STABILITY OF UNFOLDINGS IN THE CONTEXT OF EQUIVARIANT CONTACT-EQUIVALENCE

JEAN-JACQUES GERVAIS

M. Golubitsky and D. Schaeffer introduced the notion of equivariant contact-equivalence between germs of C^{∞} equivariant mappings, in order to study perturbed bifurcation problems having a certain symmetry property. The main tool used is the so-called "Unfolding Theorem" for the qualitative description of the symmetry-preserving perturbations of these problems. From the point of view of applications, a relevant notion is that of stability of unfoldings. In this paper we prove the equivalence of the universality and the stability of unfoldings in the context of equivariant contact-equivalence.

1. Universal Γ -unfolding. Let Γ be a compact Lie group acting orthogonally on \mathbb{R}^n and \mathbb{R}^p . We write $\mathscr{C}_{n,p}^{\Gamma}$ for the space of C^{∞} germs $f: (\mathbb{R}^n, 0) \to \mathbb{R}^p$ of Γ -equivariant mappings (i.e. $f(\gamma x) = \gamma f(x)$ for all $\gamma \in \Gamma$). The space of Γ -invariant C^{∞} -germs $h: (\mathbb{R}^n, 0) \to \mathbb{R}$ (i.e. $h(\gamma x) = h(x)$ for all $\gamma \in \Gamma$) is denoted by \mathscr{C}_n^{Γ} . In what follows we shall consider germs $G: (\mathbb{R}^n \times \mathbb{R}, 0) \to \mathbb{R}^p$ and $F: (\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^q, 0) \to \mathbb{R}^p$ and we shall assume that Γ acts trivially on \mathbb{R} and \mathbb{R}^q .

The notion of equivariant contact-equivalence introduced by Golubitsky and Schaeffer [3] is the following:

DEFINITION 1.1. We say that G_1 and $G_2 \in \mathscr{E}_{n+1,p}^{\Gamma}$ are Γ -equivalent if

$$G_1(x,\lambda) = T(x,\lambda)G_2(X(x,\lambda),\Lambda(\lambda))$$

where

(1.1.1)
$$T: (\mathbf{R}^n \times \mathbf{R}, 0) \to \operatorname{Gl}_p(\mathbf{R}) \quad \text{is } C^{\infty}.$$

(1.1.2)
$$(X, \Lambda): (\mathbf{R}^n \times \mathbf{R}, 0) \to (\mathbf{R}^n \times \mathbf{R}, 0)$$
 is C^{∞} ,

$$\det(d_X X(0)) > 0 \quad \text{and} \quad \Lambda'(0) > 0.$$

(1.1.3)
$$X(\gamma x, \lambda) = \gamma X(x, \lambda)$$
 for all $\gamma \in \Gamma$.

(1.1.4)
$$\gamma^{-1}T(\gamma x, \lambda)\gamma = T(x, \lambda)$$
 for all $\gamma \in \Gamma$.

A q-parameter Γ -unfolding of $G \in \mathscr{E}_{n+1,p}^{\Gamma}$ is a germ $F \in \mathscr{E}_{n+1+q,p}^{\Gamma}$ such that $F(x, \lambda, 0) = G(x, \lambda)$.

DEFINITION 1.2. A *q*-parameter Γ -unfolding $F \in \mathscr{C}_{n+1+q,p}^{\Gamma}$ of $G \in \mathscr{C}_{n+1,p}^{\Gamma}$ is said to be a universal Γ -unfolding if every Γ -unfolding *H* of *G* is induced by *F* in the following way: assume that $H \in \mathscr{C}_{n+1+q',p}^{\Gamma}$; then there exist C^{∞} germs $T: (\mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^{q'}, 0) \to \operatorname{Gl}_p(\mathbf{R})$ and $(X, \Lambda, \alpha): (\mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^{q'}, 0) \to (\mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^q, 0)$ such that:

(1.2.1)
$$H(x,\lambda,\beta) = T(x,\lambda,\beta) \cdot F(X(x,\lambda,\beta),\Lambda(\lambda,\beta),\alpha(\beta)).$$

(1.2.2)
$$X(\gamma x, \lambda, \beta) = \gamma X(x, \lambda, \beta)$$
 for all $\gamma \in \Gamma$.

(1.2.3)
$$\gamma^{-1}T(\gamma x, \lambda, \beta)\gamma = T(x, \lambda, \beta)$$
 for all $\gamma \in \Gamma$.

(1.2.4)
$$(X(x,\lambda,0),\Lambda(\lambda,0)) \equiv (x,\lambda).$$

(1.2.5) $T(x, \lambda, 0) \equiv I_p$ where I_p is the identity $p \times p$ -matrix.

Let $\mathscr{M}_{n+1,p}^{\Gamma} = \{T : (\mathbb{R}^{n+1}, 0) \to M_p(\mathbb{R}) \mid T \text{ is } C^{\infty} \text{ and satisfies } (1.2.3)\}$ where $M_p(\mathbb{R})$ is the space of real $p \times p$ matrices. For $G \in \mathscr{C}_{n+1,p}^{\Gamma}$ we define

$$M_G: \mathscr{M}_{n+1,p}^{\Gamma} \oplus \mathscr{E}_{n+1,n}^{\Gamma} \to \mathscr{E}_{n+1,p}^{\Gamma}$$
$$(T, X) \mapsto T \cdot G + (d_X G) \cdot X$$

and

$$N_G \colon \mathscr{E}_1 o \mathscr{E}_{n+1,p}^{\Gamma}$$

 $\Lambda \mapsto (d_\lambda G) \cdot \Lambda$

Let

$$\tilde{\Gamma}G = M_G\left(\mathscr{M}_{n+1,p}^{\Gamma} \oplus \mathscr{E}_{n+1,n}^{\gamma}\right) \text{ and } \Gamma G = \tilde{\Gamma}G + N_G(\mathscr{E}_1).$$

Roughly speaking, ΓG is the tangent space to the orbit $O_G = \{G' \in \mathscr{B}_{n+1,p}^{\Gamma} | G' \text{ is } \Gamma\text{-equivalent to } G\}$ at G.

284

If O_G has "finite codimension" that is $\dim_{\mathbf{R}} \mathscr{E}_{n+1,p}^{\Gamma} / \Gamma G < \infty$ we have the unfolding theorem:

THEOREM 1.3 (GOLUBITSKY-SCHAEFFER [3]). Let $G \in \mathscr{C}_{n+1,p}^{\Gamma}$ be of finite codimension and let $F \in \mathscr{C}_{n+1+q,p}^{\Gamma}$ be an unfolding of G. Then F is a universal Γ -unfolding of G if and only if

$$\frac{\partial F}{\partial \alpha_1}(x,\lambda,0),\ldots,\frac{\partial F}{\partial \alpha_q}(x,\lambda,0)$$

(where $(x, \lambda, \alpha) \in \mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^q$) project onto a spanning set of $\mathscr{E}_{n+1,p}^{\Gamma}/\Gamma G$ *i.e.*

(1.3.1)
$$\mathscr{E}_{n+1,p}^{\Gamma} = M_G \left(\mathscr{M}_{n+1,p}^{\Gamma} \oplus \mathscr{E}_{n+1,n}^{\Gamma} \right) + N_G(\mathscr{E}_1) + \mathbf{R} \left\{ \frac{\partial F}{\partial \alpha_i}(x,\lambda,0) \right\}.$$

REMARK 1.4. In fact, Golubitsky and Schaeffer [3] indicated how to prove the sufficiency of the condition (1.3.1). The necessity of (1.3.1) is proved in the following way (see [4] p. 259): Let $h \in \mathscr{C}_{n+1,p}^{\Gamma}$ and consider the one-parameter Γ -unfolding $H \in \mathscr{C}_{n+1+1,p}^{\Gamma}$ defined by $H(x, \lambda, t) = G(x, \lambda) + th(x, \lambda)$. Since F is universal, there exist T, X, A and α as in 1.2 such that

$$H(x,\lambda,t) = T(x,\lambda,t) + F(X(x,\lambda,t),\Lambda(\lambda,t),\alpha(t)).$$

We obtain

$$h(x,\lambda) = \frac{\partial H}{\partial t}(x,\lambda,t) |_{t=0}$$

= $\frac{\partial}{\partial t}T(x,\lambda,t) \cdot F(X(x,\lambda,t),\Lambda(\lambda,t),\alpha(t)) |_{t=0}$

which is easily seen to belong to $\Gamma G + \mathbf{R}\{\partial F(x, \lambda, 0)/\partial \alpha_i\}$.

2. Stability of Γ -unfoldings. Let U be a Γ -invariant open subset of $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^q$. We write $C^{\infty}_{\Gamma}(U, \mathbb{R}^p) = \{F \in C^{\infty}(U, \mathbb{R}^p) | F(\gamma x, \lambda, \alpha) = \gamma F(x, \lambda, \alpha) \text{ for each } \gamma \in \Gamma\}$ endowed with the topology induced by the Whitney C^{∞} -topology on $C^{\infty}(U, \mathbb{R}^p)$.

DEFINITION 2.1. Let U and V be Γ -invariant open subsets of $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^q$. Let $\overline{F} \in C^{\infty}_{\Gamma}(U, \mathbb{R}^p)$ and let $\overline{H} \in C^{\infty}_{\Gamma}(V, \mathbb{R}^p)$. We say that \overline{F} , at $(x_0, \lambda_0, \alpha_0) \in U^{\Gamma}$ is Γ -equivalent to \overline{H} at $(x_1, \lambda_1, \alpha_1) \in V^{\Gamma}$ if there exist

 C^{∞} germs

$$T: (\mathbf{R}^{n} \times \mathbf{R} \times \mathbf{R}^{q}, (x_{0}, \lambda_{0}, \alpha_{0})) \longrightarrow \mathrm{Gl}_{p}(\mathbf{R})$$

$$X: (\mathbf{R}^{n} \times \mathbf{R} \times \mathbf{R}^{q}, (x_{0}, \lambda_{0}, \alpha_{0})) \longrightarrow (\mathbf{R}^{n}, x_{1})$$

$$\Lambda: (\mathbf{R} \times \mathbf{R}^{q}, (\lambda_{0}, \alpha_{0})) \longrightarrow (\mathbf{R}, \lambda_{1})$$

$$\phi: (\mathbf{R}^{q}, \alpha_{0}) \longrightarrow (\mathbf{R}^{q}, \alpha_{1})$$

such that

(2.1.1)
$$F(x,\lambda,\alpha) = T(x,\lambda,\alpha) \cdot H(X(x,\lambda,\alpha),\Lambda(\lambda,\alpha),\phi(\alpha)),$$

(2.1.2) (X, Λ, ϕ) is a germ of a diffeomorphism,

(2.1.3) $X(\gamma x, \lambda, \alpha) = \gamma X(x, \lambda, \alpha)$ and $\gamma^{-1}T(\gamma x, \lambda, \alpha)\gamma = T(x, \lambda, \alpha)$

for all $\gamma \in \Gamma$ where U^{Γ} and V^{Γ} are the sets of fixed points of U and V under the action of Γ .

DEFINITION 2.2. Let $G \in \mathscr{E}_{n+1,p}^{\Gamma}$ and let $F \in \mathscr{E}_{n+1+q,p}^{\Gamma}$ be a Γ unfolding of G. We say that F is Γ -stable if, for every representative \overline{F} of F defined on an Γ -invariant open neighbourhood U of $0 \in \mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^q$, there is a neighbourhood \mathscr{U} of \overline{F} in $C^{\infty}_{\Gamma}(U, \mathbf{R}^p)$ such that, for every $\overline{H} \in \mathscr{U}$, there is a point $(x_0, \lambda_0, \alpha_0) \in U^{\Gamma}$ such that \overline{F} at (0, 0, 0) is Γ -equivalent to \overline{H} at $(x_0, \lambda_0, \alpha_0)$.

The main result of this paper is:

THEOREM 2.3. Let $G \in \mathscr{C}_{n+1,p}^{\Gamma}$ be such that the k-jet $j^k G$ is Γ -sufficient. Then a Γ -unfolding $F \in \mathscr{C}_{n+1+q,p}^{\Gamma}$ of G is universal if and only if it is Γ -stable.

Note. We say that the k-jet $j^k G$ of G at 0 is Γ -sufficient if, for every $G_1 \in \mathscr{C}_{n+1,p}^{\Gamma}$ such that $j^k G_1 = j^k G$, G and G_1 are Γ -equivalent in the sense of Definition 1.1.

Before proceeding to the proof of Theorem 2.3 we shall give some transversality properties of universal Γ -unfoldings.

3. Transversality. Let $J_{\Gamma}^{k}(n + 1, p) = \{\text{polynomial mappings on } \mathbf{R}^{n} \times \mathbf{R} \text{ into } \mathbf{R}^{p} \text{ which are } \Gamma \text{-equivariant and of degree } \leq k\}$. This is the space of k-jets of the elements of $\mathscr{E}_{n+1,p}^{\Gamma}$ i.e.

$$J_{\Gamma}^{k}(n+1,p) = \mathscr{E}_{n+1,p}^{\Gamma} / \left(\underline{m}_{x,\lambda}^{k+1} \cdot \mathscr{E}_{n+1,p}\right) \cap \mathscr{E}_{n+1,p}^{\Gamma}$$

where $\underline{m}_{x,\lambda}$ is the maximal ideal of $\mathscr{E}_{n+1} = \mathscr{E}_{x,\lambda}$. Let

 $\mathscr{G}^k = \{ j^k(T, X, \Lambda) \mid T, X \text{ and } \Lambda \text{ are as in Definition 1.1} \}.$

Then \mathscr{G}^k is an analytic Lie group which acts analytically on $J_{\Gamma}^k(n+1, p)$ in the following way: for $\theta \in \mathscr{G}^k$ and $z \in J_{\Gamma}^k(n+1, p)$, put $\theta z = j^k((T, X, \Lambda) \cdot G)$ where $\theta = j^k(T, X, \Lambda)$, $z = j^k G$ and $((T, X, \Lambda) \cdot G)(x, \lambda) = T(x, \lambda) \cdot G(X(x, \lambda), \Lambda(\lambda)).$ We shall write O_z^k for the orbit of z in $J_{\Gamma}^{k}(n+1, p)$ under the action of \mathscr{G}^{k} . As in [7, p. 41], we can prove

LEMMA 3.1. The tangent space to
$$O_z^k$$
 at z is
 $T_z O_z^k = \pi_k \left[M_G \left(\mathscr{M}_{n+1,p}^{\Gamma} + (\underline{m}_{x,\lambda} \cdot \mathscr{E}_{n+1,p}) \cap \mathscr{E}_{n+1,p}^{\Gamma} \right) + N_G(\mathscr{E}_1) \right]$

where $\pi_k \colon \mathscr{E}_{n+1,n}^{\Gamma} \to J_{\Gamma}^k(n+1,p)$ is the natural projection.

An immediate consequence (see e.g. [1]) is

PROPOSITION 3.2. Let $G \in \mathscr{C}_{n+1,p}^{\Gamma}$ be such that $j^k G$ is Γ -sufficient. Then

$$\Gamma G \supset \left(\underline{m}_{x,\lambda}^{k+1} \cdot \mathscr{E}_{n+1,p}\right) \cap \mathscr{E}_{n+1,p}^{\Gamma}.$$

3.3. For $\overline{F} \in C^{\infty}_{\Gamma}(U, \mathbb{R}^p)$ and $(x, \lambda, \alpha) \in U$ we define the germ $F^{\alpha}_{(\chi\lambda)}: (\mathbf{R}^n \times \mathbf{R}, 0) \to \mathbf{R}^p$

$$(y, \mu) \mapsto \overline{F}(x + y, \lambda + \mu, \alpha)$$

and we define

$$j_*^k \overline{F} \colon U \to \mathbf{R}^n \times \mathbf{R} \times J^k(n+1, p)$$
$$(x, \lambda, \alpha) \mapsto (x, \lambda, j^k F^{\alpha}_{(x,\lambda)})$$

where $J^k(n+1, p)$ is the space of k-jets of the elements of $\mathscr{E}_{n+1,p}$. For $G \in \mathscr{E}_{n+1,p}^{\Gamma}$ we write S_z^k for the submanifold of $J^k(n+1, p)$ equal to $(\mathbf{R}^{n+1})^{\Gamma} \times O_z^k \times (J_{\Gamma}^k(n+1, p))^{\perp}$, where $z = j^k G$, $(\mathbf{R}^{n+1})^{\Gamma}$ is the set of fixed points under the action of Γ and $(J_{\Gamma}^{k}(n+1, p))^{\perp}$ is the orthogonal complement in $J^k(n+1, p)$ of the subspace $J^k_{\Gamma}(n+1, p)$.

LEMMA 3.3. Let $F \in \mathscr{C}_{n+1+q,p}^{\Gamma}$ be a Γ -unfolding of $G \in \mathscr{C}_{n+1,p}^{\Gamma}$. Then $j_*^k F$ is transverse to S_z^k at (0, 0, 0) if and only if

(3.3.1)
$$\Gamma G + \mathbf{R} \left\{ \frac{\partial F}{\partial \alpha_i}(x,\lambda,0) \right\} + \left(\underline{m}_{x,\lambda}^{k+1} \cdot \mathscr{E}_{n+1,p} \right) \cap \mathscr{E}_{n+1,p}^{\Gamma} = \mathscr{E}_{n+1,p}^{\Gamma}.$$

Proof. The range of $d(j_*^k F)_{(0,0)}$ is

$$\mathbf{R}^{n} \times \mathbf{R} \times \pi_{k} \left[\mathbf{R} \left\{ \frac{\partial F}{\partial x_{i}}(x,\lambda,0), \frac{\partial F}{\partial \lambda}(x,\lambda,0), \frac{\partial F}{\partial \alpha_{j}}(x,\lambda,0) \right\} \right].$$

Hence the above transversality condition is satisfied if and only if

Range
$$d(j_*^k F)_{(0,0,0)} + T_{(0,0)}(\mathbf{R}^{n+1})^{\Gamma} \times \{0\} + \{0\} \times T_z O_z^k$$

+ $\{0\} \times (J_{\Gamma}^k(n+1, p)^{\perp})^{\perp}$
= $\mathbf{R}^{n+1} \times J^k(n+1, p);$

hence, by virtue of Lemma 3.1,

$$\pi_k \left[\Gamma G + \mathbf{R} \left\{ \frac{\partial F}{\partial \alpha_i}(x, \lambda, 0) \right\} \right] + (J_{\Gamma}^k(n+1, p))^{\perp} = J^k(n+1, p).$$

But

$$\pi_k\left[\Gamma G + \mathbf{R}\left\{\frac{\partial F}{\partial \alpha_i}(x,\lambda,0)\right\}\right] \subset J_{\Gamma}^k(n+1,p),$$

and the desired result follows.

4. Proof of Theorem 2.3. Let $G \in \mathscr{C}_{n+1,p}^{\Gamma}$ be such that $z = j^k G$ is Γ -sufficient and let $F \in \mathscr{C}_{n+1+q,p}^{\Gamma}$ be a Γ -unfolding of G.

4.1. Universality \Rightarrow stability. Suppose that F is universal and let $\overline{F} \in C_{\Gamma}^{\infty}(U, \mathbb{R}^p)$ be a representative of F on an open Γ -invariant neighbourhood of $0 \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^q$. From the unfolding theorem and Lemma 3.3, we conclude that $j_*^k F$ is transverse to S_z^k at (0, 0, 0). The Transversality Theorem (see [8, p. 321]) implies the existence of a neighbourhood \mathscr{U} of \overline{F} in $C^{\infty}(U, \mathbb{R}^p)$ such that, for every $\overline{H} \in \mathscr{U}$, $j_*^k \overline{H}$ intersects S_z^k transversally at at least one point $(x_0, \lambda_0, \alpha_0) \in U$. Put $\mathscr{U}_{\Gamma} = \mathscr{U} \cap C_{\Gamma}^{\infty}(U, \mathbb{R}^p)$. Then for each $\overline{H} \in \mathscr{U}_{\Gamma}$, there exists $(x_0, \lambda_0, \alpha_0) \in U$ such that $j_*^k \overline{H}(x_0, \lambda_0, \alpha_0) \in S_z^k$ and $j_*^k \overline{H}$ is transverse to S_z^k at $(x_0, \lambda_0, \alpha_0)$. We shall show that \overline{F} , at (0, 0, 0), is Γ -equivalent to \overline{H} at $(x_0, \lambda_0, \alpha_0)$. Let H be the germ at (0, 0, 0) defined by $H(x, \lambda, \alpha) = \overline{H}(x_0 + x, \lambda_0 + \lambda, \alpha_0 + \alpha)$ and let h be the germ at $(0, 0) \in \mathbb{R}^n \times \mathbb{R}$ given by $h(x, \lambda) = \overline{H}(x_0 + x, \lambda_0 + \lambda, \alpha_0 + \lambda, \alpha_0)$; since $j_*^k \overline{H}(x_0, \lambda_0, \alpha_0) \in S_z^k$, we have $(x_0, \lambda_0) \in (\mathbb{R}^{n+1})^{\Gamma}$ and we deduce that $h \in \mathscr{E}_{n+1,p}^{\Gamma}$

$$h(\gamma x, \lambda) = \overline{H}(x_0 + \gamma x, \lambda_0 + \lambda, \alpha_0)$$

= $\overline{H}(\gamma x_0 + \gamma x, \lambda_0 + \lambda, \alpha) = \gamma \overline{H}(x_0 + x, \lambda_0 + \lambda, \alpha_0) = \gamma h(x, \lambda)$

because $\overline{H} \in C^{\infty}_{\Gamma}(U, \mathbb{R}^p)$. Therefore $z_0 = j^k h \in O^k_z$; hence z_0 is Γ -sufficient since z is Γ -sufficient. Proposition 3.2 implies that

(4.1.1)
$$\Gamma h \supset \left(\underline{m}_{x,\lambda}^{k+1} \cdot \mathscr{E}_{n+1,p}\right) \cap \mathscr{E}_{n+1,p}^{\Gamma}$$

On the other hand $O_z^k = O_{z_0}^k$, and so $j_*^k H$ is transverse at (0, 0, 0) to

288

 $S_{z_0}^k$, and this is equivalent, by virtue of Lemma 3.3, to the equality

$$\Gamma h + \mathbf{R} \left\{ \frac{\partial H}{\partial \alpha_j}(x,\lambda,0) \right\} + \left(\underline{m}_{x,\lambda}^{k+1} \cdot \mathscr{E}_{n+1,p} \right) \cap \mathscr{E}_{n+1,p}^{\Gamma} = \mathscr{E}_{n+1,p}^{\Gamma}.$$

From this equality and (4.1.1) we deduce that

$$\Gamma h + \mathbf{R} \left\{ \frac{\partial H}{\partial \alpha_j}(x,\lambda,0) \right\} = \mathscr{E}_{n+1,p}^{\Gamma},$$

and so, the unfolding theorem implies that H is a universal Γ -unfolding of h.

The germs h and G are Γ -equivalent (as in Definition 1.1) since the jets $z = j^k G$ and $z_0 = j^k h$ are Γ -sufficient and $O_z^k = O_{z_0}^k$. Thus, there exist T, X and Λ as in 1.1 such that

$$h(x,\lambda) = T(x,\lambda)G(X(x,\lambda),\Lambda(\lambda)).$$

Put $\tilde{F}(x,\lambda,\alpha) = T(x,\lambda)F(X(x,\lambda),\Lambda(\lambda),\alpha)$; then
 $\tilde{F}(x,\lambda,0) = T(x,\lambda) \cdot F(X(x,\lambda),\Lambda(\lambda),0)$
 $= T(x,\lambda) \cdot G(X(x,\lambda),\Lambda(\lambda)) = h(x,\lambda).$

that is, \tilde{F} is a *q*-parameter Γ -unfolding of *h*. But *H* is universal Γ unfolding; we then easily deduce that *H* at (0, 0, 0) is Γ -equivalent to \tilde{F} at (0, 0, 0). From there it is not difficult to see that \overline{H} at $(x_0, \lambda_0, \alpha_0)$ is Γ -equivalent to *F* at (0, 0, 0) (see e.g. [2, p. 173]).

4.2. Stability \Rightarrow universality. Suppose that F is Γ -stable but is not universal which, by virtue of the unfolding theorem, is equivalent to

(4.2.1)
$$\Gamma G + \mathbf{R} \left\{ \frac{\partial F}{\partial \alpha_i}(x, \lambda, 0) \right\} \subsetneqq \mathscr{E}_{n+1, p}^{\Gamma}$$

Since $j^k G$ is Γ -sufficient we have $\Gamma G \supset (\underline{m}_{x,\lambda}^{k+1} \mathscr{E}_{n+1,p}) \cap \mathscr{E}_{n+1,p}^{\Gamma}$, and so (4.2.1) is equivalent to

$$\Gamma G + \mathbf{R} \left\{ \frac{\partial F}{\partial \alpha_j}(x,\lambda,0) \right\} + \left(\underline{m}_{x,\lambda}^{k+1} \cdot \mathscr{E}_{n+1,p} \right) \cap \mathscr{E}_{n+1,p}^{\Gamma} \subsetneqq \mathscr{E}_{n+1,p}^{\Gamma};$$

hence Lemma 3.3 implies that $j_*^k F$ is not transverse to S_z^k at (0, 0, 0).

We shall use the same method as S. Izumiya [5, p. 41]. By virtue of the foregoing there exists $w \in J^k(n+1, p)$ such that

$$w \notin \text{Range } d(j_*^k F)_{(0,0,0)} + T_{(0,0,z)} S_z^k.$$

We may assume that $w \in J_{\Gamma}^{k}(n + 1, p)$ and thus $w \notin T_{z}O_{z}^{k}$. Let U be a Γ -invariant neighbourhood of (0, 0, 0) in $\mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{q}$ and let $\overline{F} \in C_{\Gamma}^{\infty}(U, \mathbb{R}^{p})$ and \overline{w} , defined on $U \cap \mathbb{R}^{n} \times \mathbb{R} \times \{0\}$, be representatives of F and w. For $t \in \mathbb{R}$, put $\overline{H}(x, \lambda, \alpha, t) = \overline{F}(x, \lambda, \alpha) + t\overline{w}(x, \lambda)$. Since F

is Γ -stable, there is $\varepsilon > 0$ such that, for every $t_0 \in [-\varepsilon, \varepsilon]$, there exists $(x_0, \lambda_0, \alpha_0) \in U^{\Gamma}$ such that \overline{H}_{t_0} at $(x_0, \lambda_0, \alpha_0)$ is Γ -equivalent to F at (0, 0, 0), where $\overline{H}_{t_0}(x, \lambda, \alpha) = \overline{H}(x, \lambda, \alpha, t_0)$. In particular,

(4.2.2) $\dim \operatorname{Range} d(j_*^k \overline{H}_{t_0})_{(x_0,\lambda_0,\alpha_0)} = \dim \operatorname{Range} d(j_*^k F)_{(0,0,0)}.$

On the other hand,

(4.2.3) dim Range $d(j_*^k \overline{H})_{(0,0,0,0)} > \dim \text{Range } d(j_*^k F)_{(0,0,0)}$.

One easily sees (cf. [5, p. 41]) that there exists a submanifold Σ of $J^k(n+1, p)$ such that Σ contains a neighbourhood of z in O_z^k , $\operatorname{cod} \Sigma = \dim \operatorname{Range} d(j_*^k \overline{H})_{(0,0,0,0)}$, and $j_*^k \overline{H}$ is transverse to Σ at each point of $U \times [-\varepsilon, \varepsilon]$. But from Sard's Theorem it follows (see e.g. [6, p. 134]) that there exists $t_0 \in [-\varepsilon, \varepsilon]$ such that $j_*^k \overline{H}_{t_0}$ is transverse to Σ at every point of U. But, if ε is small enough, there exists $(x_0, \lambda_0, \alpha_0) \in U^{\Gamma}$ such that \overline{H}_{t_0} at $(x_0, \lambda_0, \alpha_0)$ is Γ -equivalent to \overline{F} at (0, 0, 0). Thus $j_*^k \overline{H}_{t_0}(x_0, \lambda_0, \alpha_0) \in \{(x_0, \lambda_0)\} \times O_z^k \subset S_z^k$; we therefore have the equality (4.2.2). On the other hand, since $j_*^k \overline{H}_{t_0}$ intersects Σ transversally at $(x_0, \lambda_0, \alpha_0)$ and $\operatorname{cod} \Sigma = \dim \operatorname{Range} d(j_*^k \overline{H})_{(0,0,0)}$ we have

dim Range
$$d(j_*^k \overline{H})_{(0,0,0,0)} = \dim \operatorname{Range} d(j_*^k \overline{H}_{t_0})_{(x_0,\lambda_0,\alpha_0)}$$

= dim Range $d(j_*^k \overline{F})_{(0,0,0)}$

in contradiction with (4.2.3).

REMARK. As in the nonsymmetric context, one can consider the bifurcation parameter λ to be multi-dimensional and proves analogous results (see [2]).

References

- [1] J. J. Gervais, Sufficiency of jets, Pacific J. Math., 72 (1977), 419-422.
- [2] _____, Déformations G-verselles et G-stables, Canad. J. Math., XXXVI, no. 1 (1984), 9-21.
- [3] M. Golubitsky and D. Schaeffer, *Imperfect bifurcation in presence of symmetry*, Comm. Math. Phys., **67** (1979), 205–232.
- [4] _____, Singularities and Groups in Bifurcation Theory I, Applied Math. Science, 51 (Springer-Verlag, New York, 1985).
- [5] S. Izumiya, Stability of G-unfoldings, Hokkaido Math. J., 9 (1980), 36-45.
- [6] J. C. Tougeron, *Idéaux de Fonctions Différentiables*, Ergebnisse Band 71 (Springer-Verlag, New York, 1972).
- [7] G. Wasserman, *Stability of Unfoldings*, Lecture Notes 393, (Springer-Verlag, New York, 1974).

[8] C. Zeeman, The Classification of Elementary Catastrophes of Codimension ≤ 5, Lecture Notes 525 (Springer-Verlag, New York, 1976), 263-327.

Received September 12, 1985. This work was partly supported by a grant from NSERC of Canada and a "subvention FCAC" from the Department of Education of Québec.

Université Laval Québec, Canada G1K 7P4