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(s)-NUCLEAR SETS AND OPERATORS

K. ASTALA AND M. S. RAMANUJAN

The purpose of this paper is to demonstrate considerable similarities
in the behaviour of compact and O)-nuclear operators. More precisely,
we obtain for (s)-nuclear operators results resembling previously known
properties of compact operators; sometimes a word for word translation
of a "compact theorem" holds for (s)-nudear operators. However, we
wish to emphasize that different methods for the proofs are now needed.
For example, the often applied Ascoli-Arzela theorem does not have a
(s)-nuclear counterpart (see §5).

1. Introduction. Given a bounded subset D of a Banach space E,
denote by

6n{D) = vai{r> Q\ D <z Fn + rBE)

its Hth Kolmogorov diameter, n e N. Here the infimum is taken over all
subspaces Fn c E of dimension not greater than n and BE denotes the
closed unit ball of E. For an operator TeL(E,F) define Sn(T) =
8n(TBE). Now, D is (relatively) compact if and only if (δn(D))f G c0.
Analogously we define the (Λ')-nuclear sets when we replace cQ by the
space (s) of rapidly decreasing sequences,

In other words, D is called (s)-nudear if (δn(D))f e (s). Note that we
have no need for a separate notion for "relative" (5)-nuclear or non-closed
(s)-nuclear sets.

A bounded operator T e L(E, F) is said to be (,y)-nuclear if the set
TBE is (s)-nuclear, i.e. (8n(T))f G (S). That happens if and only if (see
[11]) T has a representation

where \\y[\\, \\zt\\ < 1 and (λ,.)? e (s). This is the historical reason for
using the term (i )-nuclear rather than (^-compact.

Besides the whole class of all (Λ )-nuclear operators we discuss the
properties of a class of sub-ideals, the Λ(α)-nuclear operators. Here
a = (at)f9 0 < ax < a2 < and

(1) Λ(α) = f ( λ J Γ : sup Λ«-|λJ < oo Vi? G R
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If an = log« and R = ek, then Ra» = nk and so for this exponent
sequence Λ(α) = (s). In general, we assume that Λ(α) is a nuclear space
and equivalently that Λ(α) c (s) or that

(2) logn < Man, n e N.

Λ(α)-nuclear sets and operators are then defined in the obvious manner.
For further information on Λ(α)-nuclearity we refer to [9], [10], and [11].

First we study (,s)-nuclear sets of (ιS )-nuclear operators. For compact
operators the problem was solved by Palmer [7]. He proved that, for
instance, the following conditions are equivalent for a bounded closed
subset He L(E, F):

(3) H is a compact set of compact operators.

(4) H(BE) and H'(BF) are both relatively compact.

Here H(BE) = {Tx: Γ e # , x e BE) and H' = {Γ: Γ e # } . We
shall give a similar result for (s)-nuclear operators. However, the implica-
tion (3) => (4) which is trivial in the compact case is, considered with a
verbatim translation, false for (j )-nuclear operators (see Example 3.7).
Hence we define the notion of uniform (s)-nuclearity; we say a set
H c L(E, F) consists of uniformly (synuclear operators if the sequences
of the diameters (δn(T))™=v T e H, form a bounded set in (s). The
topology of (s) is, of course, given by the seminorms

(5) ^ ( λ ) = sup/i*|λB|, λ = ( λ X , fceN.
n

Now we have

1.1. THEOREM. Let E and F be Banach spaces and assume H c L(E, F)
is bounded. Then the following conditions are equivalent.

(a) H is a (s)-nuclear set of uniformly (s)-nuclear operators.
(b) H(BE) andH\BF) are (s)-nuclear.
(c) H(BE) is (synuclear and H is of equal (s)-υariation.
(d) The sets H(x), x e BE, are uniformly (s)-nuclear and H is of equal

(s)-υariation.

For the undefined notions in (c) and (d) we refer to §§2 and 3. The
equivalence of (b) and (c) follows from characterizations of collective
(s)-nuclearity, given in Theorem 2.5, which are presumably of indepen-
dent interest. The corresponding results for compact operators were
obtained by Palmer [7] and Geue [6]; see also [4].
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As in the compact case we get as corollaries a number of new proofs
for (known) permanence properties. For example, Theorem 1.1 implies
that T ®ε R and T te^R are (5)-nuclear if and only if both T and R are
(s)-nuclear.

Finally, we study how far one can generalize Theorem 1.1 to the
subspaces Λ(α) of (s). It will turn out that the results of Theorem 1.1
hold for the Λ(α)-nuclear operators if and only if the exponent sequence
a satisfies
(6) an2 <Can, «GN,

a condition which is known to be equivalent to Λ(α) <8> Λ(α) « Λ(α) (see
[3] or [12]).

2. (s)-nuclear sets. We start with yet another characterization of
(,y)-nuclearity.

2.1. DEFINITION. For a bounded set D c E, the nth entropy number
en{D) is defined as the infimum of all r > 0 such that there are points
yl9...,yg with # < 2n~1and

1

If JΓG L(E,F\ we write en(T) = en(TBE). For more details on
entropy numbers of operators see [8].

Recall that a set is called balanced if λD c D for |λ| < 1.

2.2. LEMMA. A convex balanced subset D c E is (s)-nuclear if and only

Proof. We may assume that D is separable. Let {xt: i e N) be a
dense subset of 2), write e{ for the /th canonical basis vector of I1 and
define the operator T e L(/\ E) by Te{ = xi9 i e N. Since 8n(T) = 8n(D)
and en(T) = en(D), we must show that (s)-nuclear operators are char-
acterized by rapidly decreasing entropy numbers. For this we apply the
results of [8], Chapter 12, where only real Banach spaces are considered.
The complex case can be treated similarly.

According to [8], 12.3.2 we have the inequality

(7) 8n(T) < nen{T), n e N.

To prove a converse we reason as in [8], 14.3.11. First, combining [8],
11.12.2 and 12.3.3, we get

(8)
,
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Then, if (« - l)/logn ^ 2km < 2k + (n - l)/log« and m2kδm(T) <

Ck,

(

for some constants Ck> Ak depending only on fc. D

2.3. COROLLARY. If D C E is bounded and J e Lί^1, i 7 ) w

D is (s)-nuclear if and only ifJD is (s)-nuclear in F.

Proof. Since D is (s)-nuclear if and only if the balanced convex hull

of D is (s)-nuclear and since en(JD) < en(D) < 2en(JD), the claim

follows from Lemma 2.2. D

Another proof of Corollary 2.3 is given in [10].

The next result is well known (see, for instance, [8], 11.7.4 and 11.12.)

2.4. LEMMA. If T^K(E,F\ then 8n(T) < 2nδn(T) and δn(T) <
2nδn(T).

In approximation theory a collection of operators H c L(E, F) is

called collectively compact if HBE is relatively compact in F (c.f. [1] and

the references therein). Hence it is natural to use the term collectively

(s)-nuclear for sets of operators H such that HBE is (5 )-nuclear. As the

main topic of this section we prove some equivalent conditions for

collective (s)-nuclearity.

We introduce, for each bounded set H c L(E, F) , the notion of its

sequence of equi-υariation measures υn(H). For n = 1,2,... the number

vn{H) is defined as the infimum of those r > 0 for which there exists a

cover Al9 A2,..., A2n-\ of BE by at most 2"" 1 sets such that for each /,

1 < i < 2"-\

sup{II7* - 7>| |: T <Ξ H, x, y <Ξ At) <r.

As is easily seen H is of equal variation in the sense of Vala [13] exactly

when (vn(H))™ e c 0. Therefore H is said to be of equal (s)-variation if



(j)-NUCLEAR OPERATORS 237

2.5. THEOREM. Let HcL{E,F) be bounded. Then the following
conditions are equivalent.

(a) H{BE) is {synuclear.
(b) Hr has equal (s)-υariation.
(c) There exists a sequence of subspaces Fn c F' and a sequence of real

numbers λn such that

§H'\Λ=λn,coώmFn<n and ( λ j f e (S).

Proof, (a) => (c). If H(BE) is O)-nuclear and λw = 2δn(HBE), we can
find for each n e N an ^-dimensional subspace Gna F such that H(BE)
c Gn + λnBF. Let Pn e L{F) be a projection onto Gn with norm ||PΛj| <
n. (cf. [8], B.4.9). Then the subspace Fn = (I - PΛ ')F has codimension π
in F and for any T & H we have

α + n j λ j f e ( j ) .
(c) => (b). If \\H'I Fn\\ = λB and F = Fn Φ £„, dim En < n, let Pn and

Qn be projections onto En and Fn, respectively. We may assume that
\\Pn\\ < n, \\QH\\ < (n + 1) and that Pn + Qn - /; then r = ΓTn 4- r β n .

Since em(Pπ) < 4| |PJ|2 ( 1-m ) /" < 4n2<1-m>/π (see [8], p. 171), BΓ can
be partitioned into sets At, 1 ^ i < 2"1"1, such that Hi^x - P n j | | <
gΛ2<1-"»)/" for all x, y e y4,.. So if x, j e yl;. and Γ e H,

\\Γx - τy\\ <\\TQn{χ -y)II + \\r\\\\Pnχ - Pny\\

< 2(« + l)λ n + 8n | |^ | | 2 ( 1 - m ) / "

where \\H\\ = sup{||Γ||: T <= H] < oo. Thus υm(H') < 4nλn +
8n||.ff||2(1~m)/" and in the same way as we proved the implication (8) => (9)
we deduce (vn(H'))f e (j).

(b) => (a). Denote by L^iH, E1) the space of all bounded mappings
from H into E' and equip ^(H, E') with the supremum norm. More-
over, define

/: F -* LX(H, E'), (Jx')(T) = T'x'.

Since \\Jx' - Jy'\\x = sup{||Γ'x' - T'y'\\: T e jff}, we. have en(JBr) <
υn(H'). As H' is assumed to have equal (s)-variation, we see that / is
(5)-nuclear.
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Next, let πτ: L°°(//, E') -> Ef be the evaluation at T. Then πτJx' =
Txf oτπτoj=T which gives J'°(irτ)' = T". Thus H"(BE,,) c J\Bσ\
where G = L°°(H, £"), and so according to Lemma 2.4, H" is collectively
(s)-nuclear. But if IE: E -> 2?" is the canonical isometry, IFH(BE) =
H"IE(BE). Therefore the (s )-nuclearity of HBE follows from Corollary
2.3. D

2.6. REMARK. In a similar fashion one proves the equivalence of the
three conditions (α)-(γ) below:

(a) H' is collectively (s)-nuclear;
(β) H has equal (^-variation;
(γ) There exists a sequence of subspaces En c E and as equence of

real numbers λn such that

| | # l z j | = λ«> codim£Λ<w and (Xn)™<=(s).

We leave the details to the reader.

3. (s)-nudear operators. We are now ready for the proof of Theorem
1.1; we devide the proof into five steps.

3.1. LEMMA. Let H<zL{E,F) be bounded. If both H(BE) and
H'(BF,) are (s)-nuclear, then H is an (s)-nuclear set in L(E, F).

Proof. Since the mapping T -> V is an isometry, by Corollary 2.3 it
suffices to show that H' is an (s)-nuclear subset of L(F\ Ef).

If we let δn = 8n{HBE) and λn = 8n(H'BF,\ then by assumption
(δ/i)£=i>(λn)2Lie( s) Furthermore, there exist for each n e N «-dimen-
sional subspaces Fn c F and En c E' such that

(10) H(BE) oFn + 28nBF, H'{BF) (zEn + 2λnBE,.

Now, choose projections P e I ( F ) onto Fn and Q e L(E') onto 2?n with
||/»||, \\Q\\<nAΪT^H,

T = τ'P' + r(i - P') = QTP' +(/ - ρ)rτ ' + r(/ - pr),

where, by (10), \\T\I - P')\\ = ||(/ - P)T\\ < 28n{\ + n) and

||(7 - Q)TP'\\ < ||(7 - Q)T\\n < 2»(1 + «)λn.

On the other hand, since Ff and Q have the rank π, one easily sees
that the operator Hom(P\ Q): S -» QSP' has rank equal to n2, i.e. the
set {βS'P': S e L(F\E')} is an «2-dimensional subspace of L(F',E').
Hence δΛ2(/Γ) < 2(Λ + l)δn + 2Λ(Λ + l)λΛ. Consequently, if k G N is



( y)-NUCLEAR OPERATORS 239

fixed, we choose for each p e N a natural number n such that n2 < p <
(n + I) 2 ; then

pk8k(H') <(n + 1 ) 2 * M # ' ) < 4k+1n2k+\ + 4k+1n2k+2λn <Mk<oo

where Mk depends only on k (especially, not on p). D

3.2. LEMMA. Let D c E be convex, balanced and bounded. If 8n =
δn(D), there are points xt £ D, 1 < / < «, such that

n~ιD c bco{xz.}; + 5(n + ί)8nBE.

(Here bco denotes the balanced convex hull)

Proof. There exists an ^-dimensional subspace Ena E such that
D c En + 2δΛ5 £ . Let Pw e L(£) be a projection onto £„ with | |PJ| < n.
Then

D(zPnD+(l- Pn)D c PΠD + 2(n + l)8nBE.

Let F be the space spanned by PnD having as it norm the Minkowski
functional μ of PnD. The Auerbach lemma applied to F shows that there
are vectors yi9 1 < i < n, with μ(^) < 1 such that any y ^ PnD has a
representation x

^ = Σ a,y,, \at\< 1.
ι = l

Furthermore, for each λ e (0,1) we can find vectors x( e Z) with /^(x,)
= λĵ , e PnI>. Then

- Pn)Xi\\ < 3(»

if and only if λ is chosen so that (1 - λ)||PMI>|| < (n + l)δn. In that case

c bco{x;.}; + 3(« + l ) δ n 5 £ . D

3.3. LEMMA. Let Ha L(E,F) be an (s)-nuclear set of uniformly
(s)-nuclear operators. Then HBE is (s)-nuclear.

Proof. We may clearly assume that H is balanced and convex. Then,
if δn = δn(H), by Lemma 3.2 there are operators T^ H,l < i < n, for
which

n-Ή cbco{TX +
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Next, by the uniform (s)-nuclearity we have for the sequence μn =
suρ{δrt(Γ): T G H) that (μn)f e (s). Hence there exists for each / an
^-dimensional subspace Fj c i 7 such that

T,(BE) c Fn< + 2μnBF.

Consequently, if G is the linear span of {Fj: 1 < i < n}9 then dim(G) < «2

and

This gives δni(HBE) < 2nμn + 10 w2^ which shows, like in the proof of
Lemma 3.1, that (δn(HBE))? e (5). D

3.4. LEMMA. Suppose that H c L(E9F) has equal {s)-υariation and
that the sets H(x), x G j?£, αr^ uniformly (s)-nuclear (that is, for μn =
sup{δn(H(x)): x G 5£} we have ( μ j f G (5)). 7%e« /Γβ£ w (s)-nuclear.

Proof. Since /ί has equal (s)-variation, by Remark 2.6 there exists a
sequence of subspaces En such that H/fl̂ H = λπ, co-dim(£w) < n and
(λn)™ G (j). Hence, if Pn G L(JE') is the projection onto the co-summand
of^with||PJ|<«,

HBE<zHPnBE+(n + l)λnBF.

Moreover, as rank(Pπ) < n and ||PΛ-B£|| < n, there are vectors xt G E,
1 < i < n, with ||xz|| < n2 such that P n 5 E is contained in the convex
balanced hull of {.*,.}". If Fj c F is a subspace for which dimίi^1) < n
and

ff(x,) c F ; + 2n2μnBF,

then we see that HBE c G + (2π2μn + 2nλn)BF where G = span{i^:
1 < 1 < n) with dim(G) < n2. Thus 8ni{GBE) < 2n2μn + 2«λw and we

f e ( j ) . D

3.5. The proof of Theorem 1.1. To prove that (a) and (b) are equivalent
assume that H is an (s)-nuclear set of uniformly (s)-nuclear operators.
Since the mapping T -> T is an isometry and since δn(T) < 2nδn(T), Hf

is a (^-nuclear set of uniformly (s)-nuclear operators. Then Lemma 3.3,
applied to H and H\ shows that both HBE and H'BF, are (^)-nuclear.
The converse follows from Lemma 3.1.

For the other conditions the equivalence of (b) and (c) follows from
Theorem 2.5 and Remark 2.6, the implication (c) => (d) is trivial and
finally, Lemma 3.4 gives the converse (d) => (c). D
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3.6. REMARK. If HBE is (s)-nuclear, then H'BF, (and thus H as a
subset of L(E, F)) need not be (s)-nuclear. Take, for instance, a fixed
vector y in a Hubert space E with an orthonormal basis {fk: k e N} and
define Tnx = (x,fn)y, H = {Tn: n e N} C L(£). AS i/5^ is bounded
and 1-dimensional, it is (ty)-nuclear. However, H'BE, is not even relatively
compact since it contains all the fks.

3.7. EXAMPLE. Let {Ak: k e N} be a partition of natural numbers,
i.e. N = U * . . ! ^ and Aj ΠAk=0 when y Φ k. Assume that #(Ak),
the cardinality of Ak, satisfies 2ek < #(Ak) < 2ek+ι. Now, let E be as
in Remark 3.6 a Hubert space with an orthonormal basis {fk: i e N ) .
Denote by Pk e L(E) the orthogonal projection Pk: E -> span{/) : / G

If ΓΛ = e - ^ , clearly ||ΓΛ|| = e~k

9 i t e N . Thus, if H = {Tk: k e N},
for any A: we have 8k(H) < e~(k+1\ As the Γ '̂s are finite dimensional
operators, we see that H is a (^-nuclear set of (s)-nuclear operators.
However, if ek < n < ek + 1, then

δn(HBE) > δn(Tk) = e"fc > n-\

Hence sup{ n2δn(HBE): n e N) = oo and HBE is not ( s)-nuclear. Conse-
quently, the requirement of uniform (s)-nuclearity in Theorem l.l(a)
cannot be replaced by mere (s)-nuclearity.

4. Λ(α)-nudear sets of Λ(α)-nuclear operators. The proof of Theorem
1.1 was based essentially on the following three properties of the space
(s).

(ϋ) if ( λ j f e (s\ 0 < μn2 < λn and μn is decreasing, then (μn)? e
(5).

(iii) (δn(T))f e (j) if and only if (^(Γflf e (5).
It is easy to see that if the subspace Λ(α) of (s) has the same three
properties, then Λ(α)-nuclear sets of Λ(α)-nuclear operators admit a
description as in Theorem 1.1.

Now the condition (i) is automatically satisfied if Λ(α) c (s), i.e. (2)
holds. Furthermore, a natural assumption to guarantee (ϋ) is the condition
(6), ani < Can. It turns out that the same requirement gives (iii), too.

4.1. LEMMA. Suppose logn < Man and ani < Can, n e N. Then for
anyT e L{E,F),

ϊ e A(α) i/αmί on(μ if (en(T))? e Λ(α).
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Proof. Since 8n(T) < nen(T), cf. (7), the sufficiency part is trivial. To

prove the necessity we first show that

(11) lim - ^ - r = o o .

For (11) define q(n) G N by logq(n) = 2nlog2. As «n2 < CαH and

^r(π)2 = q(n + 1), α, ( l l ) < Caq{n_λ) < C\(n_2) < ••• < C % ( 0 ) =

C™α2.

If now #(«) < p < q(n + 1), then α^ < aq(n+l) < Cn + ιa2 which

yields logα^ < (n + 1) logC + logα 2 < (rc + 1)CO; here Co is a positive

constant. However, 2" log2 < log/? and therefore we can estimate

log(p/a2

p) = log/7 - 2 ^ ^ > 2"log2 -{n + 1)2CO

Letting « (or /?) tend to infinity gives (11).

Secondly, if k G N is fixed and (n — ΐ)/an < km < k + (n — ΐ)/an9

then it holds

(12) (ι)kan<{n-l)/{m-l) and (ii) an < ram

if only r G N is large enough. Indeed, the first inequality in (12) is

obvious while for the other take a number n0 G N such that

(n - l)/(kan)
2 > 2, Λ > π 0 . As Λ < 2(/i - 1) < (/i - 1) 2 /(^«J 2 < ™2

for « > max{πo,2}, there exists a constant Q (depending on k) such

that an < Qαm2 < CxCαm for all n G N. If we choose r G N larger than

QC, we obtain (12).

The proof of the necessity follows from the formulae (8) and (12). If

sup{ Ra»δn(T): n G N) < oo for each R G R+, the claim is that then also

Ra"en(T) < CR for some constant CR independent of n. We may clearly

assume that R has the form R = 2k, k G N. Moreover, if for each n G N

we pick m so that (12) holds we obtain from (8)

oo. D

Analogous to the (^)-nuclear case we say that a subset H a L(E, F)

consists of uniformly k(a)-nuclear operators if for the sequence μn =

swp{δn(T): Γ G H] we have (μn)™ G Λ(α). Also, in a corresponding

way we define the notions of equal Λ(α)-variation and uniformly Λ(α)-

nuclear sets, cf. Chapters 2 and 3. Combining the above results we get

now

4.2. THEOREM. Let Λ(α) c (s) and suppose ani < Can. Then the

following conditions are equivalent for any bounded subset He L(E9 F).

(a) H is a A(a)~nuclear set of uniformly A(aynuclear operators.

(b) HBE andH'BF are K{a)-nuclear.
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(c) H has equal A(a)~variation and the sets H(x), x e BE, are
uniformly A{a)-nuclear.

4.3. REMARK. AS is easily seen also the counterpart of Theorem 2.5
holds for the ideal of Λ(α)-nuclear operators if only Λ(α) c (s) and

<V ^ Cam.
Theorem 4.2 has a converse, too. Applying a result of H. Apiola [3]

we shall show that if a is any nuclear exponent sequence such that
Theorem 4.2 holds for the Λ(α)-nuclear operators, then necessarily ani <
Can.

4.4. THEOREM {Apiola [3], Theorem 3.2). Let Λ(α) c {s) and suppose
that for any pair of A{a)-nuclear operators T, R also the product
Hom(Γ, R): S -> RST is a A{a)-nuclear map between the corresponding
operator spaces. Then we must have ani < Can for all « e N .

4.5. COROLLARY. Let Λ(α) c {s) and suppose that the conditions (a),
(b) of Theorem 4.2 are equivalent for any bounded subset H c L{E, F).
Then ani < Can.

Proof. We shall show that "Horn-stability" is a consequence of
Theorem 4.2. The claim will then follow from Apiola's theorem. A similar
reasoning, based on the notion of equal variation, is given for compact
operators in [2].

Now, suppose TeL{E1,F1) and R(=L{E2,F2) are both Λ(α)-
nuclear. If we define

i / = Hom(Γ,i?)5 L ( F i ^ 2 ) = {RST: \\S\\ < 1, S e L(Fl9 E2)},

then we need to show that H is a Λ(α)-nuclear set. But obviously
HBEχ c \\T\\RBEΊ and H'BFi c \\R\\TBΓi. Since also T is Λ(α)-nuclear
(Lemma 2.4) and since the implication (b) => (a) of Theorem 4.2 is
assumed to hold H is, indeed, a Λ(α)-nuclear subset of L(EV F2). Ώ

Above we could have shown that, under the assumption of the
equivalence of (a), (b) for Λ(α)-nuclear maps, if Hom(Γ, R) is Λ(α)-
nuclear then both T and R are Λ(α)-nuclear; the suitable subset H
would have been H = {RST: rank 5 = 1, | |S|| < 1}.

Stating this remark differently we see that the following known result
is a consequence of Theorem 4.2.
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4.6. COROLLARY. Suppose A{ά) c (s) and ani < Can. Then the prod-
uct Hom(Γ, R) of the operators T and R is A(a)-nuclear if and only if both
TandR are A(a)-nuclear.

Since (T®πRy = Hom(Γ,i?') and since T <8>ε R can be identified
with a restriction of Hom(Γ', R), Theorem 4.2 yields stability results also
for tensor product operators.

4.7. COROLLARY. Let A(a) c (s) and ani < Can. Then Γ, R are
A(a)-nuclear if and only ifTΦ^R (or T ®εR) is A(a)-nuclear.

For the standard proof of Corollary 4.7 see [12] or [2].
Finally we mention a result whose compact version was proved by

Bonsall [5].

4.8. COROLLARY. Suppose Λ(α) c (s) and ani < Can. If T e L(E)
denote by Cτ the centralizer of T, Cτ= {S e L(E): TS = ST), and
define K e L(CT) by K(S) = ST

Then, if T is Λ(α)-nuclear, so is K.

Proof. Let H = {ST. S <Ξ CT, \\S\\ < 1}. As HBE c TBE and H'BE,
c TBE,, Theorem 4.2 shows that H is Λ(α)-nuclear in Cτ. D

5. Concluding remarks. One can easily see that the method of Theo-
rem 1.1, the use of finite-dimensional projections, does not work without
serious modifications for general compact operators. On the other hand,
the known proofs for characterizations of compact sets of compact
operators are all based on one form or another of the Ascoli-Arzela
theorem. Such methods, however, fail in the (s)-nuclear case.

5.1. REMARK. The (s)-nuclear version of the standard (scalar valued)
Ascoli Arzela theorem is not valid: Take

\f(χ)-f(y)\<\χ-y\Vχ,y^[OA}}.

Then it is readily seen that H has equal (s)-variation but it is not
(^-nuclear.
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5.2. REMARK. The proofs of the several implications in Theorems 2.5
and 1.1 and the proof of Theoorem 6.5 in [4] also yield inequalities of the
following type (Here H c L(E, F) is any bounded subset):

δn>(H') < 4nδn(HBE) + An%{H'BF)

em(H'BF,)<An\(H)+-

vnm(H) < 2en{H'BF) + - | for aU m,n

vm(H) < Cn\(H'Br) + ̂ | ^ L for all m,n.

The numerical constants or exponents of n in the above are not claimed
to be sharp.
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