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The purpose of this paper is to establish a unified treatment of many
disparate theorems of Levy-Hinέin type. The appropriate framework to
do this is the theory of commutative hypergroups. In this way we not only
generalize the results mentioned above but also settle some asymmetries
indicated above. Roughly speaking a hypergroup K is a space in which
the product of two elements is a probability measure on this space
satisfying certain conditions. If K is commutative and if the space K of
characters is a hypergroup under pointwise operations a Levy-Hincin
formula for convolution semigroups is obtained. Before setting up some
notation we show how the examples fit in.

Introduction. Continuous convolution semigroups (μt)t > 0 on locally
compact abelian groups G are described completely by the so-called
Levy-Hincin formula, see [1] and [6]. This is done by a canonical represen-
tation of the negative definite function ψ on G, which is in one-to-one
correspondence to (ίO,> 0. Beyond that there exist theorems of Levy-
Hinδin type for convolution semigroups built up in various ways. The
following subsumes some approaches to this subject.

For certain Gelfand pairs (G, H) convolution semigroups consisting
of i/-biinvariant probability measures μt on G allow a Levy-Hincin
representation. In this situation one studies negative definite functions ψ
defined on the set SP(G,H) of all positive definite spherical functions.
Negative definiteness on SP(G,H) has to be defined in an appropriate
way. A nice summary on this topic containing a lot of references is [11].
As a dual concept a Levy-Hincin formula for ίf-bϋnvariant negative
definite functions on G is established in [5]. Of course here one misses a
corresponding convolution semigroup on SP(G, H).

In [4] Bochner characterized homogeneous stochastic processes associ-
ated with ultraspherical polynomials via a Levy-Hincin formula, see also
[7]. The part of the convolution semigroup is played by a semigroup of
bounded sequences (cn(t))™=0 bearing a certain positive definite property.
In [13] Kennedy studied homogeneous stochastic processes which may be
viewed as dual to the class considered by Bochner. Here the part of the
convolution semigroup is played by a semigroup of bounded functions
ft(x), -1 < x < 1, bearing a certain positive definite property.
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For a Gelfand pair (G, H) the double coset space K = G//H is a
commutative hypergroup, see [12, 8.2B]. Now in many cases it is a
hypergroup and each member of K may be identified with a function of
SP(G, H) as well as each iί-biinvariant measure on G may be identified
with a measure on K. Moreover in many cases the dual of SP(G, H) = K
is G//H = K again. Then there is also a connection between //-biin-
variant negative definite functions on G and convolution semigroups
defined on SP(G, H) = K via a Bochner theorem. In this manner con-
volution semigroups with respect to (G, H) or with respect to SP(G, H)
have a Levy-Hincin representation in a unified way.

The stochastic processes studied by Bochner are corresponding via
Fourier transformation with a convolution semigroup defined on a hyper-
group K = [-1,1]. The "dual" stochastic process in [13] is the Fourier
transform of a convolution semigroup on a hypergroup K = No = N U
{0}. Hypergroup structures on No connected with orthogonal polynomials
are studied in [14], In the case of ultraspherical polynomials or more
general Jacobi polynomials the dual space K of K = No is equal to [-1,1],
and K is a hypergroup with Pontrjagin duality K = K, see [14]. In this
manner the Levy-Hincin formula of the convolution semigroup corre-
sponding to the stochastic process of Bochner resp. Kennedy is estab-
lished by the Levy-Hindn representation based on hypergroups.

In our exposition we follow that of the relevant chapters in [1]. We
note that some methods of proof used in the group case are not available
for hypergroups. Let A' be a locally compact Hausdorff space. M(K)
denotes the space of all bounded Radon measures, M\K) the subset of
all probability measures and ρx the point measure of x e K. The support
of a measure μ is denoted by suppμ. C(K) denotes the space of
continuous functions on K. The space K is called a hypergroup if the
following conditions are satisfied:

(HI) There exists a map: K X K -+ M\K), (x, y) -> px * py, called
convolution, which is continuous, where Mλ(K) bears the vague
topology. The linear extension to M(K), see [12, Lemma 2.4B],
satisfies px *(py * pz) = (px * py)* pz.

(H2) supp/^ * py is compact.

(H3) There exists a homeomorphism K -> K, x •-> 3c, called involu-
tion, such that x = x and (px * pyY= py * p^

(H4) There exists an element e e K, called unit element, such that

Pe*Px=Px*Pe= P:X'

(H5) e e supp/^ * py if and only if x = y.
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(H6) The map (x, y) •-> supp/^*/^ of K X K into the space of
nonvoid compact subsets of K is continuous, the latter space
with the topology as given in [12, 2.5].

Many examples are contained in [3], [12], [14], [19].
In this paper we only deal with commutative hypergroups, i.e. px * py

== Py* Px Then K always has a Haar measure, [22]. Denote

K= {a e C(K): a Φ 0, bounded, px*py(a) = a(x)a(y),

a(x) =a(x)}.

Equipped with the topology of uniform convergence on compacta K is a
locally compact Hausdorff space. For basic results of Fourier analysis we
refer to [12], where hypergroups are called "convos". We shall say that K
is a hypergroup with respect to pointwise multiplication, if for α, γ e K
there exists a measure pa* pγ e M\K) such that a(x)y(x) =
f% τ(x)dpa*py(r) for each x e K, and K is a hypergroup with this
convoltuion and complex conjugation as involution and the constant
function 1 as unit. In general the dual K is not a hypergroup. If K is a
hypergroup with respect to pointwise multiplication, then K c KΛ Λ in a
natural manner, [12, Theorem 12.4B]. If in addition K = KΛ Λ holds, we
shall call Γ̂ a strong hypergroup.

1. Negative definite functions. Let ί be a commutative hyper-
group. We note that for many results in this section commutativity is not
really used. A continuous function ψ: K -> C is called negative definite if
for any Λ:1? . . . , xn e # , c 1 ? . . . , cn e C

(N) Σ

For example each constant function cl, c > 0, is negative definite. Obvi-
ously the following holds for a negative definite function ψ:

We note that Reψ is in general not a nonnegative function, see the
remark below. The following statement and its corollary can be proved
exactly as in [1, Proposition 7.5, Corollary 7.6 and 7.7].

PROPOSITION 1.1. A function ψ: K -> C is negative definite if and only
if the following conditions are satisfied:

(a) ψ is continuous, ψ(e) > 0, ψ(x) = ψ(3c) for each x e Kand
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(b)ifx1,...,xn<=K,cι,...,cΏ&C with Σ?= 1

C/ = 0, then
n

COROLLARY 1.2. Le* ψ Z>e a function on K.

(a) // ψ w negative definite, then x »-» ψ( c) — ψ(e) ώ negative defi-

nite.

(b) //* ψ is positive definite, then x •-» ψ(e) — ψ(.x) is negative definite.

REMARK. Consider K = N o equipped with a hypergroup structure as

defined in [14, §2]. This hypergroup N o is intimately connected with a

certain orthogonal polynomial sequence {Pn(x)}. In fact given X G R

every function φx: N o -» R, ψx(n) = Pn(x) has the property that

Pn * Pm(ψχ) = <Px(w)(P^(m) ̂ 0 Γ e a c ^ n G N o . Thus φ x is a positive definite

function on the hypergroup N o . By Corollary 1.2(b) ψx(n) = 1 - Pn(x) is

negative definite. If x > 1 we have PX(Λ:) > 1. Hence ψ^(l) < 0.

PROPOSITION 1.3. Let ψ: K -+ C be a negative definite function on K.

(a)// Reψ > 0 holds, then Reψ > ψ(e) > 0.

(b) // ψ is bounded, then Re ψ > ψ(e) > 0.

. Given x e K choose xλ = e, x2 = JC and cx = 1, c 2 = - 1 . By

Proposition 1.1 we know that 2 Reψ( t) > ψ(e) + px *jp3c(ψ). Now

Px * Pχ(Ψ) G R a n d x •-> ^ * Pχ(ψ) is a continuous function on K. Thus

we obtain

Continuing in this fashion we have

If Reψ > 0, we know that px*/^(ψ) > 0 for each x e K. Therefore

Reψ > (Σ;Ul/2*)ψ(<0 for each n e N and then Reψ > ψ(e). If ψ is

bounded, the absolute value of the (n - l)-fold integral above is less than

u. This implies again that Re ψ > ψ(e).
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PROPOSITION 1.4. Let ψ: K-* C be a positive definite function with
Reψ > 0. Then yj\px* Py{ψ)\ < /|ψ(x)| + ffUYlforx, y G K.

Proof. A small modification of the arguments in [1, Proposition 7.15]
yields that

ψ(x) -px*px(ψ))(2Reψ{y) -py*

Since />x * px(ψ) G R> w e know that

[
κ

Therefore |ψ(jc) + ψ(j>) -px*Py(Ψ)\2 < 4|ψ(jc)||ψ(j>)|, and the asser-
tion follows.

THEOREM 1.5. Let ψ: K -> C be a function on K. Assume that
(a) ψ is continuous and ψ(e) > 0,
(b) φt: x •-> exp(-ίψ(x)) are positive definite for each t > 0. ΓΛe« ψ w

negative definite.

Proof. By (a) the functions φ, are continuous and φt(e) < 1. There-
fore Corollary 1.2(b) implies that x •-» (1/0(1 ™ Ψ/ί^)) is negative defi-
nite for any t > 0. Since

| ψ ( Λ ) - ( l / ί ) ( l - φ,(*)) | < /exp|ψ(x)| forO < t < 1,

we obtain that lim ί_>o(l//)(l — φ,) = ψ uniformly on compact subsets of
K. Now one can easily prove that ψ satisfies (JV).

We do not know whether the inverse multiplication of this theorem
does hold in general. Now some general examples of negative definite
functions are given. A continuous function h: K -> R is called a homo-
morphism, if h(x) = -h(x) and px * ρy(h) = h(x) 4- h(y) for JC, .y e Γ̂.
The following assertion is immediate.

PROPOSITION 1.6. // h: K -> R ύ α homomorphism, then ψ = ι'Λ w
negative definite.

A continuous function #: AT -> R is called a quadratic form, if

Px*Py(i) +Px*Py(i) = 2($(*) + ςf(j )), x, ^ G K.
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Obviously a quadratic form q satisfies:

ίoϊ q ^ = °' q ^ = q ^ a n d

W ; μ * v(q) + μ * w(q) = 2(v(q)μ(K) + μ(q)v(K)),
μ,p<=M(K).

LEMMA 1.7. Let qbe a quadratic form, and let μ e M(K). Then

μ"(q) = «2 μ ( * r V ( ? ) "(«(« - l)/2)μ(lΓ)-2μ P(«)
/or each n e N, /ί > 2, Ao/ώ, wΛerβ μn = μ* *μ, Λ̂̂  «-/<9/J convolu-
tion of μ.

Proof. We prove the statement by induction on «. By (Q) we obtain

μ«+1(?) = 2{μ"(q)μ(K) + μ(K)nμ(q)) - μn*μ{q) and

μ"*μ(q) = (l/2)[ju"-1 * (μ * μ)(q) + μ"~' *(μ * μ)(q)]

Thus by the induction assumption

y-1μ(q) "(«(« " l)/2)μ(K)"-2μ*μ(q)}

-μ(K)2[(n - l)2μ(K)"-2μ(q)

-((n-l)(n-2)/2)μ(Ky-3μ*μ(q)}

= μ(K)"(n + l)2μ(q) - μ(ΛΓ)"-1((« + l)n/2)μ*μ(q).

COROLLARY 1.8.. Let qbe a quadratic form. Then

Km ̂ ψ- =q(x)-(1/2)px*pM-
«->oo n

In particular if q is nonnegative (i.e. q(x) > 0) then

px* Pχ{q) < 2q(x) < px* px(q).

COROLLARY 1.9. The only bounded quadratic form qon Kis q = 0.
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Proof. Since q is a quadratic form, p" * p£(q) = n px* ρx(q) is
satisfied for each « G N , x e I I n fact p^+ι * p£+\q) =p£* p£(q) +
Px* Pxiq) holds by means of (Q). Now a simple induction argument
applies. The boundedness of q implies that px* px(q) = 0 for each
x e K. Therefore l i m ^ ^ = (l/n2)p^(q) = q(x). Again by the
boundedness of q wee see that q = 0.

PROPOSITION 1.10. Each nonnegative quadratic form on K is a negative
definite function.

Proof. By means of Proposition 1.1 we have to show: if xv..., xm e
K, cl9 . . . ς G R with Σ?L A = 0 (C/ # 0) and λ = Σ?l A A
then λ * \(q) < 0. Let λ = μ - v, μ = λ + e M+(ϋΓ), if - λ"e
the decomposition of λ into its positive parts. In particular μ(K) =
Σc.>oci > 0, v{K) = -ΣCι<oci > 0, and consequently μ(K) = v(K). By
Lemma 1.7 we know

= μn*vn(q)+{n(n - l)/2)μ*v(K)n 2μ*μ*v*ϊ>(q)

for each n e N. Further by (Q)

μ*μ*v*v(q) = μ*μ(q)v *v(K) + v* v(q)μ *μ(K).

Therefore

μ*v(q) = -

for each « G N. Consequently

μ*v(q)-(l/2)μ*μ(q)-(l/2)v*v(q)

= hm -^ > 0.
2 { ) n l { ) n 1

Thus we have established that

λ*λ(#) = μ*μ(q) - 2μ*v(q) + v*v(q) < 0.

EXAMPLES. We conclude this section by calculating nonnegative
quadratic forms on K = No with a hypergroup structure as defined in [14,
§2] and yet mentioned in the remark above. Since in this situation the
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identity map is the involution on JSΓ = No the defining property of
quadratic forms reduces to pm * pn(q) = q(m) 4- q(n) for each m, n e No.
The only homomorphism is the null-function. Let ( α j , (δrt), (cM) be the
sequences, which define the convolution on No, [14, §2]. Define recur-
sively the following sequence (sn):

(i) so = O, ^ = 1, ^ ^

for w = 2 , 3 , — We note that (sn) is an increasing sequence. In fact
Sn + 1 ~ Sn = (1/«»X1 + Cn(

Sn - » - l ) )

tion we see that sn+1 > sn.

PROPOSITION 1.11. Let K = No 6e # hypergroup defined by the se-
quences (an), (bn), (cn) as in [14, §2]. Denote by (sn) the sequence from (i).
Then the nonnegative quadratic forms on K == No are exactly the functions
q{n) =* sn - a, where a > 0.

Proof. Assume that q: No -» R is a nonnegative quadratic form. Then

9(0) = 0. Let 0 = #(1)>O. Since Pi*pn = anpn+1 +bnpn +cnpn_l9

n e N see [14], we have $(* + 1) = (l/απ)(<?(l) + (1 - bn)q{n)
^crΆin "~ 1) Now by induction it follows that q(n) = sn- a. Conversely
we show that for a > 0 the function q(n) = sn - a is a nonnegative
quadratic form. Since (sn) is increasing q is nonnegative. We use induc-
tion on m to prove that pm* pn(q) = q(m) + q(n) for each m, w e No,
m < n. For m = 1 this equation follows by the definition of sn. Let
m + 1 < w. By the induction assumption we see that

Pn(i) = (VaJPl*(Pm* Pn)(q) -(bm/am)Pm* Pn(i)

q(m) + q(n))

) + q(n)) ~{cm/am){q{m - 1) + <?(*))

= q(n) + ^(« + 1).

For the prominent case, where K = No bears the convolution struc-
ture which is "realized" by the ultraspherical polynomials, i.e. an =
(« + 1 + 2α)/(2/i + 1 + 2α), 6n = 0, cn = n/(2n + 1 + 2α), α > -1/2,
see [14, §3(a)], we can calculate sn exphcitly:

,. Λ «(n + l + 2α)
( U ) ^ " = 2 + 2α

This follows by a direct induction argument.
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REMARK. Let K = G//H, a double coset space, where G is a locally
compact group, H a compact subgroup of G. An i/-biinvariant function
on G may be viewed as a function on K. It is immediate that every
(continuous) i/-biinvariant negative definite function on the group G is a
negative definite function on the hypergroup G//H. In [10] Harzallah has
noted that there exist a double coset space G//H and a i/-biinvariant
function on G, which is a nonnegative quadratic form on the hypergroup
K = G//H, but is not a negative definite function on the group G. By
Proposition 1.10 we see that a /f-biinvariant function on G, which is
negative definite on the hypergroup K = G//H, is in general not negative
definite on the group G.

2. Convolution semigroups. Let K again be a commutative hyper-
group. A family (μt)t>0, μt e M+(K) is called a convolution semigroup
on K, if

(a) μt{K) < 1 for each t > 0,
(b) μt * μ5 = μ,+s for ί, j > 0,
(c) lim, _+oμt= pe with respect to the vague topology on M(K).

LEMMA 2.1. Lei (μ,) Z>e α convolution semigroup on K. Then for a G K
the function t •-» μ,(α), R+-> C is continuous.

Proof. Obviously it is sufficient to show that ]imt_+oμt(a) = 1. By [1,
Proposition 1.4] we have to show that ]imt_+oμt(K) = 1. This follows by
the argument of [1, Proposition 8.2].

As one might expect one can study convolution semigroups on K by
means of negative definite functions on K. Of course we have to assume
that K is a hypergroup with respect to pointwise multiplication.

THEOREM 2.2. Assume that K is a hypergroup with respect to pointwise
multiplication. If (μt)t>0 is a convolution semigroup on K, then there exists
exactly one negative definite function ψ: K -» C with Re ψ > 0 such that

μt(a) = exp(-/ψ(α)) for each a e K, t > 0.

Proof. One has to give some obvious modifications to the proof of [1,
Theorem 8.3].

The negative definite function ψ: K -» C with Reψ > 0 defined in
the above theorem is called associated to (μt). Unfortunately we can only
prove a rather weak converse implication of Theorem 2.2.
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THEOREM 2.3. Let K be a strong hypergroup. Let ψ: K —> C be a
negative definite function with Reψ > 0, such that ψ,(α) = exp(-/ψ(α)) w
positive definite for t > 0. Γλere ejmte α unique convolution semigroup (μt)
on K such that ψ is associated to (μt).

Proof. Since Reψ > 0 we know that |exp(-fψ(α)| < 1. Thus using
K = K by [12, Theorem 12.3B] there are unique determined measures
μt G A f * ^ ) , ί > 0, such that μt(a) = exp(-ίψ(α)). Obviously (μf)
satisfies the properties (a), (b); use [21, Theorem Π.5.5]. Further using the
boundedness of ψ on compact subsets of K, we know

lim/Lία) = lim exp(-ίψ(α)) = 1

on compact^subsets. Let / G CΌoίJC), ε > 0. By [15, Proposition 1.1], or
using K = K and [12, Theorem 7.3H], there exists a function g e C00(K)
such that | |/ — g\\u < ε. Now we obtain

\μt(f) -PeU)\ < 2e + ί \g(a)\\μt(ά) - l\dπ(a).

Therefore lim/_>oμί = pe in the vague topology on M(K).

EXAMPLE. Fix a > -1/2. We consider the quadratic forms q(n) =
sn - a, a > 0, on the " ultraspherical hypergroup" No to α, where sn is
given by the formula (ii) in §1. This hypergroup is a strong one, see [14,
§4]. We give a convolution semigroup (μt) on the dual hypergroup
No = [-1,1] such that q is associated to (μt). We call this (μt) the
Brownian semigroup on [-1,1] = No. Our arguments are simple modifica-
tions of those of [5]. First we note for arbitrary μ e M+(K) that exp(/μ),
t > 0, is positive definite on £. In fact (μ)n = (μπ)Γ and μw G M+(K).
Using the exponential power series we see that exp(7μ) is positive definite.
Therefore exp(-/(l - μ)) is positive definite. Let {P"(x)} be the ultra-
spherical polynomial sequence. In particular we know, that

n -> exp(-ί(l - P:(x)))

is positive definite for each x G [-1,1]. Let x G [-1,1[. Replace / by
t{\ - x)~ι obtaining that n -> exp(-ί(l - P£(x))(l - x)'1) is positive
definite. Now

lim (1 - PΠ*(JC))(1 - x)~l = n(n + la + l)/(2 + 2α),
l

see [4, 2.2.19]. It follows that π -> exp(-^(π)) is positive definite. Now
Theorem 2.3 yields the Brownian semigroup on [-1,1].

3. The Levy-Hincin representation. We assume throughout this
section that K is a commutative hypergroup such that K is a hypergroup
with respect to pointwise multiplication. Let S = {μ G Mι(K): μ =
μ, supp μ compact}.



CONVOLUTION SEMIGROUPS ON HYPERGROUPS 363

LEMMA 3.1. Let V be a compact neighbourhood of e e K. Then there
exists a σ e S such that -1/2 < δ(x) < 1/2 for each x e K\ V.

Proof. There exists a compact neighbourhood U of e such that
U = U9 U* U c V. Let φ = l/m(U)χu * χσ, where χv is the character-
istic function of U, and m the Haar measure on K. We know that φ is a
positive definite function on K such that 0 < φ < 1, φ(e) = 1, φ(x) = 0
for x & K\V, see [12, Lemma 6.2E and Lemma 11.3A]. By [12, Theorem
12.3B] there exists a μ e M+(K) such that μ = φ. One easily obtains that
μ G Mι{K) and μ = μ. Choose a compact subset C Q K such that C = C
and μ(C) > 3/4. Then for σ = (μ|C)/μ(C) ||φ - σ||||M < ||μ - σ\\ <
1/2 and thus -1/2 < σ(x) < 1/2 for x e K\ V.

The following statement is contained in the proof of Levy's continuity
theorem in [2, Theorem 4.6].

PROPOSITION 3.2. Let f be a bounded continuous function on K. Let
(/O be a net of positive measures in M(K) such that limματτ = fπ vaguely
(π the Haar measure on K) and limμft(l) =/( l) . Then there exists a
μ G M+(K) such that μ = f and limμα = μ weakly.

PROPOSITION 3.3. Let (μt) be a convolution semigroup on K and
ψ: K -> C the negative definite function associated to (μt). The net
((1/t) - μt I K\ {e}) t> 0 converges vaguely as t -> 0 to a positive measure μ
on K\{e). For each σ e S the function ψ * σ — ψ is positive definite
and bounded. There exists a measure μσ G M+(K) such that μσ =
ψ * σ — ψ. These measures satisfy

(L) ( l - * ) μ - μ σ | * Λ { e } for σ e 5.

equation (L) determines μ uniquely.

Proof. Let σ e S . Slightly modifying the proof of [1, Proposition 18.2]
we obtain for a e K:

= (1/0K(«) - μ>σ(α)] = (1/0[l "

We know that lim,_0(l/ί)(l ~ exp(-ίψ)) = ψ uniformly on compact
subsets of K; see the proof of Theorem 1.5. Thus
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uniformly on compact subsets of K and ψ * σ — ψ is positive definite and

bounded. Therefore lim,_>0(l/ϊ)[(l - σ)μJΛττ = (ψ * σ - ψ)ττ vaguely

in the space of all Radon measures on K. By Proposition 3.2 there exists a

measure μσ e M + ( i£) such that μσ = ψ * σ — ψ and

hm(l/t)(l-a)μt = μa

in the weak topology. The same arguments as in [1, Proposition 18.2]

using Lemma 3.1 now show that there exists a positive Radon mea-

sure μ on K\{e] such that μ = ]imt^0(l/t)μt\K\{e} vaguely and

(1 — σ)μ = μσ\K\ {e} for any σ e S. Let v be another positive Radon

measure on K\{e} such that (1 - σ)μ = (1 - δ)v. For x e. K\{e} let

α e K such that Rea(x) < 1. Denote σ = l/2(/?α + ^ ) e S and let FΛ

be a compact neighbourhood of x such that e £ Vx and σ\Vx < 1. Now

it is obvious that μ \ Vx = v \ Vx. Thus μ = *>.

The positive Radon measure μ on ΛΓ\ {e) is called the Levy measure

Of(μ,).

PROPOSITION 3.4. Let μ denote the Levy measure of a given convolution

semigroup (μt). Then

(a) Sκ\{e) (! - Reγ(x)) dμ(x) < oo for each γ E l ,
(b) if Vis a compact neighbourhood of e in K, then μ\K\V ^ M+(K).

Proof, (a) For γ e K let σ = l/2(py + /?-) G S. Then by (L)

/ (1 - Reγ(x)) dμ(x) = μσ(K\{e}) < oo.

The statement of (b) follows as in [1, Proposition 18.4] using Lemma 3.1.

The following assertions can be proved by an argument as in [1,

Lemma 18.13 and Lemma 18.16].

LEMMA 3.5. Let h: K -> R be continuous and h(l) = 0. h is a homo-

morphism if and only ifh*σ — h = 0 for each σ e &

LEMMA 3.6. Let q: K -* R be continuous with q(a) = q(a), q(l) = 0.

q is a quadratic form if and only if q* σ — q is a constant function for each

σ e S. Moreover, in the affirmative case q is nonnegative if and only if

q * σ - q > 0 for all σ Ξ S.

COROLLARY 3.7. Let (μt) be a convolution semigroup on K,ψ the

associated negative definite function. Assume that the Levy measure μ of

(μt) is symmetric. Then Imψ is a homomorphism. In particular /Imψ is
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negative definite. Further μ is also the Levy measure of (vt), where

Proof, μ = μ is equivalent to μσ = μσ for each σ e S. This is equiva-
lent to ψ * σ — ψ being real-valued for each σ ^ S. Thus (Imψ)* σ -
Imψ = 0 for each σ E S , and by Lemma 3.5 we know that Imψ is a
homomorphism. Thus ilmψ is negative definite. Further we have seen
(Reψ)* σ — Reψ = ψ • σ - ψ. The proof of Proposition 3.3 yields that
(μt) and (vt) define the same class of measures (iσ, σ G S. Therefore the
uniqueness of the measure satisfying (L) implies the second assertion.

We shall say that K satisfies property (F) if the following holds: If
C c K is compact then there exist a constant Mc > 0, a neighbourhood
Uc of e in K and a finite subset Nc of C such that for each x G Uc

(F) sup{l - Reα(x): a e C} < Mc sup{l - Reα(x): a G Λ^C}.

Obviously each compact or discrete hypergroup satisfies the property (F).
It is known that each locally compact abelian group satisfies property (F),
see [18, Lemma 5.1]. At the end of this section we shall give another
important class of hypergroups for which property (F) is valid.

LEMMA 3.8. Let K satisfy property (F). Assume that μ is a positive
symmetric Radon measure on K\{e) such that

I (l - Reα(x)) dμ(x) < oo for each a e K and
JK\{e}

μ I K \ V e M+ (K) for each compact neighbourhood Vof e.

Then the function ψμ: K -» R, ψμ(α) = jK\{e} (1 " Rea(x)) dμ(x) is
continuous. Further \pμ is negative definite.

Proof. Let α 0 G K, e > 0 and C a compact neighbourhood of a0.
Property (F) of K yields Mc > 0, ]VC = {α1? . . . ,«„} c A' and a
neighbourhood Uc of β in K such that

ί sup(l - Rea(x))dμ(x)
JUc\{e}

< Mc ί
J

sup (1 - Reα(x)) dμ(x)
Uc\{e} a<=Nc

ί {l-R^aι(x))dμ(x)<Mc
JUc\{e)
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Thus there exists a neighbourhood Fof e such that

f (1 - Rea(x))dμ(x)<ε/4
Jy\{e}

for each a e C. Since μ|ίΓ\ F is bounded there exists a neighbourhood
W ô Q C of α0 in K such that |/^\F («(*) ~ ao(x)) dμ{x)\ < ε/2 for
each a e Ŵ  . Thus

^ ( ) )

( l-Reα o (x))</μ(x)
F\{e}

for each a e H^o. In order to show that ψ^ is negative definite we note
that for x & K the function T •-> τ(x) is positive definite. Thus T -> 1 -
Reτ(x) is negative definite. Given a, β & K apply again property (F) to
C = supρ/?α • />£ to show that

I sup (1 — Reα(x)) dμ(x) < oo.

Thus we may apply Fubini's theorem leading to the following equation:

f(l-Reα(x))+(l»Reiβ(jc))
LK\{e)

Therefore ψμ is negative definite.

Now we can prove a Levy-Hincin formula.

THEOREM 3.9. Suppose that K satisfies property (F). Let (μt) be a

convolution semigroup on K with associated negative definite function ψ:

K -> C, and Levy measure μ. Assume that μ is symmetric.

(a) Then ψ cαw Z)̂  written

(•) ψ(α) = c + /A(α) + ί(α) + f (l - Rca(x)) dμ(x),
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for α G ί , where c is a nonnegative constant, h: K —> R a homomorphism
and q: ί - ^ R f l nonnegative quadratic form.

(b) Moreover c, h,q in (*) are determined uniquely by (μt): c =
h = Imψ and

. (a) Let c = ψ(l) and ψ' = ψ - el. Then ψ' is a negative
definite function associated to a convolution semigroup having the same
Levy measure μ as (μt). Since μ is symmetric, h = Imψ is a homomor-
phism by Corollary 3.7. Further the function ψ" = ψ — cl — /A is nega-
tive definite and associated to a convolution semigroup with Levy measure
μ. Define ψμ as in Lemma 3.8 using Proposition 3.4. Consider q = ψ" —
ψ . The function ^ is continuous, real-valued, symmetric and #(1) = 0.
Given σ G S w e know that h* σ — λ = Oby Lemma 3.5. Thus ψ" * σ —
ψ" = ψ * σ — ψ = μσ? where the^measure μσ is defined as in Proposition
3.3. Consequently q*σ — q = μa — (Ψμ*σ — ψμ). One easily obtains that

Since μσ\K\ {e} = (1 - σ)μ, we see that q*σ - q = μσ({e}) > 0. By
Lemma 3.6 the function q is a nonnegative quadratic form. Now the
statement of (a) is proved.

(b) Of course c = ψ(l) and h = Imψ. Denote again ψμ(a) =
Iκ\{e) (1 ~ Rea(x))dμ(x). We know that ψμ is negative definite. By
Corollary 1.8 we obtain

<*)-(1/2)pa*p-a(q)= hm p"a(q)/n2

n-+ oo

= Urn Λ-(ψ)/»a - Um (l/« 2)/ (1 - Re(α(x)"
n-> oo

Note that Fubini's theorem is available by property (F). Obviously
l i m ^ J l / n 2 ) ^ - Re(α(x)")) = 0 for each Λ: e if. If o(x) ^ 0, let 0 <
r < 1, θ e [-7Γ, π] such that α(jc) = rexp(/^). Then for n e N

)(1 - r") +{r"/n2)(l - cosnθ)

)(l - r") + r"C(l - cos0),
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where C > 0 can be established as in [1, p. 183]. Thus

( l/« 2 ) ( l - Re(α(x)")) < (1 - r) + rn~ιC(r - rcosθ)

< (1 - r2) + C(l - rcostf) = (l -\a(x)\2) + C(l - Reα(jc)).

For a(x) = 0 this inequality holds obviously. Since

( l - \ a ( x ) \ 2 ) d μ ( x ) + C-f ( 1 - R e « ( * ) ) dμ(x)
K\{e} V Ά\{β}

the dominated convergence theorem yields that q(a) = limπ_>00 p2(ψ)/n2

+ pa*P5(q)/2. In the proof of Corollary 1.9 we have noted that

Pa * Piii) = n • Pa * P«(<l) f o r e a c h » e N

Pa*Pa(<l)/2= U

f - |α(jc) | 2 n ) dμ(x).

Since ( 1 / 2 Λ ) ( 1 - | « ( X ) | 2 M ) < (1 - |α(jc)D < (1 - l«(^)| 2), the
dominated convergence theorem applies again. Consequently pa *

EXAMPLES, (a) Consider the hypergroup K = No with the structure
which corresponds to the Jacobi polynomials Pn

( α t β\x) 9 a > β > - 1 ,
α + β + 1 > 0. If we assume that in addition that β > -1/2 or a + β > 0
then the dual K is a hypergroup and may be identified with [-1,1], see
[14, §§3 and 4]. Since K is compact the homomorphism and the quadratic
form in the Levy-Hincin formula of Theorem 3.9 are zero. Further given a
convolution semigroup (μ,) on No the Levy measure μ of ( μ j is symmet-
ric and bounded. Hence

μt{x) = exp(-ίψ(x)) for* e [-1,1], where

Ψ ( * ) - c + Σ (1 " Pϊ »{

Compare [13] for the ultraspherical case a = /?.
(b) Consider the dual hypergroup K = [-1,1] corresponding to the

Jacobi polynomials p(a>β\x), where (α, β) belongs to the same region as
in (a). The dual of K is the hypergroup No of (a), see [14, §4]. Given a
convolution semigroup (μ,) on [-1,1] the Levy measure μ is symmetric.
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Further the homomorphism is zero. Thus

μt(n) = exp(-ίψ(w)) for n e No, where

ψ(n) = c + «r(ιt) + f~° (1 - PH

(βΛ(x)) rfμ(x) and

q(n) = asn(a>0), where sn = a + β + 2 '

The quadratic form sn can be computed by means of formula (i) in
Chapter 1. Compare [4] and [7].

(c) We consider now commutative hypergroups which are obtained
from certain groups. Let G denote a locally compact group and let B
denote a subgroup of the automoφhism group Aut(G) that contains the
group I(G) of inner automorphisms. One calls G an [FIA]~B group
provided the closure B of B in Aut(G) is compact, where Aut(G) bears
the Birkhoff topology. It is easily established that the 2?-orbit space GB of
G is commutative hypergroup with natural operations, see [19, §1]. There
is an obvious relation between 2?-invariant measures or functions on G
and measures or functions on GB. We note that GB may be identified with
the set of all continuous nonzero positive definite ^-invariant functions φ
on G which satisfy φ(x)φ(y) = fB φ(xβ(y)) dβ, where dβ is the normal-
ized Haar measure on B, see [16] and [17]. In [9] it is shown that GB is a
hypergroup with respect to pointwise multiplication. We prove that GB

satisfies property (F).

LEMMA 3.10. Let Kλ and K2 be two hypergroups satisfying property (F).
Then Kx Θ K2 satisfies property (F).

Proof. Let 0 < rv r2 < 1 and 0 < x, y < 2π. Then

1 — r1r2cos(x + y) < 2[(l — rxcosx) + (1 — r2cos>>)]

is valid. In fact the inequalities 1 — rλr2 < (1 — rλ) + (1 — r2) and
1 — COS(JC + y) < 2[(1 — cosx) 4- (1 — cosy)], compare [18, p. 82], imply
that

1 — rλr2cos{x + y) = (1 — rλr2) + rλr2(l — cos(x 4- y))

<(l- rλ) -f (1 - r2) 4- 2rx(l - COSJC) + 2r2(l - cosy)

- rxcosx) +(1 - r2cosy)].

Since each a G (K^JB ̂ 2χisjvritten α((z1? z2)) = β(z1)y(z2), where zx

Kv z2 e K2, a e Kv y e K2, the assertion can be easily proved.
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The structure theorem for [FIA]B groups G, see [23], says that

G = V Θ L, L containing an open, compact subgroup i/, and V being a

vector group. By Lemma 3.10 we have to show that VB and LB satisfy

property (F). Using [17, Theorem 5.8] we obtain that VB satisfies (F), since

V satisfies (F) as an abelian group. The methods of [17, Proposition^.??]

show that the map rH\ LB -> HB, rH(a) = a\H is continuous. HB is

discrete. Thus for a e LB the set Ca = {β e LB: β\H = a\H] is open.

This fact implies property (F) for LB. Hence (F) holds for GB.

Thus Theorem 3.9 characterizes convolution semigroups (μt) on the

[FIA]β group G consisting of jB-invariant measures μr The class of

[FIA]~B groups covers for instance orbit spaces of compact groups or, for

B = I(G) of locally compact groups having relatively compact conjugacy

classes and having small invariant neighbourhoods of the identity. In

particular if G = Rw, B = SO(w), the special orthogonal group, we obtain

the Bessel functions. In fact GB and GB may be identified with [0, oo[.

Each non-constant character a e GB is given by a = ay9 y e]0, oo[,

where

ay(x) = T(v + l)T-f^!r for x e]0, oo[ and ay(0) = 1,

and /,, is the Bessel function of the first kind of order v and v = π/2 - 1.

We refer to [20], [5, p. 201] where a Levy-Hincin formula is established,

and [17, Theorem 5.8].

Finally we note that similar arguments yield that GB satisfies property

(F), too. The dual of GB is GB, see [8], and Theorem 3.9 applies for K = GB,

G din arbitrary [FIA]'B group.
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