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STOCHASTIC INTEGRATION IN FOCK SPACE

V. S. SUNDER

In this paper, using purely Hilbert space-theoretic methods, an
analogue of the Ité integral is constructed in the symmetric Fock space
of a direct integral $ of Hilbert spaces over the real line. The classical
1t6 integral is the special case when $ = L*[0, «0). An explicit formula
is obtained for the projection onto the space of ‘non-anticipating func-
tionals’, which is then used to prove that simple non-anticipating func-
tionals are dense in the space of all non-anticipating functionals. After
defining the analogue of the It6 integral, its isometric nature is estab-
lished. Finally, the range of this ‘integral’ is identified; this last result is
essentially the Kunita-Watanabe theorem on square-integrable
martingales.

Preliminaries. (a) Symmetric Fock space: If § is a (complex) Hilbert
space, the symbol £ will denote the Hilbert space of symmetric
tensors of rank n; alternatively, $" is the closed subspace of ® "9
spanned by {x ® --- ®x: x € §}. (In the sequel, the symbol spS will
denote the closed subspace spanned by the set S of vectors.) By conven-
tion, $° = C. We shall also write ®”x for x ® --- ®x, with the
convention that ® x = 1.

The symmetric Fock space over §, is by definition, the Hilbert direct
sum

[o o]

r(s)= @ o

n=0
If x € 9, then I'(x) will denote the ‘exponential’ vector in I'($) defined
by

- ® *x ®"x
I'(x)=11,x, 5 )
The following are easily verified:
(1) I'(9)=sp{l(x): x€9};
1) and
(ii) (T(x),L(y)) = exp(x,y), x,y€8$.
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The symbol @ is reserved for the ‘vacuum’ vector: = I'(0) =
(1,0,0,...).

If ©, and §, are Hilbert spaces, it follows from (1) that the
correspondence

F((xl’ x,)) © T(x,) ® T(x,)
extends to a canonical unitary isomorphism of Hilbert spaces:

I'(9, 0 9,)=T($,) ®I(9,).

If A4 is a contraction on § (i.e., 4 is an operator with ||4|| < 1), there
exists a unique contraction I'(4) on I'(9) such that I'(4)I['(x) = I'(A4x)
for all x in §. (In fact, T'(4) = &2 (®"4)). If 4 and B are contrac-
tions on §, it is clear that

) T(4B) = T(4)T(B);  T(A4)* = T(4*).

In particular, if 4 is a projection, so also is I'(4).

(b) Continuous tensor products: 1f (X, %#,p) is a measure space and
© = ¥ 9(t)p(dr) is a direct integral of Hilbert spaces over X (cf. [2] for
definition and basic facts about direct integrals), then, for each M in %,
the operator of multiplication by x,, will be denoted by P(M). Thus,
M — P(M) is the canonical spectral measure in . If #=TI'(9), we
shall use the symbol E(M) for I'(P(M)). By the last remark in (a), each
E(M) is a projection; further, (2) implies that if M C N, then E(M) <
E(N). Further, we shall write (M) = P(M)$ and # (M) = E(M)?.
Then, 5# (M) can be naturally identified with I'($(M)), and it is easy to
see that S2(M) = {(f,)%, €EH#: [, € S(M)" for all n}.

If M and N are disjoint setsin X, then $(M U N) = H(M) & H(N),
and so, there exists a canonical unitary operator (cf. (a))

Up v: #(M) @ #(N) > #(MUN).

(If x € $(M), y € (N), Uy, 5(T'(x) ® I'(y)) = I'(x + y).) The follow-
ing properties of the U,, \’s are easily established (by verifying them on
exponential vectors).

ProroSITION (U). (i) If L, M and N are disjoint Borel sets in X, the
following diagram of Hilbert spaces and unitary operators is commutative:

Lpy® Uy n
#(L)®#(M)8#(N) - #(L) @ #(MUN)
L U ® Lew VUmon

ULUM,N

H(LUM)®H(N) - HF(LUMUN)
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(ii) If M C N, then #(M) C #(N) and
UM,N\M(f® Q) =1, fe#(M).

(Note that Q@ € (L) forall L € #.)

Briefly, 5# has a continuous tensor product structure over X (cf. [1]
and [6]).

In case X =[0, ), p is Lebesgue measure and § = L?*[0, c0), it is
known that s#= I'(Q) can be identified with L*(¥, P), where €= {f €
Cl0, 00): f(0) = 0} and P is the Wiener (probability) measure defined on
the o-algebra generated by point-evaluations. Explicitly, the correspon-
dence is given by

N(g) o expl [ 6(1) (o) - 5 [ #(0)at),

where ¢ € L?[0,00) and the first integral on the right is the Wiener
integral (cf. [6]).

The text. In the sequel, the notation and terminology will be exactly
as in (b) above. We shall further restrict ourselves to the case where

(a) X=R

(b) Z is the o-algebra of Borel sets in R; and

(c) p is a non-atomic, positive, o-finite measure defined on %. Thus,

%= f: $(u(dr);  #=T($).

For any ¢ in R, we shall use the abbreviations P,, E,, 9, and 5,
respectively for P(-o0,?], E(-c0,t], P,$ and E,5. The non-atomicity of
p ensures that inclusion or exclusion of one or both end-points of
intervals is irrelevant. (Thus, P, = P(-oo0, t).) Further, the non-atomicity
of u implies that { P,} and { E,} are strongly continuous one-parameter
families of projections.

The symbol W will be reserved for the natural (isometric) inclusion of
O in #:

(3) Wx = (0, x,0,0,...).
The map W clearly satisfies

4 W(9(M))c#(M), MecHB, and
(4) (W, Q) =0, xe8.
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In case § = L*[0, o) and 5= L?*(%, P), it can be verified that W is just
the Wiener integral: W¢ = [¢(t) dw(z). In order to define the analogue
of the It0 integral, we begin with the following:

DEFINITION 1. A non-anticipating tensor (abbreviated to n.a.t. in the
sequel) is an element of the closed subspace 9 of S#£® & defined by
N={pe#®9: (1,0 P)p=(E,®P)pVit)}

EXAMPLE 2. Let a € R, f € # (-0,a],x € $(a, ©),and let ¢ = [ ®
x. Then ¢ is a n.a.t, since (1,® P,)¢ = (E,® P)¢ = 0if ¢t < a, while if
t>a,

(E,® P)¢ = Ef® Px=f® Px = (1,8 P)¢.

DEFINITION 3. A n.a.t. of the sort described in Example 2 will be
called an elementary n.a.t.; a finite linear combination of elementary
n.a.t.s will be called a simple n.a.t.

The following elementary result is recorded here for later use.

PROPOSITION 4. If ¢ € N and —00 < a < b < oo, then
(1,,® P(a, b])¢ = (E, ® P(a, b])é.
Proof.
(1,® P(a,b])¢ = (1,® P, — 1,® P,)¢
=(E,® P,— E,®P,)$, sinced € N.

Hence

(Eb® P(a’b])¢= (Eb® 1@)(Eb®Pb_Ea®Pa)¢
=(E,® P,— E,E,®P,)¢
= (Eb®Pb_Ea®Pa)¢= (1.9?® P(aab])¢

by the previous equality, and the proof is complete.

We now wish to obtain a formula for the projection of #® $ onto
9, which will henceforth be denoted by Q. However, some notation
should be established first.

Let J = {(tgtp,---s2,): —00 <t( <t < -+ <t, <00, n=
1,2,...}.The set J is a directed set with respect to the partial order
defined by

(gr---sty) < (8gs---ss,) Iff {2g,....0,} S {50,--0s5,])-
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If A=(ty,...,t,) €J,define

(5) ZE( oo, tl 1]®P(tz 1> z]

i=1
Since the projections { P(¢;_; , t,]: i = 1,..., n} are mutually orthogonal
it follows that Q,, being a sum of mutually orthogonal projections, is
itself a projection with

(6) ranQ, = EBW ] @ §(4p, 1.

LEMMA 5. {Q,: A € J} is a monotone net of projections; i.e., if A,
AN eJand A < N, then Q, < Q4.

Proof. 1t clearly suffices to prove the following: If
=(a,b) and A =(s,,...,s,)
where a = s, < s, < -+ <s,=b, then Q, < A,.. In this case, however,

Q= E(-0,a] ® P(a,b]

E(-o00,a] ® P(s;_y,s,]

E(-c0,s5;_1] ® P(s,_1,5] = Oa

J

PROPOSITION 6. Q = lim, . ; Q,, in the strong operator topology.

Proof. Example 2 shows that every product vector in 5 (-c0,a] ®
$(a, b] is a n.a.t. It follows that (cf. (6)) ranQ, C ranQ for all A in J;
1e, O, < Q forall Ain J.

Since Q and each Q, are projections, it suffices to show that 9, = Q
weakly. Further, since O, < Q for all A, and since the Q,’s are uniformly
bounded, it is enough to show that (Q¥,¢) — (Q¥,¢) for all ¢ in N
and for all ¥ belonging to some total set of vectors in J£® .

Observe that {f® x: fe# (-T,T], x€ $(-T,T], T>0} is a
total set of vectors in #’® . What we shall prove is that (Q,(f ® x),¢)
- (Q(f® x),¢) for all ¢ in N, where f € # (-T,T] and x € $(-T, T
for some 7' > 0.

Let € > 0 be given. Since ¢ — ||E,f||* is monotone and uniformly
continuous (recall that p is non-atomic, and so the above function is
continuous and constant in each of the intervals (—o0, T'] and (7, «0)),
there exists Ay = (s,,...,5y) in J such that

1) s = —T Sy = T and
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(ii) [1E.f1I* — I E f1I* < &/|Ix||*||¢|| whenever

s, StV <t<ys,, fori=1,..., N.
Claim. Ay < A = [(Q4 — QX[ ® x),4)| <.
Suppose A = (¢, ..., t,)=A,. Then ty<so=-Tand t,>sy=T
and hence,
- P(IO’ tn]x = Z P(ti—lﬁ ti]X;
i=1
thus,

(0(f®x),0)=(f®x,¢) (since p € N)
= Z<f®P(t BRAEXY

_ é«lf@ P(t, 1, 1])(f ® x),4)
=l=il<(f® x), (1,8 P(1,_,1,])$)
_ é<(f ® X, E, ® P(t,_1,])9)  (by Proposition 4)
= Y (B, ® Plt 1)) (£ © x).9).

1

-~

while, by definition,
(Qu(f®x), )= Z ((E,_, ® Pt 1])(f ® x), ).
Hence .
[(Q(f® x),8) —(Qu(f® x),4)]
% (B, = Br.) & P(1,1,1). (10 2).9)

-

<((Et, - Ez,A,) ® P(tiﬁl’ ti])(f® x),
(100 Pl 1])8)

1

i

(continues)
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IA
M=

”((Et.- - Et,_,) ® P(1;_y, ti])(f® x)“
N(1e® P(r,_1,1,]) ¢

1,2
N(Ez - Ez,-_l)f® P(ti—l’ ti]xuz}

i=1

|,

.[é [(Le® P(t,_y, 2.]) ¢”2]1/z.

M=

1

- 5 ]2
The first term = | Y “(E, - E,H)f” [ P(t;—1, ;] ]| ]
[i=1

o . Rz B
ST 2Py, 1] x| } =¢ello]
>l Yol -1
the first inequality being a consequence of the choice of A, the inequality
A > A, and the assumption f € 5 (-T, T], while the last equality follows
from x € $[-T,T}].

The second term is dominated by ||¢|| since {1,® P(¢,_,¢,]: i =
1,...,n} is a set of mutually orthogonal projections; hence, the proof of
the claim, and consequently, the proof of the proposition, is complete.

The next result is an easy consequence of the last proposition.
PROPOSITION 7. Simple n.a.t.s (cf. Definition 3) are dense in .

Proof. 1t is to be proved that it = N, where N, is the closure of the
set of simple n.a.t.s.

To start with, note that if f€ 5 and x € §, then Q,(f® x) is a
simple n.a.t. for every A in J, and so, by Proposition 6, it follows that

o(f® x) e N,.
Since #® O =sp{f® x: f€H, x € } it follows (from the lin-
earity and continuity of Q) that
N=0(#°9)=sp{Q(f®x): feHX, xED} N,

the last inclusion following from the previous paragraph. Since, clearly,
RN, € N, the proof is complete.

Observe that @ ® x € R for any x in §, since E,Q = Q for all ¢.
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THEOREM 8. There exists a unique isometic operator #: N — 3 such
that
(1) £(Q2 ® x) = Wx for all x in ; and more generally,
(i) ifa € R, fE€#H (-0,a], x € H(a,0) and ¢ =f ® x, then I =
U(-—z:»o,a],(a,oz:;)(f® Wx)
(Note: This is the analogue of the Itd integral and it is tempting to write
S = [¢pdW)

Proof. Since elementary n.a.t.s span 9, it is clear that (ii) forces
uniqueness of £, so it suffices to prove existence.

For typographical economy, let us write U, for U_, 41 (ac) and U, ,
for U_, 41.(ap) When a < b, where the U, ,,., are as defined in (b) of
Preliminaries.

If a, f, x and ¢ are as in (ii) above, then Wx € 5#(a, oo) (cf. (4)) and
so, it makes sense to define f¢ = U, (f ® Wx). That F¢ is unambigu-
ously defined (in the sense that #¢ depends only on ¢, and not on a, f or
x) is a consequence of the consistency properties of the U, ,,., stated in
Proposition (U).

Next suppose a,b € R, f€ #(-00,a], x € H(a,0), ¢ =f® x,
and g € # (-0,b], y € $(b, ), ¥ = g ® y. Assume (without loss of
generality) that a < b. Then, observe that

Fo=I(f& x)=U/(f® Wx)
= U,(f® W(P(a,b]x + P(b,0)x))

= U,(f® WP(a,blx) + U/(f® WP(b,0)x).

Notice that U,(f ® WP(a,b]x) € # (-o0,b] and so,

U,(f® WP(a,blx) = U,(U, ,(f® WP(a,b]x) ® Q).
Similarly

Ua(f® WP(b,OO)X) = Ub(Ua,b(f® Q) ® WP(ba OO)X)
On the other hand, by definition,

SV =S(g®y)="U,(g® Wy).

Since U, is unitary, conclude that

(S, IY) = <Ua‘b(f® WP(a,b]x)®Q, g® Wy)
+(U, ,(f® Q) ® WP(b,0)x,8 @ Wy).
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The first term on the right is zero since (2, Wy) = 0 (cf. (4)), and so,
since W is isometric,

(S, I¥) = (U, ,(f® Q), g)( P(b,0)x, y)
= (f,8){x,P(b,®)y) (sinceU,,(f® Q) =)
= (f,8){x,y) (since y € #(b, 0))
={(f®x,g®y) ={(¢,¥).

So, the equation (ii) (in the statement of the theorem) unambiguously
defines a vector £¢ in S for every elementary n.a.t. ¢; further, if ¢ and
¥ are elementary n.a.ts, then (F¢, FV¥) = (¢,¥). Since elementary
n.a.t.s generate N (by Proposition 7), it is clear that .# extends to a unique
isometric operator from N into 5.

Finally, we identify the range of £, and this result is essentially the
Kunita-Watanabe Theorem.

THEOREM 9. #(R) = {Q) = #6 CQ.

Proof. Since {Q}*=sp{I'(x) —Q: x € 9}, and since # (being
isometric) has closed range, it suffices to prove the following:

Claim. T'(x) - Q=4(Q(I'(x) ® x)) for all x in §. Since H#=
sp{T'(y): y € ©}, it is enough to establish that
(£(Q(T(x) ® x)),T(y)) = (T(x) = 2,T(»)) = exp(x, y) - 1.

In view of Proposition 6 (and the continuity of £), it is enough to prove
that

lim (#(Q4(T(x) @ x)), T(y)) = exp(x, y) — 1.

Let A = (¢y,...,2,) € J. Writing U, for U_,, ,;(.«) (as in the proof
of Theorem 8), we see that

#(0u(T(x) ® %)) = f( Y E,_(I(x))® P(i, . t,.lx)

I
M s
RS
=
."hu
1
=

®
N
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On the other hand, for any ¢ in R,

I(y) = U(T(P,y) ® T(P(z,0)y)).
Hence,

n

(£(0u(T(x) ®x)),T(»)) = X (T(P,_x),T(P,_»))

'<WP(ti—1’ t;]x, T(P(1,_y, Oo)y)>

cxp< x,P,i_1y>)<P(ti_1,t,]x,P(ti_l,oo)y>

Il
M:

..
]
i

I
M=

(exp(P X, y>)<P to,t]%, )

"
-

(expa(ti—l)) '(a(ti) - a(ti—l))7

Il
M=

i
A

where a(t) = (Px, y).

Hence ( £(QA(T'(x) ® x)), I'(y)) is a typical Riemann sum (consider-
ing the left end point) corresponding to the partition A, in the evaluation
of the Riemann-Stieltje’s integral % (exp a(?)) da(t). (Note that a(z) is a
function of finite total variation.) Taking limits as the partition is indefi-
nitely refined, we get, by Proposition 6,

(£(0(T(x) @x)).T(7)) = [ e da(r)

-0

o .
= eV, =™ — 1, asdesired.

The Kunita-Watanabe theorem (cf. [4]) is stated in terms of
martingales. To make contact with that formulation, one can define a
martingale (in this setting) as a curve {¢(7): ¢t € R} in 5 such that
E¢(t) = ¢(s) for s < t. It can easily be verified, that ¢(¢) = E,#(¢)
defines a martingale with ‘mean zero’ for any ¢ in R (i.e, ( E, £(¢), Q) =
0). It can now be deduced from Theorem 9 that if {¢(¢): t € R} is a
martingale such that (i) {¢(#), 2)0 for all 7, and (ii) sup,||¢(¢)|| < oo, then
there exists ¢ in N such that ¢(¢) = E,F(¢) = F#((1,,® P,)¢). The
verification of the above details is fairly painless and we shall be content
to stop here.
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