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ON THE SATO-SEGAL-WILSON
SOLUTIONS OF THE K-dV EQUATION

RUSSELL A. JOHNSON

We discuss the class of solutions of the K-dV equation found by
Sato, Segal, and Wilson. We relate this class of solutions to properties of
the Weyl m-functions, and of the Floquet exponent for the random
Schrédinger equation.

1. Introduction. In a series of recent papers, Date, Jimbo, Kashiwara,
and Miwa [5, 6,7, 8,9] have developed ideas of M. and Y. Sato [23, 24] for
finding solutions of the Kadomtsev-Petviashvili (K-P) hierarchy. The
solutions of the K-P hierarchy discussed in these papers are expressed in
terms of the so-called 7-function, which can be viewed as a generalization
of the Riemann ©-function.

Even more recently, Segal and Wilson [25] have given a careful
formulation of the work of the Kyoto group. A consequence of their
analysis is the following. Recall that one equation of the K-P hierarchy is
the Korteweg-de Vries (K-dV) equation:

(1) Y 6ua— e u(0,x) = uy(x),

viewed as an evolution equation with initial data u,(x). Segal and Wilson
produce a class €@ of initial conditions (or “potentials”) u,(x) for
which (1) admits a solution u(¢, x) which is meromorphic in ¢ and x. The
class €@ contains the solitons (see, e.g., [1]) and the algebro-geometric
potentials [11, 18, 21]. We will call the elements of €@ Sato-Segal-Wilson
potentials.

The purpose of the present note is to describe in some detail a
subclass LP (for “limit-point”; see below) of the class #®. Namely,
consider the Schrodinger equation

(2) L¢ = (—;—f—j + uo(x))¢ = \¢

with potential u,(x). Define LP € ¥® to be the set of Sato-Segal-
Wilson potentials which are real and finite for all real x, and for which L
is in the limit-point case x = + oo ([26]; [3, Ch. 9]). Let m_(A) be the
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corresponding Weyl m-functions; they are defined and holomorphic for
Im A # 0. Define

m,(z%), Imz>0,Rez#0,

M(z) =
(2) m_(z*), Imz<O0,Rez#0.

We show that, if u, is in LP, then there exists » > 0 such that .Z extends
to a holomorphic function on |z| > r with a simple pole at z = co.
Conversely, if u,(x) is a locally-integrable, real function of x € R such
that L = —d?/dx* + uy(x) is in the limit-point case at x = + oo, and if
m (X) form branches of a function #(z) (z* = X\) which is holomorphic
for |z| > r, then u, € LP.

We use this observation to find u, € LP for which the spectrum 2 of
L has a Cantor-like part, i.e. = N (-o0,7?) is a Cantor set for some
r € R. We then show how to “explicitly” construct a large subclass of LP.
To do so, we use the Floquet exponent w = w(A) (ImA > 0) introduced
by Johnson-Moser [15] and studied by Kotani [16, 17], De Concini-John-
son [10], Giachetti-Johnson [13], and others. The construction goes as
follows. Let A(A) be a function holomorphic in the upper half-plane
U= {A|ImA > 0} with positive imaginary part and with certain addi-
tional properties; in particular it is supposed that the boundary value
h(A\) =lim__ ;. h(X + ie) (A € R) satisfies Re s(A) = O for large real A.
In [17], Kotani shows how to find a stationary stochastic process (2, %, p)
which (with slight abuse of terminology; see §3) has Floquet exponent
w(A) = h(A). By Kotani’s construction, £ is a subset of a certain Hilbert
space of potentials u,. It turns out that p-a.a. potentials are in LP.

Our results may be summarized as follows. On the one hand, poten-
tials in the class LP ¢ ¥® are quite special: the restriction on the
behavior of the m-functions is very strong. On the other hand, it will be
clear from §3 that LP contains much more than the solitons and the
algebro-geometric potentials.

2. The m-functions. We begin with a brief outline of the Segal-Wilson
construction of the class ¥®. The formulas below differ slightly from
those of [25], because we use L = —d?/dx* + uy(x) instead of L =
+d?/dx? + uy(x).

Let K be the unit circle, and let H,C L*(K) be the set of boundary
values in L*(K) of holomorphic functions on the unit disc {z||z| < 1}.
Thus H, = clsspan(l,z,z%...}. One considers subspaces W C L*(K)
which are comparable with H, in the sense that: (i) the orthogonal
projection pr = pr(W): W — H_ is Fredholm of index zero; (ii) the
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orthogonal projection from Wonto H_= (H,)* = clsspan{z7,z72,...}
is compact. The group I, of exponential power series

exp(xz + t,22 + 1,2+ .-+ ) (x,t,€ C)

acts on the Grassmannian Gr of all such subspaces W by pointwise
multiplication of functions. One constructs a determinant bundle Det over
Gr, which in turn can be used to define the determinant of pr(W') when
W & Gr. The r-function 7, of W is now defined as follows:

Tw(X. 1y, 15,...) = detpr(W) /detpr[exp(-xz — 1,22 — - -+ ) - W].

Then 7, is meromorphic in all variables. Moreover if det pr(W) # 0, then
T5(X, t5, 15,...) = oo exactly when detprlexp(-xz — £,z — ---) - W] =
0, and this occurs exactly when exp(-xz — t,z> — ---) - W intersects H _
nontrivially.

One says that a subspace W € Gr is transverse if W N H_= {0};
thus W is transverse iff detpr(W) # 0. The poles of 7, are in 1-1
correspondence with non-transverse subspaces exp(-xz — t,z2 — -+ ) - W
if W itself is transverse.

Let us now restrict attention to the subset Gr® of Gr consisting of
subspaces W c L*(K) which are invariant under z?:z?W c W. The sub-
set {expX® 1,2z} of T', leaves such a W fixed. Let 7,(x, 15, 7s,...) be
the corresponding 7-function. Define

2
u,(x,1) = —25;2—10g1'w(ix,—it,O,O,...);

i.e.,, t; = it and all other ¢;s equal zero. Then u,(x, ) is the solution to
the K-dV equation (2) with initial condition uy(x) = u,(x,0).

An important intermediate step in showing that u,(x,?) solves the
K-dV equation is the construction of the Baker function i ,(x, z). For
our purposes, the following description of {,, will suffice; a more general
discussion is given in [25, §5].

Let W € Gr® be a transverse space, and suppose that (exp-ixz) - W
is transverse for all real x. Then there is a unique function

Ywlx.2) = e’xz(l + i a,-(x)z"')

i=1
in the space W; in fact exp(-ixz) ¢, (X, z) is the inverse image of 1 under
the orthogonal projection of exp(-ixz)- W onto H,. The series in
parentheses converges for |z| > 1. Moreover

2

(‘:}f;%-uo(x))¢w(x,2)=zz¢w(x,2) (XGR,|Z‘> 1),
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where uy(x) = -2(d?/dx?) log7,(ix,0,0,...). One calls ¥, (x,z) the
Baker function of W, or of u(x).

Note that any differential operator L = (-d?/dx?) + u,(x) with C*
potential u,(x) gives rise to a formal Baker function

(3) P(x,2) = e"’”(l + ii &i(x)z")

which formally satisfies (i) LYy = z%), and (i) ¥(0,z) = 1. In fact, the
coefficients d,(x) are C* functions which are determined recursively by
ay=1, a),, = (-i/2)La,, a,(0) = 0 (i > 1). The quantity e "*3(x, z) is
the only element of the ring % of formal Laurent series s(x,z) =
Y2, b,(x)z"" with C* coefficients b,(x) such that e"*’s(x, z) satisfies (i)
and (ii).

Define €@ to be the class of (real or complex) potentials u,(x) such
that, for some complex A # 0, there exists W € Gr® such that A uy(Ax)
= -2Ad?/dx?) log7,(x,0,0,...). Thus ¥® contains those potentials
obtained directly from W e Gr® by differentiating log,,, and also
scalings of those potentials. Every u, € ¥® is a meromorphic function
of x [25, §5].

2.1. DEFINITION. Let LP € ¥® be the set of Sato-Segal-Wilson
potentials u, which satisfy the following additional properties: (i) u,(x) is
real and finite (i.e., no poles) for all real x; (ii) L = —d?/dx* + uy(x) is
in the limit-point case at x = + 0.

Fix u, € LP, and let m ,(A) be the corresponding Weyl m-functions.
Thus

m (A)=¢,0)/9,0) (ImA=+0),

where ¢ , are non-zero solutions of L¢ ,= A¢ , which are in L*(0, + o).
Since these solutions are unique up to constant multiple for Im A # 0, the
m-functions are well-defined. They are holomorphic, and satisfy
sgn[Imm ,(A)-ImA]= +1.

Note that, with ¢ ,(x) as above, the quantities m (s, A) =
¢, (s)/¢,(s) are the m-functions for the translated potential x —
uy(x + s)(s € R).

Define
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Then + is defined for all real x and for all z € Q = {z€ C|Rez #0,
Imz # 0}. Clearly Ly = z%) for all z € Q, and (0,z) = 1, §/(0,2) =
m ,(z?) with the appropriate choices of sign.

It is well-known (e.g., [14, Ch. 10]) that |m (x,A) + V-A|=
O(JA|7*?) as |A| = oo in closed subsectors of {A € C|ImA # 0}. More-
over the estimate on the right is uniform (in closed subsectors) if x
is restricted to a compact interval. It follows that ¢(x, z) =
e'**(1 + O(JA|"'/?)) as |z] = oo in each closed subsector of Q, if x isin a
compact interval.

Now u, is C*, so by, e.g. [20, pp. 37-48], ¥(x, z) has an asymptotic
expansion

Bz~ eefr+ Ay &l )

z z
valid in Q. Moreover the a,(x) are smooth functions which can be
determined recursively by substituting v into L = z%. Since §/(0, z) = 1,
we see that a,(x) = d,(x), where the 4, are the coefficients of the formal
Baker function (see (3)).

Since u, € €@, there is a true Baker function

Y(x,z)=e™(1 +a(x)/z+ )

which converges for large |z|, and which satisfies Ly = z%). Write

v(x,2)/4(0,z) =e™ (1 + by(x)z+ ---).
Using the uniqueness of § in the ring 2, we see that b,(x) = d,(x) =
a,(x) for all i and x. Thus in each sector of Q, the asymptotic series
1+ a,(x)/z+ --- coincides with a series which converges for, say,
|z| > r. We conclude that J(x, z) = ¥(x, z) /¥(0, z) for |z| > .

2.2. THEOREM. Let uy(x) be a real, locally-integrable function of x € R
such that L = —~d*/dx* + uy(x) is in the limit-point case at x = + o0.
Then uy € LP if and only if the Weyl m-functions m _(A) have the property
that

) Imz>0,Rez#0,
@ H(z) = m,(z%), Imz ez
m_(z*), Imz<O,Rez#0

extends holomorphically to the region |z| > r for some r > 0. If M#(z)
admits such an extension, then #(z) has a simple pole at z = co with
residue i.

Proof. We first complete the proof of the “only if” statement. If
z € Q, then #(z) = {/(0,z) by definition of . Since J(x, z) is holo-
morphic in |z| > r and smooth in x (because Ly = z%)), we see that
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A (z) is holomorphic for |z| > r. Simple division shows that #(z) =
iz + --- for large |z|.

Let us consider the “if” statement. Suppose that .#(z) admits an
extension as described. Let m (s, z) correspond to uy(s + x), and let
M (s, z) be defined by (4) with m (s, z?) in place of m ,(z?). Then
A (s, z) is holomorphic in |z| > r; for each s € R, and is jointly continu-
ousin s € Rand |z| > r,. Here r; > r is independent of s.

We prove the last statement. First recall that sgn[Imm (s, A) - ImA]
= 41 if ImA # 0. Note also that .#(s, z) is meromorphic in |z| > r.
These facts imply that (s, z) takes values in R U {00} if and only if z
is pure imaginary, i.e., if and only if A = z2 < —r2.

Next note that, for fixed s, m_(s,A) increases and m_(s,A) de-
creases as A | —oo (unless A is a pole, of course). Now, .#Z(z) has no poles
for |z| > r. Thus we can find r, > r such that, if A < —r?, then m_(0, \)
and m (0, \) are never equal. It follows that, if s € R and A < —r?, then
m_(s,\) and m (s, ) are never equal. This implies that .#(s, z) omits
some interval of real values on |z| > r;. By the Picard theorem [2],
M (s, z) is meromorphic at z = co. By the preceding paragraph, .#(s, z)
has at most a simple pole at z = oo, and by the relations |m ,(s,A)
+ V-A| > 0 if |A\| > oo with 8 < |argA| <7 — §([14]), we see that
M(s,z) =iz + ---. It follows from this and the first sentence of the
present paragraph that (s, z) is holomorphic for |z| > r,. The continu-
ity statement is clear.

Define

@(x,z)=expf()x./il(s,z)ds (|z] > r).

We can write

,(x) | ay(x)

P(x,z) = ef"z(l + alz +

+ ... (XER),

where the series converges for |z| > r, and the coefficients are continu-
ously differentiable for x. In fact they are obtained by integrating the
coefficients of (s, z) and combining powers of 1/z in the exponential;
this can be proved using the Montel theorem [2].

We now follow Segal-Wilson [25, Prop. 5.22 and the preceding
discussion]. First of all, we scale u, (i.e., replace u, by 8%uy(dx) for
sufficiently small § > 0) so as to make .#(z) holomorphicin |z| > 1 — ¢
for some & > 0. Consider the closed subspace W c L?(K) which contains
1= J/(O, z), M(z)= z[A/(O, z), and is invariant under multiplication by z2.
Then W € Gr® [25], and W is transverse by its very definition, i.e.,
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contains no function whose Laurent expansion about z = 0 consists
entirely of negative powers of z.

Next let ¢,(x, z?) be the solutions of L¢ = z2¢ satisfying D/¢,(0, z2)
= 8,;(i, j = 1,2). Then the ¢, are entire in z? for each x € R. Also,
Y(x, z) and ¢,(x, 2)Y(0, z) + ¢,(x, z)¥’(0, z) are both solutions of L¢$ =
z2¢p with the same initial conditions, hence are equal for all x € R. Since
W is z%invariant, it follows that {(x,z) € W for all x € R. Moreover
J(x, z) = e™*(1 + lower order terms in z) for each x. However, these two
properties characterize the Baker function v ,,(x, z), at least if exp(—ixz) -
W is transverse; see the beginning of this section and [25, Prop. 5.1]. Let
u,,(x) be the potential in ¥ defined by W. Then u,, is meromorphic in
x [25, §5]. Thus exp(-ixz) - W is transverse except for isolated points (the
poles of u,,), and we conclude that P(x,2) = w(x, z) except perhaps at
these poles. But since u, is locally integrable, there are no poles. Thus
uy, = uy € LP, which is what we wanted to prove. This completes the
proof of Theorem 2.2.

We finish the section by using a simple limit procedure to construct
potentials in LP. First consider a quasi-periodic potential u of algebro-ge-
ometric type [11, 18, 21]. Thus the spectrum = of L = —d?/dx? + u(x)
(viewed as a self-adjoint operator on L*(—o0, c0)) is a finite union of
intervals: 2 = [Ag, \;] U [A,, A;]U -+ U[A,,, 00). Moreover one has

2g g
(5) u(x) = XA, -2 Px),
i=0 j=1
where P(x) € [Ay;_1,A,,;] (1 <j<g) and the motion of P, is de-
termined by
i\/(}\ - }\0)(}\ - )\1) T (}‘ - }\Zg)
ns#j (Pj - Ps)

(6) P/ = (1<j<g).
A=F,
See [18, 21].

Let us now choose a sequence {u,}y_; of such potentials in the
following way. Let 2, be the spectrum of L, = -d?/dx* + u,(x) as a
self-adjoint operator on L*(—co, c0). We suppose that —r> < A0 < A§) =
r? for some r > 0 independent of n. Further we suppose that =, , C =,
that C = (-c0,7?) NNZ_; =, is a Cantor set, and that u,(x) converges
to a limit function uy(x), uniformly on compact subsets of R. It is clear
from (5) and (6) that such a sequence can be found. Note that |u,(x)| <
2r’(xe R, n=0,1,2,...).

It is easy to check that the spectrum =, of L, = —d2/dx* + uy(x)
equals C U [r?, oo) (this uses the fact that =, decreases with n). That is,
2, has a “Cantor-like part”.
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It must be shown that u, € LP. Let m{’(\) be the m-functions for
L,, and let 4 (z) be the function defined by (4) (n=10,1,2,...). It
follows from [11] (see also [10]) that . (z) extends holomorphically to
|z| > r (n = 1). It can also be shown that there is a fixed interval 7 C R
such that {m{(A)|A < -4r?} U {m™(X)|A < —4r?} does not intersect
I for larger n. This assertion follows from the convergence u, — u, and
the bound ||u,||,, < 2r* (n > 0); we omit the proof.

We conclude that each ./ ,(z) omits the set / of values for |z| > 2r
(n =1,2,...). By the Montel theorem [2], { #,}_; is a normal family of
holomorphic functions on {z||z| > 2r}. One checks that m{(\) -
mQ(X) if ImA # 0. Hence #(z) = lim, , , #,(z) is well-defined and
equals A ((z) for z € Q, |z| > 2r. By Theorem 2.2, u, € LP.

2.3. REMARKS (a). It seems unlikely that the above procedure will
always produce an almost periodic u,. However, using the more detailed
construction of Chulaevsky [4] one can obtain limit-periodic potentials
which are in LP.

(b) Neither the construction above nor that of [4] make it clear that
the resulting potential is meromorphic in the complex x-plane. This is a
remarkable consequence of the Segal-Wilson theory.

3. The Floquet exponent. In this section we will describe a method for
finding potentials in the class LP which generalizes the one given at the
end of §2. We will use the Floquet exponent w = w(\) of —d2/dx* +
uy(x) [10, 15, 16). This quantity is defined with respect to a “stationary
ergodic process” of potentials, and not just with respect to a single u,. For
our purposes, it is convenient to adopt the following definitions [17].

3.1. DerINITIONS. Let @ = L2 (R, (1 + |x|®) ' dx) with the Borel
field # defined by the weak topology. Let {r,|s € R} be the shift
operators defined by (ru)(x) = u(s + x) (1 € &,s €R). Let pu be a
probability measure on (£2, #Z) such that p restricted to each ball { u|||u||,
< R} is Radon, and such that

(1) p(r,(4)) =p(A4) forallx €R, 4 € %,
(i) /Q(jol |u(s)|2ds)dp,(u) < o.

Then (2, @, ) is a stationary stochastic process, and p is invariant. If in
addition:

(iii) p(7.(4)A4)=0 foralx R - pu(4)=00rl
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for each 4 € 4, then (9, %, 1) is a stationary ergodic process, and p. is
ergodic.

Kotani [17] shows that any u € © is in the limit-point case at
x = t+oo. Let m (A)=m (u,\) be the Weyl m-functions; they are
holomorphic in A for Im A # 0, and jointly continuous in (u, A) when Q
has the weak topology.

Let (2, £, ) be a stationary stochastic process. Define

w(d) =w,(A) = meJr(u,)\)du(u).

Since u — m_(u, A) is p-integrable [17], this definition makes sense. One
can show that w(A) is holomorphic in the upper half-plane U = {A €
C|ImA > 0}. Moreover Imw > 0, Rew < 0, and Imdw/dA > 0 for A €
U. If p is ergodic, then w has additional properties which justify the name
“Floquet exponent”. Especially, the boundary value

w(A) = B(A) +ia(N) = egrg+ w(A+ie) (A€R)

satisfies the following conditions. (i) The rotation number A — a(\) =
lim, , _1/x arg(¢'(x) + ip(x)) is continuous, monotone increasing,
and increases exactly on the spectrum =, of L, = -d?/dx* + u(x) for
p—aa. u ([15]; see also [16]). (i1) The Lyapunov number B(A) =
lim, _ _ (1/2x)In[¢?(x) + ¢'*(x)] determines the absolutely continuous
spectrum Y2.4¢ of L, for p — a.e. u; in fact the essential support of X4¢ is
(A € R|B(A) = 0} [16].
Kotani proves the following result [17].

3.2. THEOREM. Suppose w = w(A) is a holomorphic function on U such
that Imw > 0, Rew < 0, and Im(dw/d\) > 0 for A € U. Suppose in
addition that lim, ,__w(X)/V-X =1, and that there exists r> > 0 such
that B(A) <0 for A<0 and B(A\)=0 for X\ > r> Then there is a
stationary stochastic process (X, &, p) such that: (i) w = w,; (ii) p{u €
Q| (L9, ¥) is non-negative definite as a bilinear form on C3, . (R)} = 1.

We will also use the following theorem of De Concini-Johnson [10].
Though their result is stated for a slightly different space €2, the proof
works in the case at hand.

3.3. THEOREM. Let (2, B, 1) be a stationary ergodic process such that
Q is (weakly) compact, and such that the topological support of p equals €.
Let w = w, be the corresponding Floquet exponent.
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(a) Suppose that B(N) = 0 for a.a. X in an open interval I C R. Then
for each u € Q: the function A — m_(u, ) extends holomorphically from U
through 1, and the extended function equals m_(u,\) for ImA < 0. The
same statement holds with + and — interchanged.

(b) Suppose the spectrum 2 = X, of L, is a finite union of intervals for
p-a.a. u € Q, and that B(N\) =0 for a.a. A € Z. Then each u € Q is an
algebro-geometric potential (see §2).

We now turn to the main result of this section.

3.4. THEOREM. Let w = w(A) satisfy the conditions of Theorem 3.2.
Then there is a stationary ergodic process (82, B, |.) which satisfies (1) and
(11) of 3.2 such that u € LP for p-a.a. u € .

Our proof of 3.4 repeats a good share of Kotani’s proof of 3.2.

Proof. Following Kotani, we construct potentials u, (k > 1) with the
following properties. (i) The function u,(x) is T,-periodic and belongs to
Q (i.e., is in L*[0,T,]). (ii) The Floquet exponent w, (defined by normal-
ized Haar measure g, on the circle C, = {7u, |0 <s < T,} C Q) satis-
fies B,(A) = Rew,(A) =0 for A > r?, where r, » r as k - oo. (iii)
B, (A) >0 for A < 0. (iv) w,(A) = w(A), uniformly on compact subsets
of U.

Condition (ii) implies that the spectrum =, of L, = —~d?/dx? + u,(x)
contains [rZ, 00); also, (iii) implies that =, C (0, c0), since u, is periodic
(see, e.g., Moser [19, Ch. 3]). Again by periodicity of u,, 2, is a finite
union of intervals, and B,(A) = 0 for all A € 2. By Theorem 3.3, u,(x)
is an algebro-geometric potential. Thus from (5) in §2,

28, 8k
_ k k
u(x)= 2 A0 =23 PH(x),
i=0 J=1
where
(k) (k) (k) K « ... k) 2
PR (x) e [7\2]_1,}\2]] and 0 < AP < < A§) <.

We conclude that |u,(x)| < 2r} < 2(r? + 1) for all large k.

The circles C, are thus all contained in the weakly compact and
translation-invariant subset @, = cls{u||jull,, < 2(r* + 1)} € Q. The
measures p, define Radon measures on {;, hence there is a weak limit
point p of {u,}¥_;. The topological support £, of p is contained in ;.
Since the translations {7 |x € R} are weakly continuous on ,;, p is
invariant. Also w = w, by weak continuity of u — m_(u, A).
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Next introduce an ergodic decomposition [22] {p, |y € I'} of p. Thus
I' is a measure space with probability measure o, each p, is an ergodic
measure on ) . C Q, and for all continuous functions #: € — R one has

fﬂhdu=fr(fﬂhduy)do(y).

In particular, letting w, (A) be the Floquet exponent with respect to p_,
one has

(7) w,(\) = /rwy(}\)dc(y) (ImA > 0).

Let K C U be precompact in cls U (i.e., K is a bounded subset of
U). Then there is a constant ¢, depending only on K such that
[Rew (A)] < ¢ for all y € T and A € K. This follows from the descrip-
tion of B (A) as a Lyapunov number, together with the estimates of [17,
Lemma 2.8]. Let R = r?, and let n > 2. By bounded convergence we have
nR . nR .
0= fR Rew,(X)dA = lim X Rew, (A + ie) dA

e—>0"

= lim fanRewy(}\+ie)do(y)d>\
R 1

e—0"

nR
= /. alit(];l* j; Rew, (A + ie) dX.
We conclude that, for o-a.a. v, 8,(A) = Rew,(A) = Oforaa. A > R =r>.

Now use Theorem 3.3(a): for each u in the support of p,, A —
m ,(u, \) extends holomorphically from the upper half-plane U through
(r?, 00), and the extension equals m (u, A) in the lower half-plane.

Next consider L, = -d*/dx* + u(x) with domain 9 = C%,,(R) C
L*(R). Since L, is in the limit-point case at x = + oo, it has deficiency
indices zero, hence has a unique self-adjoint extension (its closure), which
moreover is associated to the non-negative bilinear form (L, ¢,{) on 2
[12]. Therefore this self-adjoint extension has no spectrum in (-0, 0). One
now proves in a standard way that m  (u,A) are meromorphic on
ReA < 0, and that m_(u, A) # m_(u, A) there. Since m_(u, A) decreases
and m_(u, A) increases as A | —o0, we can find r; > r such that #(z) =
M (u, z) has no poles on |z| > ry, i.e., is holomorphic there. By Theorem
2.2, u € LP. Note that #(z) = iz + --- for large |z|; therefore #(z) is
holomorphic for Rez? = ReX < 0. Hence .#( z) is holomorphic on |z| >
r.

Finally, let u € Q,. We can find u, in @, such that u, —> u weakly
and such that each u, is in the support of some p, . The m-functions
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m _(u,,\) are meromorphic on ReA <0, and m_(u,,A) <m_(u,,\)
for negative real A. Furthermore m_(u,,\) decreases and m_(u,,\)
increases as A | —oo. Choosing a subsequence if necessary, we can assume
that m ,(u,,-r?) are convergent sequences in R U {c0}. Then for large
n, {m, (u,,A\)|ReX < —r?} and {m_(u,,\)|ReX < —r?} omit intervals
I, of real values. Using the Montel theorem once again, we see that
{m,(u,,-)|n>=1} and {m_(u,, -)|n > 1} are normal families of mero-
morphic functions for ReA < —r2. Using the weak continuity in u of
m (u,\) for ImA # 0, we conclude easily that #(u,,z) > #(u, z) for
|z| > r,and that #(z) = iz + --- . Thus #(z) is holomorphic on |z| > r,
and so ¥ € LP by Theorem 2.2.

3.5. REMARKS (a). We have actually shown that « € LP for all # in
the topological support 2, of .

(b) One can replace the assumption Rew(A) <0 for A <0 by
Rew(A) < 0 for Re ) < ¢, for any constant ¢ < r2.

(c) Let (2, %, n) be a stationary ergodic process such that the topo-
logical support £, of p is compact. Suppose further that there is a fixed
constant r such that: (i) the operators L, satisfy (L, ¢) > —r* ¢, o)
for all smooth ¢ with compact support; (ii) Rew(A) = 0 for A > r2 Then
from the proof of 3.4 one sees that u € LP for each u € Q.

(d) The point of 3.2 is that the function w(A) is quite general. One
can, for example, choose w(A) so that lim,_, ;+ Rew(A) = B(A) < 0 for
all A < r%. Then either Q contains only the constant function u(x) = r2,
or p-a.a. u € Q have spectrum in (—o0, r2) ([16]; also [10]). Only the latter
possibility is of interest. It indicates (but does not prove) that there exist
u € LP with at least some point spectrum.
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