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STABILITY OF UNFOLDINGS IN THE CONTEXT
OF EQUIVARIANT CONTACT-EQUIVALENCE

J E A N - J A C Q U E S G E R V A I S

M. Golubitsky and D. Schaeffer introduced the notion of equivari-
ant contact-equivalence between germs of C°° equivariant mappings,
in order to study perturbed bifurcation problems having a certain sym-
metry property. The main tool used is the so-called "Unfolding The-
orem" for the qualitative description of the symmetry-preserving per-
turbations of these problems. From the point of view of applications,
a relevant notion is that of stability of unfoldings. In this paper we
prove the equivalence of the universality and the stability of unfoldings
in the context of equivariant contact-equivalence.

1. Universal Γ-unfolding. Let Γ be a compact Lie group acting
orthogonally on Rn and Rp. We write ^>p for the space of C°°
germs / : (Rn, 0) —> Rp of Γ-equivariant mappings (i.e. f{yx) — yf{x)
for all γ e Γ). The space of Γ-invariant C°°-germs h: (Rπ,0) -> R
(i.e. h(γx) = h{x) for all γ e Γ) is denoted by <§^r. In what follows we
shall consider germs G: (Rn xR, 0) -> R*> and F: (R Λ xRxR*, 0) -> Rp

and we shall assume that Γ acts trivially on R and R^.
The notion of equivariant contact-equivalence introduced by

Golubitsky and SchaefFer [3] is the following:

DEFINITION 1.1. We say that G\ and G2 e ^+x p are Γ-equivalent
if

Gx{x,λ) = T(x,λ)G2(X{x,λ),A{λ))

where

(1.1.1) Γ: (R" xR,O)-H Glp(R) is C°°.

(1.1.2) (I,Λ): (R"xR,O)-^(R"xR,O) is C°°,

det{dxX(O)) > 0 and Λ'(0) > 0.

(1.1.3) X(γx,λ) = γX{x, λ) for all γ e Γ.
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(1.1.4) γ~ιT(γx,λ)γ = T(x,λ) for all γ e Γ.

A <?-parameter Γ-unfolding of G e ^[+ι p is a germ F e
such that F{x, λ, 0) = G {x, λ).

DEFINITION 1.2. A ^-parameter Γ-unfolding F e ^+ι+gp of G e

&£+x p is said to be a universal Γ-unfolding if every Γ-unfolding H of G
p

is induced by F in the following way: assume that H e &n+\+q' p>
there exist C 0 0 germs T: ( R " x R x R « ' , 0 ) - ^ G1P(R) and (X,A,a):
( R " x R x IK,0) -^ (R" x R x R«,0) such that:

(1.2.1) H(x,λ,β) = T(x,λ,β) F(X(x, λ, β), Λ(A, A α(

(1.2.2) X(γx, λ, β) = γX(x, λ, β) for all γ e Γ.

(1.2.3) y-1Γ(yx,A,)S)y = Γ(Λ:,A,^) for all y e Γ.

(1.2.4) (X(x,λ,0),A(λ,0)) = (x,λ).

(1.2.5) T{x, λ, 0) = Ip where Ip is the identity p x p-matrix.

P = i τ ' (R" + 1 Ό) -• Mp(R) I T is C°° and satisfies (1.2.3)}
where MP(R) is the space of real p x p matrices. For G € 1^., we
define

and

Λ ^ (rfAG) Λ.

Let

( ^ ) a n d ΓG =

Roughly speaking, ΓG is the tangent space to the orbit OG = {G' e
I G1 is Γ-equivalent to G} at G.
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If OG has "finite codimension" that is dimR ^ + ι p/TG < oo we have
the unfolding theorem:

THEOREM 1.3 (GOLUBITSKY-SCHAEFFER [3]). Let G e ^+\p ^ e °f

finite codimension and let F e &n+ι+qp be an unfolding ofG. Then F
is a universal T-unfolding ofG if and only if

2(x,λ,o),...,Άx,λ,o)
σCέ\ OOίq

(where [x, λ, a) e Rn x R x R*) project onto a spanning set
i.e.

(1-3.1) i?f+i.p = Mo ( . < , . , θ «f+

REMARK 1.4. In fact, Golubitsky and Schaeffer [3] indicated how
to prove the sufficiency of the condition (1.3.1). The necessity of
(1.3.1) is proved in the following way (see [4] p. 259): Let h e &n+ϊtP

and consider the one-parameter Γ-unfolding H e ^n+\+\ p defined by
p

H(x, λ, t) = G{x, λ) + th{x, λ). Since F is universal, there exist T, X, A

and a as in 1.2 such that

H{x, λ, t) = T(x, λ, t) F(X(x, λ, t), Λ(λ, t), a(ή).

We obtain
<Λ TT

h{X,λ) = ηjj-(X,λ,t)\t=Q

= ^-T{x, λ, t) • F{X{x, λ, t), A(λ, t), α(ί)) I ,=o
at

which is easily seen to belong to ΓG + R{dF(x,λ, 0)/dα/}.

2. Stability of Γ-unfoldings. Let U be a Γ-invariant open subset of
Rn x R x R*. We write Cf?{U,Rp) = {F e C°°{U,RP) \F(γx,λ,a) =
γF(x, λ, a) for each γ e Γ} endowed with the topology induced by the
Whitney C°°-topology on C

DEFINITION 2.1. Let U and V be Γ-invariant open subsets of Rn x
R x R4. Let F G CfP(UR?) and let_F e Cf°(VRP). We say that F, at
(x0, AQ, «O) £ ^ Γ is Γ-equivalent to H at (xi, λj, α t ) e VΓ if there exist
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C°° germs

Γ : ( R n x R x R*, {XQ, λ0> aQ)) > O1P(R)

X: (Rn x R x R*. (jco.λo,αo))

A:(RxR«,(4α0))

0: (R*. α0)

such that

(2.1.1) F(x, A, α) = Γ(x, A, a) /f (X(x, A, α), A(λ, a), φ(ά)),

(2.1.2) (X, Λ, 0) is a germ of a diffeomorphism,

(2.1.3) X{γx,λ,a) = γX{x,λ,a) and y ^ O ^ ^ y = T(x,λ,a)

for all y e Γ where UΓ and F Γ are the sets of fixed points of U and
V under the action of Γ.

DEFINITION 2.2. Let G e ^ + l p and let F e %n+\+q>P

 b e a Γ "
unfolding of G. We say that F is Γ-stable if, for every represen-
tative T of F defined on an Γ-invariant open neighbourhood U of
O E R ^ X R X R 9 , there is a neighbourhood W of F in C^{U, Rp) such
that, for every H e W9 there is a point (XQ> Λ-O> ao) ^ t^Γ s u c h that F at
(0,0,0) is Γ-equivalent to Ή at (XQ, λ0, c*o).

The main result of this paper is:

THEOREM 2.3. Let G e <^+1>/? be such that the k-jet jkG is Γ-

sufficient Then a T-unfolding F e ^ + ϊ + g p of G is universal if and

only if it is Γ-stable.

Note. We say that the A>jet jkG of G at 0 is Γ-sufficient if, for every
G\ e &*+ιtP such that jkG\ = jkG, G and G\ are Γ-equivalent in the
sense of Definition 1.1.

Before proceeding to the proof of Theorem 2.3 we shall give some
transversality properties of universal Γ-unfoldings.

3. Transversality. Let j£(n + 1, p) = {polynomial mappings on
R " x R into Rp which are Γ-equivariant and of degree < k}. This is
the space of fc-jets of the elements of <^ 1 > / ? i.e.

jf{n + l,p) = ̂ lp/ (mkγ * Λ + l i P ) n %lhp

where mxλ is the maximal ideal of &n+\ = %Xtχ. Let

&k = {jk(T,X,K)\T,X and Λ are as in Definition 1.1}.
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Then &k is an analytic Lie group which acts analytically on
Jγ{n + 1, p) in the following way: for S E ^ and z e Jγ{n + 1, p),
put θz = jk((T,X,A) - G) where θ = jk(T,X,A), z = jkG and
((T,X,A) G)(x,λ) = T{x,λ) G(X(x,λ),A(λ)). We shall write Ok

for the orbit of z in jfi (n + 1, p) under the action of &k. As in [7,
p. 41], we can prove

LEMMA 3.1. The tangent space to Ok at z is

τzo
k - πk [MG (jt^lp + (mx>λ rπ + l f P) ng; Γ

+ u ) + NG{^)]

where πk: ^[+ι p ^ Jγ(n+\, p) is the natural projection.

An immediate consequence (see e.g. [1]) is

PROPOSITION 3.2. Let G e g£j_j p Z?β 5wcΛ that jkG is Γ-sufficient.
Then

(

3.3. For T e Cf?(WRp) and (x, λ,a)eU we define the germ

F ( « 1 ) : ( R " x R , 0 ) - r

(y, μ) ^ T{x + y, λ + μ, a)

and we define

j*F: ί /-4R"xRx Jk(n + 1, p)

(x,la)~(x,λJkF^λ))

where Jk(n + 1, p) is the space of fc-jets of the elements of %>n+\ιP.
For G € f ^ [ we write Sk for the submanifold of Jk{n + \,p)

equal to (R"+')Γ ' x Ok x (//?(« + l ( j p)) x , where z - / G , (R" + 1 ) Γ is

the set of fixed points under the action of Γ and {Jγ{n + 1, p))-1 is the

orthogonal complement in Jk(n + I, p) of the subspace Jfi(n + 1, p).

LEMMA 3.3. Let F e ^+ι+QιP be a T-unfolding ofG e ^ + l p . Then

jkF is transverse to Sk at (0,0,0) if and only if

(3.3.1)

Proof. The range of d(jkF){oιO) is
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Hence the above transversality condition is satisfied if and only if

Ranged{ j k F) { o m + Γ ( f t 0 ) (R Λ + 1 ) Γ x {0} + {0} x TzO
k

z

+ {0}x(Jk(n + lp)±

= Rn+ι χjk{n + l,p);

hence, by virtue of Lemma 3.1,

But

and the desired result follows.

4. Proof of Theorem 2.3. Let G e ^ + ι p be such that z = jkG is

Γ-sufficient and let F e %n+\+q,P

 b e a Γ-unfolding of G.

4.1. Universality => stability. Suppose that F is universal and let
F e Cγ?(U,Rp) be a representative of F on an open Γ-invariant neigh-
bourhood of 0 e Rn x R x R^. From the unfolding theorem and
Lemma 3.3, we conclude that jkF is transverse to Sk at (0,0,0). The
Transversality Theorem (see [8, p. 321]) implies the existence of a
neighbourhood %f ofT in C°°{U,RP) such that, for every Ή e%f, jkΉ
intersects Sk transversally at at least one point (XQ> ̂ O> <*O) € U. Put
%/Γ = & n Cf°(K Rp). Then for each Ή e 2fr, there exists (x0, λ0, a0) e
U such that jkΉ(x0,λ0,a0) e Sk and jkΉ is transverse to Sk at
(xo^o>Λo) W e shall show that F , at (0,0,0), is Γ-equivalent to Ή
at Cxo^ϋ^o)- Let H be the germ at (0,0,0) defined by H(x,λ,a) =
H(x0 + x,λo + λ,α0 + a) and let h be the germ at ( 0 , 0 ) G R " X R g i v e n
by h{x,λ) = 7f(x0 + x,λ0 + λ, α0); since jkΉ(x0,λ0, a0) eSk,we have
(xo, λo) e (R W + 1 ) Γ and we deduce that h e g£+ι p since

h(γx, λ) = Ή(x0 + γx, λ0 + λ, a0)

= Ή(γx0 + γx, λ0 + λ, a) = γΉ(x0 + x, λ0 + λ, a0) = γh (x, λ)

because Ή e C??(U,RP). Therefore z 0 = jkh e Ok; hence z0 is Γ-
sufficient since z is Γ-sufficient. Proposition 3.2 implies that

(4.1.1) ΓΛ

On the other hand Ok = Ok

o, and so jkH is transverse at (0,0,0) to
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Sk

Q, and this is equivalent, by virtue of Lemma 3.3, to the equality

From this equality and (4.1.1) we deduce that

and so, the unfolding theorem implies that H is a universal Γ-unfolding
ofΛ.

The germs h and G are Γ-equivalent (as in Definition 1.1) since the
jets z — jkG and z0 = jkh are Γ-sufficient and Ok = Ok

o. Thus, there
exist T, X and Λ as in 1.1 such that

h(x,λ) = T{x,λ)G(X(x,λ),A{λ)).

Put F(JC, λ, a) = Γ(JC, λ)F(*(x, λ), Λ(λ), α); then

F(JC,A,0) = T(x,λ) F(X(x,λ),A(λ),0)

that is, F is a ^-parameter Γ-unfolding of h. But // is universal Γ-
unfolding; we then easily deduce that H at (0, 0, 0) is Γ-equivalent to
F at (0, 0,0). From there it is not difficult to see that H at (XQ, Λ.Q, ®O)
is Γ-equivalent to F at (0,0,0) (see e.g. [2, p. 173]). D

4.2. Stability => universality. Suppose that F is Γ-stable but is not
universal which, by virtue of the unfolding theorem, is equivalent to

(4.2.1)
\,p-

Since jkG is Γ-sufficient we have YG D (wfix\
x&n+\,p) Π ̂ +\ p> a n <^ s o

(4.2.1) is equivalent to

ΓG + R{Άx,λ,0)\ + (»&ι *H+i

hence Lemma 3.3 implies that y^i7 is not transverse to Sk at (0, 0, 0).
We shall use the same method as S. Izumiya [5, p. 41]. By virtue

of the foregoing there exists w e Jk[n + 1, p) such that

w 0 Range d{jkF)mo) + T{Q>0>z)S
k.

We may assume that w e Jγ{n + \,p) and thus w & TzO
k. Let U

be a Γ-invariant neighbourhood of (0, 0,0) in R" x R x R^ and let
T e Cf?{U,Rp) and w, defined on ί7nRπ x R x {0}, be representatives
of F and w. For / G R, put Ή{x, λ,a,t)= T{x, λ, a) + tw{x, λ). Since F
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is Γ-stable, there is ε > 0 such that, for every t0 e [-ε, ε], there exists
(XQ, λ0, αo) £ ^ Γ s u c h that Hίo at (xo> Λ<o> #o) *s Γ-equivalent to F at
(0,0,0), where Ήto(x, λ, a) — Ή(x, λ, a, ί0). In particular,

(4.2.2) dim Range d{j^Hto){X()>λo>ao) = dim Range d{j*F)(o,o,oy

On the other hand,

(4.2.3) dim Ranged ( 7 ^ ) (0,0,0,0) > dim Range d(j*F)(ototoy

One easily sees (cf. [5, p. 41]) that there exists a submanifold Σ of
Jk{n+ 1, p) such that Σ contains a neighbourhood of z in 0^, codΣ =
dim Ranged U*H) (0,0,0,0)5 a n d 7 Ϊ ^ i s transverse to Σ at each point of
U x [~ε, ε]. But from Sard's Theorem it follows (see e.g. [6, p. 134])
that there exists to e [—ε, ε] such that j^Hίo is transverse to Σ at every
point of U. But, if ε is small enough, there exists (XQ, λ$, OLQ) G UT

such that Hto at (xo»^o»αo) ^s Γ-equivalent to i 7 at (0,0,0). Thus
J*Hto{xo, λ0, a0) e {(XQ, λo)}xOz c ^ ; we therefore have the equality
(4.2.2). On the other hand, since j*Hto intersects Σ transversally at
(XO'Λ'O' αo) a n d codΣ = dim Ranged(7^//)(0,0,0,0) w e have

dim Range d( ίF)(0,0,0,0) = dim Range d{j^~Hto)[Xς)MtCίQ)

= dim Ranged(7^F)(o,o,o)

in contradiction with (4.2.3). D

REMARK. AS in the nonsymmetric context, one can consider the
bifurcation parameter λ to be multi-dimensional and proves analogous
results (see [2]).
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