THE MAZUR PROPERTY FOR COMPACT SETS

Abderrazzak Sersouri

We give a "convex" characterization to the following smoothness property, denoted by (CI): every compact convex set is the intersection of balls containing it. This characterization is used to give a transfer theorem for property (CI). As an application we prove that the family of spaces which have an equivalent norm with property (CI) is stable under c_0 and l_p sums for $1 \le p < \infty$. We also prove that if X has a transfinite Schauder basis, and Y has an equivalent norm with property (CI) then the space $X \otimes_{\rho} Y$ has an equivalent norm with property (CI), for every tensor norm ρ .

Similar results are obtained for the usual Mazur property (I), that is, the family of spaces which have an equivalent norm with property (I) is stable under c_0 and l_p sums for 1 .

Introduction. Mazur [6] was the first who considered the following separation property, denoted by (I):

Every bounded closed convex set is the intersection of balls containing it.

Later, Phelps [7] proved that property (I) is weaker than the Fréchet differentiability of the norm, and gave a dual characterization for (I) in the finite dimensional case.

Phelps' theorem was extended to the infinite dimensional case in [3], where the property (I) was dually characterized.

Here we will give another extension of Phelps' theorem by characterizing the following property, denoted by (CI):

Every compact convex set is an intersection of balls.

This property was recently introduced by Whitfield and Zizler [9].

We use this characterization to give a "transfer theorem" for property (CI), which is analogous to the one given for property (I) [2].

We also prove a stability result for property (CI), which is of the same nature as the one given by Zizler for l.u.c. renormings [10]. Our proof can be modified to give a similar stability result for property (I).

Some renorming results of Whitfield-Zizler [9], and Deville [2] are particular cases of these stability results.

Notation. Our notation is standard. A point $x \in X$ is said to be extremal if x = 0 or x/||x|| is an extreme point of the unit ball of X. Similar conventions will be used for w*-exposed points, w*-denting points, and w*-strongly exposed points.

The unit ball and the unit sphere of a Banach space X will be denoted by B(X) and S(X) respectively. We also denote by B(z, r) [resp. S(z, r)] the ball [resp. the sphere] centered at z and of radius r (the underlying Banach space is understood).

For a subset C of a Banach space X we denote by cv(C) [resp. $\overline{cv}(C)$] the convex [resp. closed convex] hull of C.

1. Dual characterization for property (CI). The following theorem is analogous to the one given for property (I) [3]. Techniques used in the proof can be found in Phelps' paper [7].

THEOREM 1. Let X be a Banach space. The following properties are equivalent:

(i) Every compact convex set is the intersection of balls containing it.

(ii) The cone of extreme points of X^* is dense in X^* for the topology \mathcal{T} of uniform convergence on compact sets of X.

Proof. (i) \Rightarrow (ii). Let $f \in S(X^*)$, K a compact subset of B(X), and $\varepsilon > 0$. We want to find $g \in Ext(B(X^*))$, and $\lambda > 0$, such that

$$\|f-\lambda g\|_K = \sup_K |f-\lambda g| \leq \varepsilon.$$

Without loss of generality we can suppose that K is absolutely convex and $||f||_K \ge 1 - \varepsilon/2$.

(Indeed, let $x \in B(X)$ such that $f(x) > 1 - \varepsilon/2$, and let L be the closed convex symmetric hull of $K \cup \{x\}$. The above mentioned reduction is then possible since $\|\cdot\|_L \ge \|\cdot\|_K$.) Let $u \in K$ be such that $f(u) = 1 - \varepsilon/2$, and put $u' = (\varepsilon/4)u$, and $D = K \cap f^{-1}(0)$. By (i), there exists $z \in X$, r > 0, such that $u' \notin B(z, r)$, and $D \subset B(z, r)$.

Let w be the unique element of $[S(z,r) \cap cv(u',z)]$. Put x = (w-z)/r, and let $g \in Ext(B(X^*))$ such that ||x|| = g(x) = 1. Then it is easy to see that:

$$0 \le g(w) = \sup_{B(z,r)} g < g(u'), \text{ so } ||g||_K > 0.$$

Let $\lambda > 0$ be such that $\|\lambda g\|_{K} = 1$. Then for every $k \in D$ we have:

$$\lambda g(k) \leq \lambda g(u') = \varepsilon \lambda g(u)/4 \leq \varepsilon/4,$$

and by symmetry of D, we have $\|\lambda g\|_D \leq \varepsilon/4$.

Phelps' lemma implies then:

$$\left\|\frac{f}{\|f\|_{K}}+\lambda g\right\|_{K}\leq \varepsilon/2 \quad \text{or} \quad \left\|\frac{f}{\|f\|_{K}}-\lambda g\right\|_{K}\leq \varepsilon/2.$$

(Phelps' lemma is applied to the space (SpK, j_K) : the linear space generated by K equipped with the gauge (or the Minkowski functional) of K.)

But $f(u)/\|f\|_K \ge f(u) \ge 1 - \varepsilon/2 > \varepsilon/2$ (if $\varepsilon \ll 1$) and $\lambda g(u) \ge 0$, so we have necessarily $\|f/\|f\|_K - \lambda g\|_K \le \varepsilon/2$.

Then

$$\|f - \lambda g\|_K \leq \frac{\varepsilon}{2} + \left\|\frac{f}{\|f\|_K} - f\right\|_K \leq \varepsilon.$$

(ii) \Rightarrow (i). (Our proof is simpler than the one given by Whitfield and Zizler [9].) Let K be a compact convex subset of X not containing 0. By (ii) and the Hahn-Banach theorem there exists $g \in \text{Ext}(B(X^*))$ such that $\inf_K g > 0$.

Let us first note the following easy fact:

On bounded subsets of X^* , the w^* -topology coincides with the topology \mathcal{T} of uniform convergence on compact sets of X.

From the extremality of g, we deduce that there exists an $x \in S(X)$, $\delta > 0$, such that:

 $g \in S(B(X^*); x, \delta)$ and $\operatorname{diam}_{\|\cdot\|_{\mathcal{K}}}[S(B(X^*); x, \delta)] \leq \varepsilon$,

where ε is defined by $3\varepsilon = \inf_K g$.

Let us consider now the increasing family of balls (for r > 1): $D_r = B(r\varepsilon x, (r-1)\varepsilon)$, and let us show that $K \subset D_r$ for some r.

If not, let $y \in [\bigcap_{r>0} (K \setminus D_r)]$, and let $g_r \in S(X^*)$ be such that $g_r(r \varepsilon x - y) = ||r \varepsilon x - y|| \ge (r - 1)\varepsilon$. Then $g_r(x) \xrightarrow[r \to \infty]{} 1$, and

$$(g - g_r)(y) = g(y) + g_r(r\varepsilon x - y) - \varepsilon r g_r(x)$$

$$\geq 3\varepsilon + (r - 1)\varepsilon - \varepsilon r g_r(x)$$

$$= 2\varepsilon + r\varepsilon (1 - g_r(x)) \geq 2\varepsilon,$$

which is a contradiction to the choice of x and δ .

REMARK. Let us show that property (CI) is the "natural" intersection property which is associated to Gateaux-smoothness. In order to do this, we will describe the similarities between the dual characterizations of properties (I) and (CI).

Recall first that X has property (I) if and only if the set of w^* -denting points of $B(X^*)$ is norm dense in $S(X^*)$ [3]. And observe that the definition of w^* -denting points (resp. extreme points) is obtained from the one of w^* -strongly exposed points (resp. w^* -exposed points) by allowing the w^* -slices not to be parallel.

2. A "Transfer Theorem" for property (CI). In this section we will prove a "transfer theorem" which is analogous to the corresponding one for property (I) [2]. For other "transfer theorems" see [4], [5].

In this paper all the linear operators we consider are assumed to be bounded.

THEOREM 2. Let $T: X \to Y$ be a linear operator such that T and T^* are injective.

If Y has an equivalent norm with property (CI), then X has an equivalent norm with property (CI).

Proof. Recall that we denote by $\mathscr{T} (= \mathscr{T}_X)$ the topology on X^* of uniform convergence on compact sets of X.

We decompose the proof into three steps:

1. If $T: X \to Y$ is a linear operator, then $T^*: Y^* \to X^*$ is $\mathcal{T}_Y - \mathcal{T}_X$ continuous.

Indeed, let $\varepsilon > 0$ and let K be a compact subset of X. Then T(K) is a compact subset of Y, and:

$$T^*(\{y^* \in Y^*: \sup_{T(K)} y^* < \varepsilon\}) \subset \{x^* \in X^*: \sup_K x^* < \varepsilon\}.$$

2. X is the dual of (X^*, \mathcal{T}) .

Indeed, every $x \in X$ is w^* -continuous on X^* , hence \mathscr{T} -continuous. On the other hand, if $\xi \in (X^*, \mathscr{T})^*$, then ξ is continuous on $(B(X^*), \mathscr{T})$ $= (B(X^*), w^*)$, so $\xi \in X$. (Another way to see this is to observe that \mathscr{T} is coarser than the Mackey topology associated to w^* .)

It is now easy to deduce the following:

Claim. If H is a subspace of X^* which is w^* -dense in X^* , then H is \mathcal{T} -dense in X^* .

3. If $T: X \to Y$ is such that T^* is injective, then X has an equivalent norm for which $T^*(\text{Ext}(Y^*)) \subset \text{Ext}(X^*)$.

Indeed, let $\|\cdot\|$ be the original norm of X, and $C = T^*(B(Y^*))$. Define on X^* a convex w^* -lower-semicontinuous function by:

$$\psi(x^*) = \|x^*\|^* + \int_0^\infty e^{-t} \operatorname{dist}(x^*, tC) \, dt$$

and define the new norm on X by:

$$B_{|\cdot|^*}(x^*) = \{x^* \colon \psi(x^*) \le 1\}.$$

REMARKS. (i) To see that ψ is w^* -lower semicontinuous (w^* -1.s.c.) it suffices to observe the easy (and well known) fact that for a w^* -compact subset K of X^* the functon $x^* \to \text{dist}(x^*, K)$ is w^* -l.s.c.

(ii) The functional $\psi(x^*)$ is symmetric, i.e.: $\psi(x^*) = \psi(-x^*)$, since C is, and satisfies $||x^*|| \le \psi(x^*) \le 2||x^*||$; hence the set $\{\psi(x^*) \le 1\}$ is the unit ball of a dual equivalent norm on X^* , which is simply the gauge of the set $\{\psi(x^*) \le 1\}$.

Let $y_0^* \in \text{Ext}(Y^*)$, and choose $t_0 > 0$ such that $|t_0 T^*(y_0^*)|^* = 1$. We want to prove that $t_0 T^*(y_0^*) = x_0^* \in \text{Ext}(B_{|\cdot|^*}(X^*))$.

Let x_1^*, x_2^* be such that $2x_0^* = x_1^* + x_2^*, |x_1^*|^* = |x_2^*|^* = 1$. Then $\psi(x_0^*) = \psi(x_1^*) = \psi(x_2^*) = 1$, and by a convexity argument, and the fact that $t \to \operatorname{dist}(x^*, tC)$ is continuous for every $x^* \in X^*$, we deduce that for every t, we have $2\operatorname{dist}(x_0^*, tC) = \operatorname{dist}(x_1^*, tC) + \operatorname{dist}(x_2^*, tC)$.

So dist (x_1^*, t_0C) = dist (x_2^*, t_0C) = 0, but C is norm closed, then $x_1^* \in t_0C$ and $x_2^* \in t_0C$.

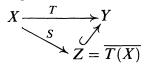
By injectivity of T^* , and extremality of y_0^* , we deduce that x_0^* is extremal.

The theorem is now an easy consequence of the above three facts. Indeed, give X and Y equivalent norms for which $Ext(Y^*)$ is \mathcal{T} -dense in Y^* , and $T^*(Ext(Y^*)) \subset Ext(X^*)$. Then $T^*(Ext(Y^*))$ is \mathcal{T} -dense in $T^*(Y^*)$ which is itself \mathcal{T} -dense in X^* . The conclusion follows. \Box

REMARKS. (i). Property (CI) is hereditary (a subspace of a space with an equivalent (CI)-norm, has an equivalent (CI)-norm) if and only if the above "transfer theorem" is valid without the hypothesis " T^* injective".

The if part is trivial.

Suppose (CI) is hereditary. Let $T: X \to Y$ be an injective operator. If we factorize T by its image:



the heredity of property (CI), and Theorem 2, implies that X has an equivalent (CI)-norm if Y does.

The same remark applies to Deville's "transfer theorem" for Property (I): Let $T: X \to Y$ be such that T^* and T^{**} are injective; then X has an equivalent (I)-norm if Y does.

(ii) It was proved in [3], that if the norm of X is locally uniformly convex, then its dual norm on X^* satisfies property (*I): every w^* -compact set is an intersection of balls.

In particular spaces $l^{\infty}(\Gamma)$ have equivalent (CI)-norms. Then, if property (CI) is hereditary, every Banach space will have an equivalent (CI)-norm (since the spaces $l^{1}(\Gamma)$ have equivalent l.u.c. norms, and every Banach space is a subspace of some $l^{\infty}(\Gamma)$ -space).

3. Applications. In [9], Whitfield and Zizler proved that every Banach space with a transfinite Schauder basis has an equivalent norm with property (CI).

In [2], Deville uses his "transfer theorem" for property (I) to prove that the James' spaces $J(\eta)$ have equivalent norms with property (I).

We give here a "unified" proof of these results which is simpler than Whitfield-Zizler's proof, and give a generalization of Deville's result on $J(\eta)$ spaces.

Recall first that a family of projections $(P_{\alpha})_{0 \le \alpha \le \mu}$, μ ordinal, is a transfinite Schauder decomposition of the Banach space X if:

(i) $P_0 = 0$, $P_{\mu} = id_X$

(ii) $P_{\alpha}P_{\beta} = P_{\min(\alpha,\beta)}$ for every $\alpha, \beta \leq \mu$

(iii) $\Phi: [0, \mu] \times X \to X: \Phi(\alpha, x) = P_{\alpha}x$ is separately continuous. Such a decomposition is said to be shrinking if

$$X^* = \overline{sp} \bigcup_{\alpha < \mu} (P^*_{\alpha+1} - P^*_{\alpha})(X^*).$$

The following theorem should be compared with Zizler's theorem on l.u.c. renormings [10].

THEOREM 3. Let $(P_{\alpha})_{0 \le \alpha \le \mu}$ be a Schauder decomposition [resp. a shrinking Schauder decomposition] of the Banach space X. Suppose that for every $\alpha, 0 \le \alpha < \mu$, the space $X_{\alpha} = (P_{\alpha+1} - P_{\alpha})(X)$ has an equivalent norm with property (CI) [resp. with property (I)]. Then the space X has an equivalent norm with property (CI) [resp. with property (I)].

"Transfer theorems" for properties (I) and (CI) permit the proof of the theorem to be reduced to the following special case:

PROPOSITION 4. Let $(X_{\alpha}, \|\cdot\|_{\alpha})_{\alpha \in \Gamma}$ be a family of spaces with property (CI) [resp. with property (I)], then the space $X = (\bigoplus_{\alpha \in \Gamma} X_{\alpha})_{c_0}$ has an equivalent norm with property (CI) [resp. with property (I)].

Proof. Let $\|\cdot\|$ be an equivalent *lattice* norm on $c_0(\Gamma)$ which is C^{∞} [1]. (Lattice norms on $c_0(\Gamma)$ are norms satisfying the following property: If two elements $x = (x_{\alpha})_{\alpha \in \Gamma}$, and $y = (y_{\alpha})_{\alpha \in \Gamma}$ are such that $|x_{\alpha}| \leq |y_{\alpha}|$ for every $\alpha \in \Gamma$, then $||x|| \leq ||y||$. C^{∞} stands for infinitely Fréchet-differentiable.)

Define on X an equivalent norm by:

$$|(x_{\alpha})_{\alpha\in\Gamma}| = ||(||x_{\alpha}||_{\alpha})_{\alpha\in\Gamma}||.$$

A direct computation shows that its dual norm on $X^* = (\bigoplus_{\alpha \in \Gamma} X^*_{\alpha})_{l^1}$ is given by $|(x^*_{\alpha})_{\alpha \in \Gamma}|^* = ||(||x^*_{\alpha}||^*_{\alpha})_{\alpha \in \Gamma}||^*$.

Let A be such that for every $(a_{\alpha})_{\alpha\in\Gamma}\in c_0(\Gamma)$ we have

$$\frac{1}{A} \sup_{\alpha \in \Gamma} |a_{\alpha}| \le \|(a_{\alpha})_{\alpha \in \Gamma}\| \le A \sup_{\alpha \in \Gamma} |a_{\alpha}|.$$

First case. Property (CI).

Step 1. We first show the following:

Claim. If $x^* = (x^*_{\alpha})_{\alpha \in \Gamma} \in X^*$ is such that $x^*_{\alpha} \in \text{Ext}(X^*_{\alpha})$ for every $\alpha \in \Gamma$, and $(\|x^*_{\alpha}\|^*_{\alpha})_{\alpha \in \Gamma}$ is a *w**-exposed point of $l^1(\Gamma)$, then $x^* \in \text{Ext}(X^*)$.

Proof. Let $(a_{\alpha})_{\alpha \in \Gamma}$ be an element of $c_0(\Gamma)$ which exposes $(||x_{\alpha}^*||_{\alpha}^*)_{\alpha \in \Gamma}$:

$$\|(a_{\alpha})_{\alpha\in\Gamma}\| = \|(\|x_{\alpha}^{*}\|_{\alpha}^{*})_{\alpha\in\Gamma}\|^{*} = \sum_{\alpha\in\Gamma} a_{\alpha}\|x_{\alpha}^{*}\|_{\alpha}^{*} = 1;$$

then $a_{\alpha} \geq 0$ for every $\alpha \in \Gamma$.

If $2x^* = x_1^* + x_2^*$, and $|x_1^*|^* = |x_2^*|^* = 1$, then

$$2 = 2\sum_{\alpha \in \Gamma} a_{\alpha} \|x_{\alpha}^*\|_{\alpha}^* \le \sum_{\alpha \in \Gamma} a_{\alpha} \|x_{1,\alpha}^*\|_{\alpha}^* + \sum_{\alpha \in \Gamma} a_{\alpha} \|x_{2,\alpha}^*\|_{\alpha}^* \le 2.$$

 $\operatorname{So}_{\alpha \in \Gamma} a_{\alpha} \| x_{1,\alpha}^* \|_{\alpha}^* = \sum_{\alpha \in \Gamma} a_{\alpha} \| x_{2,\alpha}^* \|_{\alpha}^* = 1.$

Since $(a_{\alpha})_{\alpha\in\Gamma}$ exposes $(||x_{\alpha}^{*}||_{\alpha}^{*})_{\alpha\in\Gamma}$, we have: $||x_{1,\alpha}^{*}||_{\alpha}^{*} = ||x_{2,\alpha}^{*}||_{\alpha}^{*} = ||x_{\alpha}^{*}||_{\alpha}^{*}$, for every $\alpha \in \Gamma$. And by the extremality of x_{α}^{*} for every α , we have $x^{*} = x_{1}^{*} = x_{2}^{*}$.

Step 2. We will prove that the set of extreme points described in Step 1 is \mathcal{T} -dense in X^* .

Let $\varepsilon > 0, K \subset B(X)$ be a compact subset of $X, x^* \in X^*, |x^*|^* = 1$. Suppose K is convex and symmetric.

Put $a_{\alpha}^* = \|x_{\alpha}^*\|_{\alpha}^*$, $K_{\alpha} = \pi_{\alpha}(K)$, where π_{α} is the natural projection of X onto X_{α} . Then $K_{\alpha} \subset AB(X_{\alpha})$.

For each $\alpha \in \Gamma$, choose $\tilde{x}_{\alpha}^* \in \text{Ext}(X_{\alpha}^*)$, $\|\tilde{x}_{\alpha}^*\|_{\alpha}^* = 1$, $\mu_{\alpha}^* \ge 0$, such that $\|\mu_{\alpha}^*\tilde{x}_{\alpha}^* - x_{\alpha}^*\|_{K_{\alpha}}^* \leq \varepsilon a_{\alpha}^*.$

Choose $\Gamma_0 \subset \Gamma, \Gamma_0$ finite, such that $\sum_{\alpha \in \Gamma \setminus \Gamma_0} a_{\alpha}^* \leq \varepsilon$. For $\alpha \in \Gamma_0$, put $\lambda_{\alpha}^* = \mu_{\alpha}^*$, and for $\alpha \in \Gamma \setminus \Gamma_0$, put $\lambda_{\alpha}^* = a_{\alpha}^*$. Then $(\lambda_{\alpha}^*)_{\alpha\in\Gamma}\in l^1(\Gamma).$

Choose $(\tilde{\lambda}^*_{\alpha})_{\alpha \in \Gamma}$ to be a *w*^{*}-exposed point of $l^1(\Gamma)$ such that:

$$\|(\tilde{\lambda}^*_{lpha})_{lpha\in\Gamma}\|^* = \|(\lambda^*_{lpha})_{lpha\in\Gamma}\|^* \quad ext{and} \quad \sum_{lpha\in\Gamma} |\tilde{\lambda}^*_{lpha} - \lambda^*_{lpha}| \leq arepsilon.$$

By Step 1, $(\tilde{\lambda}^*_{\alpha} \tilde{x}^*_{\alpha})_{\alpha \in \Gamma}$ is an extreme point of X^* , and

$$\begin{split} |(\tilde{\lambda}_{\alpha}^{*}\tilde{x}_{\alpha}^{*} - x_{\alpha}^{*})_{\alpha \in \Gamma}|_{K}^{*} &\leq \sum_{\alpha \in \Gamma} \|\tilde{\lambda}_{\alpha}^{*}\tilde{x}_{\alpha}^{*} - x_{\alpha}^{*}\|_{K_{\alpha}}^{*} \\ &\leq \sum_{\alpha \in \Gamma_{0}} \{A|\tilde{\lambda}_{\alpha}^{*} - \lambda_{\alpha}^{*}| + \|\lambda_{\alpha}^{*}\tilde{x}_{\alpha}^{*} - x_{\alpha}^{*}\|_{K_{\alpha}}^{*}\} + A\sum_{\alpha \in \Gamma \setminus \Gamma_{0}} \|\tilde{\lambda}_{\alpha}^{*}\tilde{x}_{\alpha}^{*} - x_{\alpha}^{*}\|_{\alpha}^{*} \\ &\leq 2A\varepsilon + A\sum_{\alpha \in \Gamma \setminus \Gamma_{0}} \{|\tilde{\lambda}_{\alpha}^{*} - \lambda_{\alpha}^{*}| + \|\lambda_{\alpha}^{*}\tilde{x}_{\alpha}^{*}\|_{\alpha}^{*} + \|x_{\alpha}^{*}\|_{\alpha}^{*}\} \leq 5A\varepsilon. \end{split}$$

Second case. Property (I). Recall first that a Banach space has property (I) if and only if the set of w^{*}-denting points of $B(X^*)$ is norm dense in $S(X^*)$ [3].

Step 1. We will show the following:

Claim. If $x^* = (x^*_{\alpha})_{\alpha \in \Gamma} \in X^*$ is such that $x^*_{\alpha} \in w^*$ -dent (X^*_{α}) for every $\alpha \in \Gamma$, and $(||x_{\alpha}^*||_{\alpha}^*)_{\alpha \in \Gamma}$ is a *w*^{*}-strongly exposed point of $l^1(\Gamma)$, then $x^* \in w^*$ -dent (X^*) .

Proof. Put $a_{\alpha}^* = \|x_{\alpha}^*\|_{\alpha}^*$, and let $(a_{\alpha})_{\alpha \in \Gamma}$ be such that $\|(a_{\alpha})_{\alpha \in \Gamma}\| =$ $||(a_{\alpha}^*)_{\alpha\in\Gamma}||^* = \sum_{\alpha\in\Gamma} a_{\alpha}a_{\alpha}^* = 1$; then $a_{\alpha} \ge 0$ for every α .

Let $\varepsilon > 0$, and choose $\Gamma_0 \subset \Gamma, \Gamma_0$ finite such that $\sum_{\alpha \in \Gamma \setminus \Gamma_0} a_{\alpha}^* \leq \varepsilon$ and $\inf_{\Gamma_0} a^*_{\alpha} = \delta > 0$.

Choose $\eta_1 > 0$, and $x_{\alpha} \in X_{\alpha}$, for every $\alpha \in \Gamma_0$, such that $||x_{\alpha}||_{\alpha} = 1$, and

$$\begin{array}{l} x_{\alpha}(y_{\alpha}^{*}) \geq a_{\alpha}^{*}(1-\eta_{1}) \\ \|y_{\alpha}^{*}\|_{\alpha}^{*} \leq a_{\alpha}^{*} \end{array} \right\} \Rightarrow \|y_{\alpha}^{*} - x_{\alpha}^{*}\|_{\alpha}^{*} \leq \varepsilon a_{\alpha}^{*}.$$

For $\alpha \in \Gamma \setminus \Gamma_0$, pick any $x_\alpha \in X_\alpha$, $||x_\alpha||_\alpha = 1$.

Choose $\varepsilon' \leq \varepsilon$, such that $1 - \eta_1 \leq (1 - \varepsilon'/\delta)/(1 + \varepsilon'/\delta)$, and let $\eta_2 > 0$ be such that

$$\frac{\sum_{\alpha \in \Gamma} a_{\alpha} b_{\alpha}^* \ge 1 - \eta_2}{\|(b_{\alpha}^*)_{\alpha \in \Gamma}\|^* \le 1} \right\} \Rightarrow \sum_{\alpha \in \Gamma} |b_{\alpha}^* - a_{\alpha}^*| \le \varepsilon'.$$

Now if $y^* = (y^*_{\alpha})_{\alpha \in \Gamma}$ is such that:

$$\sum_{\alpha \in \Gamma} a_{\alpha} x_{\alpha}(y_{\alpha}^{*}) \ge 1 - \eta_{2} \text{ and } |y^{*}|^{*} = \|(\|y_{\alpha}^{*}\|_{\alpha}^{*})_{\alpha \in \Gamma}\|^{*} \le 1,$$

then

$$\sum a_{\alpha} \|y_{\alpha}^*\|_{\alpha}^* \ge 1 - \eta_2 \quad \text{and} \quad \|(x_{\alpha}(y_{\alpha}^*))_{\alpha \in \Gamma}\|^* \le 1.$$

So we have

$$\sum_{\alpha\in\Gamma} |a_{\alpha}^* - \|y_{\alpha}^*\|_{\alpha}^*| \leq \varepsilon' \quad \text{and} \quad \sum_{\alpha\in\Gamma} |a_{\alpha}^* - x_{\alpha}(y_{\alpha}^*)| \leq \varepsilon'.$$

For $\alpha \in \Gamma_0$, we have:

$$x_{\alpha}\left(\frac{y_{\alpha}^{*}}{\|y_{\alpha}^{*}\|_{\alpha}^{*}}\right) \geq \frac{a_{\alpha}^{*} - \varepsilon'}{a_{\alpha}^{*} + \varepsilon'} \geq \frac{1 - \varepsilon'/\delta}{1 + \varepsilon'/\delta} \geq 1 - \eta_{1}$$

from this we deduce $\|y_{\alpha}^* - x_{\alpha}^*\|_{\alpha}^* \leq \varepsilon a_{\alpha}^* + |a_{\alpha}^* - \|y_{\alpha}^*\|_{\alpha}^*|$.

Then

$$\begin{split} \sum_{\alpha \in \Gamma} \|y_{\alpha}^{*} - x_{\alpha}^{*}\|_{\alpha}^{*} \\ & \leq \sum_{\alpha \in \Gamma_{0}} \{\varepsilon a_{\alpha}^{*} + |a_{\alpha}^{*} - \|y_{\alpha}^{*}\|_{\alpha}^{*}|\} + \sum_{\alpha \in \Gamma \setminus \Gamma_{0}} \{\|x_{\alpha}^{*}\|_{\alpha}^{*} + \|y_{\alpha}^{*}\|_{\alpha}^{*}\} \\ & \leq A\varepsilon + \varepsilon + \varepsilon + \sum_{\alpha \in \Gamma \setminus \Gamma_{0}} \{\|y_{\alpha}^{*}\|_{\alpha}^{*} - a_{\alpha}^{*}\| + a_{\alpha}^{*}\} \leq (A+4)\varepsilon \end{split}$$

which concludes the proof of $x^* \in w^*$ -dent (X^*) .

Step 2. We will show that the set of w^* -denting points described in Step 1 is norm dense in X^* .

Let $\varepsilon > 0$, and $x^* = (x_{\alpha}^*)_{\alpha \in \Gamma} \in X^*$, $|x^*|^* = 1$. Put $a_{\alpha}^* = ||x_{\alpha}^*||_{\alpha}^*$. For every $\alpha \in \Gamma$, choose $\tilde{x}_{\alpha}^* \in w^*$ -dent (X_{α}^*) such that $||\tilde{x}_{\alpha}^*||_{\alpha}^* = 1$ and $\|a_{\alpha}^* \tilde{x}_{\alpha}^* - x_{\alpha}^*\|_{\alpha}^* \leq \varepsilon a_{\alpha}^*.$

Choose a w*-strongly exposed point $(\tilde{a}^*_{\alpha})_{\alpha\in\Gamma}$ of $l^1(\Gamma)$ such that $\|(\tilde{a}^*_{\alpha})_{\alpha\in\Gamma}\|^* = 1$ and $\sum_{\alpha\in\Gamma} |a^*_{\alpha} - \tilde{a}^*_{\alpha}| \leq \varepsilon$. We can suppose $\tilde{a}^*_{\alpha} \geq 0$ for every α .

Then
$$\tilde{x}^* = (a^*_{\alpha} \tilde{x}^*_{\alpha})_{\alpha \in \Gamma}$$
 is a *w**-denting point of X^* , $|\tilde{x}^*|^* = 1$, and

$$\sum_{\alpha \in \Gamma} \|\tilde{a}^*_{\alpha} \tilde{x}^*_{\alpha} - x^*_{\alpha}\|^*_{\alpha} \le \sum_{\alpha \in \Gamma} |\tilde{a}^*_{\alpha} - a^*_{\alpha}| + \|a^*_{\alpha} \tilde{x}^*_{\alpha} - x^*_{\alpha}\|^*_{\alpha} \le (A+1)\varepsilon.$$

This achieves the proof of Proposition 4.

Proof of Theorem 3. For every $\alpha, 0 \leq \alpha < \mu$, denote by π_{α} the operator $(P_{\alpha+1} - P_{\alpha})$ when considered as an operator from X into $(P_{\alpha+1} - P_{\alpha})(X) = X_{\alpha}.$

Standard argument shows that for every $x \in X$

$$(||P_{\alpha+1}x - P_{\alpha}x||)_{0 \le \alpha < \mu} \in c_0([0, \mu[).$$

Let $\|\cdot\|_{\alpha}$ be an equivalent norm on X_{α} with property (CI) [resp. with property (I)]. We can suppose $\|\cdot\|_{\alpha} \leq \|\cdot\|$ on X_{α} , for each α , where $\|\cdot\|$ is the norm induced by X on X_{α} .

Let

$$T: X \to Y = \left[\bigoplus_{0 \le \alpha < \mu} (X_{\alpha}, \| \cdot \|_{\alpha}) \right]_{c_0} : Tx = (\pi_{\alpha}(x))_{0 \le \alpha < \mu}.$$

Then T is continuous and injective.

The operator $T^*: Y^* \to X^*$ is given by

$$T^*((x^*_{\alpha})_{0 \le \alpha < \mu}) = \sum_{0 \le \alpha < \mu} \pi^*_{\alpha}(x^*_{\alpha}).$$

Then T^* is injective.

Moreover, $T^*(Y^*)$ is norm dense in X^* when the decomposition is shrinking [since $\pi^*_{\alpha}(X^*_{\alpha}) = (P^*_{\alpha+1} - P^*_{\alpha})(X^*)$].

The theorem follows in case of property (CI) by our "transfer theorem", and in case of property (I) by Deville's "transfer theorem" [2].

Using techniques of [8], it can be proved.

PROPOSITION 5. Let X be a Banach space with a transfinite Schauder basis, and Y a space with an equivalent norm with property (CI). Then the space $X \hat{\otimes}_{\rho} Y$ has an equivalent norm with property (CI), for every tensor norm ρ .

The idea of the proof is to show that if $(P_{\alpha})_{0 \le \alpha \le \mu}$ is a Schauder basis of X, then the family $(P_{\alpha} \otimes \mathrm{Id}_Y)_{0 \le \alpha \le \mu}$ is a Schauder decomposition of $X \otimes_{\rho} Y$, and to apply Theorem 3.

REMARK. If $(X_n)_{n\geq 1}$ is a sequence of Banach spaces with equivalent (CI)-norms, then $(\bigoplus_{n=1}^{\infty} X_n)_{l^{\infty}}$ has an equivalent (CI)-norm. Indeed, consider the operator $T: (\bigoplus_{n=1}^{\infty} X_n)_{l^{\infty}} \to (\bigoplus_{n=1}^{\infty} X_n)_{c_0}: T((x_n)_{n\geq 1}) = (x_n/n)_{n\geq 1}$, and apply Theorem 2.

It is not clear whether the family of spaces with equivalent (CI)norms is stable under (uncountable) l^{∞} -sums.

194

Acknowledgment. I want to thank Robert Deville for several helpful discussions concerning this work.

References

- [1] R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech., 15 (1966), 877-898.
- [2] R. Deville, *Théorème de transfert pour la propriété des boules*, to appear.
- [3] J. R. Gilles, D. A. Gregory and B. Sims, *Characterization of normed linear* spaces with Mazur's intersection property, Bull. Aust. Math. Soc., 18 (1978), 105-123.
- [4] G. Godefroy, S. Troyansky, J. H. M. Whitfield and V. Zizler, Smoothness in weakly compactly generated Banach spaces, J. Funct. Anal., 52 (1983), 344–352.
- [5] _____, Locally uniformly rotund renorming and injections into $c_0(T)$, Canad. Math. Bull., 27 (1984), 494–500.
- [6] S. Mazur, Uber schwache Konvergenz in den Raumen (L^p) , Stud. Math., 4 (1933), 128–133.
- [7] R. R. Phelps, A representation theorem for bounded convex sets, Proc. Amer. Math. Soc., 11 (1960), 976-983.
- [8] A. Sersouri, Renormage de certains espaces d'opérateurs, Math. Ann., 273 (1984), 445-459.
- [9] J. H. M. Whitfield and V. Zizler, *Mazur's intersection property of balls for compact convex sets*, to appear: Bull. Aust. Math. Soc.
- [10] V. Zizler, Locally uniformly rotund renorming and decompositions of Banach spaces, Bull. Aust. Math. Soc., 29 (1984), 259-265.

Received February 12, 1987 and in revised form June 22, 1987.

U.A. N° 754 AU C.N.R.S. Universite Paris VI Tour 46, 4ème Etage 4, Place Jussieu 75252 Paris, France