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/7-ADIC INTEGRAL TRANSFORMS

ON COMPACT SUBGROUPS OF Cp

NEAL KOBLITZ

Let p be a fixed prime, and let Cp denote the /?-adic completion of
the algebraic closure of Q^. For d a fixed positive integer prime to/?, set
X = Xd = Km+_N_ Z/dp»Z. For example, Xτ = Zp. We shall first dis-
cuss the "inverse Mellin" integral transform fμ(p) = fxp(x)dμ(x) for p
a C^-valued bounded measure on X. We then discuss a second type of
/7-adic integral transform, which to a continuous function f(x) on X
associates the analytic function whose Taylor expansion coefficients are
/(ft). Thirdly, for σ a compact subset of Cp the/?-adic Stieltjes transform
φ(z) = / σ (z - x ) " 1 dμ(jc) was shown by Barsky and Vishik to give a
correspondence between measures μ on σ and a certain class of analytic
functions φ on the complement of σ. We shall show that when σ is a
compact subgroup of Cp, the Stieltjes transform is closely related to the
first two transforms. Some examples and arithmetic applications will also
be discussed.

1. Let p9 Cp and X = Xd be as above. The /7-adic absolute value in
Cp is normalized so that \p\p = 1/p. For u e Cp with \u\p = 1, let w
denote its residue in i^a l g d, and let ω(w) be the Teichmϋller representative
of w, i.e., the unique root of unity of order prime to p with the same
residue in F^cλ. Set (u) = u/ω(u). The ring X is isomorphic to the
product of rings Z/dZ and Zp under the two projections πτ and 7r2, where
for x G l w e set wi(x) = ίAe i/iwige o/x modulo d and π2(jc) = /Λβ ή'm/ί 6>/
/Λe image of x modulo pN ("forget mod d information"). Let a 4- dpNZp

denote the set o f x e l for which x = amod dpN. Let Xm = Xd X Z^1"1

denote the product of X with m — 1 copies of Zp.
A function /(«) mapping the nonnegative integers to Cp extends

to a continuous function on X if and only if for every ε > 0 we have
\f(ni) ~ f(ni)\P

 < ε whenever nλ = «2mod dpN for N sufficiently large.
In particular, for u e Cp the function f(n) = ww extends to X if and
only if \ud - l\p < 1. In that case ux = ω(u)^x\u)^x\

Let t/ĵ  c Cp denote the open unit disc about 1, and let Ud= {u e
C^llw^— 1 | / 7 <1} denote the union of the open unit discs around the dth
roots of unity. Let Um = UdX U™'1. We say that a set {ul9 u2,...,um}
e ί/m is (multiplicatively) Xm-independent if the relation uζιuXl w^m =
1 for x = ( jq,. . . ,JCW) e X m implies JC = 0. By replacing w7 by uγN for
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some large N, one sees that a set is multiplicatively Xm-independent if and
only if its />-adic logarithms are Q^-linearly independent.

Let σ be a compact subset of C* = Cp - {0}. Suppose that σ is a
subgroup of C*. Then clearly σ c Ud for some d. Choose d to be minimal
with σ c Ud. It is not hard to see that there exists a finite Xm-independent
set u = {ul9 u2,...,um] such that σ = σtors p uχm, where

χm -
~~def

and σtors p c σ is the (finite) subgroup of pth power roots of unity. For
some finite No any u e σ can be written uniquely in the form w = ζ uf1

• w*™ with Λ; e JΓ* and f̂ "0 = 1. We say that σ has no p-torsion if

Let p denote a (continuous) one-dimensional representation of Xm in
Cp. The image ρ{Xm) c C* is a compact subgroup; it has no/?-torsion if p
is faithful.

Let δj e Xw be the m-tuple with 1 in theyth place and 0 everywhere
else. Then the map p •-» (p(δ1),...,p(δm)) gives a one-to-one correspon-
dence between one-dimensional representations of Xm and ί/m. For
u = (w l9...,wm) e ί/w, we sometimes let ρM denote the representation
such that ρu(8j) = uΓ Note that ρu is faithful if and only if u is Xw-inde-
pendent.

Let μ be a measure on Xm, i.e., a bounded finitely additive map
U •-> μ(f/) from compact-open subsets t/ c χm to C .̂

DEFINITION. If μ denotes a measure on Xm and p denotes a represen-
tation of Xm in a finite dimensional C^-vector space, then the map

(1.1) ( μ , P W μ ( p ) = f p(x)dμ(x)
Jχm

is called the p-adic inverse Mellin transform of μ.

REMARKS. 1. The terminology comes by analogy with the transform
gf(x) = Jxsf(s) ds which is inverse to the Mellin transform f(s) =
Jxsg(x) dx/x. Here the characters of R are parametrized by x. In
addition, this definition generalizes the construction used by Ha Huy
Khoai [5] to invert the/?-adic Mellin-Mazur transform.

2. If m = 1 and p is a faithful one-dimensional representation of Xd,
then this integral can be viewed as a Mellin-Mazur transform by a change
of variables. Namely, we fix the image σ of pl9 and we let p vary over
representations with image contained in σ. If we set ux — Pχ(l), so that
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σ = u*d, then such p are parametrized by y e Xd, that is, ρy = ρy:
x •-» ufy. Finally, let v be the measure on σ obtained by pulling back μ:
dv(uf) = dμ{x). In this situation

(1.2) μ{l)ί
Jχm

which is the/7-adic L-function corresponding to the measure ϊΌnσ.

THEOREM 1. The inverse Mellin transform fμ{ρu) of a measure μ on Xm

is a bounded analytic function ofu e ί/m, and any bounded analytic function
on Um is the inverse Mellin transform of some measure.

Proof. Clearly the map

u = ( u l 9 . . . 9 u m ) > + f ( p u ) = [ u? ••• u%dμ(xl9...9xm)
Jχm

is bounded and analytic. To go the other way, given / we define

(i.3) M« + Φ * ) Λ
dp

where a + dpNXm denotes the compact-open subset

in the notation/?^ on the right N denotes Nλ + 4- Nm\ the sum on the
right is over all £ = (ξl9... 9ξm) e Um for which ξ^1 = ξf2 = - =
ξ£m = 1; and ξ~a denotes Π ξ]aκ Clearly the mapping μf defined by (1.3)
on the usual basis of compact-open subsets of Xm extends to an additive
function of compact-open subsets; it is not hard to show that μf is
bounded, using the analyticity and boundedness of /. We claim that
f(u) == / u* dμ(x) for any u e Um. Since/(w) can be approximated by a
finite linear combination of monomials in ((uλ), u29.. ,um) ^ U™ multi-
plied by the characteristic function with respect to ux of one of the d unit
discs in Ud, it suffices to check the claim in the case when/(w) is such a
function. But in this case the desired equality is proved in a standard way,
essentially by orthogonality of characters on Z/dpNιZ X Z/pNlZ X
xZ/pNmZ. Π

REMARKS. 1. In the case m = 1, Ha Huy Khoai proves a more general
theorem, namely that the so-called Λ-admissible distributions μ correspond
to all functions on Ud which grow more slowly than (logpu)h as u
approaches the boundary of Ud. In particular, for h = 1 the same con-
struction (1.3) of the measure applies. The point is that, like a bounded
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analytic function, an analytic function which grows more slowly than
is determined by its values at the roots of unity ξ.

2. A conjecture of R. Greenberg asserts that for any Xm-independent
set u e t/m, a bounded analytic function on ί/w (with coefficients in Zp)
is determined by its values on uy as y varies over Xd, where uy denotes
(u{, u"2^,... ,u%iy)). Equivalently, the conjecture is that, if p is a faithful
one-dimensional representation of Xm and if jχmp(xy) dμ(x) = 0 for
y e Xd9 then μ = 0.

2. We now let m = 1, and consider higher dimensional continuous
representations of X = Xd = lim^^_ Z/dpNZ. If pλ is an irreducible
representation of X in an w-dimensional C^-vector space, then ρx(l) has a
single eigenvalue vv and pλ(x) has eigenvalue υx. Note that yχ e Ud. For μ
a measure on X, let//ι(ρ1) be defined by (1.1), and let v be the measure on
σ = v* defined by dv(υl) = dμ(x). Now define Lv(y) by the Mellin-
Mazur transform: Lv(y) = jσx

y dv(x).

THEOREM 2. With these assumptions and notation, when fμ{pλ) Φ 0 the
order of zero of Lv{y) aty = 1 is equal to the co-rank offμ(pλ).

Proof. Let Vλ = ρx(l), and let V = CVλC~ι be the Jordan normal
form. Since ρλ is irreducible, it follows that V is a single n X n Jordan
block. Thus, V = vx -I- ε, where υλ = ι?x/ is a scalar matrix and ε denotes
the matrix with ones just above the main diagonal and zeros elsewhere.
Then

fμ(Pi)=ί V1

xdμ(x)^C'1ί K + β)
Jx Jx

Thus, the co-rank of / (px) is the same as that of

y-o J'

where g(υ) = Jxυ
xdμ(x). Making the change of variables v = ϋ ,̂ we

have

g(vy) = / <dμ(x) = / Λ^F(JC) = Lp(y).

Let r be the order of zero of Lv(y) zty = 1. Then Lv{\) = L^(l) = =
0, L[r\l) Φ 0, and so g(Όl) = gX^) = = g^'1^) = 0,
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g ( r ) θ i ) =£ 0. Then fμ{pλ) has the same co-rank as Σ " I r

1 g ( /)(ι>1)/y!ε /,

where r < n, because fμ(Pι) Φ 0. But the latter co-rank is obviously r. U

3. Let Ud = {u e Cp\ \ud - \\p > 1} denote the complement of Ud,

and set Um = Όd X U™~\ For any z = (z 1 ? . . . , z m ) e Um, let μz denote

the bounded measure on Xm which is defined on the standard basis of

compact-open sets by

μz(a + dpNXm) =

where the notation a + dpNXm has the same meaning as in (1.3), except

that we agree to take the representatives αy in the range 0 < aγ < dpN\

0 < dj < pNj (j > 1), and za denotes Π ZJJ. (It is easy to check that this μz

actually extends to a bounded measure on Xm)

THEOREM 3. For any continuous function f': Xm -> Cp9 the transform

(3.1) g(z)= [ f(x)dμz(x), ZG Um,
Jχm

has the properties

(1) g(z) is bounded and Krasner analytic in each Zj on Um;

(2) g(z) -* 0 as \Zj\p -» oo for each variable Zj with any fixed values of

the remaining variables;

(3) in the open unit poly disc |z | < 1, g(z) has the expansion Σf(n)zn,

where n = (nv... ,nm) runs through all m-tuples of nonnegative integers;

(4) for \zj\p > 1,7 = l , . . . ,m, g(z) has the expansion — Σ / ( — n)z~~n,

where n runs through all m-tuples of positive integers.

Conversely•, // g is any function satisfying (1) and (2), and if g(z) =

Σanz
n is its expansion in the open unit poly disc, then the sequence f(n) = an

extends to a continuous function on Xm, and we have (3.1) and also property

(4).

Proof. This is essentially a theorem of Amice and Velu [1] when

m = 1 (see the Appendix to [8] for a treatment using the measure μ z), and

the general case is handled in the same way. D

EXAMPLES. 1. For fixed u e Um, the transform of the representation pu

(in the notation of §1) is simply g(z) = Jχm ux dμz(x) = Π y ( l - UjZj)~ι.

2. Let m = 1. According to results of Katz [4], a/?-adic modular form

F of weight zero (and level 1) can be written as a function of the

j'-invariant which is Krasner analytic outside of small discs around the
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supersingular points. Let {£,} c F^gcl be the residues of all supersingular
values of y. It is known that in fact {sέ} c i y (for a table of st for
p < 307, see [10]). Suppose thaty = 0 is not supersingular, i.e.,/? = 1 mod 6.
Let F^ be the value at the cusp. Then F — F^ = g(j) satisfies properties
(1) and (2) of Theorem 3, withy playing the role of the variable z. Here d
is some divisor of/?2 - 1, since sf~ι = 1 for each /. Thus, if F(j) = F^
+ Σ™=oanj

n for ly'l̂  < 1, the coefficients f{n) = an extend to a continu-
ous function on Xd, and

F(j) = Foo+ ί f(x)dφ), j*Ud.
Xd

In addition,

-*1*,- Σf(-n)Γ" t<x\j\p>l.

Hence, we have congruences for the y- and 1/y-expansion coefficients
which generalize those in Ashworth [2] and Koblitz [6].

4. We now discuss a third type of integral transform. Let p: Xm -> Ud

be a one-dimensional continuous representation, as in §1, and let py

denote the y th component, i.e., pj(xv... ,xm) = p(0,... ,0, xj9 0,... ,0).
Let μ be a bounded measure on Xm. For z e CJ? with zy in the comple-
ment of the image of ρy, in particular for z e £/m, we define the Stieltjes
transform of p and μ as follows:

The next theorem gives a relation between the three transforms in §§1, 3
and 4.

THEOREM 4. Le/ μ be a measure on Xm, and let p be a one-dimensional
representation of Xm in C*. Letfμ(p) be the inverse Mellin transform defined
by (1.1). For y e Xd, let py denote the representation py(x) = p(xy) =
p(xλy, Λ:27Γ2( J ) , . .. ,xmir2{y)) If ̂ e transform (3.1) associated to the mea-
sure μz for z e Um is applied to the function y •-> fμ(py), then the result is
the Stieltjes transform ψp μ(z).

Proof.

/ fμ{py) dμz(y) =

/ / py(x)dμ.z(y)dμ(x)./
js m J y-m
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But

P(χy) dμz{y) - Π / φ)ydμZj{y) =/
Jχm

and so

as claimed. D

REMARKS. 1. When m = 1, our ψ in (4.1) is essentially the transform
ΨΛZ)

 = /σ(z ~ J C ) " " 1 ^ ^ ) *
 z G s> Λat is studied in [3], [12] (see also the

Appendix to [8]). Namely, ΨPu,μ(
z) = z~l(Pp(z~l)> where v{ux) = dμ(x).

Barsky and Vishik have shown that any Krasner analytic function on σ
which vanishes at infinity and which grows more slowly than l/dist(z, σ)
as z -> σ is of the form φ(z). On the other hand, if σ c Ud and z e Ud9

then such a function of z can also be written in the form JXdf(x) dμz(x),
with / the continuous function which interpolates the Taylor expansion
coefficients. Theorem 4 says that, because our function of z is actually
analytic on σ (not only on Ud) and σ is a compact subgroup of C*, it
follows that/extends to an analytic function on Ud ^ σ = uXd (not just a
continuous function on σ) and so is given by the inverse Mellin transform
of a measure.

2. Theorem 4 is the/?-adic analog of the fact that the classical Stieltjes
transform is the square of the Laplace transform L(f) = /Q° e~~xyf(x) dx.
Compare the proof of Theorem 4 with the relation (in which we think of
e~zydy3isdμz(y)):

L{L(f)){z) = Γ Γ e~χyf{x) dx (e-*?dy) = Γ (z + x)"V(^) dx.
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