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THE CAMPBELL-HAUSDORFF GROUP
AND A POLAR DECOMPOSITION

OF GRADED ALGEBRA AUTOMORPHISMS

A. BAIDER AND R. C. CHURCHILL

Let A = nj°e£0 gΓfc(Λ) be a complete graded (associative or Lie)
algebra over a field of characteristic zero, filtered by the decreasing
filtration Fj(A) = Π^L, &k(A). We let Aut(Λ) denote the group of
filtration preserving automorphisms of A, and Auto(Λ) the subgroup
consisting of those elements of AuX(A) which preserve the grading. In
this paper we prove that every element of Aut(A) has a unique polar
decomposition of the form u0 exp(d), where u0 e Auto(A) and d :A ->
A is a filtration increasing derivation.

Our central results, presented in §4, generalize and were inspired by
theorems on decompositions of diffeomorphisms and symplectic map-
pings found in the dynamical systems literature; they also touch on the
related topic of one-parameter group extensions. Particularly influential
were Broer's treatment of normal forms of vector fields [4], and Stemberg's
work on the formal aspects of dynamical systems [11]. The setting adopted
here is that of filtered groups and algebras, for the reason that certain
functorial properties of these structures are particularly well suited for the
treatment of convergence questions arising from the use of the Campbell-
Hausdorff formula. Broer (loc. cit.) credits Gerard and Levelt [6] with the
first use of filtration techniques in this field.

A second aspect of our work is the introduction of a restricted class of
"analytic functions" which map the ground field into appropriate filtered
objects. Such functions turn out to be rather peculiar, in that they are
always "entire" and have (except when identically zero) only finitely many
zeros. Our study is limited to those properties which are relevant to this
paper.

Applications of Theorem 4.5 are presented in the last two sections; we
offer short proofs of two of these decompositions. That implied by the
upper exact sequence of Theorem 5.4 is classical: C. L. Bouton was
working on related problems as early as 1916 [2] (also see Lewis [8] and
Sternberg [11]). The decomposition implied by Theorem 6.2 is also well-
known (see van der Meer [14, Lemma 2.11, p. 27]). The novelty of the
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presentation here is that the relationships between the group structures are
formulated explicitly.

The splittings of §5 and §6 are only the first step toward "normal
form" theory. How such forms can be achieved by transforming coordi-
nates is well-known (for vector fields and diffeomorphisms see e.g. Takens
[12] and [13], and for Hamiltonian systems see e.g. Moser [9]), and will not
be addressed here, although we briefly touch on the subject in examples
ending these sections. For detailed historical surveys of normal form
theory see van der Meer [14, pp. 42-45], Brjuno [3, pp. 134-9 and 142-3],
and Dixon and Esterle [5, pp. 152-3].

The authors would like to thank the referee for constructive com-
ments and criticisms regarding the original manuscript, and Richard
Cushman for useful discussions of the literature.

1. The categories ^, si and o5f. Here we collect basic definitions and
establish notation. For more detail see [1] or [10].

Unless stated to the contrary K denotes a field of characteristic zero
and an algebra simply means a vector space over K which admits a
i£-bilinear mapping (x, y) -> xy into itself.

A filtered group (vector space, algebra) is a group (vector space,
algebra) X together with a decreasing sequence FJo(X) = X 3 FJo+1(X)
ID of normal subgroups (subspaces, ideals) such that

{Fp(X)9Fq(X))cFp+q(X)

for all p,q > j θ 9 where (x, y) = xyx~ιy~ι, and, in the case of an algebra,

Fp(X)Fq(X)czFp+q(X).

Throughout we assume 1 > j 0 e Z, and when confusion cannot result we
write Fj(X) as Fy The filtration {Fj} is separated if ΠJFJ = {e) (0), the
identity (origin) of X.

The order function of a filtered group (vector space, algebra) X will
be denoted by v, i.e. v(x) = sup{y:x e Fj), x e X. We recall the
following properties:

(a) v(e) = + oo (v(0) = + oo for vector spaces and algebras);
(b)f(.xy~1) (v(x — y) for vector spaces and algebras) >

wf{v(x),v(y)};

(c) v(x) = v(x~ι) (v(-x) for vector spaces and algebras);

(d) v((x, y)) (v(xy) for algebras) > v(x) 4- v(y);

(e) p(xax~ι) > v(x) (for groups); and

(f) v(xy) = v(yx) (for groups).
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In terms of the order function X is separated if and only if v(x) < oo

for all x Φ e (0). In this case we set |JC| = 2'v(x\ where 2~°° denotes 0,

and we have

(i) \x\ > 0;

(ii) |JC| = 0 if and only if x = e (0);

(iii) \xy\ (\x + y\ for vector spaces and algebras) < max{|x|, \y\}\

(iv) |λx | = |JC| for 0 Φ λ G K (for vector spaces and algebras); and

(v) \xy\ < \x\ \y\ (for algebras).

When X is separated the metric (JC, y) -> \xy~λ\ (\x - y\) defines the

topology on X for which the Fj constitute a basis of (open and closed)

neighborhoods of the origin. AH algebraic operations are continuous,

assuming in the vector space and algebra cases that K is given the discrete

topology or, equivalently, the trivial filtration F0(K) = K, Fλ(K) = {0}.

X is complete if the metric is such.

A morphism φ: X -> Y between filtered groups (vector spaces, alge-

bras) is a homomorphism which preserves filtrations; in particular, all

morphisms are continuous. Our interest will be in the following cate-

gories:
<S\ The category of filtered, separated complete groups;

s/:The category of filtered, separated complete associative algebras

with identity (always denoted 1), with all morphisms preserving 1;

and

JSf: The category of filtered, separated and complete Lie algebras.

If A G j / w e denote by AL the Lie algebra obtained from A by using

the commutator [x, y] = xy - yx as bracket. The filtration on A is

compatible with this multiplication; hence AL e J2f\

An infinite product Ylxj in an object of ^ converges if and only if

Xj -* e. Likewise, an infinite series Σxj in an object of si or 3? converges

if and only if x -> 0. Moreover, in either case we have

(1.1) |x|<maxy{|x,|},
where x is the limit of the product or series in question. An important

consequence is that if A e si, then any power series ΣcijXJ with coeffi-

cients in A converges for all x in the neighborhood Fλ of 0. In fact the

series will also converge for all x e A satisfying xn e Fλ for some n > 1.

Because of this property Fλ will play a particularly special role in our

considerations. This is the reason we assume w.l.o.g. that j 0 < 1 for the

first level F. of a filtration; otherwise we could define F.- to be i7. for
Jo ' J Jo

7 = 1, . . . , j 0 .

To any graded group (vector space, algebra) X = Πy>7 o Xj we associ-

ate the filtration Fj(X) = Tln>jXn, and to any filtered group (vector
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space, algebra) we associate the graded group (vector space, algebra)

gτ(X) = ΠjgTj(X), where gr,.(X) = F/FJ+ι. Note that, contrary to

standard usage, gr( X) represents the product rather than the direct sum of

the gr7( X). For a filtered, separated and complete vector space X we have

X - gr( X), although the isomorphism is not natural.

2. The Campbell-Hausdorff group. For an arbitrary set S let V = Vs

be the vector space freely generated by S over K and let fs = K Θ V Θ

(V <8> V) Θ denote the tensor algebra of S. t s is graded but not

complete under the associated decreasing filtration; the completion Ts is

the graded algebra of formal series a0 + ax + , where an e v®n.

2.1. PROPOSITION. The mapping S -» Fλ(Ts) is universal in the sense

that for any A e i and any mapping a:S -» Fλ(A) there is a unique

morphism Ts -> A in s/ extending a.

The extension will also be denoted by a.

Proof. The universal property of ts implies that a extends uniquely

to a homomorphism fs -> A. Since we assume a(S) c FX(A), induction

shows this extension to be filtration preserving, hence uniformly continu-

ous. Since t s is dense in Ts, the claim follows. D

Let Ls denote the closure in (TS)L of the Lie subalgebra generated by

S. Since Ls is the completion of the free Lie algebra of S ([7], p. 225) we

have the following analogue in Jέ? of Proposition 2.1.

2.2. PROPOSITION. The mapping S -> F^Lς) is universal: for any

L Go? and any mapping a: S -> FX{L) there is a unique morphism Ls —> L

extending a.

When S = X = {X v..., Xn} is a finite set, the tensor algebra Ts = Tx

is simply the algebra of formal non-commutative power series / in the

variables Xl9..., Xn. In view of Proposition 2.1 such an / defines a

(universal) function fA:Fι{A)n -> A through the substitution of variables

X -> x G Fι(A)n. More explicitly: if a:Tx-+ A is the morphism extend-

ing a .Xi-* xi9 then /^(x) = α ( / ) .

2.3. PROPOSITION. For f ^ Fp(Tx) the mapping fA is continuous.

Moreover, the collection {fA)A^^ defines a natural transformation between

the functors Fx(A)n and F (A) on J / , i.e. for any morphism φ:A -> B the



A POLAR DECOMPOSITION OF AUTOMORPHISMS 223

diagram

Λ1 ih

Fp(A) Λ F,(i?)

commutes. The analogous statements hold when Tx is replaced by Lx.

Proof. Let x = (xl9 . . . , I J G ^ (Λ)" and A = (hv ...,ΛB) ^
Then for any finite sequence /l9 ...,/*. of the integers 1,...,« and any
non-negative integers qv...,qk the difference n * e l ( x / m + Λ/m)^ -
ftm=ιx?™ belongs to the closed subspace Fj(A) of A, and the same holds
for the difference fA(x + h) — fA(x), which is a convergent series of such
monomials. Continuity follows.

To prove naturality simply note that when x e Fλ(A)n the unique
morphism Tx -> B sending xf. to φ(Xi) is φ <> a. Therefore

fB(φ(Xl),...,φ(χn)) = (φoα)(/) = φ(α(/)) = φ ί / ^ x ) ) . D

In view of this naturality we drop the subscript A from fA.
As an example consider the Neumann series /(X) = 1 4- X + X2

+ e AΓ[[X]]. This defines the function x -> (1 - x)" 1 = 1 + x + x 2

4- on FX(A) for any A <^sί, and shows that all elements of the
neighborhood 1 + Fλ(A) of 1 are invertible.

The exponential and logarithmic series exp(Jf) and log(l + X) will
play an important role in the sequel. The corresponding functions estab-
lish homomorphisms between the neighborhoods ^(^4) of the origin and
\ + Fι(A)oi\. Moreover, for any j^morphism φ:A -> B the diagram

FX{A) -

(2.4) expltlog expltlog

1 + FX{A) Λ 1 + FX{B)

commutes.

2.5. REMARK. For A e J / define the radical of /^(^l) as
{a ^ A:an ^ Fλ(A) for some n > 1}; this is an ideal if 4̂ is commuta-
tive. The power series defining (1 - x)'\ exp(x) and log(l + x) converge
for x G rad(/7

1(^4)), and we may regard these functions as being defined
on these (possibly) larger domains.



224 A. BAIDER AND R. C. CHURCHILL

Let Tx γ be the complete free algebra in two variables X, Y and

consider the formal power series W = W(X, Y) = log(exp(^)exp(7)) G

Txγ. By the Campbell-Hausdorff formula ([7], p. 227) we have W G

Fλ{Lxγ), where

(2.6) W=X+ Y + (1/2)[X9Y]+(1/12)[X9[X,Y]]

By Proposition 2.3 the power series W defines a natural transformation

between the functors Fλ(L) X Fλ(L) and Fλ(L) on J? which we denote

by *.

2.7. THEOREM. * is a group operation, and gives Fλ(L) the structure of

a filtered, separated complete group with filtration {Fj(L)}J^ι. Moreover,

the assignment L G «£?-» {Fλ{L), *) G ̂  is functorial, and is characterized

by the property that the identity

(2.8) x * y = log(exp(x)exp(^))

holds for any L e ££ of the form A L for some A e si.

We call (Fλ(L), *) the CampbellΉausdorff group of L.

Proof. First assume L = AL for some associative A ^ A. If x, y ^

Fλ(L) = i^ί^ί), then the j^morphism α: Γ z γ -> τ4 sending X to x and 7

to y restricts to an JS^morphism sending W to x * y. Naturality of exp,

log and * then gives (2.8) for Lie algebras of this special form, as well as

for Lie subalgebras thereof; the group properties follow immediately.

Now suppose L e J? is arbitrary and x, y, z e Fλ(L). Then we can

find an associative A e s/, an ̂ subalgebra L <z AL and an isomorphism

φ:L -^ L with range including JC, ̂  and z, e.g. take 4̂ = Γ x γ z and

L = LXYZ. By the previous paragraph (^(L) , *) is a group, hence

(x * y)* z = x*(y * z) by naturality; the other group properties for

(Fλ(L), *) are proven in a similar manner.

To verify the required commutator relation for [FJ(L)}J^.ι assume

x e Fp(L), y <Ξ Fq(L) and set z = x * ̂  *(-x)*(-> ;). From (2.6) we see

that for 0 G Fr(L) and 6 G F5(L) we have a*b = a + b + (l/2)[α, 6]

(modiv + J + 1 (L)),andso

z Ξ ( Λ + y +{l/2)[x9y])*(-x -y +{l/2)[x,y})

= [x,y] (modFp+q+ι(L)).

But [x, y] G Fp+q(L), hence z G Fp+q(L) as desired.
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As for uniqueness, let (Fx(L)y # ) be a second functor with the same
properties. By (2.8) # and * must agree on Lie algebras of the form AL,
and by naturality on Lie subalgebras thereof. For arbitrary L e & and
x, y ^ L simply construct L and φ:L -> L as above; then x#y = x * y
by naturality. D

REMARK. In ([10], Prop. 2.3) it is shown that if G is a filtered group
then L = ΠjFj/FJ+ι is a graded Lie algebra over Z, where the Lie
bracket on L is induced by the commutator on G. The above proof shows
that (gr( F^L)), *) ^ gr(L) in positive degrees, so that if L = YljLj9

j > 1, then Fλ(L) = L and gr(L, *) = L. In this sense the Campbell-
Hausdorff group can be viewed as a partial inverse of the functor
gr: ^ -> oS?z, where JS?Z is the category of filtered complete Lie algebras
over Z. As we will not pursue this matter we leave it to the reader to
formulate the precise statement describing the relationship between these
functors.

3. Analytic functions. The initial results in this section do not require
our standing hypothesis that the characteristic of K be zero. V will be a
filtered, separated and complete iΐf-vector space.

We will consider functions f(t) on K defined by power series ΣajtJ\
where a} e F, and we will call such functions analytic. Note, however,
that if such a power series converges at a point 0 Φ t0 e K then it
converges for all t ^ K, Indeed, we have \ajtJ\ = \aj\ = \ajt^\ -> 0. Thus
"analytic" is equivalent to "entire" in our context. More general defini-
tions can obviously be formulated, e.g. assuming domains in a filtered
algebra A, but this will be sufficient for our purposes.

3.1. LEMMA. Let to,...9tn G K be distinct and let b0,..., bn e V. Then

there is a unique polynomial p(t) = Σ " = o β y / y , a- ^ K, such that p(tj) = bt

for i = 0, . . . ,«. Moreover,

|α y . |<max{ |^ | ) , y = O,...,/i.

Proof. Simply view p(ti) = bt as a set of n linear equations for
aQ9...9an; the system has a unique solution since the coefficient matrix is
the invertible Vandermonde matrix (ί/). Since each αy can be expressed as
a linear combination of the bt, the estimates follow from (iii) and (iv) of
§1. •
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3.2. Elementary properties of analytic functions. Assume f(t) = ΣajtJ

is analytic and let pn(t) = Σ%0«jtJ> rn(0 = Σ%n+1a^.

(a) pn-> f uniformly. By (1.1) and (iv) of §1 we have \rn{t)\ <

max^ w + 1 { |έ i y | } ,and |α y | -> 0.

(b) v4// α vanish if f has infinitely many distinct zeros. In particular, a

non-trivial analytic function has only finitely many distinct zeros. Suppose

tQ9..., tn are distinct zeros of /, and set bj = -rn(tj), j = 0,. . . , n. Then

f(tj) = 0 may be written as pn(tj) = bJ9 hence |a,| < sup,{|rπ(0|} by

Lemma 3.1, and the result then follows from (a).

(c) When K is infinite the coefficients of f are uniquely determined. This

is immediate from (b).

In view of (c) we henceforth assume K is infinite.

The space of analytic functions is filtered by Fjf = {/: K -> Fj(V)}. It

is clear that the associated metric is defined by the supremum norm

I/I = sup,{ |/(0l}.
(d) We have | / | = max7 {|αy|} = max,{ |/(0 |}. This is immediate

from (c) when | / | = 0, so assume | / | > 0 and note from (1.1) and (iv) of

§1 that I/I < supydflyl}. To obtain the reverse inequality first observe

using (a) that \rn\ -> 0, and so \rn\ < \f\ for n > n0. But then (iii) of §1

implies \pn(t)\ < max{|/n(OI, |^(/)|} < |/ |, whereas Lemma 3.1 gives

\aj\ < max^{ \pn(tk)\) < \f\ provided j < n and the tk, k = 0,. . . , n, are

distinct points of K. Therefore | / | > supy{|αy |}. Sup can be replaced by

max since 0 is the only accumulation point of the values of the metric on

Kand I/I > 0.

(e) The space of analytic functions is complete. If {fn} is Cauchy then

for each j the coefficient sequence of tj also has this property, hence

converges to some element αy e V. One now checks that fn -> ΣajtJ.

(f) IfA G i the space of analytic f:K -> A is an algebra. If f(t) =

Σaβj and g(t) = Σbnt
n then it is a straightforward verification that

f(t)g(t) = Σcnt\ where cn = Σa^.

Henceforth we assume K has characteristic zero. Since K is infinite

the formal definition f\t) = Σnant
n~ι of the derivative of an analytic

function f(t) = Σant
n is unambiguous by 3.2(c). One has f{n\0) = n\an,

and as a result the Taylor formula

(3-3) /(0= Σ β

holds.
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If one wished to define / ' analytically, rather than formally, a
topology on K would be needed. However, since the Fj(V) are linear
subspaces, (iv) of §1 shows that the only topology which makes scalar
multiplication continuous is the discrete topology, so that h -» 0 in K if and
only if h is eventually identically 0. With this understanding it is easy to
see that

(3.4) M^Δi+ψM^tU+ψM
This last expression is symbolic for the following recipe: factor h from
f(t + h)- f(t)\ divide by h; then set h = 0.

We also define the primitive of /(/) = Σant
n formally, i.e. fof(s) ds

= Σ(an/(n + l))/ π + 1 ; (in) and (iv) of §1 show this to be an analytic
function. If Qn(t) = Σnjll(aj/(j + l))/ y + 1 is the nth-partial sum, then
\O (tλ\ < max I \a // 4- λ \\ = max i \n W < I f\ hence
\\dn\ι)\ — m d λ 0 < / < n - l \ \Uj/J ' 1 U m d A 0 < i;< n-l\ \ a j\) ~ \J I? 1 1 C I 1 ^ C

(3.5) \ff(s)ds <\f\.

3.6. T H E O R E M . Suppose G: V -> F w Lipschitz with Lipschitz constant

contained in [0,1), and suppose G° ξ:K -> K/5 analytic whenever ξ:K -> V

is analytic. Then for each v e FίΛe initial-value problem

α unique solution.

Proof. The space /ί of analytic £: ΛΓ -• F is complete, and T:H -* H,
defined by Γ£(/) = ι> + JoG(ξ(s))ds, is a uniform contraction by (3.5)
and the Lipschitz assumption on G. The result thus follows from the
contraction mapping principle. D

4. The polar decomposition of Aut(^4). In this section we let A denote
a fixed element of s/ or JS?, and we let end(^4) denote the space of
endomorphisms of A as a filtered vector space. (We write "end(Λ)" rather
than cΈnd(^4)" as a reminder that elements of end(yl) are unrelated to the
multiplicative structure of A.) If for j > 0 we let i^(end(^4)) = [u e
end(A):u(Fn) <z Fn+J}, then {Fj(end(A))} is a separated filtration of
end(^4), and the resulting metric space is complete. Thus end(^4) e s/. If
A = YljAj is graded so is end(^4): set endj(A) = {u e end(^4):w(^4M) c
An+J}. Notice that u = ΣyL0

 wy» where for x = £*„ G Y\nAn we have
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Any u G end(^4) induces an endomorphism on Fj/FJ+1, and as a
result an endomorphism Tlu e endo(gr(^4)). When A is graded and
u = u0 4 uλ 4 we simply have Πw = u0. Since A = gr(yl) as vector
spaces the homomoφhism Π:end(v4) -> endo(gr(^4)) must be surjective,
and we obviously have Ker(Π) = F^eadiA)). In other words, the se-
quence

(4.2) 0 -> F1(end(^)) -> end(Λ) ^ endo(gr(^)) -> 0

is exact.

4.3. LEMMA ([1], p. 178) u G end(^4) w inυertible if and only if
Π M G endo(gr(^4)) has this property.

Now let Aut(^4) c end(^4) denote the group of filtered algebra auto-
morphisms of A, and as a filtration on A\xt(A) let F0(Aut(yί)) = Aut(^4)
and Fj(Aut(A)) = (1 + /}(end(Λ))) Π Aut(yl). To see that Aut(^) e ^
first notice that for 1 4- u e i^(Aut(^4)) we have (1 + w)"1 given by the
Neumann series, and as a consequence whenever 1 4- v e i7^ (Aut(^4)) we
have (1 + w,l 4- υ) = 1 + [w,f] (modi^+^+1(Aut(^))). This gives the
required commutator property, and since the topology on Aut(yί) is that it
inherits as a closed subspace of end(^ί), Aut(^4) e ^ follows.

Let Der(^4) denote the collection of filtration preserving derivations
of A. This is a closed Lie subalgebra of (end(^4))L, and therefore belongs

4.4. PROPOSITION. For any a e Der(^4) n mdiF^cndiA))) we have
exp(α) G Aut(y4). In particular, exp:

. The argument is standard and uses the Leibniz rule an{xy) =
Σn

J=0(")aJ(x)an-J(y). The condition that a G mdiF^endiA))) insures
convergence in the following computation:

= exp(β)(x)exp(α)(j).
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Let A e j / be graded and let Auto(^4) denote those automorphisms
of A which preserve degree. We endow Auto(A) with the trivial filtration
and thereby regard it as an object of ^.

4.5. THEOREM. For graded A we have a split exact sequence

0 -* FX{Ώ&(A)) *% Aut(A) 5 Aato(A) -> e

of ^-morphisms, where F^De^A)) is the Campbell-Hausdorff group of
Der(A). In particular, Aut(A) is the semidirectproduct of Fλ(Dtτ{A)) with
Auto(Λ).

Stated less formally, the conclusion is that any u G Aut(^4) has a
unique "polar decomposition" u = uQexp(a) with u0 G Auto(^4) and
a G F^ΌeτiA)). Obviously we can also write u as exρ(6)w0, where

Proo/. (2.4) and Proposition 4.4 imply exp: F^Όe^A)) -» Aut(^4) is
an injection, and since Auto(^4) c Aut(^4), Π:Aut(^4) -> Auto(^l) must
be a surjection. Moreover, the inclusion expίi^Der^))) c Ker(Π) is
obvious, and the inclusion Auto(^4) c Aut(^4) provides the section defi-
ning the splitting. It remains only to prove that Ker(Π) c

T o this end consider g = l + « E K e r ( Π ) c Aut(^4), a n d notice that
S(χy) = S(x)g(y) implies u(xy) = u(x)y + xu{y) + u(x)u(y). Now
write u = wx 4- , apply this last equality to homogeneous elements
x e ^ , y G ̂ 4̂ , and consider the (1 + /? + ^)th-component; it follows
that ux must be a derivation. On the other hand, (2.4) implies that
g = exp(tf) for some a = aλ + a2+ G i7

1(end(^4)), and on compar-
ing degrees we see that aγ = ul9 hence ax G /^(Deri^)). Now assume, by
induction, that at G J^(Der(^4)) for 1 < / <y - 1 and set b = ax

+ +Λy _ l 5 so that exp(-fe), and therefore exρ((-6)*α) = (exp(-δ))g
are in Aut(yl). We observe that (-b)*a = (-b)*{b + βj + ) Ξ

-ft + H α ; + (l/2)[-b, b + aj+ ] (modi^+ 1), so that (-6)* α =
αy. 4- therefore exp((-fe)*α) = l + ι;, where v = aj + . But
the argument for 1 + w can now be applied to 1 + ί; to show that
Qj G i^(Der(^4)), and since Der(^4) is complete it follows that a = Σαy G
Der(^). D

We now turn to the closely related question of interpolation. An
(analytic) one-parameter group in an algebra i e i is an analytic
homomorphism φ:K -> A; an element of A extends to a one-parameter
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group if it is the value at 1 of such a mapping. Any derivation a e
rad( i^yl)) defines a one-parameter group by means of the formula
φ(/) = exp(ta).

"Tournants Dangereux:"
(1) The condition α e r a d ^ ^ ) ) is necessary to insure convergence

of the exponential series.
(2) If A is an algebra over C or R the classical one-parameter groups

t -> ekt are not analytic in our sense.

4.6. THEOREM. Let A be an algebra in si or <£, and let u e Aut(A).
Then u extends to an analytic one-parameter group if and only ifu = exp(α)
for some a e Όeτ(A) Π

Proof. Suppose u = w(l), where u(t) is an analytic one-parameter
group. Then (3.4) gives

u'(t) = (u(t + s)- u(ή)/s\s=0 = s-ι(u(s) - l ) « ( 0 l,-o = u'(0)u(t),

with M'(0) = α e end(^4). Moreover, repeated differentiation now gives
w(/7)(0) = βw. Taylor's formula thus implies u = Σan/n\9 hence α" -> 0,
and therefore a e radίF^endί^))). To see that α e Όeτ(A) simply note
that

a(xy) = u'(0)(xy) = (d/dt)(u(t)(xy)) \ r = 0

= (d/dt)(u(t)xu(t)y) I ί = 0 = a{x)y + ^(.y).

The converse is obvious: if u = exp(<?), let w(/) = exp(ta). D

REMARK. The condition that a e radίi^ίendί^))) is equivalent to Ua
being nilpotent.

5. Application: Diff(w). Let ^ = A(n) = iT[[x]] e si denote the
graded ΛΓ-algebra of formal power series in x = (JC1, . . . , xn). Theorem 4.5
guarantees the existence of a split exact sequence

(5.1) 0 -> ^(Derί^)) *% Aut(A) -^ Aut o(^) -> ̂

of ^-morphisms; the aim of this section is to identify this with a second
sequence

(5.2) 0 -> F1(Vect(«))E?Diff(«) JΛCG1(^") -> e

which we now explain.
First, Vect(«) denotes the space of formal vector fields X = ΣX'd/dx'

in Kn with the usual Lie bracket and having the origin as an equilibrium
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point. VectO) e JS? when graded by Vect^w) = {X: X1 is homogeneous
of degree j + 1}, y > 0. In (5.2) F^Yectin)) denotes the Campbell-
Hausdorff group.

Secondly, Diff(π) is the group of non-singular formal power series
self-mappings of Kn fixing the origin; the group operation is formal
composition (which requires the absence of constant terms to be defined)
and the identity is the w-tuple of coordinate functions x = (x 1,..., xn).
We note that Όiff{n) c M0(n):= Fλ{A)n, the semigroup (again under
composition) of formal power series φ(x) = ax + . One has φ e
Όifΐ(n) if and only if the Jacobian a = φ'(0) = Jac(φ) is non-singular.

To define ExpiF^Vect^)) -> Diff(/i) associate with X = ΣX^/dx1

the element G = Gx = (X1,..., Xn) e M0(n) and consider the initial-
value problem

(5.3) η = Goη, η(0) = x.

Exp(X) is the time-one map of the formal flow of X, i.e. Exp(X) = η(l),
where η(t) is the unique solution of (5.3).

The existence and uniqueness of η(t) is a consequence of Theorem
3.6. Indeed, first observe that the self-map ξ -> G ° £ of M 0 ( Λ ) is Lipschitz,
with Lipschitz constant at most 1/2, provided G(x + Λ) — G(x) ^ FJ+1

whenever h G i^. In analogy with the proof of Proposition 2.3 it suffices
to establish this when G is a monomial of the form jcαϋ, v e ^Γ", but since
I G ^(Vect^)) we have \a\ > 2, and so in this case the assertion is
obvious. As for G°ξ being analytic whenever ξ:K-> M0(n) is such,
simply write X* = Σβ«xα, x = (x 1 , . . . , xw), α = (al9..., αn). Then
(X1o ξ(t)) = Σβ^ξ(O)^ which is a convergent series in the complete
algebra of analytic functions from K into A(n) (cf. (3.2e,f)). Now observe
that τj(r) is an analytic one-parameter group for the usual reason: for
fixed s e K the functions η(t + s) and η(t)°η(s) satisfy the same
initial-value problem. Thus η(l) = Exp(JQ e Diff(π).

We remark that Vect(«) can be identified with Der(^4) as elements of
oSf. Indeed, an element X e Vect(«) acts as a derivation D = Dx on
A = A(n) in the usual way, and since X* = D(xi) the vector field is
uniquely determined by this action. On the other hand, any D
preserves the filtration, so that X1 = D{xl) e Fλ{A) and D =

5.4. THEOREM. There is an "anti-isomorphism" of split exact sequences

0 -> Fx{\eci(n)) ^ Diff(π) ^ Gl(i^") -> e

0 -* Fx(Der(^)) ^ Aut(^)
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where the groups on the left are the Campbell-Hausdorff groups and the

center and right vertical arrows denote the anti-isomorphism given by the

formal pull-back mapping φ —» φ*. In particular, Όifί(n) is the semidirect

product of G\(Kn) with Fx(Vect(«)).

REMARK. The definitions of the mappings in this diagram follow

standard usage. However, this results in Exp being an anti-homomor-

phism.

The theorem is an immediate consequence of the following two

propositions. Let end(^ί) act on An diagonally: if u e end(yί) and / =

( / \ . . . , fn) e A\ write u •/ for ( i i ί/ 1 ) , . . . ,«(/»)) .

5.5. PROPOSITION. The pull-back mapping φ -> φ* establishes an anti-

isomorphism between M0(n) and the semi-group of algebra endomorphisms

of A; the mapping u —> u x is a left inverse.

Proof. Simply note that if φ e M0(n) then φ* x = φ, and that when

u e end(^4) then (u x)*(xι) = u(xι), so that (u x )* = u whenever u is

an algebra endomorphism. D

5.6. PROPOSITION. The unique solution η(t) of (5.3) is given by

t —• exp(tD) x, where D = D^.

Proof. We claim that dkη/dtk = Gk°η, where Gk = Dk x. Indeed,

the chain-rule is valid in this context and gives

= d/dt{Gk o η) = Σ V'(t){{dGk/dχ ) o η)

Now apply the Taylor formula, and observe that Gk° η(0) = Dk - x. D

5.7. EXAMPLE If φ, p e Diff(w) have respective polar decompositions

A o Exp( X) and B ° Exp(7), then the group structure inherent in Theorem

5.4 immediately gives the polar decomposition of φ ° p. Indeed, we have

φop = A oExp(X) o B °Exp(7) = A ° B oExp(55 |eX) oExp(7)

In particular, if φ = A °Exp( X) is in normal form, i.e. if A*X = X, then

induction gives φn = An °Έxp(nX).
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6. Formal symplectic diffeomorphisms. Here we let x = (q,p) e Kn

X Kn represent a pair of canonical variables in 2w-dimensional space. In
this case the algebra A = ^Γ[[x]] of §5 is also a complete graded Lie
algebra under the formal Poisson bracket

and when so viewed it will be convenient to relabel A as L = Π7L,-,
where Lj = -4y + 2 *s ^ e s P a c e of homogeneous polynomials of degree
j + 2. We will exploit this double algebra structure.

To begin notice that end(L) = end(^4), since "end" ignores the
multiplicative structure. As a consequence Der(yί), Der(L), Aut(^ί) and
Aut(L) are all included in end(^ί). Secondly, if / e L then ad(/) e Der(L)
is also a ring derivation of A. But then ad | F ( L ) has values in i^(Der(^4))
Π i^(Der(L)), and as a result must be a filtered group homomorphism of
the Campbell-Hausdorff group of L into Aut(^4) Π Aut(L).

6.1. PROPOSITION. ad:JFi(L) -> ^(Derί^)) n /^(DerίL)) is α

Proof. For ad(/) = 0 we have {/,#,-} = {/, pj) = 0, hence all partial
derivatives of / must vanish, and therefore / must be constant. But
/ e FX(L) implies 1(0) = 0, so in fact / = 0. Now let D e /^(Derί^)) Π
^(DerίL)), and set Qt = Z>(ίf.), Pf = D ( A ) ; note that Q^P, e
Applying 2) to the canonical commutation relations {qi,pJ} =
{9i9 Qj) == {Pi9 Pj} == 0 a n d using Z) e Der(L) we then obtain

hence 3 P / 8 Λ = - θ ρ / θ ^ , dQ^dpj = 3 β / 3 Λ and
These equations hold for the homogeneous components of the Qi9 Pi9 and
as a result the one-form Σ(Pidqi — Qidp^ must be closed in the sense that
all of the homogeneous components have this property. But then for each
homogeneous component of degree k > 2 we can find a homogeneous
polynomial of degree k + 1, denoted by lk_1 in accordance with our
previous convention, such that for / = /x + we have

But then D = ad(/) and / e FX(L). D

In Theorem 5.4 we found that Diff(2/i) - AvΛ(A). We now let
Can(tf) be the group of formal canonical transformations of K2n fixing
the origin: Can(#) = (φ e Diff(2«):φ* preserves Poisson brackets} =
{φG Diff(2w): φ* e Aut(L)}. We readily see that φ -> φ* is an anti-iso-
morphism between Can(w) and Aut(^ί) Π Aut(L).
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6.2. THEOREM. There is a split exact sequence of G-rnorphisms

(1) 0 -* FX(L) -» Can(ιi) ** Sp(n) -> e,

where Fλ(L) is the Campbell-Hausdorff group of L and the map Fλ(L)

Can(«) is given by I -> exp(ad(/)) x.

. Apply Theorem 4.5 to A twice: first as a ring and then as a Lie

algebra. The result is an exact sequence 0 -> Fι{Όtτ{A)) Π Fι(Dετ{L)) ->

Aut(^4) Π Aut(L) -> G l ( # " ) Π Aut o (L) -> e, and the terms are im-

mediately identified with those of (1). D

The meaning of Theorem 6.2 is that every formal canonical transfor-

mation u of K2n preserving the origin can be uniquely decomposed as a

product woexp(ad A), where u0 = Jac(w) is a symplectic linear map and h

is a formal hamiltonian vanishing to order three at 0.

As an application of this polar decomposition we offer a quick proof

of a theorem which, at least when n = 1, is standard in the dynamical

systems literature (compare [9, pp. 30-33]).

6.3. EXAMPLE. Let u e Can(fl) be in normal form, i.e. uuo = uou,

where u0 = Jac(w) ([9, p. 31]). Then u has an integral. Indeed, if u =

woexp(ad/j) then exp(adA) commutes with u0. But then exp(adΛ) =

exp(ad Λ)t/oWo1 = uo exρ(ad h)u^1 = exp(w0 ad hu$ι) = exρ(ad(w0Λ)).

Since exp°ad is injective, uoh = h. But then uh = h as h is certainly

invariant under its own flow.
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