u-MAPPINGS ON TREES

M. M. MARSH

Abstract

David Bellamy has shown that there exist tree-like continua which do not have the fixed point property. We give sufficient conditions for a tree-like continuum to have the fixed point property. In order to establish this result, we define u-mappings on trees and show that each u-mapping is universal. Our results generalize similar theorems of C. A. Eberhart and J. B. Fugate in [3].

In 1969 R. H. Bing [2] asked if each tree-like continuum has the fixed point property. In 1979 David Bellamy [1] answered Bing's question in the negative; i.e., he gave an example of a tree-like continuum which admits a fixed point free map to itself. In this paper, we give sufficient conditions for a tree-like continuum to have the fixed point property. Our result generalizes a similar theorem of C. A. Eberhart and J. B. Fugate [3, Theorem 7]. Other papers concerned with fixed point theorems for tree-like continua are [6] and [7].
W. Holsztynski [5, Corollary 1] has shown that whenever a continuum is the inverse limit of absolute retracts with universal bonding maps, then the continuum has the fixed point property. In [3], Eberhart and Fugate showed that if a mapping of trees is weakly arc-preserving, then it is also universal. Their fixed point result for tree-like continua follows from Holsztynski's theorem. We define a u-mapping of trees and prove that each u-mapping is universal. We also show that u-mappings are more general than weakly arc-preserving mappings.

By a continuum we will mean a compact, connected metric space. A tree is a finite, connected, simply connected graph. Each continuous function will be referred to as a map or mapping.

A mapping $f: X \rightarrow Y$ of trees is arc-preserving provided that f is a surjection and if A is an arc in X, then $f(A)$ is an arc or a point. The mapping f is weakly arc-preserving provided that there is a subtree X^{\prime} of X so that the restriction of f to X^{\prime} is arc-preserving. A mapping f : $X \rightarrow Y$ of topological spaces is said to be universal provided that whenever $g: X \rightarrow Y$ is a mapping, there is a point $x \in X$ such that $f(x)=g(x)$.

Suppose that X is a tree. We define the sets $E(X)$ and $B(X)$ of endpoints and branchpoints of X, respectively, by

$$
\begin{aligned}
& E(X)=\{x \in X \mid X-\{x\} \text { is connected }\} \text { and } \\
& B(X)=\{x \in X \mid X-\{x\} \text { has at least three components }\} .
\end{aligned}
$$

For each pair of points x_{1}, x_{2} in X, the unique arc in X linearly ordered from x_{1} to x_{2} will be denoted by $\left[x_{1}, x_{2}\right]$. The arc $\left[v_{1}, v_{2}\right]$ in X will be called an edge of X provided that $v_{1}, v_{2} \in B(X) \cup E(X)$ and if $x \in$ [v_{1}, v_{2}] and $v_{1} \neq x \neq v_{2}$, then $x \notin B(X) \cup E(X)$. If $\left[v_{1}, v_{2}\right.$] is an edge of X and one of v_{1} or v_{2} is in $E(X)$, then $\left[v_{1}, v_{2}\right]$ is said to be a terminal edge of X. Otherwise, $\left[v_{1}, v_{2}\right]$ is an interior edge of X.

If H is a subcontinuum or a point of a tree X, we define $s t(H)$ to be the union of all edges of X which intersect H. The arc s is said to be a leg of $s t(H)$ provided that s is the closure of some component of $\operatorname{st}(H)-H$. Notice that each leg of $\operatorname{st}(H)$ contains an endpoint of $\operatorname{st}(H)$ and is a subarc of some edge of X.

Suppose that $f: X \rightarrow Y$ is a mapping of trees, $w \in B(Y),\left\{t_{i}\right\}_{l=1}^{n}$ are the legs of $\operatorname{st}(w)$, and $[u, v]$ is an arc in X so that $f(u)=w$, but $f([u, v]) \neq\{w\}$. We will say that $[u, v]$ has an initial image under f provided that there is an integer $j \in\{1,2, \ldots, n\}$ and a point $x \in[u, v]$ such that $f(x) \in T_{j}-\{w\}$ and, if $x^{\prime} \in[u, x]$, then $f\left(x^{\prime}\right) \in t_{j}$. In this case, we will also say that t_{j} is the initial image of $[u, v]$ under f. The reference to f will be omitted if such reference is clear. If C is the closure of the component of $X-\{u\}$ that contains $[u, v]$ and D is the closure of the component of $Y-\{w\}$ that contains t_{j}, we will also say that D is the initial image of C. Finally, if M is any component of $f^{-1}(w)$, we will say that the legs of $\operatorname{st}(M)$ initially cover the legs of $\operatorname{st}(w)$ provided that, for each leg t_{i} of $\operatorname{st}(w)$, there is a leg s of $\operatorname{st}(M)$ whose initial image is t_{i}.

For each tree X in this paper, we will assume that we have a metric d defined on $X \times X$ so that each edge of X has length one. Since each mapping from a connected metric space onto an arc is universal [5], and O. H. Hamilton [4] has shown that arc-like continua have the fixed point property, we will further assume, throughout this paper, that all trees have non-empty branchpoint sets.

Definition. Suppose that $f: X \rightarrow Y$ is a mapping of a tree X onto a tree Y. We will say that f is a u-mapping (u-map) provided that f satisfies the following properties.
(1) $f(B(X)) \subset B(Y)$,
(2) if s is a terminal edge of X, then $f(s)$ is a terminal edge of Y,
(3) if $w \in B(Y)$ and M is a component of $f^{-1}(w)$ which contains a branchpoint of X, then the legs of $\operatorname{st}(M)$ initially cover the legs of $\operatorname{st}(w)$,
(4) if $w \in B(Y)$ and $\left[v_{1}, v_{2}\right]$ is an interior edge of X such that $f\left(v_{1}\right)=w=f\left(v_{2}\right)$ and $f\left(\left[v_{1}, v_{2}\right]\right) \neq\{w\}$, then there is a component N of $f^{-1}(w)$ and two legs t_{1} and t_{2} of $\operatorname{st}(w)$ such that $N=\left[z_{1}, z_{2}\right] \subset\left[v_{1}, v_{2}\right]$,
and $f\left(\left[v_{i}, z_{i}\right]\right)$ is a nondegenerate subarc of t_{i} for $i=1,2$, and
(5) if $v \in B(X)$, then $f(\operatorname{st}(v)) \subset \operatorname{st}(f(v))$.

We will show that whenever a mapping f of trees has a restriction to a subtree that is a u-mapping, then f must be universal. Although the properties of a u-map are technical and many in number, each property is necessary in the sense that its omission yields an example of a non-universal mapping of trees. We give examples later in the paper. Also, it is generally easy to check if a mapping $f: X \rightarrow Y$ of trees has properties (1) through (5), while it is not easy to check if f has a coincidence point with each mapping $g: X \rightarrow Y$.

We begin with a lemma concerning u-mappings.

Lemma 1. Suppose that $f: X \rightarrow Y$ is a u-mapping, $\left[w_{1}, w_{2}\right]$ is an edge of Y with $w_{1} \in B(Y), v_{1} \in B(X)$, and $f\left(v_{1}\right)=w_{1}$. Then there is an arc $\left[v_{1}, v_{2}\right]$ in X such that the initial image of $\left[v_{1}, v_{2}\right]$ is $\left[w_{1}, w_{2}\right]$, and $\left[w_{1}, w_{2}\right]$ $\subset f\left(\left[v_{1}, v_{2}\right]\right) \subset \operatorname{st}\left(w_{1}\right)$. Moreover, if $\left[w_{1}, w_{2}\right]$ is a terminal edge of Y, then v_{2} can be chosen from $E(X)$, and if $\left[w_{1}, w_{2}\right]$ is an interior edge of Y, then v_{2} can be chosen from $B(X)$ with $f\left(v_{2}\right)=w_{2}$.

Proof. Let M_{1} be the component of $f^{-1}\left(w_{1}\right)$ which contains v_{1}. Since f is a u-mapping, we may choose a leg s_{1} of $\operatorname{st}\left(M_{1}\right)$ whose initial image is [w_{1}, w_{2}]. Let α_{1} be the edge of X such that $s_{1} \subset \alpha_{1}$, and let u_{1} be the endpoint of α_{1} which is not in M_{1}.

If α_{1} is a terminal edge of X, then $f\left(\alpha_{1}\right)$ is a terminal edge of Y. Hence, $\left[w_{1}, w_{2}\right]$ must be a terminal edge of Y and we have that $\left[w_{1}, w_{2}\right]=$ $f\left(\left[v_{1}, u_{1}\right]\right) \subset \operatorname{st}\left(w_{1}\right)$. So, $\left[v_{1}, u_{1}\right]$ satisfies the conclusion of the lemma.

We assume that α_{1} is an interior edge of X. By property (5) of a u-mapping, we have that $f\left(\left[v_{1}, u_{1}\right]\right) \subset \operatorname{st}\left(w_{1}\right)$. Since the initial image of α_{1} is [w_{1}, w_{2}], by properties (1) and (5), $f\left(u_{1}\right)$ must be either w_{1} or w_{2}. If $f\left(u_{1}\right)=w_{2}$, then again we have that $\left[v_{1}, u_{1}\right]$ satisfies the conclusion of the lemma. So, we assume that $f\left(u_{1}\right)=w_{1}$. Let M_{2} be the component of $f^{-1}\left(f\left(u_{1}\right)\right)$ which contains u_{1}. Let s_{2} be a leg of $\operatorname{st}\left(M_{2}\right)$ whose initial image is [w_{1}, w_{2}], α_{2} be the edge of X such that $s_{2} \subset \alpha_{2}$, and u_{2} be the endpoint of α_{2} which is not in M_{2}. Now, by property (4) of a u-mapping, $\alpha_{2} \neq \alpha_{1}$.

Again, if either α_{2} is a terminal edge of X or $f\left(u_{2}\right)=w_{2}$, then the result follows for the $\operatorname{arc}\left[v_{1}, u_{2}\right]$. So, we assume that α_{2} is an interior edge of X and that $f\left(u_{2}\right)=w_{1}$. Now, since X has finitely many interior edges, a continuation of this procedure eventually gives us a positive integer n
for which α_{n} is either a terminal edge of X or $f\left(u_{n}\right)=w_{2}$. We then have the desired result for the $\operatorname{arc}\left[v_{1}, u_{n}\right]$.

Theorem 1. Suppose that $F: X^{\prime} \rightarrow Y$ is a mapping from a tree X^{\prime} onto a tree Y such that there is a subcontinuum X of X^{\prime} for which $\left.F\right|_{X}$ is a u-mapping from X onto Y. Then F is universal.

Proof. Let $f=\left.F\right|_{X}$. We will show that $f: X \rightarrow Y$ is universal. It follows that F is universal.

Suppose there is a point $w \in B(Y)$ such that $f^{-1}(w) \cap B(X)=\varnothing$. Let $v \in B(X)$. By property (1), $f(v) \in B(Y)$. Let z be a point of Y such that $w \in[f(v), z]$ and $w \neq z$. Let $x \in f^{-1}(z)$. Then $[f(v), z]$ is a subset of $f([v, x])$. Let u be the last branchpoint in $[v, x]$ with the property that w does not separate $f(v)$ from $f(u)$ and if u^{\prime} is in $B(X) \cap(u, x]$, then w separates $f(v)$ from $f\left(u^{\prime}\right)$. It follows that $f(\operatorname{st}(u)) \not \subset \operatorname{st}(f(u))$, which is a contradiction. Hence, for each branchpoint $w \in Y$, there is a branchpoint v in X such that $f(v)=w$.

If $\left[u_{1}, u_{2}\right]$ is an interior edge of X with the property that $f\left(u_{1}\right)=f\left(u_{2}\right)$ but $f\left(\left[u_{1}, u_{2}\right]\right) \neq\left\{f\left(u_{2}\right)\right\}$, then we will say that $\left[u_{1}, u_{2}\right]$ is folded by f. We will use induction on the number of interior edges of X which are folded by f.

Suppose there is no interior edge of X which is folded by f. We claim that
if $[w, b]$ is an edge of Y with $w \in B(Y)$ and v is a branchpoint of X such that $f(v)=w$, then there is an arc
(*) $[v, a]$ in X such that $f([v, a])=[w, b]$. Moreover, if $b \in B(Y)$, then a can be chosen from $B(X)$ with $f(a)=b$.

So, let $[w, b]$ be an edge of Y with $w \in B(Y)$ and let $v \in B(X) \cap f^{-1}(w)$. By Lemma 1, there is an $\operatorname{arc}[v, u]$ in X such that u is a vertex of $X,[w, b]$ is the initial image of $[v, u]$, and $[w, b] \subset f([v, u]) \subset \operatorname{st}(w)$. Let a be the first vertex of X in $[v, u]$ such that $f([v, a]) \neq\{w\}$. Now, by properties (1), (2), and (5), and the assumption that no edge of X is folded by f, it follows that $f([v, a])=[w, b]$.

We will now show that f is universal, in this case, using an induction argument on the number of branchpoints in Y.

Suppose that Y has only one branchpoint w. Then $Y=\operatorname{st}(w)$. Let $\left\{t_{i}\right\}_{i=1}^{n}$ be the legs of $\operatorname{st}(w)$. Let v be a branchpoint of X such that $f(v)=w$. By $(*)$, for each $i \in\{1,2, \ldots, n\}$, we can choose an $\operatorname{arc}\left[v, a_{i}\right]$ in
X such that $f\left(\left[v, a_{i}\right]\right)=t_{i}$. Let $T=\bigcup_{i=1}^{n}\left[v, a_{i}\right]$. Since each t_{i} is an arc, $\left.f\right|_{\left[v, a_{i}\right]}$ is universal. Also, for $i \neq j, f\left(\left[v, a_{i}\right]\right) \cap f\left(\left[v, a_{j}\right]\right)=\{w\}$. A theorem of Holsztynski [5, Prop. 7] gives us that $\left.f\right|_{T}$ is universal. Hence, f is universal.

Suppose that Y has exactly m branchpoints. Let w be a branchpoint of Y and let $v \in B(X) \cap f^{-1}(w)$. Let $\left\{Y_{i}\right\}_{i=1}^{n}$ be the collection of closures of components of $Y-\{w\}$. We intend to produce, for each i in $\{1, \ldots, n\}$, a subtree X_{i} of X such that $f\left(X_{i}\right)=Y_{i}$ and $\left.f\right|_{X_{i}}$ is universal.

For $i \in\{1, \ldots, n\}$, let $\left[w, b_{i}\right]$ be the terminal edge of Y_{i} with endpoint w. Applying (*), for each $i \in\{1, \ldots, n\}$, we choose an $\operatorname{arc}\left[v, a_{i}\right]$ in X such that $f\left(\left[v, a_{i}\right]\right)=\left[w, b_{i}\right]$.

Now, if for some $j \in\{1, \ldots, n\}, b_{j} \in E(Y)$, then $\left[w, b_{j}\right]=Y_{j}$. So, in this case, we let $X_{j}=\left[v, a_{j}\right]$, and thus, $\left.f\right|_{X_{j}}$ is universal.

Suppose for some $j \in\{1, \ldots, n\}, b_{j} \in B(Y)$. Now, $f\left(\left[v, a_{j}\right]\right)=$ [w, b_{j}], and, by (*), we may assume that a_{j} was chosen from $B(X)$. We now will apply (*) to each leg of $\operatorname{st}\left(b_{j}\right)$ except for $\left[b_{j}, w\right]$. Let $\left\{d_{i}\right\}_{i=1}^{k}$ be the vertices of Y that are adjacent to b_{j}. Assume $d_{1}=w$. For each i in $\{2,3, \ldots, k\}$, choose an $\operatorname{arc}\left[a_{j}, c_{i}\right]$ in X such that $f\left(\left[a_{j}, c_{i}\right]\right)=\left[b_{j}, d_{i}\right]$. Let $X_{j 1}=\cup_{i=2}^{k}\left[a_{j}, c_{i}\right] \cup\left[a_{j}, v\right]$. Now, $X_{j 1}$ is a simple k-od and $\left.f\right|_{X_{j 1}}$ maps the edges of $X_{j 1}$ onto the edges of $\operatorname{st}\left(b_{j}\right)$. So, clearly $\left.f\right|_{X_{j}}: X_{j 1} \rightarrow \operatorname{st}\left(b_{j}\right)$ is a u-mapping. For each d_{i} that is a branchpoint of Y_{j}, we repeat the above procedure on $\operatorname{st}\left(d_{i}\right)$. This gives us another k-od, say $X_{j i}$, (not necessarily the same k as above) in X which shares the edge [c_{i}, a_{j}] with $X_{j 1}$ and whose edges are mapped by $\left.f\right|_{X_{j i}}$ onto the edges of $\operatorname{st}\left(d_{i}\right)$. We repeat the process again for each vertex of Y_{j} that is both a branchpoint of Y_{j} and adjacent to some d_{i} that was a branchpoint of Y_{j}. In this manner, since Y_{j} has but finitely many branchpoints, in fact fewer than m, we will generate a subtree X_{j} of X (X_{j} will be the union of all the $X_{j i}$'s produced by this procedure) that is a homeomorph of Y_{j} and whose edges are mapped by $\left.f\right|_{X_{j}}$ onto the corresponding edges of Y_{j}. Thus it is clear that $\left.f\right|_{X_{j}}$ is a u-mapping. Since X_{j} has fewer than m branchpoints, we have by the inductive assumption that $\left.f\right|_{X,}$ is universal.

For each $i \in\{1, \ldots, n\}$, we have constructed a subtree X_{i} of X such that $f\left(X_{i}\right)=Y_{i}$ and $\left.f\right|_{X_{i}}$ is universal. Thus, by Holsztynski's theorem [5, Prop. 7], it follows that f is universal.

Suppose that X has exactly m interior edges which are folded by f. We assume that whenever $f^{\prime}: Z \rightarrow Y$ is a u-mapping of a tree Z onto Y such that Z has fewer than m interior edges which are folded by f^{\prime}, then f^{\prime} is universal.

By way of contradiction, we assume that f is not universal. Let g : $X \rightarrow Y$ be a mapping such that $f(x) \neq g(x)$ for each $x \in X$.

Let $\left[v_{1}, v_{2}\right]$ be an interior edge of X which is folded by f. Let $w=f\left(v_{1}\right)$. We let $\left[z_{1}, z_{2}\right.$] be the component of $f^{-1}(w)$ as indicated in property (4) of a u-mapping. Also, we let t_{1} and t_{2} be the legs of $\operatorname{st}(w)$ as indicated in property (4). Let b_{1} and b_{2} be the vertices of Y which are adjacent to w and belong to t_{1} and t_{2} respectively.

For $i=1,2$, let a_{i} be the endpoint of $f\left(\left[v_{l}, z_{i}\right]\right)$ which lies in t_{i}. We have that, for $i=1,2, w<a_{i} \leq b_{i}$ in the order on [w, b_{i}]. Since we are assuming that each leg of Y has length one, we let $\left|a_{i}\right|$ denote the distance from a_{i} to w. For $i=1,2$, let $\varepsilon_{i}=1-1 /\left|a_{i}\right|$; we notice that $\varepsilon_{i} \leq 0$. Assuming that each of X and Y is a subset of E^{2}, we define the mapping $\hat{f}: X \rightarrow Y$ by

$$
\hat{f}(x)= \begin{cases}f(x) & \text { if } x \notin\left[v_{1}, v_{2}\right] \\ \varepsilon_{1} w+\left(1-\varepsilon_{1}\right) f(x) & \text { if } x \in\left[v_{1}, z_{2}\right] \\ \varepsilon_{2} w+\left(1-\varepsilon_{2}\right) f(x) & \text { if } x \in\left[z_{1}, v_{2}\right]\end{cases}
$$

Now, it is clear that, for each point $f(x)$ in $t_{i}(i=1,2), \hat{f}(x)$ is on the line containing w and $f(x)$. We claim, in fact, that $\hat{f}(x)$ is in the arc [w, b_{i}]. The calculations which follow will make this clear.

For each $x \in\left[v_{1}, v_{2}\right]$ such that $f(x)=w$, we notice that $\hat{f}(x)=w$. Thus, \hat{f} is continuous. Suppose that $x \in\left[v_{i}, z_{l}\right]$, for either $i=1$ or $i=2$, and $f(x)=a_{i}$. Then

$$
\begin{aligned}
\hat{f}(x) & =\varepsilon_{i} w+\left(1-\varepsilon_{i}\right) a_{i} \\
& =\varepsilon_{i} w+\left(1-\varepsilon_{i}\right)\left(\left|a_{i}\right| b_{i}+\left(1-\left|a_{i}\right|\right) w\right) \\
& =\varepsilon_{i} w+\left(1-\varepsilon_{i}\right)\left|a_{i}\right| b_{i}+\left(1-\varepsilon_{i}\right)\left(1-\left|a_{i}\right|\right) w \\
& =\left[\varepsilon_{i}+\left(1-\varepsilon_{i}\right)\left(1-\left|a_{i}\right|\right)\right] w+\left(1-\varepsilon_{i}\right)\left|a_{i}\right| b_{i} \\
& =\left[1-\left|a_{i}\right|+\varepsilon_{i}\left|a_{i}\right|\right] w+\left(1-\varepsilon_{i}\right)\left|a_{i}\right| b_{i} \\
& =\left[1-\left|a_{i}\right|+\left(1-1 /\left|a_{i}\right|\right)\left|a_{i}\right|\right] w+\left(1-\left(1-1 /\left|a_{i}\right|\right)\right)\left|a_{i}\right| b_{i} \\
& =0 \cdot w+1 \cdot b_{i}=b_{i} .
\end{aligned}
$$

Thus, $\hat{f}\left(\left[v_{i}, z_{i}\right]\right) \subset t_{i}$ for $i=1,2$. We also notice that if $a_{i}=b_{i}$ for either $i=1$ or $i=2$, then $\varepsilon_{i}=0$, and $\hat{f}(x)=f(x)$ for each $x \in\left[v_{i}, z_{i}\right]$. In addition, it is easy to see that \hat{f} is a u-mapping and exactly m interior edges of X are folded by \hat{f}.

For $i=1,2$, let u_{i} be a point of $\left[v_{i}, z_{i}\right]$ such that $\hat{f}\left(u_{t}\right)=b_{i}$.
We now would like to modify the mapping \hat{f} and perhaps we will also need to modify the continuum X by adjoining a homeomorphic copy of a subcontinuum of Y to X. However, our procedure is dependent upon
whether b_{i} is an endpoint or a branchpoint of Y, for each $i=1,2$. We see that there are actually four cases to consider. We will consider only one case. It will be clear that the proof of the other cases can be carried out in a similar manner.

We suppose that b_{2} is a branchpoint of Y and b_{1} is an endpoint of Y. Let X_{1} be the closure of the component of $X-\left\{z_{1}\right\}$ which contains v_{1}. We claim that $Y \subset \hat{f}\left(X_{1}\right)$. We only need to show that each endpoint of Y is in $\hat{f}\left(X_{1}\right)$. Now, $b_{1}=\hat{f}\left(u_{1}\right)$ and $u_{1} \in\left[v_{1}, z_{1}\right] \subset X_{1}$. Let $e \neq b_{1}$ be an endpoint of Y. Let $\left\{e_{i}\right\}_{i=1}^{k}$ be the vertices (in order) of Y that lie in the $\operatorname{arc}[w, e]$, with $e_{1}=w$ and $e_{k}=e$. Notice that $[w, e] \cap\left[w, b_{1}\right]=\{w\}$. By Lemma 1, there is an arc $\left[v_{1}, d_{2}\right]$ in X such that the initial image of $\left[v_{1}, d_{2}\right]$ under \hat{f} is $\left[w, e_{2}\right]$ and $\left[w, e_{2}\right] \subset \hat{f}\left(\left[v_{1}, d_{2}\right]\right) \subset \operatorname{st}(w)$. Since the initial image of $\left[v_{1}, d_{2}\right]$ is $\left[w, e_{2}\right]$, it follows that $\left[v_{1}, d_{2}\right] \cap\left[v_{1}, z_{1}\right]=\left\{v_{1}\right\}$. So, $\left[v_{1}, d_{2}\right] \subset X_{1}$.

If $k=2$, then $e_{2}=e,[w, e] \subset \hat{f}\left(\left[v_{1}, d_{2}\right]\right)$ and we are done. Otherwise, e_{2} is a branchpoint and we may assume, by Lemma 1 , that $d_{2} \in B(X)$ and $\hat{f}\left(d_{2}\right)=e_{2}$. We repeat the process above. By Lemma 1 , there is an $\operatorname{arc}\left[d_{2}, d_{3}\right]$ in X such that the initial image of $\left[d_{2}, d_{3}\right]$ is $\left[e_{2}, e_{3}\right]$ and $\left[e_{2}, e_{3}\right] \subset \hat{f}\left(\left[d_{2}, d_{3}\right]\right) \subset \operatorname{st}\left(e_{2}\right)$. It follows that $\left[d_{2}, d_{3}\right] \subset X_{1}$. If $k=3$, then $e_{3}=e,\left[e_{2}, e\right] \subset \hat{f}\left(\left[d_{2}, d_{3}\right]\right)$, and we are done. Otherwise, $e_{3} \in B(Y)$ and we continue the process. After finitely many steps, we get that $e \in \hat{f}\left(X_{1}\right)$. Thus, $Y \subset \hat{f}\left(X_{1}\right)$.

Let U be the component of $Y-\left\{b_{2}\right\}$ which contains w. Let $Y_{2}=$ $Y-U$. Let h be a homeomorphism from Y_{2} into E^{2} such that $h\left(b_{2}\right)=$ u_{2} and $h\left(Y_{2}\right) \cap X=\left\{u_{2}\right\}$. Also, let X_{2} be the union of $h\left(Y_{2}\right)$ and the closure of the component of $X-\left\{z_{1}\right\}$ which contains v_{2}. Let $Z=$ $X_{1} \cup X_{2}$.

We now wish to define mappings $f^{\prime}: Z \rightarrow Y$ and $g^{\prime}: Z \rightarrow Y$. Let f^{\prime} be defined by

$$
f^{\prime}(x)= \begin{cases}\hat{f}(x) & \text { if } x \in X \\ h^{-1}(x) & \text { if } x \in Z-X\end{cases}
$$

Let g^{\prime} be defined by

$$
g^{\prime}(x)= \begin{cases}g(x) & \text { if } x \in X \\ g\left(u_{2}\right) & \text { if } x \in Z-X\end{cases}
$$

Let $f_{i}^{\prime}=\left.f^{\prime}\right|_{X_{i}}$, for $i=1,2$. Now, it is clear that each of f_{1}^{\prime} and $\left.f_{2}^{\prime}\right|_{X_{2}-\left(u_{2}, z_{1}\right]}$ is a u-mapping. Since $Y \subset \hat{f}\left(X_{1}\right)$ it follows that the image of f_{1}^{\prime} is Y. We will also show that the image of $\left.f_{2}^{\prime}\right|_{X_{2}-\left(u_{2}, z_{1}\right]}$ is Y. Again, we show that each endpoint of Y is in the desired image. If e is an endpoint
of Y_{2}, then $h(e) \in X_{2}-\left(u_{2}, z_{1}\right]$. Furthermore, $f_{2}^{\prime}(h(e))=f^{\prime}(h(e))=$ $h^{-1}(h(e))=e$. Suppose e is an endpoint of Y and e is not in Y_{2}. Then $e \in U$. Let $\left\{w_{i}\right\}_{i=1}^{k}$ be the vertices (in order) of Y that lie in the $\operatorname{arc}[w, e]$, where $w_{1}=w$ and $w_{k}=e$. By Lemma 1 , there is an $\operatorname{arc}\left[v_{2}, c_{2}\right]$ in X such that the initial image of $\left[v_{2}, c_{2}\right]$ is $\left[w, w_{2}\right]$ and $\left[w, w_{2}\right] \subset \hat{f}\left(\left[v_{2}, c_{2}\right]\right) \subset \operatorname{st}(w)$. Now, since the initial image of $\left[v_{2}, c_{2}\right]$ is $\left[w, w_{2}\right]$, it follows that $\left[v_{2}, c_{2}\right] \cap$ $\left[v_{2}, u_{2}\right]=\left\{v_{2}\right\}$. So, $\left[v_{2}, c_{2}\right] \subset X_{2}-\left(u_{2}, z_{1}\right]$. Also, since $\left[v_{2}, c_{2}\right] \subset X$, it follows that $f_{2}^{\prime}\left(\left[v_{2}, c_{2}\right]\right)=f^{\prime}\left(\left[v_{2}, c_{2}\right]\right)=\hat{f}\left(\left[v_{2}, c_{2}\right]\right)$.

If $k=2$, then $w_{2}=e,[w, e] \subset f_{2}^{\prime}\left(\left[v_{2}, c_{2}\right]\right)$ and we are done. Otherwise, w_{2} is a branchpoint and we may assume, by Lemma 1, that $c_{2} \in B(X)$ and $\hat{f}\left(c_{2}\right)=w_{2}$. We repeat this process, as we have done before, finally getting that e is in the image of $\left.f_{2}^{\prime}\right|_{X_{2}-\left(u_{2}, z_{1}\right]}$.

Hence, we have that each of f_{1}^{\prime} and $\left.f_{2}^{\prime}\right|_{X_{2}-\left(u_{2}, z_{1}\right]}$ is a u-mapping whose image is Y. Also, each X_{i} has fewer than m interior edges which are folded by f_{i}^{\prime}. Hence, for $i=1,2$, there is a point x_{i} in X_{i} such that $f_{i}^{\prime}\left(x_{i}\right)=g^{\prime}\left(x_{i}\right)$.

We consider the point x_{1} in X_{1}. Since $X_{1} \subset X, g\left(x_{1}\right)=g^{\prime}\left(x_{1}\right)=$ $f_{1}^{\prime}\left(x_{1}\right)=\hat{f}\left(x_{1}\right)$. So, $f\left(x_{1}\right) \neq g\left(x_{1}\right)$ implies that $\hat{f}\left(x_{1}\right) \neq f\left(x_{1}\right)$. It follows that $x_{1} \in\left[v_{1}, z_{1}\right]$ and $f\left(x_{1}\right) \neq w$. Hence, $w<f\left(x_{1}\right)<\hat{f}\left(x_{1}\right)=g\left(x_{1}\right) \leq b_{1}$ in the ordering on $\left[w, b_{1}\right]$.

We will now find a point z in $\left[v_{1}, v_{2}\right]$ so that $f(z) \in\left[w, b_{2}\right]$ and $f(z)$ separates w from $g(z)$ in Y. We indicate this separation by writing $w<f(z)<g(z)$.

If $x_{2} \in X$, we may apply the same argument to x_{2} that we applied to x_{1} to get that $x_{2} \in\left[v_{2}, z_{2}\right]$ and $w<f\left(x_{2}\right)<\hat{f}\left(x_{2}\right)=g\left(x_{2}\right) \leq b_{2}$. In this case, we let $z=x_{2}$.

If $x_{2} \in Z-X$, we get that $g\left(u_{2}\right)=g^{\prime}\left(x_{2}\right)=f_{2}^{\prime}\left(x_{2}\right)=h^{-1}\left(x_{2}\right)$. Thus, $g\left(u_{2}\right)$ is in Y_{2}. We have that $w<a_{2}=f\left(u_{2}\right)<\hat{f}\left(u_{2}\right)=b_{2}$ and either $g\left(u_{2}\right)$ is separated from $f\left(u_{2}\right)$ by b_{2} or $g\left(u_{2}\right)=b_{2}$. We indicate this separation by writing $b_{2} \leq g\left(u_{2}\right)$. In this case, we let $z=u_{2}$ and we again have that $z \in\left[v_{1}, v_{2}\right]$ and $w<f(z)<g(z)$.

We consider the $\operatorname{arc}\left[x_{1}, z\right]$. Since $\left[x_{1}, z\right] \subset\left[v_{1}, v_{2}\right]$ and $f\left(\left[v_{1}, v_{2}\right]\right)=$ $\left[a_{1}, a_{2}\right] \subset t_{1} \cup t_{2}$, it follows that $\left.f\right|_{\left[x_{1}, z\right]}$ and $\left.g\right|_{\left[x_{1}, z\right]}$ have a coincidence point, which is a contradiction. Hence, $f: X \rightarrow Y$ is universal. It follows that $F: X^{\prime} \rightarrow Y$ is universal.

In [8], Nadler showed that each universal mapping from a compact Hausdorff space onto a locally connected metric continuum is weakly confluent. Hence, by Theorem 1, a u-mapping of trees must be weakly confluent.

We also have the following fixed point result as a corollary to Theorem 1.

Theorem 2. Suppose that D is a directed set and $X=\underset{\leftarrow}{\lim }\left\{X_{i}, f_{i}^{j}, D\right\}$, where, for each $i \leq j, X_{i}$ is a tree and there is a subtree X_{j}^{\prime} of X_{j} such that $\left.f_{i}^{j}\right|_{X_{j}^{\prime}}$ is a u-mapping onto X_{i}. Then X has the fixed point property.

Proof. The theorem follows immediately from Holsztynski's [5, Corollary 1] result and Theorem 1.

We will now show that Theorem 2 is a generalization of Eberhart and Fugate's theorem [3, Theorem 7]. We first show that each weakly arc-preserving mapping of trees can be restricted to a u-mapping of trees. Then we give an example of a u-mapping of trees which is not weakly arc-preserving.

Suppose hereafter that $f: X \rightarrow Y$ is an arc-preserving mapping of a tree X onto a tree Y and that X is minimal with respect to mapping onto Y; i.e., if X^{\prime} is a proper subcontinuum of X, then $f\left(X^{\prime}\right) \neq Y$.

Lemma 2. Let w be a point of Y and M a component of $f^{-1}(w)$. If z_{1} and z_{2} are endpoints of Y which belong to a component D of $Y-\{w\}$, and each of C_{1} and C_{2} is a component of $X-M$ such that $z_{1} \in f\left(C_{1}\right)$ and $z_{2} \in f\left(C_{2}\right)$, then $C_{1}=C_{2}$.

Proof. Suppose that $C_{1} \neq C_{2}$. For $i=1,2$, let a_{i} be a point of C_{i} such that $f\left(a_{i}\right)=z_{i}$. Let $\alpha=\left[a_{1}, a_{2}\right]$. Now, α is an arc and $f(\alpha)$ contains each of w, z_{1}, and z_{2}. But w, z_{1}, and z_{2} are distinct endpoints of \bar{D} which implies that $f(\alpha)$ is not an arc, a contradiction.

Lemma 3. Let w be a point of Y and M a component of $f^{-1}(w)$ which contains a branchpoint v of X. If s is a leg of $\operatorname{st}(M)$, then $f(s)$ intersects exactly one component of $Y-\{w\}$.

Proof. Suppose that $f(s)$ intersects the components D_{1} and D_{2} of $Y-\{w\}$. Let $\left\{C_{i}\right\}_{i=1}^{m}$ be the set of components of $X-M$. Assume, without loss of generality, that $s \subset \bar{C}_{1}$. We notice that $m \geq 3$, for otherwise, some component C of $X-\{v\}$ is a subset of M, in which case X is not minimal with respect to mapping onto Y. For $j=1,2,3$, let z_{j} be in $E(Y)-f\left(\bigcup_{i=1 / i \neq j}^{m} \bar{C}_{i}\right)$.

Suppose that for some $j \in\{1,2,3\}, z_{j} \notin D_{1} \cup D_{2}$. Assume that z_{j} belongs to the component D_{3} of $Y-\{w\}$. Let a_{j} be a point of C_{j} such that $f\left(a_{j}\right)=z_{j}$. Now, let α be the minimal arc in X such that $a_{j} \in \alpha$ and
$s \subset \alpha$. We have that $f(\alpha)$ intersects each of D_{1}, D_{2}, and D_{3}. So, f is not arc-preserving which is a contradiction.

Hence, for $j=1,2,3, z_{j} \in D_{1} \cup D_{2}$. Thus, two of z_{1}, z_{2}, and z_{3} are either in D_{1} or D_{2}. But this contradicts Lemma 2.

We are now ready to see that f has the properties of a u-mapping.
(1) Suppose that $v \in B(X)$ but $f(v) \notin B(Y)$. Let $w=f(v)$ and let M be the component of $f^{-1}(w)$ that contains v. Let $\left\{C_{i}\right\}_{i=1}^{m}$ be the set of components of $X-M$. As in Lemma 3, $m \geq 3$. Since $w \notin B(Y), Y-$ $\{w\}$ has at most two components, say D_{1} and D_{2}. For $j=1,2,3$, let z_{j} be in $E(Y)-f\left(\bigcup_{i=1 / i \neq j}^{m} \bar{C}_{i}\right)$. So, two of z_{1}, z_{2}, and z_{3} must either be in D_{1} or D_{2}. But this contradicts Lemma 2. Hence, $f(v)$ must be a branchpoint of Y.
(2) Let $[v, a]$ be a terminal edge of X with $v \in B(X)$. Let $w=f(v)$; by (1), we know that $w \in B(Y)$. Let M be the component of $f^{-1}(w)$ that contains v. Now, $[v, a] \not \subset M$, for otherwise, X in not minimal with respect to mapping onto Y. By Lemma $3, f([v, a])$ intersects exactly one component D of $Y-\{w\}$. Suppose that \bar{D} is not an arc. Then D contains at least two endpoints z_{1} and z_{2} of Y. Since $f([v, a])$ is an arc, only one of z_{1} and z_{2} is in $f([v, a])$, say z_{1}. Hence, there is a component C of $X-M$ such that $C \cap[v, a]=\varnothing$ and $z_{2} \in f(C)$. This contradicts Lemma 2. Thus, \bar{D} is an arc which implies that $f([v, a])$ is a terminal edge of Y.
(3) Let $w \in B(Y)$ and let M be a component of $f^{-1}(w)$ which contains a branchpoint v of X. Let $\left\{t_{i}\right\}_{i=1}^{n}$ be the legs of $\operatorname{st}(w)$. Suppose that the leg t_{1} of $\operatorname{st}(w)$ is not initially covered by a leg of $\operatorname{st}(M)$. Let D_{1} be the component of $Y-\{w\}$ such that $t_{1} \subset \bar{D}_{1}$ and let z_{1} be in $E(Y) \cap D_{1}$. Let C_{1} be a component of $X-M$ such that $z_{1} \in f\left(C_{1}\right)$. Choose a point $a_{1} \in C_{1}$ such that $f\left(a_{1}\right)=z_{1}$. By Lemma 3, each leg of $\operatorname{st}(M)$ has an initial image, so C_{1} has an initial image. Assume that the initial image of C_{1} is t_{2}. Let D_{2} be the component of $Y-\{w\}$ such that $t_{2} \subset \bar{D}_{2}$. For $j=2,3$, let $z_{j} \in E(Y)-f\left(\cup_{i=1 / i \neq j}^{m} C_{i}\right)$, where $C_{2}, C_{3}, \ldots, C_{m}$ are the remaining components of $X-M$. So, neither z_{2} nor z_{3} is in $f\left(C_{1}\right)$. By Lemma 2, neither z_{2} nor z_{3} is in D_{1}. Also, z_{2} and z_{3} are not in the same component of $Y-\{w\}$. Hence, one of z_{2} and z_{3} is not in $D_{1} \cup D_{2}$. Assume that z_{3} is in the component D_{3} of $Y-\{w\}$. Let a_{3} be a point of C_{3} such that $f\left(a_{3}\right)=z_{3}$. Let $\alpha=\left[a_{1}, a_{3}\right]$. Now α is an arc, but $f(\alpha)$ intersects each of D_{1}, D_{2}, and D_{3}, a contradiction. Hence, the legs of $\operatorname{st}(M)$ initially cover the legs of $\operatorname{st}(w)$.
(4) Let $w \in B(Y)$. We will show that there is no interior edge $\left[v_{1}, v_{2}\right]$ of X with the property that $f\left(v_{1}\right)=w=f\left(v_{2}\right)$ and $f\left(\left[v_{1}, v_{2}\right]\right) \neq\{w\}$. Suppose otherwise. Let $\left\{t_{i}\right\}_{i=1}^{n}$ be the legs of $\operatorname{st}(w)$. Let M_{1} and M_{2} be
the components of $f^{-1}(w)$ that contain v_{1} and v_{2}, respectively. Assume that $f\left(\left[v_{1}, v_{2}\right]\right)$ intersects $t_{1}-\{w\}$. By property (3), there is a leg r of $\operatorname{st}\left(M_{1}\right)$ whose initial image is t_{2} and there is a leg s of $\operatorname{st}\left(M_{2}\right)$ whose initial image is t_{3}. Let α be the unique minimal arc in X such that $r \cup s \subset \alpha$. Notice that $\left[v_{1}, v_{2}\right] \subset \alpha$ also. Hence, $f(\alpha)$ intersects each of t_{1}, t_{2}, and t_{3}, a contradiction. Thus, property (4) holds by default.
(5) Let $v \in B(X)$. By (1), $f(v) \in B(Y)$. Let $[v, u]$ be an edge of X. We need to show that $f([v, u]) \subset \operatorname{st}(f(v))$.

If $[v, u$] is a terminal edge of X, then by (2), $f([v, u])$ is a terminal edge of Y. So, $f([v, u]) \subset \operatorname{st}(f(v))$.

Suppose that $[v, u]$ is an interior edge of X and $f([v, u])$ is not a subset of $\operatorname{st}(f(v))$. Then $f([v, u]) \neq\{f(v)\}$ and, by the proof of (4), $f(v) \neq f(u)$.

Suppose that $f(v)$ and $f(u)$ are not adjacent branchpoints of Y. Let $w \in B(Y) \cap(f(v), f(u))$. Let b be a branchpoint of X such that $f(b)=$ w. Now, either the arc $[b, v]$ contains u or the $\operatorname{arc}[b, u]$ contains v. Assume, without loss of generality, that $u \in[b, v]$. Since $f([v, u])$ is an arc and w is a branchpoint of Y, there is a leg t of $\operatorname{st}(w)$ such that $f([v, u]) \cap t=\{w\}$. Let M be the component of $f^{-1}(w)$ that contains b and let s be a leg of $\operatorname{st}(M)$ whose initial image is t. Let a be a point of s such that $f(a) \in t-\{w\}$. Finally, let $\alpha=[a, v]$. Now, $[v, u] \subset \alpha$; so, $f(\alpha)$ intersects each of $t,[w, f(v)]$, and $[w, f(u)]$. Thus, $f(\alpha)$ intersects three distinct components of $Y-\{w\}$. This is a contradiction.

Suppose that $f(v)$ and $f(u)$ are adjacent branchpoints of Y; i.e., [$f(v), f(u)$] is an interior edge of Y. Since $f([v, u])$ is not a subset of $\operatorname{st}(f(v))$, then either $f([v, u])$ intersects a leg r of $\operatorname{st}(f(v))$ different from [$f(v), f(u)$] or $f([v, u])$ intersects a leg s of $\operatorname{st}(f(u))$ different from [$f(v), f(u)$]. We assume that the latter is the case. Let t be a leg of $\operatorname{st}(f(u))$ different from both $[f(v), f(u)]$ and s. Let M be the component of $f^{-1}(f(u))$ that contains u and let h be a leg of $\operatorname{st}(M)$ whose initial image is t. Let c be a point in h such that $f(c)$ is in $t-\{f(u)\}$. Let $\alpha=[c, v]$. Then α is an arc but $f(\alpha)$ intersects three legs of $\operatorname{st}(f(u))$, namely t, s, and $[f(u), f(v)]$. This is a contradiction.

Having established properties (1) through (5), f must be a u-mapping. We have the following theorem.

Theorem 3. If $f: X \rightarrow Y$ is a weakly arc-preserving mapping of trees, then there is a subcontinuum X^{\prime} of X such that $f\left(X^{\prime}\right)=Y$ and $\left.f\right|_{X^{\prime}}$ is a u-mapping.

Proof. Since f is weakly arc-preserving, there is a subcontinuum $X^{\prime \prime}$ of X such that $f\left(X^{\prime \prime}\right)=Y$ and $\left.f\right|_{X^{\prime \prime}}$ is arc-preserving. Let X^{\prime} be a subcontinuum of $X^{\prime \prime}$ which is minimal with respect to mapping onto Y. Clearly, $\left.f\right|_{X^{\prime}}$ is arc-preserving. We have shown that the mapping $\left.f\right|_{X^{\prime}}$: $X^{\prime} \rightarrow Y$ must satisfy properties (1) through (5). Hence, $\left.f\right|_{X^{\prime}}$ is a u-mapping.

We now wish to look at a few examples. The first example together with Theorem 3 shows that u-mappings are more general than weakly arc-preserving mappings. The other examples show the necessity of properties (1) through (5) in Theorem 1.

In each example the maps will be piecewise linear with respect to some triangulation of the domain. Hence, we will only indicate what the mappings do to the vertices of these triangulations.

Example 1. A u-mapping of trees which is not weakly arc-preserving.

Figure 1
Let f be given by $f\left(a_{i}\right)=A$ for $i=1,2, f(b)=B, f(c)=C$, $f\left(v_{i}\right)=V$ for $i=1,2,3, f(r)=R$, and $f(l)=L$.

Figure 2 below is a schematic indication of how f maps X onto Y.

Figure 2
It is easy to check that f is a u-mapping. The image of each of the $\operatorname{arcs}\left[a_{1}, l\right]$ and $\left[a_{2}, r\right]$ in X is the simple triod with endpoints A, L, and R in Y. Thus, f is not arc-preserving. Since any subcontinuum of X that maps onto Y must contain either $\left[a_{1}, v_{1}\right]$ or $\left[a_{2}, v_{3}\right]$, it follows that f is not weakly arc-preserving.

Since each subcontinuum of a given tree is characterized by its endpoints, we will refer to a continuum in X or in Y by listing its endpoints; e.g., Y may be denoted by $\langle A, B, C\rangle$.

Example 2. A non-universal mapping of trees which satisfies properties (1), (3), (4), and (5), but does not satisfy (2).

Figure 3
Let f be given by $f\left(a_{i}\right)=A$ for $i=1,2, f(b)=B, f(c)=C$, $f\left(v_{i}\right)=V$ for $i=1,2,3, f\left(r_{i}\right)=R$ for $i=1,2$, and $f\left(l_{i}\right)=L$ for $i=1,2$.

Now, g is also piecewise linear with respect to the triangulation of X shown in Figure 3. Thus, we will indicate, for example, that g maps the $\operatorname{arc}\left[v_{1}, l_{1}\right]$ linearly onto the $\operatorname{arc}[c, v]$ by the notation $\left[v_{1}, l_{1}\right] \rightarrow[c, v]$. If g is constant on some subtree of X, say $g\left(\left\langle a_{1}, b, r_{1}\right\rangle\right)=\{C\}$, we use the notation $\left\langle a_{1}, b, r_{1}\right\rangle \rightarrow\{C\}$. According to this convention, we define g as follows.

$$
\left.\begin{array}{rlrl}
g:\left\langle a_{1}, b, r_{1}\right\rangle & \rightarrow\{C\} & {\left[l_{1}, v_{2}\right] \rightarrow[V, A]} & {\left[r_{2}, v_{3}\right]}
\end{array} \rightarrow[V, B]\right\}
$$

Figure 4 below gives a schematic representation of the mappings f and g.

Figure 4
It is easy to check that f satisfies properties (1), (3), (4), and (5). Property (2) is not satisfied since the image under f of the terminal edge [v_{1}, r_{1}] in X is the $\operatorname{arc}[V, R]$ in Y which is not a terminal edge.

We will now show that f and g have no coincidence point. Referring to the definition of g, our notation makes it easy to see the behavior of both g and f over a given arc. On the triod $\left\langle a_{1}, b, r_{1}\right\rangle$, we see that the images under g and f are disjoint. On the arc $\left[v_{1}, l_{1}\right]$, the image under f goes from V to L as the image under g goes from C to V; thus, no
coincidence occurs. On $\left[l_{1}, v_{2}\right], f$ goes from L to V as g goes from V to A. The action of each of f and g is symmetric on the subtrees $\left\langle a_{1}, b, r_{1}, v_{2}\right\rangle$ and $\left\langle a_{2}, c, l_{2}, v_{2}\right\rangle$ of X. Hence, f and g have no coincidence point.

Example 3. A non-universal mapping of trees which satisfies properties (1), (2), (4), and (5), but does not satisfy (3).

Figure 5
Let f be given by $f\left(a_{i}\right)=A$ for $i=1,2, f\left(b_{i}\right)=B$ for $i=1,2$, $f(c)=C, f\left(v_{i}\right)=V$ for $i=1,2,3,4,5, f\left(r_{i}\right)=R$ for $i=1,2$, and $f\left(l_{i}\right)$ $=L$ for $i=1,2$.

Let g be given by

$$
\begin{aligned}
g:\left\langle a_{1}, b_{1}, v_{2}\right\rangle & \rightarrow\{C\} & {\left[l_{1}, v_{3}\right] } & \rightarrow[V, A] \\
{\left[v_{2}, l_{1}\right] } & \rightarrow[C, V] & {\left[v_{3}, b_{2}\right] } & \rightarrow\{A\} \\
{\left[v_{3}, r_{2}\right] } & \rightarrow[A, V] & \left\langle r_{2}, v_{4}\right] & \rightarrow[V, B]
\end{aligned}
$$

In a manner similar to that outlined in Example 2, it is easy to check that f has the desired properties. We also notice that a restriction of the mapping f would yield an example of a non-universal mapping which satisfies properties (1), (2), (3), and (5), but not (4). Let $X^{\prime}=X-\left(v_{3}, b_{2}\right]$. Then the mapping $\left.f\right|_{X^{\prime}}: X^{\prime} \rightarrow Y$ has the desired properties.

Examples of non-universal mappings which do not satisfy property (1) or do not satisfy property (5) can also be given.

References

[1] D. Bellamy, A tree-like continuum without the fixed point property, Houston J. Math., 6 (1979), 1-14.
[2] R. H. Bing, The elusive fixed point property, Amer. Math. Monthly, 76 (1969), 119-132.
[3] C. A. Eberhart and J. B. Fugate, Weakly confluent maps on trees, General Topology and Modern Analysis, Academic Press, New York (1981), 209-215.
[4] O. H. Hamilton, A fixed point theorem for pseudo arcs and certain other metric continua, Proc. Amer. Math. Soc., 2 (1951), 173-174.
[5] W. Holsztynski, Universal mappings and fixed point theorems, Bull. Acad. Polon. Sci., XV (1967), 433-438.
[6] M. M. Marsh, Fixed Point Theorems for Certain Tree-Like Continua, Dissertation, Unversity of Houston (1981).
[7] , A fixed point theorem for inverse limits of fans, Proc. Amer. Math. Soc., 91 (1984), 139-142.
[8] S. B. Nadler, Jr., Universal mappings and weakly confluent mappings, CX (1980), \#3, 221-235.

Received January 25, 1984 and in revised form August 6, 1986.
California State University
Sacramento, CA 95819-2694

