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w-MAPPINGS ON TREES

M. M. MARSH

David Bellamy has shown that there exist tree-like continua which
do not have the fixed point property. We give sufficient conditions for a
tree-like continuum to have the fixed point property. In order to establish
this result, we define w-mappings on trees and show that each ^-mapping
is universal. Our results generalize similar theorems of C. A. Eberhart
and J. B. Fugate in [3].

In 1969 R. H. Bing [2] asked if each tree-like continuum has the fixed
point property. In 1979 David Bellamy [1] answered Bing's question in the
negative; i.e., he gave an example of a tree-like continuum which admits a
fixed point free map to itself. In this paper, we give sufficient conditions
for a tree-like continuum to have the fixed point property. Our result
generalizes a similar theorem of C. A. Eberhart and J. B. Fugate [3,
Theorem 7]. Other papers concerned with fixed point theorems for tree-like
continua are [6] and [7].

W. Holsztynski [5, Corollary 1] has shown that whenever a continuum
is the inverse limit of absolute retracts with universal bonding maps, then
the continuum has the fixed point property. In [3], Eberhart and Fugate
showed that if a mapping of trees is weakly arc-preserving, then it is also
universal. Their fixed point result for tree-like continua follows from
Holsztynski's theorem. We define a w-mapping of trees and prove that
each w-mapping is universal. We also show that w-mappings are more
general than weakly arc-preserving mappings.

By a continuum we will mean a compact, connected metric space. A
tree is a finite, connected, simply connected graph. Each continuous
function will be referred to as a map or mapping.

A mapping / : X -> Y of trees is arc-preserving provided that / is a
surjection and if A is an arc in X, then f(A) is an arc or a point. The
mapping / is weakly arc-preserving provided that there is a subtree X' of
X so that the restriction of / to X( is arc-preserving. A mapping / :
X -> Y of topological spaces is said to be universal provided that whenever
g: X -» Y is a mapping, there is a point x e X such that f(x) = g(x).

Suppose that X is a tree. We define the sets E(X) and B(X) of
endpoints and branchpoints of X, respectively, by

E(X) = {x e X\ X - {x} is connected} and
B(X) = { I G I | I - { I } has at least three components}.
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For each pair of points xl9 x2 in X, the unique arc in X linearly ordered

from xλ to x2 will be denoted by [xl9 x2]. The arc [υl9 v2] in X will be

called an edge of X provided that vv v2 E f i ( I ) U E(X) and if x G

[vl9 v2] and υλΦ x Φ υ29 then c £ B(X) U £ ( X ) . If [υl9 v2] is an edge of

X and one of υλ or t>2 is in E(X)9 then [ϋ l 5 ί;2] is said to be a terminal

edge of X. Otherwise, [υl9 υ2] is an interior edge of X.

If H is a subcontinuum or a point of a tree X, we define stf(iίΓ) to be

the union of all edges of X which intersect H. The arc s is said to be a leg

of st(H) provided that s is the closure of some component of st(/ί) - H.

Notice that each leg of st(H) contains an endpoint of st(H) and is a

subarc of some edge of X.

Suppose that /: X -> Y is a mapping of trees, w G B(Y\ { t i }^ 1 are

the legs of st(w), and [w, v] is an arc in X so that f(u) = w, but

f([u,v]) Φ {w}. We will say that [u,υ] has an initial image under f

provided that there is an integer J G { 1 , 2 «} and a point x G [u, v]

such that f(x) G 7); - {w} and, if x ' G [w,x], then /(* ' ) G /y. In this

case, we will also say that tj is the initial image of [u,v] under /. The

reference to / will be omitted if such reference is clear. If C is the closure

of the component of X — {u} that contains [w, v] and D is the closure of

the component of Y — {w] that contains tJ9 we will also say that D is the

initial image of C. Finally, if M is any component of f~\w)9 we will say

that the legs of st(M) initially cover the legs of st(w) provided that, for

each leg ti of st(w), there is a leg s of st(M) whose initial image is tr

For each tree X in this paper, we will assume that we have a metric d

defined on X X X so that each edge of X has length one. Since each

mapping from a connected metric space onto an arc is universal [5], and

O. H. Hamilton [4] has shown that arc-like continua have the fixed point

property, we will further assume, throughout this paper, that all trees have

non-empty branchpoint sets.

DEFINITION. Suppose that /: X -» Y is a mapping of a tree X onto a

tree Y. We will say that / is a u-mapping (u-map) provided that /

satisfies the following properties.

(1) f(B(X)) <z B(Y),

(2) if s is a terminal edge of X, then f(s) is a terminal edge of 7,

(3) if w G B(Y) and M is a component of f~ι(w) which contains a

branchpoint of X, then the legs of st(M) initially cover the legs of st(w),

(4) if w e B{Y) and [υv v2] is an interior edge of X such that

f{vλ) = w = f(v2) and f([vv υ2]) Φ {w}9 then there is a component JV of

f~\w) and two legs tλ and t2 of st(vv) such that N = [zv z2] c [vv u2],
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and f([vi9 zj) is a nondegenerate subarc of ti for / = 1,2,

and

(5) if v e 5(X), then /(st(ι )) c st(/(i>)).

We will show that whenever a mapping / of trees has a restriction to a

subtree that is a w-mapping, then / must be universal. Although the

properties of a w-map are technical and many in number, each property is

necessary in the sense that its omission yields an example of a non-univer-

sal mapping of trees. We give examples later in the paper. Also, it is

generally easy to check if a mapping /: X -> Y of trees has properties (1)

through (5), while it is not easy to check if / has a coincidence point with

each mapping g: X -» 7.

We begin with a lemma concerning w-mappings.

LEMMA 1. Suppose thatf: X -> Y is a u-mapping, [wv w2] is an edge of

Y with wλ e B(Y), vλ e B(X), and f(υλ) = wv Then there is an arc

[ul9 v2] in X such that the initial image of [uv u2] is [wl9w2]9 and [wl9 w2]

c f([vv v2]) c s t ^ ) . Moreover, if [wvw2] is a terminal edge of Y, then

v2 can be chosen from E{X), and if [wl9 w2] is an interior edge of Y, then v2

can be chosen from B(X) withf(v2) = w2.

Proof. Let Mλ be the component of /~1(>v1) which contains υv Since

/ is a w-mapping, we may choose a leg sλ of st(Mλ) whose initial image is

[w1?w2]. Let αx be the edge of X such that sλ c α1? and let uλ be the

endpoint of ax which is not in Mv

If αx is a terminal edge of X, then f(aι) is a terminal edge of Y.

Hence, [n\, w2] must be a terminal edge of Y and we have that [wl9 w2] =

f([vv uλ]) c stίw!). So, [υl9 uλ] satisfies the conclusion of the lemma.

We assume that aλ is an interior edge of X. By property (5) of a

w-mapping, we have that f([vl9 wj) c s ^ ^ ) . Since the initial image of ax

is [w1?w2], by properties (1) and (5), /(ι/x) must be either wλ or w2. If

f(uλ) = w29 then again we have that [υl9 uλ] satisfies the conclusion of the

lemma. So, we assume that f(uι) = w1. Let M2 be the component of

f~ι(f(ui)) which contains uv Let s2 be a leg of st(M2) whose initial

image is [wx, w2], a2 be the edge of X such that s2 c α 2 , and u2 be the

endpoint of a2 which is not in M2. Now, by property (4) of a w-mapping,

a2 Φ av

Again, if either a2 is a terminal edge of X or f(u2) = w2, then the

result follows for the arc [υl9 u2]. So, we assume that a2 is an interior edge

of X and that f(u2) = w1. Now, since X has finitely many interior edges,

a continuation of this procedure eventually gives us a positive integer n
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for which an is either a terminal edge of X or f(un) = w2. We then have
the desired result for the arc [vv un].

T H E O R E M 1. Suppose that F: X' -* Y is a mapping from a tree Xf onto
a tree Y such that there is a subcontinuum X of Xf for which F\x is a
u-rnapping from X onto Y. Then F is universal.

Proof. Let f=F\x. We will show that /: X -» Y is universal. It
follows that F is universal.

Suppose there is a point w e B(Y) such that f'\w) Π B(X) = 0 .
Let v e B(X). By property (1), f(v) e 5(7). Let z be a point of 7 such
that w G [/(*;), z] and w =£ z. Let JC G / ~ 1 ( Z ) . Then [/(ι>), z] is a subset
of /([ι>, x]). Let u be the last branchpoint in [v, x] with the property that
w does not separate f(v) from /(w) and if u' is in B(X) Π (w, JC], then w
separates /(*;) from /(w') It follows that /(st(w)) <t st(/(w)), which is a
contradiction. Hence, for each branchpoint w e 7, there is a branchpoint
0 in ^ such that f(υ) = w.

If [t/l5 u2] is an interior edge of X with the property that /(uλ) = f(u2)
but f([ul9 u2]) Φ {f(u2)}, then we will say that [ul9 u2] is folded by f. We

will use induction on the number of interior edges of X which are folded

by/.
Suppose there is no interior edge of X which is folded by /. We claim

that

if [w, b] is an edge of 7 with w e B(Y) and y is a
branchpoint of X such that f(υ) = w9 then there is an arc

(*) [v>a] in X such that f([v, a]) = [w, b]. Moreover, if
then a can be chosen from B(X) with

So, let [w, 6] be an edge of 7 with w e 5(7) and let ϋ G ί ( I ) n f~\w).
By Lemma 1, there is an arc [v, u] in X such that w is a vertex of X, [w, fe]
is the initial image of [v, u], and [w, Z?] c f([v, u]) c st(w). Let α be the
first vertex of X in [ϋ, u] such that /([y, α]) Φ {w}. Now, by properties
(1), (2), and (5), and the assumption that no edge of X is folded by /, it
follows that f([υ9 a]) = [w, b].

We will now show that / is universal, in this case, using an induction
argument on the number of branchpoints in 7.

Suppose that 7 has only one branchpoint w. Then 7 = st(w). Let
{*,•}?„! be the legs of st(w). Let ϋ be a branchpoint of X such that
/(v) = w. By (*), for each i e (1,2,...,«}, we can choose an arc [v, at] in
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X such that f([v> αj) = tt. Let Γ = U*=1[ί;, α j . Since each tt is an arc,
f\[ϋ9aι} is universal. Also, for i Φj\ /([ϋ,aj) nf([v,aj]) = {w}. A theo-
rem of Holsztynski [5, Prop. 7] gives us that /1 τ is universal. Hence, / is
universal.

Suppose that Y has exactly m branchpoints. Let w be a branchpoint
of Y and let v e B(X) C\f~\w). Let {ϊ)}JLi be the collection of closures
of components of Γ — {w}. We intend to produce, for each / in {1,..., n},
a subtree Jξ of X such that f(Xt) = 1̂  and /1 x is universal.

For Ϊ G {1,..., w}, let [w, ftj be the terminal edge of Yt with end-
point w. Applying (*), for each / e {1,..., n}, we choose an arc [Ό, at] in
X such that f([v, aj) = [w, bt\

Now, if for some j e {1,...,«}, £y e £(y) , then [w, Z>y] = ζ.. So, in
this case, we let X} = [υ, αy], and thus, /1 x is universal.

Suppose for some j e {1,...,«}, bj^B(Y). Now, /([ϋ,αy ]) =
[w, £>;], and, by (*), we may assume that αy was chosen from B(X). We
now will apply (*) to each leg of st(bj) except for [Z>7 ,w]. Let {di}ΐ==ι be
the vertices of Y that are adjacent to by. Assume dλ = w. For each i in
(2,3, . . . , &}, choose an arc [α7, c j in X such that /([fly, cj) = [by, d{]. Let
Z y l = Uf==2[

β^ C J u [βy> ϋl Now, Xjλ is a simple fc-od and /1 ̂  maps the
edges of XjX onto the edges of stίfy)- So, clearly / | X j : Xjλ -* st(by) is a
H-mapping. For each dέ that is a branchpoint of YJ9 we repeat the above
procedure on st(^). This gives us another fc-od, say XJi9 (not necessarily
the same k as above) in X which shares the edge [c, , α7] with X7l and
whose edges are mapped by /1 x onto the edges of st(ί/;). We repeat the
process again for each vertex of Yy that is both a branchpoint of Yy and
adjacent to some d{ that was a branchpoint of Yy. In this manner, since Yy
has but finitely many branchpoints, in fact fewer than m, we will generate
a subtree Xy of X (Xy will be the union of all the XΊ

9s produced by this
procedure) that is a homeomorph of Yy and whose edges are mapped by
/1 x onto the corresponding edges of YJm Thus it is clear that f\x is a
w-mapping. Since Xy has fewer than m branchpoints, we have by the
inductive assumption that /1 x is universal.

For each / e ( 1 , . . . , n}, we have constructed a subtree X{ of X such
that f(Xj) = Yt and f\X{ is universal. Thus, by Holsztynski's theorem [5,
Prop. 7], it follows that / is universal.

Suppose that X has exactly m interior edges which are folded by /.
We assume that whenever /': Z -* Y is a w-mapping of a tree Z onto Y
such that Z has fewer than m interior edges which are folded by /', then
/ ' is universal.

By way of contradiction, we assume that / is not universal. Let g:
X -> Y be a mapping such that f(x) Φ g(x) for each x e X.
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Let [vv v2] be an interior edge of X which is folded by /. Let
w = f(vλ). We let [zvz2] be the component of f~\w) as indicated in
property (4) of a w-mapping. Also, we let tγ and t2 be the legs of st(w) as
indicated in property (4). Let bx and b2 be the vertices of Y which are
adjacent to w and belong to tλ and t2 respectively.

For i = 1,2, let at be the endpoint of f([υt9 zj) which hes in tt. We
have that, for / = 1,2, w < at < bt in the order on [w, 6J. Since we are
assuming that each leg of Y has length one, we let 1̂ 1 denote the distance
from ai to w. For i = 1,2, let ε = 1 - l/|α z | ; we notice that εi < 0.
Assuming that each of X and Y is a subset of E2, we define the mapping
f:X-*Y by

(*) i f x & [ v l 9 v 2 ] ,

f(x) = Uw +(1 - iO/(x) if x e [i; 1 ?z 2],

Now, it is clear that, for each point f(x) in tt (i = 1,2), f(x) is on
the line containing w and /(x). We claim, in fact, that f{x) is in the arc
[w, Z>J. The calculations which follow will make this clear.

For each x e [ί;1? v2] such that /(x) = w, we notice that f(x) = w.
Thus, / is continuous. Suppose that x e [ί;/? zj, for either / = 1 or / = 2,
and /(x) = at. Then

+(1 - ejlflj^. +(1 - βf)(l -

-(l - 1/|

= 0 w + 1 &,. = 6/e

Thus, /([^, zj) c ίf for / = 1,2. We also notice that if aέ = bt for
either i = 1 or / = 2, then εy = 0, and f(x) = /(x) for each x ^ [vn z ].
In addition, it is easy to see that / is a w-mapping and exactly m interior
edges of X are folded by /.

For / = 1,2, let ut be a point of [υi9 z ] such that /(t/z) = bt.
We now would like to modify the mapping / and perhaps we will also

need to modify the continuum X by adjoining a homeomorphic copy of a
subcontinuum of Y to X. However, our procedure is dependent upon
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whether bt is an endpoint or a branchpoint of 7, for each ί = 1,2. We see
that there are actually four cases to consider. We will consider only one
case. It will be clear that the proof of the other cases can be carried out in
a similar manner.

We suppose that b2 is a branchpoint of 7 and bx is an endpoint of Y.
Let Xx be the closure of the component of X - {zλ} which contains υv

We claim that Y c /(Xλ). We only need to show that each endpoint of Y
is in /(Xi). Now, bλ =/(wχ) and ux e [i ^ z j c ΛΓlβ Let e Φ bx be an
endpoint of 7. Let {ez}f=i be the vertices (in order) of Y that lie in the
arc [w, e], with e1 = w and ek = e. Notice that [w, e] Π [w> bλ] = {w}. By
Lemma 1, there is an arc [vvd2] in X such that the initial image of
[vvd2] under / is [w,e2] and [w,e2] c: f([vv d2]) c st(w). Since the
i n i t i a l i m a g e o f [ υ v d2] i s [ w , e 2 ] , i t f o l l o w s t h a t [vv d2] Π [vv zx] = {vλ}.
So9[ϋl9d2]cXι.

If k = 2, then e2 = e, [w, e] c /([ϋ^ d2]) and we are done. Otherwise,
e2 is a branchpoint and we may assume, by Lemma 1, that d2 e B(X)
and f(d2) = e2. We repeat the process above. By Lemma 1, there is an
arc [d2,d3] in X such that the initial image of [d2,d3] is [e2,e3] and
[e2, e3] c /([ J 2 , J3]) c st(e2). It follows that [d2, d3] c Xx. If k = 3, then
e3 = e, [e2, e] c f([d2, d3]), and we are done. Otherwise, e3 e B(Y) and
we continue the process. After finitely many steps, we get that e ^ f{Xλ).
Thus, Y<zf{Xx).

Let U be the component of Y — {b2} which contains w. Let Γ2 =
Y — U. Let Λ be a homeomorphism from Y2 into I?2 such that h(b2) =
w2 and / I ( 7 2 ) Π I = { M 2 ) . Also, let X2 be the union of h(Y2) and
the closure of the component of X — {zx} which contains v2. Let Z =
J^ U X2.

We now wish to define mappings /': Z -> 7 and gr: Z -> 7. Let / r

be defined by

ω J/W i f ^ G ^
7 1 ;

 IA-^JC) i f x G Z - X

Let g' be defined by

g l X ; \g(u2) i f x e Z - X

Let fί = f \χ., for / = 1,2. Now, it is clear that each of f[ and
fi \x2-{u2,zχ] ι s a w-mapping. Since 7 c /(XJ it follows that the image of
f[ is Y. We will also show that the image of f2 \ χ2_(M2, Zι\ is Y. Again, we
show that each endpoint of Y is in the desired image. If e is an endpoint
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of Y29 then h(e) G X2 - {u2,zλl Furthermore, f2(h(e)) = f'(h(e)) =
h~\h(e)) = e. Suppose e is an endpoint of Y and e is not in Y2. Then
e e U. Let {vtλ}f=1 be the vertices (in order) of Y that lie in the arc [w9e]9

where wx = w and w* = e. By Lemma 1, there is an arc [v2, c2] in X such
that the initial image of [v29 c2] is [w, w2] and [w, w2] c /([u2, c2]) c st(vv).
Now, since the initial image of [v2, c2] is [w, w2], it follows that [>2, c2] Π
[y2, w2] = {ϋ2}. So, [v29c2] cX2- (u2,z^ Also, since [v2,c2] c X, it
follows that /2'([ι>2, c2]) = f'([u29 c2]) = /([ι;2, c2]).

If k = 2, then w2 = e, [w, e] c/2([ϋ2,c2]) and we are done. Other-
wise, w2 is a branchpoint and we may assume, by Lemma 1, that
c2 G B(X) and f(c2) = w2. We repeat this process, as we have done
before, finally getting that e is in the image of /21 χ2-{U2, Zιγ

Hence, we have that each of f[ and f2\χ2-(U2 ,Zl] is a w-mapping
whose image is Y. Also, each Xt has fewer than m interior edges which
are folded by //. Hence, for / = 1,2, there is a point xt in Xi such that

We consider the point xx in Λ .̂ Since Xx c X, g(^i) = g\xχ) =
fί(xi) = f(*i) S o

? /(*i) ^ g(^i) implies that /(xJΦfixJ. It follows
that xx G [υl9 z j and /(x^ Φ w. Hence, w < f(xx) < f(xλ) = g(xx) < bx

in the ordering on [w, 6J.
We will now find a point z in [ΌV υ2] so that /(z) G [W, Z>2] and /(z)

separates w from g(z) in Y. We indicate this separation by writing
w<f{z)<g{z).

If x2 G X, we may apply the same argument to x2 that we applied to
xλ to get that x2 e [y2, z2] and w < f(x2) < f(x2) = g(*2) ^ 2̂ ^n this
case, we let z = x2.

If JC2 G Z - X, we get that g(u2) = gXx2) = /((x2) = h'l(x2). Thus,
g(w2) is in 72. We have that w < a2 = f(u2) < f(u2) = b2 and either
g(w2) is separated from f(u2) by b2 or g(u2) = b2. We indicate this
separation by writing b2 < g(u2). In this case, we let z = u2 and we again
have that z e [i^, ϋ2] and w < f(z) < g(z).

We consider the arc [xl9 z\ Since [JC1? z] c [vv v2] and /([^x, v2]) =
[ava2] c /x u /2, it follows that /| [ j C l, z ] and g|[Xl>Z] have a coincidence
point, which is a contradiction. Hence, /: X -> y is universal. It follows
that F: JΓ -> y is universal.

In [8], Nadler showed that each universal mapping from a compact
Hausdorff space onto a locally connected metric continuum is weakly
confluent. Hence, by Theorem 1, a w-mapping of trees must be weakly
confluent.
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We also have the following fixed point result as a corollary to
Theorem 1.

THEOREM 2. Suppose that D is a directed set and X = lim {Xi9 //, D},

where, for each i < j , Xt is a tree and there is a subtree Xj of Xj such that

f/ I χ{ is a u-mapping onto Xt. Then Xhas the fixed point property.

Proof, The theorem follows immediately from Holsztynski's [5,
Corollary 1] result and Theorem 1.

We will now show that Theorem 2 is a generalization of Eberhart and
Fugate's theorem [3, Theorem 7]. We first show that each weakly arc-pre-
serving mapping of trees can be restricted to a w-mapping of trees. Then
we give an example of a t/-mapping of trees which is not weakly arc-pre-
serving.

Suppose hereafter that /: X -» Y is an arc-preserving mapping of a
tree X onto a tree Y and that X is minimal with respect to mapping onto
Y; i.e., if Xr is a proper subcontinuum of X, then /(X') Φ Y.

LEMMA 2. Let w be a point of Y and M a component off~λ(w). If zλ

and z2 are endpoints of Y which belong to a component DofY— {w}, and
each of Cx and C2 is a component of X — M such that zx e f(Cx) and

Proof. Suppose that CXΦ C2. For i = 1,2, let α, be a point of C, such
that /(a,-) = z,-. Let α = [av a2]. Now, a is an arc and /(α) contains each
of w, zl9 and z2. But w9 zl9 and z2 are distinct endpoints of D which
implies that /(α) is not an arc, a contradiction.

LEMMA 3. Let w be a point of Y and M a component of f~\w) which
contains a branchpoint υ of X. If s is a leg of st(M), then f{s) intersects
exactly one component ofY— { w}.

Proof. Suppose that f(s) intersects the components Dx and D2 of
y — {w}. Let {C/}£Li be the set of components of X - M. Assume,
without loss of generality, that s c Cv We notice that m > 3, for other-
wise, some component C of X — {y}isa subset of M, in which case X is
not minimal with respect to mapping onto 7. For j = 1,2,3, let z- be in

£ ( O / ( u r Q
Suppose that for some y" e {1,2,3}, Zj £ DλU D2. Assume that z-

belongs to the component D3 of Y - {w). Let αy be a point of Cj such
that f(aj) = Zj. Now, let a be the minimal arc in X such that αy G a and
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s c α. We have that f(a) intersects each of Dl9 D2, and D3. So, / is not
arc-preserving which is a contradiction.

Hence, for j = 1,2,3, zy G ΰ j U D2. Thus, two of zl9 z2, and z3 are
either in Dλ or D2. But this contradicts Lemma 2.

We are now ready to see that / has the properties of a w-mapping.
(1) Suppose that υ e B(X) but f(v) ί 5(7). Let w =/(ϋ) and let

M be the component of f'\w) that contains v. Let { C J ^ be the set of
components of X — M. As in Lemma 3, m > 3. Since w £ 5(7), 7 —
{w} has at most two components, say D1 and D2. For j = 1,2,3, let zy

be in E(Y) —fQJΐLi/i + jCg). So, two of zv z2, and z3 must either be in
Dλ or Z>2. But this contradicts Lemma 2. Hence, /(#) must be a branch-
point of 7.

(2) Let [ϋ, a] be a terminal edge of X with i; e 5(X). Let w = f(v);
by (1), we know that w e 5(7). Let M be the component of f~ι(w) that
contains u. Now, [v, a] <£ Λf, for otherwise, X in not minimal with respect
to mapping onto 7 By Lemma 3, f([v, a]) intersects exactly one compo-
nent D of 7 — {w}. Suppose that D is not an arc. Then D contains at
least two endpoints zλ and z2 of 7. Since f([v, a]) is an arc, only one of zλ

and z2 is in f([v, a])y say zv Hence, there is a component C of X — M
such that CΠ[ί),fl]= 0 and z2^f(C). This contradicts Lemma 2.
Thus, D is an arc which implies that f([v, a]) is a terminal edge of 7

(3) Let w G fi(7) and let M be a component of f~ι(w) which
contains a branchpoint u of X Let {/,}"= i be the legs of st(w). Suppose
that the leg tλ of st(w) is not initially covered by a leg of st( A/). Let Dx be
the component of 7 - {w} such that /x c Dx and let zx be in E(Y) Π Z^.
Let Cx be a component of X — M such that zx e /(Q). Choose a point
α i G Q s u c h ^at /(ax) = zx. By Lemma 3, each leg of st(M) has an
initial image, so Cλ has an initial image. Assume that the initial image of
Cx is /2. Let D2 be the component of 7 — {w} such that t2 c D2. For

7 = 2,3, let z y . G £ ( 7 ) - / ( U Γ = i / ^ y ς ), where C 2,C 3,...,Cm are the
remaining components of X — M. So, neither z2 nor z3 is in /(Q). By
Lemma 2, neither z2 nor z3 is in Dv Also, z2 and z3 are not in the same
component of Y- {w}. Hence, one of z2 and z3 is not in Dx U D2.
Assume that z3 is in the component D3 of 7 — {w}. Let a3 be a point of
C3 such that f(a3) = z3. Let a = [ava3]. Now α is an arc, but f(a)
intersects each of Dl9 D2, and Z>3, a contradiction. Hence, the legs of
st(M) initially cover the legs of st(w).

(4) Let w e 5(7). We will show that there is no interior edge [υl9 v2]
of X with the property that f{υΎ) = w = f(v2) and f([vl9 v2]) Φ {w}.
Suppose otherwise. Let {^}"=i be the legs of st(w). Let Mx and M2 be
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the components of f~\w) that contain v1 and υ2, respectively. Assume
that f([υl9 v2]) intersects tλ - {w}. By property (3), there is a leg r of
st{Mλ) whose initial image is t2 and there is a leg s of st(M2) whose initial
image is tv Let a be the unique minimal arc in X such that r U s a a.
Notice that [vl9 v2] c a also. Hence, f(a) intersects each of tv tl9 and t39

a contradiction. Thus, property (4) holds by default.
(5) Let v e B{X). By (1), /(ϋ) e B(Y). Let [ι;, t/] be an edge of X.

We need to show that f([v, u]) c st(/(ϋ)).
If [ϋ, u] is a terminal edge of X, then by (2), f([v, u]) is a terminal

edge of y.So,/([ϋ,iιDcsl</(i;)).
Suppose that [v9 u] is an interior edge of X and f([v, u]) is not a

subset of st(/(ϋ)). Then /([ϋ,w])=£ {/(ι?)} and, by the proof of (4),
f{v)Φf(u).

Suppose that f(v) and f(u) are not adjacent branchpoints of Y. Let
w e 5 ( 7 ) Π (f(v)J(u)). Let 6 be a branchpoint of X such that f(b) =
w. Now, either the arc [6, ι?] contains u or the arc [Z>, u] contains υ.
Assume, without loss of generality, that u e [b, v]. Since f([v, u]) is an arc
and w is a branchpoint of Y, there is a leg / of st(w) such that
f([v> u]) Π t = { w}. Let M be the component of f~\w) that contains b
and let s be a leg of st(M) whose initial image is t. Let a be a point of 5
such that f(a) G ί — {w}. Finally, let α = [α, υ]. Now, [y, w] c α; so,
f(a) intersects each of t, [w9f(υ)]9 and [w,/(w)]. Thus, /(α) intersects
three distinct components of Y - { w}. This is a contradiction.

Suppose that f(υ) and f(u) are adjacent branchpoints of Y; i.e.,
[/(#),/(«)] is an interior edge of Y. Since f([v,u]) is not a subset of
st(/(ί;)), then either f([υ, u]) intersects a leg r of st(/(ϋ)) different from
[f(v),f(u)] or /([ϋ,w]) intersects a leg 5 of st(/(w)) different from
[/(y),/(w)]. We assume that the latter is the case. Let / be a leg of
st(/(w)) different from both [f(v),f(u)] and s. Let M be the component
of f~ι(f(u)) that contains u and let h be a leg of st(M) whose initial
image is t. Let c be a point in h such that f(c) is in t — {f(u)}. Let
α = [c, υ]. Then α is an arc but f(α) intersects three legs of st(/(w)),
namely /, s, and [/(w), /(ϋ)]. This is a contradiction.

Having established properties (1) through (5), / must be a w-map-
ping. We have the following theorem.

THEOREM 3. ///: X -> Y is α weakly arc-preserving mapping of trees,

then there is a subcontinuum X' of X such that /(X') = Y and f \ χf is a

u-mapping.
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Proof. Since / is weakly arc-preserving, there is a subcontinuum X"
of X such that /(X") = Y and /1 x,, is arc-preserving. Let Xr be a
subcontinuum of X" which is minimal with respect to mapping onto Y.
Clearly, f\x, is arc-preserving. We have shown that the mapping f\x>:
X' -* Y must satisfy properties (1) through (5). Hence, f\x. is a w-map-
ping.

We now wish to look at a few examples. The first example together
with Theorem 3 shows that w-mappings are more general than weakly
arc-preserving mappings. The other examples show the necessity of prop-
erties (1) through (5) in Theorem 1.

In each example the maps will be piecewise linear with respect to
some triangulation of the domain. Hence, we will only indicate what the
mappings do to the vertices of these triangulations.

EXAMPLE 1. A w-mapping of trees which is not weakly arc-preserving.

v i r

FIGURE 1

Let / be given by f(a,) = A for / = 1,2, f(b) = B, f(c) = C,
/(v t) = V for i = 1,2,3, f{r) = iϊ, and /(/) = L.

Figure 2 below is a schematic indication of how / maps X onto Y.

FIGURE 2

It is easy to check that / is a w-mapping. The image of each of the
arcs [al91] and [α2, r] in X is the simple triod with endpoints A, L, and
R in Y. Thus, / is not arc-preserving. Since any subcontinuum of X that
maps onto Y must contain either [al9 v^] or [α2, υ3]9 it follows that / is not
weakly arc-preserving.

Since each subcontinuum of a given tree is characterized by its
endpoints, we will refer to a continuum in X or in Y by listing its
endpoints; e.g., Y may be denoted by (A, B, C).
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EXAMPLE 2. A non-universal mapping of trees which satisfies proper-
ties (1), (3), (4), and (5), but does not satisfy (2).

I I I

T 2
A _

V R

FIGURE 3

Let / be given by f(a,) = A for i = 1,2, f(b) - B, f(c) = C,
/(υ t) = V for / = 1,2,3, f(η) = R for i = 1,2, and /(/,) = L for i = 1,2.

Now, g is also piecewise linear with respect to the triangulation of X
shown in Figure 3. Thus, we will indicate, for example, that g maps the
arc [vx, /J linearly onto the arc [c, v] by the notation [υv /J -• [c, υ]. If g
is constant on some subtree of X, say g((av b, r^) = {C}, we use the
notation (av b,rx) -*• {C}. According to this convention, we define g as
follows.

g:

[c,v]
[V,A]

[Λ,V]

[V,B]

(a2,c,l2)

Figure 4 below gives a schematic representation of the mappings /
and g.

f

FIGURE 4

It is easy to check that / satisfies properties (1), (3), (4), and (5).
Property (2) is not satisfied since the image under / of the terminal edge
[vv rx) in X is the arc [V, R] in Y which is not a terminal edge.

We will now show that / and g have no coincidence point. Referring
to the definition of g, our notation makes it easy to see the behavior of
both g and / over a given arc. On the triod (aly b,rx), we see that the
images under g and / are disjoint. On the arc [vv /J, the image under /
goes from V to L as the image under g goes from C to V; thus, no
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coincidence occurs. On [ll9 v2], f goes from L to V as g goes from V to A.
The action of each of / and g is symmetric on the subtrees (al9 b, rl9 υ2)
and (a2,c,l2,υ2) of X Hence, / and g have no coincidence point.

EXAMPLE 3. A non-universal mapping of trees which satisfies proper-
ties (1), (2), (4), and (5), but does not satisfy (3).

a 2 .

'2

v i r i h V3

FIGURE 5

Let / be given by f(at) = A for i = 1,2, /(/>,.) = B for i = 1,2,
f(c) = C, /fa) = V for i = 1,2,3,4,5, f(η) = i? for / = 1,2, and /(/,.)
= Lfor i = 1,2.

Let g be given by

o * \ 1 ' 1 ' 2/

[ϋ3,r2] -* U,F]
In a manner similar to that outlined in Example 2, it is easy to check

that / has the desired properties. We also notice that a restriction of the
mapping / would yield an example of a non-universal mapping which
satisfies properties (1), (2), (3), and (5), but not (4). Let Xf = X - (υ39 b2].
Then the mapping f\x,: X' -> Y has the desired properties.

Examples of non-universal mappings which do not satisfy property
(1) or do not satisfy property (5) can also be given.
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