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W*-CATEGORIES

P. GHEZ, R. LIMA AND J. E. ROBERTS

A W* -category is the categorical counterpart of a von Neumann
algebra with an abstract definition equivalent to a concrete definition in
terms of operators between Hubert spaces. We develop the elementary
theory of W* -categories including modular theory and the comparison
theory of objects (equivalence and quasiequivalence). We also char-
acterize certain W*-categories in terms of the W*-category of projec-
tions in a von Neumann algebra, self-dual Hermitian modules for a von
Neumann algebra or normal representations of a von Neumann algebra.
This leads naturally to a discussion of the Morita equivalence of von
Neumann algebras and of W* -categories.

Introduction. A W*-category is the natural generalization of a von
Neumann algebra where, instead of taking the bounded linear mappings
of a fixed Hubert space as a model, we take the bounded linear mappings
between a collection of Hubert spaces. It is remarkable how easily most of
the elementary results on von Neumann algebras generalize to W*-cate-
gories. Consequently with little effort one can dispose of a relatively large
body of results on W*-categories. There are at present many interesting
directions of current research where W*-categories arise naturally: For
example the representation theory of groupoids [5], the harmonic analysis
of the action of non-Abelian groups on von Neumann algebras [1], [9],
[12], [21], [24] the action of group duals on von Neumann algebras [14],
[22], and non-Abelian cohomology in an operator algebraic context [6],
[23], [25], [28].

We feel that a systematic presentation of the basic theory of W*-cate-
gories is already overdue.

Naturally the idea of using bounded linear mappings between differ-
ent Hubert spaces is such an obvious one that this paper may have many
published and unpublished forerunners quite unknown to the authors.
Indeed one of us (J. E. R.) has been toying with the idea of writing such a
paper for many years but initially felt that the time was not yet ripe for
such a development. In any case the roots of this development go right
back to the beginnings of the theory of operator algebras and perhaps the
basic example of mappings between different Hubert spaces are the
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intertwining operators of representation theory. The set of such intertwin-
ing operators forms a W*-category and has been studied from this point
of view by Rieffel [20]. Many of his results are in fact of a general nature.

Another source of examples and hence of motivation is comparison
theory. To describe the comparison of projections in a von Neumann
algebra M, one takes the set of projections of M as the objects of a
W*-category &>(M) and, for each pair of projections e, f ^ M, the set of
t ^ M such that t = te = // as the set of arrows from e to/in ^(M). The
comparison theory of weights of Connes and Takesaki [6] follows the
same pattern and the W*-category of weights on M, W(M) is discussed
in §8.

The natural starting point for a systematic discussion of W*-cate-
gories is the elementary theory of C*-categories. Without prejudice as to
the eventual importance of C*-categories in their own right we confine
ourselves to a bare minimum of results. With the aid of a G. N.
S.-construction we show that every C*-category has a concrete realization
and that a suitably defined category of functors between two C*-cate-
gories is again a C*-category.

Specializing to the case of W*-categories, we first prove the analogue
of Sakai's result for von Neumann algebras namely that if W*-categories
are defined as C*-categories admitting a predual, this predual is unique
and each W*-category has a concrete realization as a weakly closed
*-subcategory of a suitable category of Hubert spaces.

At this stage, it is already clear that there will be little difficulty in
generalizaing results from the theory of von Neumann algebras. Modular
theory, treated in §3, even benefits from the added generality as the
Connes 2 X 2-matrix argument is typical of HΓ*-category techniques.
Readers quite unfamiliar with category theory may find the notions of
commutant and centre, given in §4, strange at first sight but should feel
more at home with the comparison theory of §6 and become reconciled to
the definition of centre at the latest in the treatment of quasiequivalence
in §7.

The smooth way in which the basic theory develops indicates that a
W*-category is never very far from being a von Neumann algebra. In fact
it can always be thought of as pieces of some large von Neumann algebra.
We prove two results characterizing certain W*-categories up to equiva-
lence. A W*-category with a maximal object and sufficient subobjects is
equivalent to some &>(M) (see Prop. 6. 4). A σ-finite W*-category with
sufficient subobjects and countable direct sums is equivalent to the full
subcategory of some &>(M) whose objects are the σ-finite projections of M
(Thm. 7.14).
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A rather different approach to classifying W*-categories makes con-
tact with the work of Rieffel [20] and emerges from studying the quasi-
equivalence of objects in a PF*-category. Two objects in a ίF*-category
are said to be quasiequivalent if they have the same central supports. A
generator in the sense of category theory coincides with an object of
central support 1. We then prove that any W*-category with a generator,
direct sums and sufficient subobjects is equivalent to a W^*-category of
Hermitian self-dual modules (Prop. 7.6). Knowing a generator of a
fΓ*-category 3ί essentially determines the *-functors from 21 (see Corollary
7.7 and Theorem 7.13). In particular it determines the ίΓ*-category up to
Morita equivalence (Corollary 7.8). Two W*-categories are Morita equiva-
lent if and only if they have faithful representations whose commutants
are isomorphic as von Neumann algebras (Prop. 7.9). In fact any ϊΓ*-cat-
egory can be regarded as a full subcategory of the category of representa-
tions of the commutant of some faithful representation.

The aim of this paper is to provide a basic stock of results on
W*-categories so that they can, in future, be used freely to simplify
arguments and clarify concepts. We have deliberately omitted certain
topics such as the standard representation of a W*-category or the type of
a W*-category as being superfluous to this aim. We have also limited
ourselves to a single example, the W*-category of weights, in our attempt
to illustrate the virtues of a systematic use of W*-categories.

In preparing this paper for publication we have made minor changes
in the 1978 preprint version and, in particular, have added a number of
more recent references. Our opinion that the really interesting directions
for research into W*-categories involve additional structure can meanwhile
be underlined by certain concrete achievements. First, Woronowicz [29]
has been able to characterize the W*-categories of representations of a
C*-algebra in a fixed Hubert space using a topology on the set of objects.
These topological W*-categories determine the C*-algebras up to isomor-
phism and thus provide a duality theory for C*-algebras. Secondly, a
tensor product structure brings us to the monoidal W*-categories intro-
duced in [22]. The motivating examples here are the monoidal W*-cate-
gory Rep G of continuous unitary representations of a locally compact
group G and the monoidal W*-category whose objects are the endomor-
phisms of a von Neumann algebra. An interesting first step towards
understanding monoidal W*-categories is to strengthen the classical Tan-
naka-Krein duality theory by characterizing Rep G for G compact as an
abstract monoidal W*-category as it was done recently by Doplicher and
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Roberts. One is also led to consider W*-categories carrying an action of a
monoidal W*-category. For example, the harmonic analysis of the action
of a non-Abelian group on a von Neumann algebra leads to W*-cate-
gories carrying an action of Rep G. This structure can be used to study the
Connes invariant Γ [10].

1. C *-categories. This section treats the elementary properties of
C *-categories in so far as they are relevant to the study of W*-categories.

Let 2ί be a category whose objects are denoted by A, B,
Let (A, B) denote the set of arrows (morphisms) from A to B:

1.1. DEFINITION. 2ί is called a complex *-category if:
Al Each (A, B) is a complex vector space and the composition of

arrows is bilinear.
A2 There is an involutive antilinear contravariant endofunctor * of 31

which preserves objects. The image of x under * will be denoted by
x*. It follows that each {A, A) is a *-algebra with identity.

A3 For each x e (A, B), x*x is a positive element of the *-algebra
(A, A), i.e. x*x = y*y for some y e (A, A). Furthermore x*x = 0
implies x = 0.

It follows that the mapping (JC, y) -> x*y from (A, B) X (A, B) -> (A9 A)
is a (A, yl)-valued inner product on the right (A, ^4)-module (A, B) where
{A, A) acts on (A, B) by composition of arrows ([15], [20]).

A *-category 21 is called a normed *-category if:
A4 Each (A, B) is a normed space and ||jty|| < ||JC|| \\y%

A normed *-category 21 is called a Banach *-categoryx if:
A5 Each (A, B) is a Banach space.

A Banach *-category 2ί is called a C*-category if:
A6 For each arrow x of 21, ||JC||2 = ||JC*JC||.

It follows that each (A, A) is a C*-algebra with identity. A6 shows
that the norm on a C *-category is uniquely determined by the norms on
the C*-algebra (A, A). In fact we can say more: let 2t be a *-category
where each (A, A) is a C*-algebra, then 2t can be made into a normed
*-category satisfying A6 (but not A5 in general) in a unique way by
setting ||JC|| = ||x*x||1/2. To see that this does define a norm we may, for
example, regard (A, B) as right (A, ^4)-pre-Hilbert module and argue as
in [15, Proposition 2.3]. Thus we only need to prove that ||jcy|| < ||JC|| \\y\\

1 An example of a Banach *-category is the category l}(G) associated with a groupoid G
defined by Connes in [5, IV]
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because ||JC*|| == ||JC|| is then a direct consequence of ||JC||2 = ||X*JC||. If
y e (A, 2?), b -> y*by is a positive linear map of (B, B) into (A> A). As a
map of C*-algebras, this is bounded with norm ||j>*||. If x e (B, C) and
y e (A, B) we deduce

IMI 2 - ||y * *H| < \\y*y\\ \\χ*χ\\ = lbl|2|W|2.
Of course any C*-algebra with identity can be considered as a C*-cate-
gory with a single object.

1.2. EXAMPLE. Let φ denote the category with Hubert spaces2 as
objects and all bounded linear mappings as arrows. Then φ, with the
usual definitions of * and || || is a C*-category.

1.3. EXAMPLE. Let A be a C*-algebra and Rep(^4) the category whose
objects are the non-degenerate representations of A on Hubert spaces and
whose arrows are the intertwining operators between these representa-
tions. Then Rep(^4) is a C*-category.

1.4. EXAMPLE. Let A be a C*-algebra. A right Hermitian A -module X
is a Banach right A -module with an A -valued inner product ( , ) , con-
jugate linear in the first variable and linear in the second, such that, for all
x, y e X and a ^ A,

(1) (x, x)>0
(2)(x,y)* = (y,x)
(3)(x9ya) = (x9y)a
(4)||*||2 = IK*,*>||.

Such modules have been treated by Paschke [15], Rieffel [20] and Kasparov
[11].

We consider these modules as the objects of a category Λ* mod A. An
arrow T from X to Y in h* mod A is a linear map from X to Y such that

(5) ||Γ||= sup 117*11 < +oo, x e X.

(6) T(x a) = (Tx) a x <Ξ X and a^A.

(7) there is a map T *: 7 -> X such that

y) = (x,T*y) J C E I and j ; e 7.

2 Strictly speaking we mean here all Hilbert spaces in some universe as we prefer this way
of avoiding Russell's paradox. The universe will not be specified even when more than one
universe is needed as the gain in precision would be outweighted by the notational
complexity. The reader unfamiliar with these concepts might consult [2] [13].
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h*modA is a C*-category. A module X in h*modA is said to be
self-dual if every bounded A -module homomorphism from X to A has an
adjoint.

Here we consider A itself as an object of h*modA under right
multiplication and with the inner product defined by (a, b) = a*b. It
then follows that every bounded A -module homomorphism from X to an
Hermitian yί-module has an adjoint [15; Prop. 3.4]. The full subcategory
of self-dual modules is again a C*-category, denoted Hmod(A).

Corresponding to the concept of a morphism of *-algebras, we have

1.5. DEFINITION. Let 2ί, 93 be *-categories, a *-functor F: 21 -> 93 is a
linear functor such that F(a*) = F(a)*, a e 21.

•-functors of C*-categories like morphisms of C*-algebras are norm
decreasing | | F ( Λ ) | | < ||α||, a e 2ί.

1.6. DEFINITION. Let 2ί be a *-category and ^ c 21. Let (A> B)% =
(A, B) Π % Then ^ is called a left ideal if {A, B)% is a linear subspace of
(A, B) and a e (A, B)%, b e (B, C) imply 6α e (A9 C ) 3 . A right ideal is
defined similarly, g is a two-sided ideal if it is both a left and right ideal.

£s c 21 determines an equivalence relation on the arrows of 21: x - y,
if x — y e S If S = S* is an ideal of 2ί, the set of equivalence classes
21/̂ 5 can be made into a *-category in a unique way by requiring the
canonical map x -> x of 21 -> 21/^ to be a *-functor. 21/^ has the same
objects as 21. If 21 is a normed *-category, 3t/!g can be made into a
normed *-category, by defining

11*11 = inf Ibll

Arguing as for C*-algebras, see e.g. [7:1.8.2], one can show

1.7. PROPOSITION. Let 21 be a C*-category and $ a closed, two-sided
ideal of%. Then %* = %and »/3 is a C*-category.

We next introduce representations of *-categories and establish an
analogue of the usual Gelfand-Naimark-Segal construction.

1.8. DEFINITION. A representation of a *-category 2t is a *-functor F:
21 -> φ. If A is an object of 21, we say that ξ e F(^) is cyclic for F if
{ F(a)ξ: a e (̂ 4, 5)} is dense in F( J5) for each object B of 21.

1.9. PROPOSITION. Let % be a C*-category, A an object of 21 and φ a
positive linear form on the C*-algebra (A, A). There is a representation Fφ of
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3ί with cyclic vector ξφ e Fφ(A) such that

φ(a)=(ξφ,Fφ(a)ξφ), ae(A9A).

If F is another representation of 31 with cyclic vector ξ e F(A) such that
φ(a) = (£, F(a)ξ), a e (A, A), there is a unique natural (unitary) equiv-
alence u: Fφ -> Fwith uAξφ = £.

. We define a semi-definite scalar product on (A, B) by

Let Fφ(B) be the associated Hubert space and a -* a the canonical map of
(.4, B) into i^(#) . We now have:

| H | 2 = φ(a*b*ba) < 4>(a*a)\\b*b\\

= \\ά\\2\\b*bl ae(A9B)9be(B9C).

Thus a ^ ba extends to a unique bounded linear operator Fφ(b): Fφ(B)
~> ̂ φ(C). It is easy to see that Fφ is a representation of 31 with cyclic
vector £φ = 1^ and φ(a) = (ζ φ , Fφ(a)£φ). To complete the proof note
that <£, F(β){> = <«φ, /;(β)€ f > impUes

(Fφ(a)ξ, Fψ(b)ξ) = (F(β){, F(b)ξ), a, be (A9 B)

Thus there is a unitary wβ: Fφ(B) -
with wβiv(α)ξφ = F(a)ξ9 a e (^, 5).

w: Fψ -> Fis the desired natural equivalence of functors.
If 3t and 93 are categories, the functor category [31, 93] has as objects

the functors from 31 to 93 and as arrows the natural transformations
between them. For C*-categories we modify this procedure:

1.10. DEFINITION. Let 3ί and 93 be C*-categories and F and G
•-functors from 31 to 93. Let t: F -» G be a natural transformation. We set
||/|| = sup^U/JI where A runs over the objects of 31 and say that t is
bounded if ||/|| < oo.

Note that /*, defined by (t*)Λ = (tA)*9 is a natural transformation
f *: G -» F and is bounded wherever t is bounded. Furthermore, one can
easily prove

1.11. PROPOSITION. Let 31 and 93 be C*-categories. The category
(31, 93) whose objects are the *-functors from 31 to 93 and whose arrows are
the bounded natural transformations between them is a C*-category.
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1.12. EXAMPLE. If 31 is a C*-category, so is (21, φ) its category of

representations. As a special case we get the C*-category Rep(A) of

Example 1.3.

1.13. REMARK. Let ^ be a C*-algebra and H: Reρ(^4) -> £ the

evaluation *-functor, i.e. H(π) is the Hubert space of the representation π

of A and if t e (π, π'), H{t): H(π) -> H(π') is the concrete intertwining

operator. Then (H, H) the set of bounded natural transformation from H

to H is isomorphic to the universal enveloping algebra of A, see [20; Cor.

2.7].

1.14. PROPOSITION. Every C*-category 2ί may be realized as a concrete

C*-category, i.e. there is a faithful embedding functor F: 21 -> φ .

Proof. Let i 7 = φ Fφ where φ runs over all positive linear functional

of all objects of 21. F is a faithful functor since F(a) = 0 for tf e (̂ 4, B)

implies that φ(a*a) = 0 for all positive linear functional on (A, A) and

hence that a — 0.

The following simple construction will prove to be useful in the

sequel. Let Av A2,. . . ,An be objects of a C*-category 2ί. Let

M(AV A2,.. , ^ J denote the *-algebra of matrices x = (xu) with XJ7 e

(Aj, At), i, j = 1,2,...,Λ, where the algebraic operations are defined

from those of 21 by the usual rules of matrix algebra. If F is a faithful

representation of 21, M(AV A2,...,An) may be regarded in the obvious

way as an operator algebra on (Bf F(At). If x = y 0 e/y with 7 e

(Aj, Aέ), the operator norm of Λ: coincides with \\y\\. Thus the operator

norm on M(AV A2,... ,An) induces the product topology on X . .(AJ9 At)

and makes M(AV A2,... ,An) into a C*-algebra.

If / is a finite set indexing objects of 2ί and / c / then we have a

morphism/ = / ( / c /) of the corresponding matrix C*-algebras defined

by
f(x)u = xij iiij ^J

f(x)ij = 0 otherwise.

Thus as Aλ, A2,...,An vary we obtain an inductive system of matrix

C*-algebras M(AV A2,... ,An).

2. W*-categories. In this section we define W*-categories and de-

rive a few elementary results about them.

2.1. DEFINITION. A W*-category 21 is a C*-category where each

Banach space {A, B) is the dual of a Banach space (A9 B)*. We say that

(A, B)* is a predual for (A, B).
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It follows from a result of Sakai [27; 1.13] that each (A, A) is a von
Neumann algebra and that (A, A)* is unique as a subspace of the dual of
(A, A). As we shall see Sakai's result extends to W*-categories.

2.2. EXAMPLE. The category φ of Hubert spaces is a W*-category
because, if Hl9 H2 are objects of φ, the Banach space of bounded linear
forms <f>, on (Hl9 H2) defined by φt(a) = Ύτ(ta) for each t e (H29 Hλ)
with Tr(|/|) < + oo is a predual for (Hl9 H2).

2.3. EXAMPLE. Let 3ί be a *-subcategory of φ such that each (Hl9 H2)%

is closed in (Hl9 H2)§ in the weak operator topology. It is easy to verify
that (Hl9 H2)%is closed in(Hl9H2)^ for the weak *-topology on (Hl9 H2)
viewed as the dual of the Banach space of trace-class operators from H2 to
Hv The quotient of this predual of (Hl9 H2)§ by the polar of (Hl9 H2)% is
a predual for (Hl9 H2)9. Thus 31 is a W*-subcategory of φ, i.e. a concrete
JΓ*-category.

2.4. EXAMPLE. Let A be a C*-algebra then Rep(^4) is a JF*-category
as it satisfies the assumptions of Example 2.3.

2.5. EXAMPLE. Let 31 be a C*-category. If /: i 7 -> G is an arrow of
(3ί, φ) and 4̂ an object of 31, then t -> tA is a, *-functor from (31, φ) to
φ. Setting Φ(ί) = 0^ ί̂ , we get a faithful *-functor Φ. Clearly Φ(F, G) is
a weakly closed subspace of (Φ(F), Φ(G)) = (®dF(A), ®AG(A)) thus
(31, φ) is a PF*-category.

The key lemma enabling us to extend results on von Neumann
algebras to results on W*-categories uses the 2 X 2-matrix algebras
M(Al9 A2) defined at the end of §1.

2.6. LEMMA. A C*-cαtegory 31 is α W*-cαtegory if and only ifM(Al9 A2)
is a von Neumann algebra for each pair of objects Al9 A2of%.

Proof. The C*-algebra M(AV A2) may be identified with the Banach
space direct sum φ ? ._χ(Aj9 At) up to an equivalence of norms. Hence
M(Al9 A2) has a predual if and only if (AJ9 At) has a predual for
/, 7 = 1,2.

2.7. COROLLARY (Polar decomposition of arrows.) Let % be a W*-cate-
gory, every a e (A, B) can be expressed uniquely in the form a = u\a\9

where u is a partial isometry of (A, B) with u*u = s(\a\), the support of\a\,
anduu* = s(|α*|).
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Proof. (A, B) is a direct summand of M(A9 B) and it suffices to use
the existence and uniqueness of the polar decomposition of a as an
element of λf(A, B) (see e.g. [27; Thm. 1.12.1])

2.8. COROLLARY. (Polar decomposition of linear functionals.) If % is a
W*'-category\ every element f ^ (A, B)* may be expressed uniquely in the
form

f(a) = φ(ua), a<Ξ(A,B).
where φ e (A, A)* is positive with \\φ\\ = ||/|| and u e (B, A) is a partial
isometry with final projection s(φ), the support ofφ.

Proof. Comparing/with the projection mapping M(A, B) -> (A, B),
we get a canonical extension of / to an element / of the predual of
M(A, B). It suffices to compute the polar decomposition of /, f(x) =
φ(u, x), x e M(A, B) and verify that φ is the canonical extension of a
φ e (A, A)* and u e (B, A) c M(A9 B) (see [8; Ch. 1, §4 Thm. 4], [27;
Thm. 1.14.4]).

Combining Corollary 2.8 and Sakai's result for von Neumann alge-
bras, we see that (A, B)+ is unique as a subspace of (A, 5)*.

Let % be a WΓ*-category, then just as for a von Neumann algebra,
there are various topologies we may put on the (A, B). Thus the σ-topol-
ogy is the weak topology of the dual system ((^4, B),(A, B)*) and the
5-topology is generated by the seminorms a -> φ(a*a)ι/2 where φ runs
through the positive elements of (A, A)*. These topologies coincide with
those induced on (A, B) by the corresponding topologies on M(A, B).

Thus we have

2.9. COROLLARY. The set of σ-continuous and s-continuous linear func-
tionals on(A, B) coincide.

The same reasoning applies to the Mackey topology and the s*-topol-
ogy (see [27; §1.3]) We may also consider the strong and weak operator
topologies on the (A, B) induced by a representation F. These, too,
coincide with those induced by the corresponding topologies on M(A9 B)
provided M(A, B) is represented in the obvious way on F(A) θ F(B). In
particular, we deduce

2.10. COROLLARY. The Kaplansky Density Theorem holds for W ̂ -cate-
gories.
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2.11. DEFINITION. Let F: 21 -> 93 be a *-functor between ^•-cate-
gories, we say that F is normal if it induces a normal morphism of (A, A)
into (F(A), F(A)) for each objectΛ of 2ί.

If 2ί and 93 are W*-categories we will use the notation (81, 93) to
denote the category whose objects are the normal *-functors. This will not
cause any confusion in what follows.

A consequence of Corollary 2.9 and the corresponding result for von
Neumann algebras is the following [20; Prop. 4.7]

2.12. PROPOSITION. Let F: 21 -» 93 be a *-functor between W*-cate-
gories then the following properties are equivalent

(a) F is a normal *-functor

(b) F is σ-continuousy i.e. the induced mapping of (A, A') into

(F(A), F(A')) is σ-continuous for each pair A, A' of objects of%.

(c) F is s-continuous.

2.13. PROPOSITION. Every W*-category 21 may be realized as a concrete
W* -category\ i.e. there is a faithful normal embedding *-functor F\% -> φ.

Proof. If φ in Proposition 1.8 is in (A, A)*, Fφ is a normal *-functor.
Hence we may argue as in Proposition 1.13 using only normal positive
linear functionals.

In the light of the proposition, we could define W*-categories to be
weakly closed *-subcategories of φ. We sketch at this point an alternative
characterization of W*-categories. In a C*-category 21, each (A, B) is a
right Hermitian (A9 yl)-module (see Example 1.4). In a W*-category each
(A, B) is even a self-dual module, in fact:

2.14. PROPOSITION. Let A, B,C be objects of a W*-category 21 and

consider (A, B) and {A, C) as right Hermitian {A, A)-modules. Then if T:

(A, B) -> (A,C) is a bounded (A, A)-module homomorphism, there is an

x e (B,C) such that

This is proved as Lemma 2.1 of [26] drawing on the ideas of [20; Thm.
6.4]. We now have

2.15. PROPOSITION. A C*-category 21 is a W*-category if and only if

each (A, A) is a von Neumann algebra and and (A, B) is self-dual as an

(A, A)-module.
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Proof. The necessity is proved in Proposition 2.14; the sufficiency
follows from [15; Prop. 3.8].

We have seen in this section how the matrix algebras M(A9 B)
associated with a W*-category 21 provide an easy way of generalizing
from von Neumann algebras to W*-categories. For some purposes it is
useful to replace 21 by a single von Neumann algebra M(2l). M(2l) is
defined as the W* -inductive limit of the von Neumann algebras
M(AV A29-. -9An) as {Av A2,...,An} runs over the family of finite
subsets of objects of 2ί ordered under inclusion. An arrow of 21 can be
regarded as an element of M(2l), these elements generate M(2l) as a von
Neumann algebra. If eA denotes the identity on A considered as an
element of M(2ί) then {eA} is a partition of the identity in M(2ί). The
W*-category 91 may be recovered from M(2ί) together with {eA} by
defining

(A, B) = {x €Ξ M(2ί): x = xeA = eBx)

and using the algebraic operations on M(2ί) to define the corresponding
operations on 2ί. If F is any normal representation of 2ί, there is an
associated normal representation F of M( 21) on ®AF(A)Aΐ F is faithful
so is F.

As we shall see, many of the properties of 2ί are conveniently
expressed in terms of M(2l) so it is perhaps wise to point out two of the
principal defects of trying to replace 2ί by M(2l). M(2Ϊ) is unsuited to
discussing *-functors and is often too large: each (A, A) may be σ-finite
without M( 21) being σ-finite.

The relation between M( 21) and 21 will become clearer in §7.

3 Modular theory. A positive element of a W*-category 2t must be
understood as a positive element of (A, A) for some object A of 2ί. Thus
if 21+ denotes the set of positive elements of 21, x e 21+ implies λx e 2ί+

for λ > 0 and x, y e 21+ imply x + y Ξ 21+ whenever the sum is defined.
Once this definition of 2ί+ has been accepted, the notion of weight and of
modular automorphism proceed smoothly along the lines established for
von Neumann algebras.

3.1. DEFINITION. A weight φ on 21 is a mapping of 2ϊ+ into [0, oo]
satisfying

), Jt€Ξ2Γ,λ>0

with the usual convention that O.oo = 0 .
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Thus a weight on 21 is just a field A -> φA where φA is a weight on

(A, A) for each object A of 2ί.

2ft£ = {χe%+:φ(χ)< 00}

is an order ideal of 21+ and

5ftφ = {x e 3ί:φ(;c*x) < +00}

is a left ideal of 2ft since the inequalities of [17; Lemma 1.1] are valid here.

If 2ftφ denotes the linear span of elements of the form b*a with b, a e 2ft φ

then 2ft£ = 2ft φ Π 21+ but 2ftφ is not, in general, the linear span of 2ftJ.

3.2. LEMMA. 2ftφ Π (yl, B) is the linear span of elements of the form b*a

with flGlψΠ (A, A) and b e 2ftφ Π (JS, Λ).

Prαo/. Let JC e 2ftφ Π (Λ, C) and j> e m M φ Π ( 5 , C). If x = W|JC| is

the polar decomposition of x9 then ux = \x\ and since 2ftφ is a left ideal,

|JC| e 2ftφ Π (y4, ^4). Now y*x = J*W|JC| = («*^)*|x | and u*y G l ψ n

( 5 , y4). This implies the lemma.

A weight φ on 21 is called faithful if φ(x) = 0 implies x = 0, semifinite

if ^ φ is σ-dense in 2Ϊ and normalif there are weights ωα with ωα ^ e (yl, ^4)*

for each A and φ = supα ωaφ is faithful, semifinite or normal if and only if

each φA is faithful, semifinite or normal.

Modular theory for W^*-categories can be deduced from modular

theory for von Neumann algebras by passing from a weight φ on a

W*-category 21 to weights ΦaχΛr..Λn on the associated inductive system of

matrix von Neumann algebrasM(AV A2,...,An) w h e r e A v A2,...,An are

(not necessarily distinct) objects of 21. This is of course a natural extension

of the matrix techniques of Connes [4; 1.2.1], We define
n

/=i

The weights ΦaιA2...An are compatible with the inductive system and if φ is a

faithful, normal semifinite weight, so is each φaA A .

3.3. LEMMA, X Ξ 9lφ A ...A or 2ft^ A ...A if and only if each matrix

entry xtj e 9ϊφ or 2ft φ respectively.

Proof. The first result is an immediate consequence of
n
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It follows that x e WlφaiAr..An implies that each matrix entry jcly e 3Kφ.
To prove the converse, it suffices to consider the case that only one matrix
entry is non-zero. This is easily dealt with using Lemma 3.2.

Now any W*-category 21 has a faithful, normal semifinite weight φ
and we shall associate an action σφ of R on SI satisfying the KMS
condition. An action σ of R on 21 assigns to ί G R an invertible *-functor
σ, of 2t into 21 such that

σ,σ, = σ/+,,, t, tr e R.

We deal here with actions leaving the objects of 21 invariant and such that
t -» σt(x) is σ-continuous for each arrow x of 21. A weight φ on 21 satisfies
the KMS condition with respect to such an action σ of R if, given any
a, b e (>1, 5 ) Π ϋftφ Π 9^*, there is a bounded continuous function F
defined on 0 < Im(z) < 1 and holomorphic in 0 < Im(z) < 1 with

F(t) = φ(σt(a)b*)9 F(t + i) = φ(b*σt(a)), t e R.

We now have

3.4. PROPOSITION. A faithful, normal semifinite weight φ on a W*-cate-

gory satisfies the KMS condition with respect to a unique action σφofRon

2ί.

Proof. We use the analogous result for von Neumann algebras [3;
Props. 4.4 and 4.8] and consider the modular actions σφAι-A» on
M(Λv...9An). The strategy of the proof should be clear if one realizes
that σ and σφAι -A* are related by

(*) σ*«i"'.(x) l 7 = *•(*„•), x e M(Al9... ,An).

In the proof, (*) will be used to define σφ so what must be established is
that the left-hand side of (*) depends only on xiJ9 i.e. neither on the other
entries of x nor on the choice of Ak for k Φ i, j . Now an explicit
computation using Lemma 3.2 shows that 1A $ ekk is in the centralizer of
§Ax-An-> k =

 1 ,2, . . . ,Λ. Hence by [18; Thm. 3.6], these elements are in-
variant under the modular action. This implies first that the left-hand side
of (*) is independent of the other entries of x and secondly that M(At, Aj)
considered in the obvious way as a submatrix algebra of M(Aλ,... ,An) is
globally invariant under the modular action. Since, furthermore, φAgA is
the restriction of ΦAI...AH

 t o M(AiΆj), σ+^j agrees with σφAi~A» on
M(Ai9 Aj). Thus σφ is well defined by (*) and now that this has been
established, the properties of σφ follow from the corresponding properties
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of σφAι -An. The uniqueness of σφ follows similarly with the aid of Lemma
3.3.

Just as in the case of a von Neumann algebra, the centralizer of φ

coincides with the fixed points of σφ.

3.5. PROPOSITION. Let φ be a faithful, normal semifinite weight on a

W*-category 2Γ then the following two conditions on an arrow x of 2ί are

equivalent.

(a) σ*(x) = X , / G R

(b) xWlφ c 2»φ, Wlφx c Wlφ andφ(xy) = φ(yx)

for ally ^ Ttφ such that xy andyx are defined and belong to 21+.

Proof. Simple computations using (*), Lemma 3.3 and the definition
of the weights ΦΛχ-An allow one to pass to the associated matrix algebras
M(Al9 A29...,ΛJ and apply [18; Thm. 3.6].

As we shall see when we discuss the W*-category of weights on a von
Neumann algebra, the existence and basic properties of Radon-Nikodym
derivatives can be easily deduced from Proposition 3.4. Here we deduce it
instead from the corresponding results for von Neumann algebras [4].

3.6. PROPOSITION. Ifφ and ψ are two faithful, normal semifinite weights

on a W*-category 2Ϊ, there is a natural unitary transformation ( D ψ : Dφ)t

from σt

φ to σf defined by

Consequently, (Z>ψ: Dφ)t A satisfies the 1-cocycle identity

: Dφ)hyA).

Proof. Let Av A2be objects of 21, then as we have seen in the proof of
Proposition 3.4, lAι ® en is invariant under of*^* and σ/^2. Thus by
[4; Thm. 1.2.1] (D\pAιAi: DφAχAi)t commutes with lAι®en so that
(DψA A : DφA A ) t must be the diagonal matrix

t
7 = 1 , 2

Applying (*) and [4; Thm. 1.2.1] we deduce that

(Dψ: Dφ)uAlo*{a) = σ/(α)(2)ψ: Dφ)t,Aι9 a e (Al9 A2)9

so that (Dψ: Dφ)t is a natural unitary transformation from σ,φ to σ,ψ as
required.
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Finally, as a trivial consequence of [4; Thm. 1.2.4] we have

3.7. PROPOSITION.Let φ be a faithful, normal semifinite weight on a
W ^-category 31 and ut A a unitary of (A, A) for each t e R and object A of
31 with

U

h + t2,A = K ^ f ί ^ ) * Ί> *2 G R

Then there is a unique faithful, normal semifinite weight ψ on 31 with

4. Commutant, bicommutant and centre. A representation F of a
C*-category 3ί is an object in the fF*-category (31, φ). This leads to

4.1. DEFINITION. The commutant F' of a representation F of a
C*-category 3ί is the von Neumann algebra (i% F). The bicommutant F"
of jPis the W*-category with the same objects as 31 but where

(A, B)r> = [a: F(A) -+ F(B): tBa = atA9 t^F'}.

This definition is consistent with the usual terminology if 31 has a
single object, i.e. if 31 is a C*-algebra, but it does not do full justice to the
spatial aspects of the notion of commutant. The elements of (i% F) are
bounded fields of linear operators A -> tA: F(A) -> F(A) over the set of
objects of 31.

The appropriate setting for bringing out such aspects and stating a
version of the double commutant theorem is to consider a field F of
Hubert spaces over a set 5, i.e. ^(^4) is a Hubert space for each A e S.
There are two algebraic systems associated with F; the first is the von
Neumann algebra %(F) of bounded fields of linear operators A -* tA:
F(A) -> F(A) with ||/|| = sup^ e S | | ^ | | <: +oo and the usual algebraic
operations.

The second is the W*-category §(F) with S as the set of objects,
where (A, B) is the set of all bounded linear mappings from F(A) to
F(B) with the usual algebraic operations.

We now define the commutant so as to be a Galois connexion
between the subsets of $(F) and %(F). If X c ^ ( i 7 ) , we define

X' = {t e g(F): xtA = tBx, x eXn(A, B),A, B e S).

Conversely, if Y c g (F) we define
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If X = X*9 X' is a von Neumann subalgebra of g ( F ) and if Y = Y*, Y'

is a W*-subcategory of φ ( F ) .

We now give a version of the von Neumann double commutant

theorem.

4.2. THEOREM. 7/91 is a *-subcategory of$(F) with the same objects as

&(F), then 9ί" is the W*-subcategory generated by 9ί. // M is a *-subalge-

bra containing the identity of$(F) then M" is the von Neumann subalgebra

of fields generated by M.

Proof. Consider the Hubert space F(S) = ®AeSF(A). Elements of

ι$(F) and arrows of ίQ(F) can also be regarded in the obvious way as

bounded linear operators on F(S). Let eA denote the projection on F(S)

corresponding to lA. Let α € ( ^ ί ) r then since 91" is contained in the

double commutant of 91 regarded as a set of operators on F(S), there is a

net xa in the *-algebra generated by 91 which converges to a in, say, the

weak operator topology. Then eBxaeA is a net in 91 converging weakly to

a. Thus 91" is the W*-subcategory generated by 91. Now the commutant

of M looked at as a von Neumann algebra on F(S) is just the von

Neumann algebra generated by M'. Hence the bicommutant of M as a

von Neumann algebra on F(S) is just M". Hence M" is the von

Neumann subalgebra of z$(F) generated by M, by the usual double

commutant theorem.

4.3. REMARK. Given a normal representation F of a W*-category 91,

we associated at the end of §2 a normal representation F of M( 91) on the

Hubert space ΦAF(A). If F' is regarded as above as a von Neumann

algebra on φ F(A), then F' is just the commutant of F.

4.4. DEFINITION. Let 91 be a C*-category, then Z(9ί), the centre of 9ί,

is the set of bounded natural transformations from \% to 1^, where 1^ is

the identity functor of 91.

Now by Proposition 1.10, \% is an object in the C*-category (91, 91),

thus Z(9t) is the C*-algebra (1^, 1 )̂ in this C*-category. It is clearly an

Abelian C*-algebra. If 91 is a W*-category, then (91, 9ί) is a W*-category

and Z( 91) is an Abelian von Neumann algebra.

4.5. PROPOSITION. Let % be a W*-category and M(9l) the associated

von Neumann algebra. Then Z( 91) is isomorphic to the centre of M{ 91).



96 P. GHEZ, R. LIMA AND J. E. ROBERTS

Proof. If c e Z( 3ί), then by definition

tcA = cBt9 te(A9B)9 s u p I k , | | < oo.
A

Thus recalling that the arrows of 2ί may be regarded as a generating set of
M( 31), we see that c -> φ ^ c^ is an isomorphism of Z( 21) onto the centre
of M(9ί).

5. Support and central support. In this section we define the support
and central support of an arrow in a W*-category 3ί and prove a few
elementary results concerning them.

5.1. DEFINITION. If a e (A9 B) then s{a), the support of a, is the
smallest projection e in {A, A) with ae = a, and c(α), the central support
of a is the smallest projection e in Z( 3ί) with

α = #e^ = eBα.

Just as for von Neumann algebras, we have the following elementary
properties, ab = 0 if and only if s{a)s(b*) = 0, s(a) = s(a*a), c(a) =
c(α*), c(#) = c(^(α)). Indeed, if a, s(a) and c(a) are considered as
elements of M(2ί), s(tf) and c(<z) are the support and central support of a
in the von Neumann algebra M(3ί) respectively. Since M(A, B) is a
reduced algebra of M( 91), the support of a in M(A, B) is still .s(α) and its
central support is the diagonal matrix with entries c(a)A and c(a)B.

The following result enables one to compute central supports in terms
of supports.

5.2. PROPOSITION. If a e (A9 A')

c(a)B= sup s(at).

Proof. If / G (5, A) then at c(a)B = ac(a)At = aί so c(a)B > s{at).
Now let zB = sup, e ( β ^ s(at), then since αz^ = a and c(α) β > zβ we need
only show that z is in Z(2ί). Given b e (C, ^ ) , we have αί(όzc - 6) = 0
for each t e (5 , ^4). Thus zB(bzc — b) = 0 and replacing & by &* and
taking adjoints, we deduce that zBb = bzc so that z e Z( 2ί) as required.

5.3. COROLLARY. For any projection fofZ{%) we have

c(fA)=fc(A)

where we have written c(A) in place ofc(lA).
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Proof, If t e (B, A) we have

= S U P s(fAt)= sup s(t)fB = c(A)BfB

as required.
As a first application of these ideas, we characterize the ίΓ*-cate-

gories which are factors. An object A of 2ί is called a zero object if
(A, A) = 0 or equivalently if c(^4) = 0. 21 is called connected if one
cannot partition the objects of 21 into two sets Sx and S2 such that Ax e Sλ

and A2 e 5 2 implies (^4l5 yl2) = 0 and neither set consists entirely of zero
objects.

5.4. PROPOSITION. A W*-category 21 is a factor if and only if it is
connected and each {A, A) is a factor.

Proof. Consider any partition of the objects of 2ί into two sets Sλ and
S2 such that Ax e Sλ and A2^ S2 implies (Av A2) = 0, then defining
zA = 1^ if A e 5X and z^ = 0 if >4 e S2 will define a non-trivial projection
in the centre of 21 unless either Sλ or S2 consists entirely of zero objects. If
e is a projection in the centre of (A9 A), then by Proposition 5.2,
c(e)A = e. Hence if 21 is a factor, 2ί must be connected and each (A, A)
must be a factor. Conversely if e is a projection in Z(2l) and each (̂ 4, ̂ 4)
is a factor, let Ŝ  be the set of objects A of 2ί with e^ = 1̂  and S2 the set
of objects A with eA = 0. If 21 is connected, either Sτ consists of zero
objects giving e = 0 or S2 consists of zero objects givin e = 1.

We close this section by noting how supports and central supports
transform under a normal *-functor.

5.5. PROPOSITION. Let F be a normal *-functor from %to?b then

F(s(a)) = s(F(a))

F(c(a)B)<c(F(a))F(B)

and the inequality can be replaced by an equality if F is full.

Proof. To show that Fpreserves supports, note that s(a) = s(a*a) so
that the result follows from the corresponding result for von Neumann
algebras. The inequality for central supports now follows from Proposi-
tion 5.2 since F is normal and F(A9 B) c (F(A), F(B)). When F(A, B)
= (F(A), F(B)) for all objects A and B of 2ί, F is full by definition and
we have equality.
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This has the following two simple consequences.

5.6. COROLLARY. Let Fbea normal *-functor from 91 to 33 then if a and
b are arrows of% with c(b) < c(a), c(F(b)) < c(F(a)).

Proof. Let 6 e ( β , B'). Then c{b) < c{a) is by definition equivalent
to bc(a)B = b and hence to c(a)B > s(b). Now by Proposition 5.5, we
have

c(F(a))F(B) > F(c(a)B) > F(s(b)) = s(F(b)),

SO

c(F(b)) < e(F(a)).

5.7. PROPOSITION. Let F: 9ί -> 93 be a normal *-functor and let eA

denote the support of the morphism (A, A) -> F(A9 A) then A ~> eA is a
projection in the centre of 9ί called the support of F.

Proof. Let a e {A, A') and suppose F(a) = 0 then F(s(a)) = 0 so
s(a)eA = 0 hence aeA = 0. We deduce that for any a e (A, A'), aeA =
eA,aeA which, replacing a by a* and taking adjoints, implies that A -> eA

is a projection in the centre of 91.

6. Comparison theory. Up till now we have largely been concerned
with deriving the analogues of the basic results of von Neumann algebra
theory. Here, in treating comparison theory, we deal with techniques
which ave already played an important role in the theory of von Neumann
algebras but which properly belong to the theory of W*-categories.

6.1. DEFINITION. Let A and B be objects in a W*-category, we way
that A and B are equivalent, A ~ B if (A, B) contains a unitary operator
and that A is a subobject of B written A < B or B > A if (A, B) contains
an isometry.

The equivalence of objects in a W*-category corresponds to the usual
notion of isomorphism of objects in a category since the polar part of an
invertible arrow is unitary. In category theory, subobjects are defined in
terms of monic arrows, i.e. monomorphisms, and the notion here is
different. However, m e (A, B) is monic if and only if s(m) = lA, hence
if and only if its polar part is an isometry. A < B and B < A imply
A ~ B. A < B if and only if the corresponding projections, eA and eB,
satisfy eA < eB in M( 9t).
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If A is a C*-category, then π and m' satisfy π < mf as objects of the
W*-category Rep(^4) if and only if TΓ is unitary equivalent to a subrep-
resentation of TΓ'. The other important motivating example is

6.2. EXAMPLE. Let M be a von Neumann algebra and let £?{M)
denote the W*-category whose objects are the projections of M and where
an arrow from e to e' in @*(M) is a triple (e'|/|e) where t e M and
e't = * = te. The algebraic structure and norm are defined in the obvious
manner, e.g.

{e"\t'\e'){e'\t\e) = (β"|/'ί|e), (e'\t\e)m = H ' V )

and ||(e'|ί|*)ll = 11*11 a n d w e shaΆ write ί in place of (e'\t\e) where this
causes no confusion. The comparison of objects in &>(M) is not just the
usual Murray and von Neumann comparison theory of projections in M.

The above construction works equally well for an arbitrary PΓ*-cate-
gory 21 and the comparison of objects of ^*(2ί), the W*-category of
projections in 21, is the comparison theory of projections in 2t. By
Proposition 5.4, ^ ( 21) is a factor if and only if 21 is a factor.

6.3. DEFINITION. TWO W*-categories 21 and 93 are said to be equiva-
lent if there is a *-functor F: 2t -> 93 which is an equivalence of categories.

A *-functor F: 21 -» 93 is an equivalence if F is full and faithful and if
each object B of 93 is isomorphic (hence equivalent) to an object of the
form F(A). In particular, an equivalence of W*-categories is automati-
cally normal since Finduces a ^-isomorphism of (A, A) and (F(A), F(A))
(cf. [20; Prop. 7.3]). There are other ways of describing the equivalence of
categories (see e.g. [13; §IV. 4 Thm. 1]). In particular, two W^*-categories
21 and 93 are equivalent if and only if there are normal *-functors F:
2ί -> 93 and G: Λ -> 2ί such that GF - 1% in (2t, 2ί) and FG - 1^ in
(93, 93). This can be easily proved directly or it can be derived from the
catgorical result by noting that a natural isomorphism can be turned into
a natural unitary equivalence by taking polar decompositions object by
object.

The Morita equivalence of C*-algebras and von Neumann algebras
studied by Rieffel is the equivalence of the corresponding ϊΓ*-categories
of representations [20; Defn. 7.4]. We shall adopt the same terminology
for W*-categories.

We take a first step towards classifying W*-categories up to equiva-
lence by identifying those W*-categories 21 which are equivalent to &*(M)
for some von Neumann algebra M. We begin by isolating the relevant
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properties of ^(M). An object A of 3ί will be said to be maximal if every
object of 3ί is a subobject of A. The identity of M is a maximal object of
^ ( M ) . 3t will be said to have sufficient subobjects if given any projection e
of 31, there is an isometry w of 3ί with ww* = e. 9ί has sufficient
subobjects if and only if it is equivalent to ^(31). The category § of
Hubert spaces has sufficient subobjects and if 31 has sufficient subobjects
then so has (93, 3Ϊ) for any *-category 93. In particular Rep(^4) has
sufficient subobjects for any C*-algebra^l.

6.4. PROPOSITION. A W*-category 31 with maximal object A and
sufficient subobjects is equivalent to&(M) with M = (A, A).

Proof. Given any object B of 31 there is an isometry wB in (B, A). We
may define a functor F: 31 -> &>(M) by setting F(B) = wBwg and F(b) =
wcbwg for b G (J5, C). F is a full and faithful *-functor. Since 31 has
sufficient subobjects, any projection of M is equivalent to some F(B).
Hence F is an equivalence of W*-categories.

With the example of representations in mind, we discuss irreducibles,
infinite multiplicity and direct sums in the context of H^*-categories. An
object A of a fF*-category 31 is irreducible if (A, A) ^ C. If A and B are
irreducibles then either A and B are equivalent or {A, B) = 0. A factor
contains at most one equivalence class of irreducibles. Irreducibles are
obviously "atoms" for the relation < and if 31 has sufficient subobjects
any atom is irreducible.

We say that A is a direct sum of At, i e /, and write A = ®i&IAi if
there are isometries wi^{Ai, A) with Σ^/ wiw* = 1 .̂ ̂ 4 is determined up
to equivalence by the A^lfA^B for each i e / we write A = \I\B where
|/| denotes the cardinality of /. We say that 31 has finite or countable
direct sums if given objects A^ i e /, with / finite or countable respec-
tively, there exists an object A = φ i e / ^ 4 / of 81. φ has countable direct
sums and &>(M) has finite or countable direct sums if and only if M is
properly infinite. If 31 has finite or countable direct sums, so does (93, 31)
for any *-category 93. Just as we were able to pass from 31 to ^(31) if we
wanted to have sufficient subobjects, so we can enlarge 31 so that it has
finite or countable direct sums but we refrain from giving an explicit
construction. Note that

if A = φ Ai9 thenc(^) = s u p c ( ^ ) .
/<Ξ7 i

6.5. PROPOSITION. The following conditions on an object A of a W*-cat-

egory are equivalent.
(a) (A, A) is properly infinite.
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(b)A ~ A θ A.

(c)A = ooA.

(d) A = oαB, for some object Bof%.

We omit the simple proof of this result which serves to characterize

the objects of infinite multiplicity in 31.

7. Quasiequivalence. In this section we deal with the quasiequiva-

lence of objects in a WK*-category. This is of course a weaker notion than

equivalence useful whenever it suffices to resolve problems up to questions

of multiplicity.

7.1. DEFINITION. Let A and B be objects in a ^-category 91. We say

that A is quasicontained in B if c(A) < c(B) and that A and B are

quasiequivalent if c(A) = c(B). If c(A)c(B) = 0, then A and B are said

to be disjoint.

There are competing definitions of quasicontainment which, however,

reduce to the above definition if 91 has sufficient subobjects.

7.2. PROPOSITION. //9ί is a W*-category with sufficient subobjects then

the following conditions on objects A and Bof% are equivalent.

(a) c(A) < c{B).

(b) Given 0 Φ A' < A, there exists 0 Φ A" < A' with A" < B.

(c) A = θ i e / £ / with Bt < B.

We omit the simple proof which in any case is comparable with

similar proofs in the theory of representations (see e.g. [7; §5.1]).

We now consider objects A of 91 which are quasimaximal, i.e. such

that c(A) > c(B) for all objects B of 91. This is clearly equivalent to

demanding that c(A) = 1 but there are many other ways of characterizing

such objects.

7.3. PROPOSITION. Let 91 be a W*-category then the following condi-

tions on an object A are equivalent

(b) A is a generator, i.e. for all b e (B,C) with b Φ 0 there exists

a e (A, B) with ba Φ 0. (Equivalently, A is a cogenerator since 91 is

self-dual.)

(c) Given any object B of 91 there are partial isometries w^ G (B, A)

(d) The map z -> zA is an isomorphism of Z(9ί) with the centre of

{A, A).
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If 2ί has sufficient subobjects then these conditions are also equivalent to
(e) {A, B) Φ Ofor each non-zero object Bof%.
(f) Every object B is a direct sum of subobjects of%.

Proof. The equivalence of (a) and (b) is clear from Proposition 5.2 (b)
implies (c) is a standard argument using Zorn's Lemma and the existence
of polar decompositions and the converse is trivial, (d) implies (a) trivially
since c(A)A = 1A. The normal morphism z -> zA is always surjective since,
for any projection e in the centre of (A, A), c(e)A = e. If c(A) = 1, it is
injective by Corollary 5.3. The equivalence of (e) and (b) and of (f) and (a)
is clear when 21 has sufficient subobjects.

If 21 does not have a generator we can easily adjoin one without
enlarging its centre by adding on M( 21) as a single object. The easiest way
to do this formally is to replace 21 by the full subcategory of ^(M(2l))
whose objects are either the identity of M(2ί) or the projection eA

associated with some object A of 2t.

7.4. COROLLARY. Let A be a generator of a W*-category 2ί and F a
normal *-functor from %to a W ̂ -category 93, then (i% F) andF(A, A)' are
isomorphic as von Neumann algebras.

Proof. The evaluation map η -> ηA from (F, F) to F(A, A)' is cer-
tainly a continuous linear mapping. Now for each object B of 21 consider
the partial isometries wf e (B, A) given by Proposition 7.3c then, if
τĵ  = 0we get

so that the evaluation map is injective; but it is also suqective, since, for
each ξ e F(A, A)\ there is an element η e (F, F) given by

and ηA = ξ.

7.5. PROPOSITION. Let %be a W*-categoryy then Z(2ί) is isomorphic to
Z( 21, φ) and an object of'(21, φ) is a generator if and only if it is faithful.

Proof. Although it is not difficult to give a direct proof, we deduce
this result from [20; Props. 1.3 and 2.1] by noting that (21, φ) is equiva-
lent to the category of representation of M(2l) and that an object F of
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(31, φ) is faithful if and only if F, the associated representation of M(3l)
is faithful and that 31 and Af(3ί) have isomorphic centres (Prop. 4.5).

We are now interested in characterizing the W*-categories which are
equivalent to //mod M for some von Neumann algebra M (Example 1.4).
Clearly Hmoά M has sufficient subobjects and direct sums and Proposi-
tion 7.3e shows that M, considered as self-dual module over M is a
generator of H mod M. Thus, by Proposition 7.3e any self-dual Hermitian
M-module is equivalent to a module of the form e(H ® M), where H is
an Hubert space and e is a projection of 93(H) Φ M.

7.6. PROPOSITION. A W*-category 3ί w/Yλ α generator A having direct
sums and sufficient subobjects is equivalent to Hmod M with M = (A, A).3

Proof. Let B and C be objects of 31 and let FA(B) denote (A, B)
considered as a right Hermitian (A, yl)-module. By Proposition 2.14 it is a
self-dual module. Now, for each t e (B, C) let FA(t): FA(B) -> i^(C) be
defined by FA(t)r = tr,r ^ {A, B). Clearly, FA is a *-functor; it is full by
Proposition 2.14 again and normal by Proposition 2.12. Proposition 7.3b
shows that FA is faithful. Finally, since FA(A) = (A, A) is a generator of
Hmod(A, A), Proposition 7.3f together with the fact that 31 has sufficient
subobjects show that any object of Hmod(A, A) is unitarily equivalent to
an object in the image of FA, so that FA is an equivalence of PF*-cat-
egories.

7.7. COROLLARY. Let 31 be a W*-category, then (31, φ) is equivalent to
H mod( F, F\ for each faithful object of (31, φ).

Proof. Combine Proposition 7.5 with Proposition 7.6.

7.8. COROLLARY. If A is a generator of a W*-category 31, then 31 is
Morita equivalent to any full subcategory containing A as an object. The von
Neumann algebras (A> A) and M( 3ί) are Morita equivalent.

Proof. If 93 is any full subcategory of 3ί containing A as an object
(93, φ) is equivalent to Hmod F{A, A)' by Corollaries 7.4 and 7.7. We

3 At this point recourse to a universe is needed for a precise formulation: the hom-sets
(B, A) need to be in the universe used to define //mod M and 3ί must have direct sums
indexed by sets from that universe. In Corollary 7.7, the set of arrows of 2ί need to be in
the universe in question.



104 P. GHEZ, R. LIMA AND J. E. ROBERTS

have already noted that (31, φ) is equivalent to the category of representa-
tions of M( 31) in the course of proving Proposition 7.5.

We can also deduce the characterization of Morita equivalence sug-
gested by Connes (see [20; pg. 92]) and that this is even true in the context
of PF*-categories.

7.9. PROPOSITION. TWO W*-categories 3ί and 93 are Morita equivalent if
and only if 3t and 93 have faithful representations whose commutants are
isomorphic as von Neumann algebras.

Proof. An equivalence of (3ί, φ) and (93, § ) must map a generator F

into a generator G and induce an isomorphism of the von Neumann
algebras (F, F) and (G, G). The converse is a consequence of Corollary
7.7.

7.10. REMARK. If A and B are quasiequivalent objects in a W*-cate-
gory then (A, A) and (B, B) are Morita equivalent. In fact, considering
the full subcategory with objects A and B we get a W*-category where A
and B are generators and (A, B) is then a self-dual {A, A)-(B, i?)-equiva-
lence bimodule in the terminology of [20].

7.11. COROLLARY. Let π be a faithful normal representation of a von
Neumann algebra M, then the W*-category of the normal representations of
M is equivalent to Hmoά π(M)'.

7.12. REMARK. Corollary 7.11 and Proposition 7.6 also characterize
the PF*-category of normal representations of a von Neumann algebra
since a W*-category with a generator A, having direct sums and sufficient
subobjects is equivalent to (M, φ) for M = (A, A)'.

The following result can be viewed as a generalization of Corollary

7.8 and can be proved using Proposition 7.3c.

7.13. THEOREM. Let A be a generator of 31 then the restriction *-functor
(31, ®) -» (A,®) is full and faithful for any W*-category ®. Here we have
also denoted by A the full subcategory of 31 with A as a single object. If ® has
sufficient subobjects and direct sums of sufficiently high cardinality, this
functor is an equivalence.

We now demonstrate a further property of generators.

7.14. PROPOSITION. Let F: 31 -> 93 be a normal *-functor and A a
generator of 31. Then F is faithful or full if and only if the induced mapping
{A, A) -» (F(A), F(A)) is injective or surjective respectively.
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Proof. Suppose {A, A) -» (F(A), F(A)) is injective, then by Proposi-
tions 5.7 and 7.3d F has support 1 and is thus faithful. The converse is
trivial.

Suppose (A, A) -» (F(A), F(A)) is surjective and b e (F(B), F(C))9

then using Proposition 7.3c

but F(wf)bF(w*)* ε (F(A), F{A)) = F(A, A) so b e F(£, C) and ί7 is
full. The converse is again trivial.

The last part of this section is devoted to σ-finite WK*-categories 3ί,
i.e. (A, A) is σ-finite for each object A of 31. In this situation there is a
technique for passing from quasiequivalence to equivalence which has
been employed several times in [6].

7.15. PROPOSITION. If A is an object of infinite multiplicity in a σ-finite
W*-category 3ί, then c(B) < c(A) implies B < A.

Proof. c(B) < c(A) implies that 1A considered as a projection in the
σ-finite von Neumann algebra M(A, B) is properly infinite with central
support 1. Thus 1A is equivalent to 1 in M(A, B) (see for example the
proof of [27; Prop. 2.2.14.]). Regarding 1B as a projection in M(A, B), we
conclude that A < B.

7.16. COROLLARY. Any generator with infinite multiplicity in a σ-finite
W*-category is maximal. Any σ-finite W*-category with countable direct
sums and a generator has a maximal element.

Let M be a properly infinite von Neumann algebra, then as we have
already pointed out @>{M) has sufficient subobjects and countable direct
sums. Hence the full subcategory &>σ(M) whose objects are the σ-finite
projections in M is a σ-finite W*-category with sufficient subobjects and
countable direct sums.

7.17. THEOREM. Let % be a σ-finite W^-category with sufficient subob-
jects and countable direct sums. Then every σ-finite projection ofZ{%) is of
the form c(A) for some object A of 31. Furthermore 31 is equivalent to

Proof. The identity of Z( 3ί) is the supremum of c(A) as A varies over
the objects of 3ί. Thus if / is a σ-finite projection of Z(3l), there are
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objects Bι,B2,... of 3t with / < sup7c(5,). Hence setting B = (B.Bi9

f < c(B). Since 2t has sufficient subobjects there is an isometry w e (A, B)
with ww* = fB. Then c(^l) < c(2?) and c(A)B = fB so by Corollary 5.3,
c(A) = f. Since 21 is σ-finite, the full and faithful *-functor taking
a G (A, B) onto (eB\a\eA) takes values in ^σ(M(9l)). Let e be a σ-finite
projection of Λf(2ϊ); its central support c(e) is a σ-finite projection of
ZM(3ί). Hence by the first part of the theorem there is an object A which
we may suppose to be of infinite multiplicity with c(eA) = c(e). Thus by
Proposition 7.15, e is a subobject of eA in ^σ(M(2t)). Since 3ί has
sufficient subobjects e is equivalent to an object in the image of 91 ->

so that this functor is an equivalence.

8. The W*-category of weights on a von Neumann algebra. Let M be

a von Neumann algebra; we define a W*-category i^{M) whose objects
are the normal semifinite weights on M. If φ and φ' are two such weights
with supports s(φ) and s(φ') respectively, then an arrow from φ to φ' in
i^(M) is a triple (φ'\x\φ) where x e M and x = xs(φ) = s(φ')x.

The remaining structure is defined as for @>(M) (Example 6.2) so that
(φ'\x\Φ) -> (s(φ')\x\s(φ)) becomes an equivalence from i^(M) to0>(M).
^(M) differs from @>(M) in that it carries a canonical faithful nor-
mal semifinite weight Φ: Φψ = φ Γ M J ( φ ). We can construct the corre-
sponding modular action σφ as in Proposition 3.4. On the algebra
(φ9φ)<r(M)~ ^s(φ)y °Φ °f course coincides with σψ. If φ and φ' are
faithful weights on M, then

and the basic properties of Radon-Nikodym derivatives, such as the chain
rule, can be easily deduced from this formula.

The W*-category 1T(M) of weights on M is defined to be the fixed
points of 'f(M) under σφ and is the object of study in this section. The
canonical weight Φ induces a canonical faithful normal semifinite trace on

We now make use of Proposition 3.5 to give an alternative description
of the isometries of

8.1. PROPOSITION. (φ'\u\φ) is an isometry ofifr{M) if and only if

u*u = s(φ), uu* e Mφ>

and

φ(x) = φ'(uxu*), x e M + .
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Proof. If (φ'\u\φ) is an isometry of iΓ(M)9 u*u = s(φ), uu* e Mφ,
and applying Proposition 3.5, (φ|jc|φ) e ffllφ is equivalent to

(φ'\u\φ)(φ\x\φ)(φ\u*\φ')<ΞWlφ and φ'(uxκ ) = φ(x).

Conversely, if w*w = s(φ) and ww* e Mφ, then (φ'\u\φ) is an isometry of
^(Λf). Furthermore, 9MΦ'|κ|φ) c 9ΪΦ since ww* e AΓφ, and (Φ\u*\φ')$ftφ

c 9?φ trivially.
The conditions in Proposition 3.5b can now be verified by a simple

calculation so that (Φ'\u\φ) is invariant under σφ completing the proof.
This result tells us that φ -< φ' in the sense of Connes and Takesaki [6]

if and only if φ < φ' as objects of ifr(M).

8.2. PROPOSITION. iΓ(λf) has sufficient subobjects.

Proof. Let (φ|e|φ) be a projection in iΓ(Af) then e e Mφ and if φe is
the weight on M with support e defined by Φe(x) = φ(exe), we may apply
Proposition 8.1 to deduce that (Φ\e\φe) is an isometry in iΓ(M) with final
projection (φ|e|φ).

As far as direct sums go we have

8.3. PROPOSITION, φ = φ .φf in W(M) if and only ifφ = Σz ψf

ψ. are weights with pairwise orthogonal supports and ψ; — φ .̂ ^*(M) has

countable direct sums if and only ifM is properly infinite.

Proof. Let (Φl^lφ,) be isometries of #"(M) realizing φ = Θ Φz and
set ψj = φe where e{ = Ĥ  W,.*. The ψf. have pairwise orthogonal supports
and (Ψi\wi\Φi) a r e unitaries of iΓ{M). Now Σ/ψ^x) = Σ.Φίw^iv^xvv^*)
= φ( JC) since vv̂ w* G Mφ. The converse is equally simple.

If M is properly infinite and φi are objects of iΓ(M)9 i = 1,2,...,
then let (eKMφ,)) be isometries of&>(M) realizing e = Θ. JίΦ,-). Setting
φ = Σ, φeι, where et = w w^ then φe ^ φz so φ = θ^Φy. The converse is
trivial.

If we now apply the theory of W*-categories developed here we
obtain the following result designed to resemble [6; Thm. 1.11].

8.4. THEOREM. Let M be a σ-finite properly infinite von Neumann
algebra. Every σ-finite projection of ZiΓ{M) is of the form c(φ) for some
weight φ.

(i) Writing φ = ooφ,

c(φ) = c(φ)

ciφj < c(φ2) if and only ifφλ < φ2



108 P. GHEZ, R. LIMA AND J. E. ROBERTS

(ii) The map e -> c(φe)from central projections ofMφ extends uniquely
to an isomorphism ofZ(Mφ) and Z(W(M))c(φ) and

(iii) For any sequence {φn} of normal semifinite weights with pairwise
orthogonal supports, c(Σ^=ιφn) = supn c(φn).

No formal proof is needed here since the main points are contained in
Corollary 5.3, Proposition 7.15 and Theorem 7.17. This result reveals our
debt to the techniques developed in [6]. We hope it also demonstrates that
ff*-categories provide the right framework for the comparison theory
of weights and that there is no more natural representation of the pair
{pM, &>M) of [6], unique up to isomorphism than as {c, Zifr(M)}.
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