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CONTINUITY OF HOMOMORPHISMS
OF BANACH G-MODULES

B. E. JOHNSON

We consider whether, given a locally compact abelian group G and
two Banach G-modules X and Y, every G-module homomorphism from X
into Y is continuous. Discontinuous homomorphisms can exist only when
Y has submodules on which G acts by scalar multiplication. They are also
associated with discontinuous convariant forms on X so if either of these
are absent them all G-module homomorphisms are continuous.

1. Introduction. Throughout this paper G is a locally compact
abelian group.

DEFINITION 1.1. A Banach G-module is a Banach space X with a map
(g, JC) -> gx of G X X into X such that

(i) x -» gx is linear o n l ( g e G).
(ϋ) g(hx) = (gh)x (g, Λ e G, x <Ξ X\

(iii) ex = x (JC e X, e is the identity element of G).
(iv) There is a # <Ξ R with

Note that we do not require any continuity of the map (g, x) -» gx in
g—in fact in most of the paper we will be treating G as a discrete group.

A Gsubmodule of X is a closed linear subspace XQ of X with gx e Jf0

(g e G, x ^ Jf0). The G-module X is sra/tfr if for each g ^ G there is
λ(g) e C with gx = λ(g)x (g e G, JC e X). If X # {0} then λ(e) = 1,
MgA) = λ(g)λ(Λ) and |λ(g)| < # . Applying this last inequality to gn

(n e Z) we see |λ(g)| = 1 so λ is a character and mild continuity
hypotheses on g «-» gx would imply that λ is continuous.

DEFINITION 1.2. Let X, Y be Banach G-modules. Then S: X -> Γ is a
G-module homomorphism if it is linear and S(gx) = g5'(x)(g e G, x ^ X).

If y is a scalar module then S^gx) = λ(g) ^(JC) and we say that S is
λ-covariant. In the special case when λ = 1 is the trivial character we say
S is invariant. When 7 = C w e call S &form.

Invariant and covariant forms are related in many cases because if
S is a λ covariant form on X and T: X -* X is a linear map with
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T(gx) = λ(g)" 1 gT(x) then ST is an invariant form because ST(gx) =
S(λig)-1 gT(x)) = gST(x). When Xis a G-module of functions on which
G acts by translation such a Γis given by (Ta)(h) = λ(h)~ιa(h).

The main result of this paper [Theorem 4.1] is that if S is a G-module
homomorphism of X into Y then the separating set of S is the direct sum
of finite number of scalar G-submodules of Y. This is proved by methods
similar to [1] involving identifying certain intersections of ranges (Σci g^Y
where the at e C. Our method for doing this depends on doing it first of
all for Y = /°°(G) and to achieve it there we need some results on
difference operators which are given in §2.

2. Two Lemmas. Throughout this section Rn is partially ordered by
the product order (except that x < y means xt < yt for all i) and α , i E R "
with a < b. For x e Rn we put |x| = maxlx^. The standard basis vectors
of R" are denoted by el9... ,en. If X ^ G R " , a < x - h < x <
x + h < b and g is a complex valued function on (α, b) we define

Aig = Δ,(x, h)g = [g(x + A Λ ) - 2g(x)coshΛ/ + g(x - h^h;2.

Abusing notation Δ,g is a function of x and we have Δ^Δ ĝ = Δ^Δ ĝ.
Let Δ = ΔXΔ2 Δn. Lemma 2.2 is an extension of Schwarz' Theo-

rem to functions of several variables with the operator D2 replaced by
D2 — /; Lemma 2.1 is a preparatory result.

LEMMA 2.1. Let w, v e (a, b) with u < v. Suppose g is continuous
(a, b) —> C and g(x) = 0 whenever xi = wz or υt for some i. Suppose also
that Δ g = 0 whenever a < x — h<x<x + h<b. Then g is zero
throughout (a, b).

Proof. We prove the results by induction on n. When n = 1 we see
that if we have any three points in (a, b) in arithmetic progression and g
is zero at two of them it is zero at the third. Hence g is zero at all points in
(a, b) of the form (1 - λ)u + λv where λ = Tst (s, t e Z). By continuity
g is zero throughout (a, b).

Suppose the result holds whenever n = k and g satisfies the hypothe-

ses for n = k 4- 1. Let c e (ak+v bk+ι) and let y, h e R*. For all .y^+i,
w i t h ak+i < Λ+i - A*+i < Λ+i < Λ+i + hk+i < **+-i we have

where
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Also G(uk+ι) = 0 = G(υk+ι). Thus by the result for n = 1, G(c) = 0. We
now apply the inductive hypothesis to the function g(xl9 x2>. - 9xn9 c) and
the result follows.

LEMMA 2.2. Let f be continuous (a, b) -> C and suppose that for each

x e (α, b) there are complex valued functions ai9 βέ (i = 1,... ,«) defined in

a neighbourhood of 0 in Rn where at and βt are constant with respect to the

ith variable, such that

f(x + h) = Σ *i(* + A) cosh hέ + fii(x + h) sinh ht + o(\h\2")
1 = 1

as h -> 0. 7% «̂ ίA r̂e are complex valued functions Ai9 Bi (i = 1,...,«) #«
(a, b) where Ai and Bt are constant with respect to the ith variable such that
for all x e (a, b)

n

f(x)= Σ >^*) cosh *,.+ /?,.(*) sinhjc,..
ί = l

Proof. First of all we show that i f a < x — h<x<x + h<b then

Δ / = 0. We have

+ 2cosh | A Λ ( *

Applying this to each of the factors in Δ = Δ X Δ 2 Δ n we express
Δ(x, h) as the mean of 4n terms of the form CΔ(y9 \h) where C is the
product of some of the terms cosh \ht. If we denote |Δ(JC, h)f\ by K then
for one of these y 's, j ( 1 ) say

where x — h < y{l) - \h < y(1) + \h < x + h and cosh \hλ cosh
= C{\h). Repeating the process we obtain a sequence j>(m) with

where

< Cm = c( | *)c( i*) C(2-Λ) < Q <

where Q, is the infinite product TlC(2~Jh). Moreover j ( m ) - 2""Λ <
^(m) + 2-m/j s o t h e sequence { y ( m ) } converges to z <= (α, 6).
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Writing

/(z + k) = Σα,(z + k) cosh kt + β ( z + fc) sinh fc. + /(z + A:)

as in the hypotheses of the theorem where/(z) = 0 and/(z + k)\k\~2n

0 as \k\ -* 0 and using

we see

The points at which/is evaluated in calculating the right hand side of this
lie in [z - 2 2"WA, z + 2 2~mh] so that

<
where z ( w ) is the evaluation point at which/takes its greatest modulus (so
we have z ( w ) Φ z). As |z ( m ) - z\ < 4 2"m|A| this gives

KC-1 < 4"C(2-h)\f{z™)\ |z<"> - zΓ2"(4|A|)2ll(A1Λ2 hj2.

Letting m -> oo, C(2~mh) -> 1 and we see from the hypotheses on/that

*: = o.
Let a < u < v < b. There are complex valued functions 4̂,., 1?,

(Ϊ = 1,... ,n) on (α, 6) where At and J?z are constant with respect to the
/ th variable such that

g(x) = / (*) ~ ΣAi(x) c°sh xέ + ^ ( x ) sinh xf

takes the value 0 whenever xi = wz or t for some ι—more precisely put

«(») - ΣΛ»)Π
s

where the sum is over all « tuples (w1?... ,wn) of symbols with wέ = M,., JC,.
or vi for all /, the product is over all / for which wt Φ xi and w/ = ui if
wέ = i;,- and w/ = υt if wz = u(. Using the addition formula for the
sinh function shows that g is of the form required. We see Δg = Δ/
because Δf ^4l-(x)coshxl + Bi(x)sinhxi = 0. An application of Lemma
2.1 completes the proof.

3. Spectral subspaces as intersections of ranges. Throughout this
section G is a discrete abelian group.

DEFINITION 3.1. For an open set E in G we define

I0(E) = {a; a e /1(G)?suppα c £ }

where supp α is the closed support of a.
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If Yis a Banach G-module, a e l\G) then we define

and Yis a left module over the Banach algebra l\G).

DEFINITION 3.2. For an open set E c G put

F(£) = ( J J E Y,ay = Oforaila(=

and put

y-1 is a closed ideal in lι(G). Its hull is the Arveson spectrum of Y

spec7= {χ χ e G,ά(χ) = Oforallα e 7 Λ } .

Let gl9... ,gn e G, ε > 0 and ψ e G. Put

and

= n

THEOREM 3.3. y(£) = (Ί(E).

Proof, (i) Let^ e Y(E) and χ e £. As ^4(G) is a regular algebra and

is a compact subset of E, there is a e /^G) with ά(χ') Φ 0 for all χ' e Z
and ά(γ) = 0 for all γ in a neighborhood of G \ E, that is a e /oί^1). Put

Σ - Σx = Σ (g;1 - xigjFeY^gj - χ(g,)e)" + 1

Then £i(γ) > 0 with equality only for γ e Z so (Σ 4- Λ*^)" is nowhere
zero on G which implies b = Σ -I- α*α is invertible in /1(G). We have

y = fc-ity = b^Σy = Σδ'V e ΣY. Thus j e Π ( £ ) .
(ϋ) To prove the opposite inclusion, first consider the case G = Zw,

Y = /°°(G) where G acts on /°°(G) by translation, that is

(gf)(h) =f(g-χh) (g, h e G , / G /-(G)),

and g l 9...,gπ are the usual generators of Z". We consider T = Z as
Rmod2τrZ and functions on T as 2π periodic functions on R. Let
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e £ so that

Σ - Σ [g;1 ~
ί 7-1

There is z ε 7 with y = Σz. The Fourier transforms y, z of y, z are
Schwarz distributions on T". For m = (mλ, m2, • ,mn) e Z" put

Δ ( m ) - [(1 + w ? ) ( l + m i ) •.. (1 + m i ) ] " 1 .

Then Δ, Δ y and Δ z (the pointwise product) are in l\G) so their
Fourier transforms are in C(T"). Put/ = (Δ y)* = Δ* * j>, g = (Δ z)Λ =
ΔΛ * z. As Δ"1 is the inverse Fourier transform of the distribution

on T" where Ώ} = 8/8ηy and Djφ = (2), φ)(0) for φ e ^ so that Dyφ =
ί) y * φ. Df is Z)7 * Z)y. Thus y = Γ * /, z = Γ * g, and

where denotes the pointwise product of a function and a distribution [4;
p. 117] and

For each/ we have

so that, because DjDkΣ = 0 for/ Φ kwe have

so that

(t) /

However (/ — Z^2)"1 is the functional
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where

C(Ύ\J) = π(sinh τr)~1cosh(ηy - π) for 0 < ηy < 2ττ

and (/ - Dfy1 * bj the functional

[(/ - Of)* Dj](φ) = -^ fj ί(i|^(0 0,,y,0 0) dVj

where s(ηj) = 7r(sinhτr)"1sinh(τ|y - π) for 0 < ηy < 2π and so these
distributions are measures. Thus all the terms in (f) are continuous
functions and, considered as an equation between functions it holds
almost everywhere and hence everywhere. We consider c and s as extended
to 2ττ periodic functions on R.

As η -> i we have Σ* = O(\η - £ | 2 / ι + 2 ) , DjL* = O(\η - £\2n+1) and
i ) / Σ Λ = O(\η - ξ\2n). However, if g G C(Ίn) with g(η) = O(\η - £\2n)

as η -» ξ then

l f (η) = ^

(2sinhw)"1 coshη y j ' cosh(ί + π)g(η -(τj y - ί)

+ sinhηyj
 y sinh(ί + ττ)g(η — (η^ - t)βj) dt

+ coshηjf m cosh(ττ - t)g(η - ( η y - ήβj) dt

sinh(ττ - t)g(η -(vj — Oey) &

Since /0^cosh(/ + π)g(η — ηjβj -I- tej) dt is independent of i\j and

cosh(ί + π)g(η — ηjβj + tβj) dt = o[\η — £| j asrj -> |

we see that the first integral in this expression is of the form A(η) coshτj7

+ o(\η - ξ | 2 n ) and hence of the form

/ 2/i

where yl and 2? are independent of the jth variable. The other three are
similar and so (/ - ί)/)" 1* g is of this form. By a similar argument
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(/ — bf)~ι* Dj*g is of this form so that the decomposition (f) shows
that / satisfies the hypotheses of Lemma 2.2 and so / is of the form
ΣA^x) cosh x. + Bt(x) sinh xi on E so that y = T*f=0onE because
the support of Γ is {0} and (/ - Df)(Aj(x) cosh Xj + Bj(x) sinh xj) = 0.
Thus, if a e I0(E) Π 2 we have (ay) = a y = 0 because a is a func-
tion in 3) with support in E and so αy = 0.

Taking an infinitely differentiable approximate identity in l}(G) with
support -> E we see that / 0 (£) Π ̂  is I1 dense in / 0 (£) and so, since the
product ay is continuous in a we see ay = 0 for all # ^ 70(is) and hence
J> e Y(E).

(iii) Consider now the case in which G = Zw, g l 5... ,gn are its genera-
tors and Y is an arbitrary Banach G-module. Let y0 e f l ( £ ) , f l e Io(E)>
f e y* and consider the map y -> l°°(G) given by

We have

so Φ is a G-module and hence an /X(G) module map. Thus,

so Φ(αy0)
 = flΦ(JΌ) = 0 However,

(^) = Σ α(

so/(αy0) = 0 for all/ e y* showing that αy0 = 0 and hencey0 e Y(E).
(iv) Finally, consider the general case. Denote the injection map

Zn -> G given by g- -> gy by i where the g are the generators of Z". t* is a
map G -> T" and putting ky = ι(k)y (k G Z " J E Y)9 Y becomes a
Zw-module. Let E' = ι*E, ψ' = ι*ψ. Let ι*~ιE' = E and if ελ < 1 then
7 0 (£) is the ideal in l\G) generated by i I0(E') and Π(£') = Π(£).
Hence if y ^ Π(E) then 0 = ay = ι(α).y for all a ^ I0(E') and,
because{Z>; fe e ^(G), iy = 0} is an ideal in l\G) containing i (I0(E')) it
contains I0(E) which implies j ; ^ Y(E).

4. Automatic continuity results.

THEOREM 4.1. Let G be an abelian group and let X, Y be Banach
G-modules. Let S: X -» Y be a G-module homomorphism and let @ be the
separating space of S. Then @ is the direct sum of a finite number of scalar
submodules of Y. The separating space is defined in [6; p. 7].
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Proof, We apply [6, Theorem 2.3] with Ω = G, Γ as the set of all

E(gl9...,gn;ψ9e) ( « e Z + , g l v . . , g π e G , ψ G G , O < ε < l ) and X(E)

and Y( E) as in Definition 3.2. By the regularity of l\G), if Fv...,Fn e Γ

with f) Π ίj. = 0 for i Φj there is b e /X(G) with 6 = 0 on Fx U F2 U

• U Fπ_ 1 and b = 1 on Fn. Let Λ: e X Then x = foe + (e - />)*. If for

somey with 1 < y < n - 1 we have a e Jo( JFJ.) then ab = 0 so foe e A ^ )

(y = 1,...,n - 1). Similarly (e - 2>)x e X(FM) so that [6: Conditions 2.2]

apply.

For any a e l\G) with finite support we have S(ax) = aS(x) and so

S(aX) = a5(X) c aY. Hence for each £ e Γ , S(Γ)X(E)) c Π y (£) . By

Theorem 3.3, this implies S(X(iE:)) c Y(E) so that the hypotheses of [6:

Theorem 2.3] are satisfied. Hence the set Λ of discontinuity points of S is

finite. Thus for each λ e G\Λ there is E G Γ with @ c Y{E). Let

a e I0(G\Λ). By the regularity of /X(G) we have a = Σ"β lα p, where

p, e /()(£/) and @ c 7 ( ^ ) . Thus, if s e ® then α5 = Σ^p^ = 0. Hence

@ - L D / 0 ( G \ Λ ) - which, by [3; p. 170], implies @±Ώ {a; a <Ξ l\G),

α(λ) = 0, λ e Λ} = Z(Λ) and so spec S c A . As l\G)/Z(A) = C*

and @ is an /1(G)/Z(Λ) module it is a C" module and hence a direct sum

of n C modules. These summands are scalar G-modules.

COROLLARY 4.2. If in 4.1, S is discontinuous then there is an element χ

of G for which

(i) Xhas a discontinuous χ-covariant linear form.

(ii) Y has a non-trivial scalar submodule corresponding to the character

X

Conversely if such a χ exists then there are discontinuous G module

homomorphisms X -> Y.

Proof. As S is not continuous, @ is not {0} so there is s e @ with

ί ^ O a n d χ G G with gs = χ(s)g(g e G). Let/ e Γ* with/(^) ^ 0. For

y e Γlet α^: G -> C be the function g -> χ(g)/(g"V) Thenj; •-> ay is a

bounded linear map Y -* /°°(G). Let Af be a translation invariant mean

on /°°(G) and put F(.y) = M(ay). Then F G y*, α5 is the constant

element g -> /(^) so F(5) = /O) # 0 and /^(gx) = FgS(x) =

χ(g)isS(x) because agy = χ ί g ) ^ ^ where τg is translation by g. Thus FS

is a χ-covariant linear form.

For the converse if Φ is a discontinuous χ-covariant form on X and

y Φ 0 lies in a scalar submodule then S'(Λ:) = φ(Λ:)^isa discontinuous

G-module homomorphism.
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REMARK 4.3. If G is a locally compact abelian group, X, Y are Banach
G-modules, S is a G-module homomorphism X -> Y and the product gy is
continuous in g in some way which ensures that scalar submodules of Y
correspond to continuous characters then we see that 4.2 applies with G as
the topological dual of G.

EXAMPLES 4.4. If Y is a Banach G-module containing no scalar
submodule then every (/-module homomorphism into Y is continuous. If
X = LP(G) (1 < p < oo) where G is an extension of a locally compact
abelian group by a discrete group with uncountably infinite torsion free
rank or p = 2 and G is compact and weakly polythetic, there are no
discontinuous translation invariant forms on X [2 and 7] and hence, by the
remarks after Definition 1.2, no discontinouus χ-covariant forms for any
χ e G. Thus, if Y is a continuous Banach G-module then every G-module
homomorphism X -> Y is continuous.

The results in this paper can be extended to the case of G-modules
which satisfy Definition 1.1 with (iv) replaced by

(iv)' For each g e G there is K e R and an integer k with

The main changes needed are to replace /1(ZΠ) by the space of functions
of rapid decrease [5; p. 83] and /°°(Z) by the space of functions of slow
increase. We now define Γ\(E) by

Π Π t(g]1 - xigjY^igj- χ{gj)e)kY

and need higher order versions of 2.1 and 2.2.
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