(Y).
(c)μX>βX.

Proof. Part (c) follows from l.l(b), the fact that (κX)s = μX, and the
following fact (see [Kt]): if Z is a space and /: Z -> R is a continuous
function into a regular space i?, then/: Z s -» iϊ is also continuous. D
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(1.4) PROPOSITION. Let X be a Tychonoff space for which μX = xβX.
Then Jf(X) =Jf(X) iff, for each partition P of μX\X into compact
subsets, the partition P = P U {{x}: x e X) is an USC partition ofβX.

Proof. Suppose Jf(X) = Jί{ X) and P is a partition of μ X \ X into
compact subsets. Then P = Pμ(Y) for some Y e Jί{X) by 1.2 (b,c). But
Y G JΓ(X) by hypothesis. Since gγ ° fμ(x) = x for each x e X, it follows
that gγ°fμ = / y . Hence P = Pβ(X) and P is an USC partition of βX.
Conversely, to prove t h a t ^ ( X ) = Jf(X), first note that Jf (X) c Jί{X)
as every compactification of X is minimal Hausdorff. Now, suppose

Y e Jί{X). Then by hypothesis, Pμ(Y) is an USC partition of βX. So,

there is some Z <ΞX(X) such that Pβ(Z) = P μ (7). In particular, Pμ(Z)

= Pμ( Γ) so Zs = x i ; by 1.2(c), which implies that Z = Y. Π

A point x in a space X is called extremally disconnected in X if for
each pair of disjoint open sets f/, V oi X, x fc c\xU d c\xV. A subset
A c X is said to be regularly nowhere dense in X if there are disjoint open
sets C/and V in X such that A c cl^C/Π cl^F.

(1.5) Let Xbe a Tychonoff space. The following are equivalent:

(b) every closed, regularly nowhere dense subset of X is compact, and
(c) every point of βX\ Xis extremally disconnected in βX.

Proof. The proof of the equivalence of (a) and (b) is in [K2] To show
(a) implies (c), it suffices to show for disjoint open sets U and V of βX
that clβxU Π cl^^F c X. Note that clβxU = clμXU = clμX(U Π X) =
c\X(U Γι X) U o(U Π X); the first equality is by (a) and the last equality
is by l.l(c). Since o(U Π X) Π o(V Π X) = o(U Π V Π X) = 0, it fol-
lows that c l ^ C/ Π c l ^ F - (cl^(£/ DX)ndx(Vn X)) U (o(ί/ Π X)
Π o(V Π X)) c X Conversely, to show that (c) implies (b), suppose U
and V are disjoint open subsets of X Let R = β X X c l ^ X X 17) and
T = βX\ c l ^ X X V). Note that R Π X = U, T Π X = V, and i? Π Γ
Π X c [ / n K = 0 ; as X is dense in jβX this implies that R Π Γ = 0 .
By (c), c l^ i? Π c l ^ Γ c X Since clxU (Ί c l ^ F c cl^i? Π c l ^ Γ , it
follows that c\xU Π cl^ Fis compact. This completes the proof of (b). D

Let X be a Tychonoff space. A point p ^ β X \ X is called a remote
point ofβXiί for each closed, nowhere dense subsets Q X,p & dβχA.

(1.6) [vD] Let Xbe a Tychonoff space. Then:
(a) If X is second countable, non-pseudocompact and has no isolated

points, then βX has remote points.
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(b) If p is a remote point of βX, then p is an extremally disconnected
point of βX.

2. Main result. We can now prove the main result of this paper.

(2.1) THEOREM. Let X be a Tychonoff space. Then Jί(X) = Jf (X) iff
the following are true:

(a) every closed, regularly nowhere dense subset of X is compact,
(b) βX\ X is discrete, and
(c) if βX\ X is infinite, then c l ^ β X \ X) is the one-point compactifi-

cation of βX\X.

Proof. Suppose Jt{X) = Jf(X). Since μX^Jt(X), then by 1.3(c),
μX = βX. By 1.5, (a) is true. If βX\ X is finite, then both (b) and (c) are
satisfied. So, suppose βX\X is infinite. Then βX\X has at least one
accumulation point in β X. Assume, by way of contradiction, that p and q
are distinct accumulation points of βX\ X in βX. Let Up and Uq be open
neighborhoods of p and q, respectively, such that c l ^ Up Π c l ^ Uq = 0 .
There is an infinite set A = {xn: n e N} c Up\X and an infinite set
B = {yn: n e N} c t ^ \ X Let/: βN -> c l ^ and g: jSN -> c l ^ be
continuous functions such that f(n) = xn and g(n) = yn for n & N. Let
α e /?N \ N. So, /(α) and g(a) are distinct accumulation points of A and
5, respectively. Choose fcGNso that/(α) ¥= xn and g(α) Φ yn'ύ n> k.
Consider the partition

f> = {{xn, y n } : n e N \ { l , 2 , . . . , k } } u{{Xi}:l < i < k )

u{{yi}:l<i<k}u{{y):yeβX\(XυAUB)}

of compact subsets of βX\ X = μX\ X By 1.4, P = P U { { x } : x G l )
is an USC partition of βX. Let Γ = βX\ clβxUq. Evidently/(α) e Γ, so
there is a P-saturated open set V Q βX such that f(a) e F c Γ. By the
continuity of/there is an infinite set C e α such that/[C] c V. So, there
is some m & C such that m> k. Hence, { xm, ym) c Fas Vis P-saturated.
This is impossible a s ^ e ΰ c c l ^ C/̂  and V Π cl^^ Uq= 0. This com-
pletes the proof that βX\ X has precisely one accumulation point in βX.
Thus, c\βx(βX\ X) == (iSX\ X) U { /?} where/? is the accumulation point
of βX\ X. Also, this shows that c\βx{βX\ X) is a one-point compactifi-
cation of the discrete space βX\ (X U {/>}). By showing that/? € βX\ X,
we will have shown that (b) and (c) are satisfied. Assume, by way of
contradiction, that/? e βX\X. Let {xn: n e N} be a faithfully indexed
infinite subset of βX\(X U {/>}). Since { x n : « G N } is discrete and βX
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is regular, it is straightforward to obtain a family {Un: n e N} of pairwise
disjoint open sets of βX such that xn e Un. Let Ue — U{ Un\ n even} and
Uo = U{ Un: n odd}. Then UeΠ Uo= 0. But/> e cl^Ue Π c l ^ t/0 so/? is
not an extremally disconnected point of βX, which contradicts 1.5. So we
have that/? £ βλ r\ X and (b) and (c) are satisfied.

Conversely, suppose (a), (b), and (c) are satisfied. By 1.5, βX = μX.
Let P be a partition of compact subsets of μX\ X. By 1.4, it suffices to
show that P = P U { { j c } : j c G l } i s a n USC partition of βX. First note
that if A e P, then A is a finite set as A is a compact subset of the discrete
space μX\X = βX\ X. If βX\ X is a finite set, then any partition of
βX\ X, in particular P, is an USC partition of βX\ X\ if X is a locally
compact space and P is an USC partition of βX\ X, it easily follows that
P is an USC partition of βX. So, suppose βX\X is infinite. Then
cl^iSJrX X) = (βX\ X) U { /?}. To show P is an USC partition of βX,
let t/ be an open subset of βX. There are three cases.

Case 1. A c [/ where ^ίGP, Since βX\X is discrete, there is an
open set t/< in βX such that Ĉ  Π(βX\X) = A.Nσw,A Q UA D U Q U
and IΛ Π U is P-saturated.

2. /? e CΛ Since (βX\X)\ U is finite, there exist Λ G N and
sets ^x,... ^ e P such that (βΛΛ X)\U QAλU U An. Now, /? e
ί / \ ( Λ U - UAn)QU and evidently t/\ ( ^ U U An) is
P-saturated.

Case 3. x e f/ where JC e >SJίr\ cl^jSXXX). Then JC e l/\
c [/and C/\ cl̂ ί̂jSJTX X) is P-saturated. D

For each cardinal λ > 0, we now give an example of a noncompact,
Tychonoff space * such that^( X) = Jf(X) and \βX\ X\ = λ.

(2.2) EXAMPLE. Let/? e βN\N and X = βN\{p}. Then
a singleton and (KX)s = μX = βN. So, if Y is the topological sum of n
copies of X, where n e N, then Y is an example of a space with the
properties that^T(7) = JίT{Y) and \βY\ Y\ = Λ.

(2.3) EXAMPLES. Let λ be an infinite cardinal. Let D be a discrete
space of cardinality λ, and let JS?be a partition of D into countable infinite
subsets such that \J?\ = λ. For each d e Z>, let /^ be a copy of the unit
interval [0,1]. Let Y denote the topological sum of the I/s—i.e., Y =
®{Id: d^D). For each L e i ? , let YL = ®{Id: d^L), and put
J = y u {oo}. A subset UoiXis defined to be open if (1) U Π Y is open
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in Y, and (2) if oo e t/, then there is a finite subset J^of JSPsuch that
I \ U { y L : L e ^ } c [/. Clearly this defines a Tychonoff topology on X.
Here are some results that will be useful in obtaining the desired example.

(a) If L e JS?, then YL is clopen in X; in particular, c l ^ YL = βYL.
(b) { c l ^ YL\ L G JS?} is a family of pairwise disjoint clopen subsets of

(c) βX = {00} U [U{cl^ yL: L
(d) A point p e /? A" is a remote point of βX iff for some L e JS?, /? is a

remote point of βYL.

Proof. The proofs of (a) and (b) are straightforward. To prove (c), let
p e βX\X. There is an open set U in βX such that oo e U and
/> <£ c l ^ ί/. There is a finite set J^c jSfsuch that X\U{ FL: L e Ĵ *} c ί/.
Since jSJT = | U { c l ^ 7 L : L €= Jf}] u c l ^ ί X X U ί 7 L : L e J^}), then p e
cl^^yL for some L G F . The remainder of the proof of (c) is easy. To
prove (d), let p be a remote point of βX. By (c), /? e c l ^ YL for some
L e JS?. If v4 is a closed, nowhere dense subset of YL, then 4̂ is a closed,
nowhere dense subset of X. So,/? £ cl^^ί which implies thatp £ clβγLA

as /?YL = c l ^ YL by (a). Hence, p is a remote point of βYL. Conversely,
supposep is a remote point of βYL ( = cl^^ YL) for some L &&, and let ̂ 4
be a closed, nowhere dense subset of X. Then B = A Π YL is a, closed,
nowhere dense subset of YL. Since c l ^ YL is a neighborhood of /> in βX,
then /? £ cl^y 5 iff /? ί CI^^JB iff p £ cl^Λl. So, /? is a remote point of
βX.

By 1.6, /?yL has a remote point, say pL, for each L e Jδf. Let
Z = βAΛ {/?L: L G JS?}. Since X Q Z Q βX, then jβZ = jSJiΓ and
\βZ\Z\ = λ. By (b), βZ\Z is a discrete subset of βZ. By 1.6, each
point of βZ\Z is extremally disconnected in βZ; hence, by 1.5,
every closed, regularly nowhere dense subset of Z is compact. Clearly,
{ c l ^ ( X \ U { YL: L G &}); J^is a finite subset of JS?} is a clopen neigh-
borhood base of oo in βX = βZ. But, for each finite subset & of «£?,

this shows that ( β Z \ Z ) U {oo} = clβz(βZ\Z) is the one-point com-
pactification of βZ \ Z.

So, Z is a Tychonoff space satisfying (a), (b) and (c) of 2.1; hence,
Jΐ{Z) = JΓ(Z) and |j8Z\Z\ = λ. D

Let Q denote the space of rational numbers. Another example of a
Tychonoff space X with the properties th2LtJf(X) = X{X) and \βX\X\
= S o can be obtained by letting X= βQ\{dn: n e N} where {ί/n:
« G N} is a sequence of remote points of βQ converging to some point of
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Q. That there is a sequence of remote points of βQ that converge to a

point of Q follows from the result in [vD] that the set of remote points of

βQ is dense in βQ \ Q and, thus in βQ.

We are indebted to J. Vermeer for this different example. Let λ be an

infinite cardinal, Y = Θ{Nα: a < λ} where Nα is a copy of N, and

I = 7 U { oo}. A subset U c X is defined to be open if U Π Γis open in

Y and if oo G ί/, there is a finite subset F c λ such that N α c [ / for

a e λ \ F . Let pa e j8Nα\Nα and Z = jβ^Xί/V a < λ}. Using the

above technique, it follows that^(Z) = Jf (Z) and \βZ \ Z\ = λ. Another

interesting example pointed out by J. Roitman is to let 01 be a maximal

almost disjoint family of infinite subsets of N and X = N U {oo} where

ί / c l i s defined to be open if oo e ί/ implies there is a finite sub-

set J^c ® such that R c t/ for i? e # \ ^ \ For each i? e ^ , let />* e

cl^7?\i ί (=βR\R), and Z = j8JT\{/>Λ: #<=<#}. Then uT(Z) =

Jf(Z), |/?Z\Z| = | ^ | , and Z\{oo} is not the topological sum of

{βR\{pR}:R<

2.4. REMARK. Property 2.1(a) is an internal property of a Tychonoff

space X and 2.1(c) translates into this internal property: either there exists

n e co such that given any collection of n + 1 pairwise disjoint zero-sets of

X, at least one is compact, or else X is locally compact at all but one

point. To obtain an internal condition on X that is equivalent to 2.1(b) is

more involved, and it seems difficult to formulate a simple condition that

does not involve mention of z-filters. However, it is possible to formulate

an involved internal condition as follows. [The reader is referred to [GJ]

or [W] for relevant background information about Stone-Cech compactifi-

cations.]

(2.5) PROPOSITION. Let λ be an infinite cardinal and let X be a

Tychonoff space. The following are equivalent:

(1) βX\ X is a discrete space of cardinality λ and

(2) there are families {Z,: i < λ} and {//,: / < λ} of zero-sets of X

with the following properties:

(a) for each i < λ, Z, is not compact, but if A and B are disjoint

zero-sets of X contained in Z,, then at least one of A or B is compact,

(b) for each i < λ, Z, Π Ht = 0 and ifS<Ξ Z(X) and S Π (Z, U H\)

= 0, then S is compact,

(c) ifi<j<λ, then Zz Π Zj is compact, and

(d) if&is a family of noncompact zero-sets of X and if F Γ\ G is compact

whenever F and G are distinct members of^, then | J^ | < λ.
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Sketch of proof. To show (1) implies (2), let βX\X= {dt: i < λ}.
For each i < λ, find St e Z(βX) and Tt e Z(βX) such that dt e intβxSi,
(βX\X)\{di} c i n t ^ T ; , and5£ Π ̂  = 0. Let Z, = ^ Π l a n d f f ^
7] Π X Evidently, c\βxZi\Zι?= {</,} and (a) follows from this. As
jSXXX c int^S, U i n t ^ ^ , (b) follows readily, and (c) follows from (a)
and the fact that dt Φ d} if i Φj. If F, G e Z(X), pF e cl^FXX,
A? e dβχG\X> a n ( i ^ Π G is compact, thenpF Φ pG; hence, (d) follows
from the fact that \βX\X\ < λ. Conversely, to show (2) implies (1), let
{Z : i < λ} and {//,: i < λ} be families of zero-sets of X satisfying
(a)-(d). It follows from 2(a) that \c\βxZi\X\ = 1 for i < λ. Let {</,.} =
d ^ Z Λ - ϊ - By 2(b) {d,} = (βX\X)\clβxHi9 which shows that βX\X
is discrete. If / Φ j, then rfz Φ dj by (c), and so \βX\ X\ > λ. It follows in
a similar way from (d) (and the fact that βX\X is discrete) that
\βX\X\£λ. •

A space X is Urysohn if each pair of points are contained in disjoint
closed neighborhoods.

(2.6) THEOREM. Let X be a space. Then Jt(Xs) =Jf(Xs) iff every
H-closed extension ofXis Urysohn.

Proof. The proof follows from these two facts: (i) a space Y is
compact iff X is i/-closed, semiregular, and Urysohn and (ϋ) a space Y is
Urysohn iff Ys is Urysohn. The first fact is from [KJ and the second fact
is straightforward to prove. D
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