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p-ADIC INTEGRAL TRANSFORMS
ON COMPACT SUBGROUPS OF C,

NEAL KoBLITZ

Let p be a fixed prime, and let C, denote the p-adic completion of
the algebraic closure of Q, . For d a fixed positive integer prime to p, set
X =X, =1lm_y_Z/dpNZ. For example, X; = Z,. We shall first dis-
cuss the “inverse Mellin” integral transform f, (p) = [y p(x)du(x) for p
a C,-valued bounded measure on X. We then discuss a second type of
p-adic integral transform, which to a continuous function f(x) on X
associates the analytic function whose Taylor expansion coefficients are
f(n). Thirdly, for ¢ a compact subset of C, the p-adic Stieltjes transform
@(2) = [,(z — x)"'dp(x) was shown by Barsky and Vishik to give a
correspondence between measures 1 on ¢ and a certain class of analytic
functions ¢ on the complement of 6. We shall show that when ¢ is a
compact subgroup of C,, the Stieltjes transform is closely related to the
first two transforms. Some examples and arithmetic applications will also
be discussed.

1. Let p, Cp and X = X, be as above. The p-adic absolute value in
C, is normalized so that |p|, =1/p. For u € C, with |u|, =1, let u
denote its residue in F,*8°, and let w(u) be the Teichmiller representative
of u, i.e.,, the unique root of unity of order prime to p with the same
residue in F. Set (u) = u/w(u). The ring X is isomorphic to the
product of rings Z/dZ and Z , under the two projections , and =,, where
for x € X we set m,(x) = the image of x modulo d and m,(x) = the limit of
the image of x modulo p" (“forget mod d information”). Let a + dp” z,
denote the set of x € X for which x = amod dp”™. Let X" = X, X Z~*
denote the product of X with m — 1 copies of Z,.

A function f(n) mapping the nonnegative integers to C, extends
to a continuous function on X if and only if for every ¢ > 0 we have
|f(ny) — f(n,)|, < € whenever n; = n,mod dp" for N sufficiently large.
In particular, for u € C, the function f(n) = u" extends to X if and
only if [u¢ — 1|, < 1. In that case u* = w(u)™™(u)™™,

Let U; c C, denote the open unit disc about 1, and let U, = {u €
C,||u? — 1], < 1} denote the union of the open unit discs around the dth
roots of unity. Let U™ = U, X U""'. We say that a set {u, u,,...,u,,}
€ U™ is (multiplicatively) X™-independent if the relation uju3? - - - u)m =

m

1 for x = (xy,...,x,,) € X™ implies x = 0. By replacing u; by uj"’N for
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some large N, one sees that a set is multiplicatively X™-independent if and
only if its p-adic logarithms are Q -linearly independent.

Let o be a compact subset of C; = C, — {0}. Suppose that ¢ is a
subgroup of C;. Then clearly o C U, for some d. Choose d to be minimal
with 6 C U,. It is not hard to see that there exists a finite X”-independent

set u = {uy, u,...,u,} such that ¢ = o, ,u*", where

uX” =def{u{‘1 - upmlx, € X, x; € Zp(j> 1)}

and oy, , C o is the (finite) subgroup of pth power roots of unity. For
some finite N, any u € ¢ can be written uniquely in the form u = {u

- um with x € X™ and {”N° = 1. We say that o has no p-torsion if
otors,p = {1}

Let p denote a (continuous) one-dimensional representation of X in
C,. The image p(X™) C C; is a compact subgroup; it has no p-torsion if p
is faithful.

Let §; € X™ be the m-tuple with 1 in the jth place and 0 everywhere
else. Then the map p — (p(9,),...,p(d,)) gives a one-to-one correspon-
dence between one-dimensional representations of X” and U™. For
u = (uy,...,u,) € U™, we sometimes let p, denote the representation
such that p,(8;) = u;. Note that p, is faithful if and only if u is X™-inde-
pendent.

Let p be a measure on X", ie., a bounded finitely additive map
U — p(U) from compact-open subsets U C x™ to C,.

DEerFINITION. If p denotes a measure on X™ and p denotes a represen-
tation of X™ in a finite dimensional C,-vector space, then the map

(11) (1,0) = fu(0) = [ p(x) du(x)
is called the p-adic inverse Mellin transform of p.

REMARKS. 1. The terminology comes by analogy with the transform
8(x) = [x°f(s)ds which is inverse to the Mellin transform f(s) =
[x°g(x) dx/x. Here the characters of R are parametrized by x. In
addition, this definition generalizes the construction used by Ha Huy
Khoai [5] to invert the p-adic Mellin-Mazur transform.

2. If m =1 and p is a faithful one-dimensional representation of X,
then this integral can be viewed as a Mellin-Mazur transform by a change
of variables. Namely, we fix the image o of p,, and we let p vary over
representations with image contained in o. If we set u; = p,(1), so that
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o = uj*, then such p are parametrized by y € X,, that is, p, = p{:
x = u”. Finally, let » be the measure on o obtained by pulling back pu:
dv(uf’) = dp(x). In this situation

(12)  fe) = [ uPdp(x) = [ xdv(x) = L,(»),
xm o
which is the p-adic L-function corresponding to the measure » on o.

THEOREM 1. The inverse Mellin transform f,(p,) of a measure p on X™
is a bounded analytic function of u € U™, and any bounded analytic function
on U™ is the inverse Mellin transform of some measure.

Proof. Clearly the map

w= () > (0) = [ i (e x,)

is bounded and analytic. To go the other way, given f we define

m 1 —a
(1.3) pola+dphX™) = — 3 ¢7f(¢),
dp” ¢
where a + dpVX™ denotes the compact-open subset
a; + dpMZ, X a, + pMZ,X --- X a, +p™"ZL, C X",

in the notation p" on the right N denotes N; + --- + N, ; the sum on the
right is over all £ = (§,,...,£,) € U™ for which ¢#" =& = ... =
£2" = 1; and ¢~ “ denotes I1 §; %. Clearly the mapping p., defined by (1.3)
on the usual basis of compact-open subsets of X” extends to an additive
function of compact-open subsets; it is not hard to show that p, is
bounded, using the analyticity and boundedness of f. We claim that
f(u) = [u*dp(x) for any u € U™. Since f(u) can be approximated by a
finite linear combination of monomials in ({u,), u,,...,u,,) € U™ multi-
plied by the characteristic function with respect to u,; of one of the d unit
discs in U, it suffices to check the claim in the case when f(u) is such a
function. But in this case the desired equality is proved in a standard way,
essentially by orthogonality of characters on Z/dp™MZ X Z/p™Z X ---
XZ/p""Z. O

REMARKS. 1. In the case m = 1, Ha Huy Khoai proves a more general
theorem, namely that the so-called A-admissible distributions p correspond
to all functions on U, which grow more slowly than (log, u)" as u
approaches the boundary of U,. In particular, for 2 = 1 the same con-
struction (1.3) of the measure applies. The point is that, like a bounded
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analytic function, an analytic function which grows more slowly than log,
is determined by its values at the roots of unity §.

2. A conjecture of R. Greenberg asserts that for any X™-independent
set u € U™, a bounded analytic function on U™ (with coefficients in Z )
is determined by its values on u” as y varies over X,, where u” denotes
(uf, up®,. .., um®). Equivalently, the conjecture is that, if p is a faithful
one-dimensional representation of X™ and if [ym p(xy)du(x) =0 for
y € X,, then p = 0.

2. We now let m = 1, and consider higher dimensional continuous
representations of X = X, =lim_,_Z/dp"Z. If p, is an irreducible
representation of X in an n-dimensional C,-vector space, then p,(1) has a
single eigenvalue v,, and p,(x) has eigenvalue v}. Note that v, € U,. For
a measure on X, let f,(p;) be defined by (1.1), and let » be the measure on

= pf defined by dv(v}) = du(x). Now define L (y) by the Mellin-
Mazur transform: L,(y) = [, x” dv(x).

THEOREM 2. With these assumptions and notation, when f,(p,) #+ O the
order of zero of L,(y) aty = 1 is equal to the co-rank of f,(p,)-

Proof. Let V, = p)(1), and let ¥V = CV,C~! be the Jordan normal
form. Since p, is irreducible, it follows that V is a single n X n Jordan
block. Thus, V' = v, + ¢, where v; = v,J is a scalar matrix and ¢ denotes
the matrix with ones just above the main diagonal and zeros elsewhere.
Then

fulpa) = [ Vidu(x) = €7 [ (o + )" dn(x)C.

Thus, the co-rank of f,(p,) is the same as that of

n—1 ) x » n—1 1 (d j
Zosf/;((j)vf Jdu(x) = -Zo ]—'-ef(%) ‘/;(v"dp,(x)
J= J= v=uv;

j=o J!

where g(v) = [yv*du(x). Making the change of variables v = v, we
have

g(01) = [ o*du(x) = [ x> av(x) = L,(»).

Let r be the order of zeroof L,(y)aty = 1. Then L, (1) = L/(1) = - -+ =
Lsr—l)(l) =0, Lf,')(l) # 0, and so g(v,) = g'(v)=---= g(r—l)(vl) =0,
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g"(v,) # 0. Then f,(p,) has the same co-rank as X7_!g(v,)/j! ¢,
where r < n, because f,(p;) # 0. But the latter co-rank is obviously ». O

3. LetU,={ue C,||u? — 1], = 1} denote the complement of U,,
and set U™ = U, X U" . For any z = (z,,...,z,) € U™, let p, denote
the bounded measure on X™ which is defined on the standard basis of
compact-open sets by

Za

1—z0")(1 = 22"} (1 = z2™)’
( 1 )( 2 ) ( m )

where the notation a + dp¥X™ has the same meaning as in (1.3), except
that we agree to take the representatives a; in the range 0 < a; < dp™,
0 <a; <p"(j>1),andz"denotes[Tz®. (It is easy to check that this u,
actually extends to a bounded measure on X™.)

p(a+dpVX") =

THEOREM 3. For any continuous function f: X™ — C,, the transform

(3.1) s(z)= [ f(x)dw(x), =T,

has the properties

(1) g(2) is bounded and Krasner analytic in each z, on um,

(2) g(z) = O as|z,|, > oo for each variable z, with any fixed values of
the remaining variables;

(3) in the open unit polydisc|z,|, <1, g(z) has the expansion L f(n)z",
where n = (ny,...,n,,) runs through all m-tuples of nonnegative integers;

(4) for |z,|,>1,j=1,...,m, g(z) has the expansion —% f(—n)z"",
where n runs through all m-tuples of positive integers.

Conversely, if g is any function satisfying (1) and (2), and if g(z) =
Y a,z" is its expansion in the open unit polydisc, then the sequence f(n) = a,
extends to a continuous function on X™, and we have (3.1) and also property

4.

Proof. This is essentially a theorem of Amice and Vélu [1] when
m = 1 (see the Appendix to [8] for a treatment using the measure p,), and
the general case is handled in the same way. O

ExaMPLES. 1. For fixed u € U™, the transform of the representation p,
(in the notation of §1) is simply g(z) = [xm u™dp (x) =T1,1 —u,z)~".

2. Let m = 1. According to results of Katz [4], a p-adic modular form
F of weight zero (and level 1) can be written as a function of the
Jj-invariant which is Krasner analytic outside of small discs around the
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supersingular points. Let {5,} C F,"¢ be the residues of all supersingular
values of j. It is known that in fact {5} C F, (for a table of 5, for
p < 307, see [10]). Suppose that j = 0 is not supersingular, i.e., p = 1 mod 6.
Let F, be the value at the cusp. Then F — F, = g(j) satisfies properties
(1) and (2) of Theorem 3, with j playing the role of the variable z. Here d
is some divisor of p? — 1, since E{’z‘l =1 for each i. Thus, if F(j) = F_
+ Xn_oa,j" for | j|, < 1, the coefficients f(n) = a, extend to a continu-
ous function on X, and

F(j)=F, + fX f(x)dp,(x), jeT,.
d
In addition,

F(j)=F,— X f(=n)j™" for|j|,> 1.

n=1
Hence, we have congruences for the j- and 1/j-expansion coefficients
which generalize those in Ashworth [2] and Koblitz [6].

4. We now discuss a third type of integral transform. Let p: X™ — U,
be a one-dimensional continuous representation, as in §1, and let p;
denote the jth component, i.e., pi(xs5--.5%,,) = p(0,...,0, x,,0,...,0).
Let p be a bounded measure on X™. For z € C;” with z; in the comple-
ment of the image of P> in particular for z € U™, we define the Stieltjes
transform of p and p as follows:

dp(x)
(41) oul) = [ — .
ok '/:Y'" j=1(1 - szj(x))
The next theorem gives a relation between the three transforms in §§1, 3
and 4.

THEOREM 4. Let p be a measure on X™, and let p be a one-dimensional
representation of X™ in C. Let f,(p) be the inverse Mellin transform defined
by (1.1). For y € X,, let p” denote the representation p’(x) = p(xy) =
P(X1Y, X,75(¥)s- -« s X, Mo( ). If the transform (3.1) associated to the mea-
sure ., for z € U™ is applied to the function y — 1.(p?), then the result is
the Stieltjes transformy, (z).

Proof.
fxmf,,(py) dp.(y) =me fxm p”(x) du(x) dp,(y)

me me p*(x) dp.(y) dpu(x).
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But
me p(xy) dp,(y) = I:I [ oi(x)dn, () = I:I(l - 20(2)) 7,

and so

fxmfp(py)duz(y) =me Hj(ldf(zjgj(x))’

as claimed. O

REMARKS. 1. When m = 1, our ¢ in (4.1) is essentially the transform
9,(z) = [,(z — x)"'dv(x), z € §, that is studied in [3], [12] (see also the
Appendix to [8]). Namely, ¢, ,(z) = z7'p,(z7"), where »(4*) = dp(x).
Barsky and Vishik have shown that any Krasner analytic function on ¢
which vanishes at infinity and which grows more slowly than 1 /dist(z, o)
as z — o is of the form ¢(z). On the other hand, if 6 € U, and z € U,
then such a function of z can also be written in the form [, f(x) dp.(x),
with f the continuous function which interpolates the Taylor expansion
coefficients. Theorem 4 says that, because our function of z is actually
analytic on & (not only on U,) and ¢ is a compact subgroup of G, it
follows that f extends to an analytic function on U, D ¢ = u* (not just a
continuous function on ¢) and so is given by the inverse Mellin transform
of a measure.

2. Theorem 4 is the p-adic analog of the fact that the classical Stieltjes
transform is the square of the Laplace transform L(f) = [5° e *f(x) dx.
Compare the proof of Theorem 4 with the relation (in which we think of

e”7dy asdp,(y)):
L) = [ K [ e (x) dx (e dy) = [ T (24 %)V (x) ax.
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