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GROUPS OF ISOMETRIES OF A TREE
AND THE KUNZE-STEIN PHENOMENON

CLauDIO NEBBIA

In this paper we prove that every group of isometries of a ho-
mogeneous or semihomogeneous tree which acts transitively on the
boundary of the tree is a Kunze-Stein group. From this, we deduce a
weak Kunze-Stein property for groups acting simply transitively on a
tree (in particular free groups on finitely many generators).

1. Introduction. Let G be a locally compact group, then G is said to
satisfy the “Kunze-Stein property” or sometimes G is called a “Kunze-
Stein group” if L?(G) * L*(G) Cc L*(G) forevery 1 < p < 2.

This property was discovered by R. A. Kunze and E. M. Stein for
the group SL,(R) [15]. Later the same property was proved for every
connected semisimple Lie group with finite center by M. Cowling [6].
In this paper we prove that every locally compact group of isometries
of a homogeneous or ssmihomogeneous tree has the Kunze-Stein prop-
erty provided that G acts transitively on the boundary of the tree. The
proof of our Theorem is based on M. Cowling’s proof of the Kunze-
Stein phenomenon for SL,(R) [6]. A weaker property is deduced for
discrete groups acting simply transitively on the tree but not on the
tree boundary.

It is known that the group SL,(x), where x is a local field, may
be realized as a closed subgroup of the group of all isometries of a
homogeneous tree in such a way that SL,(k) acts transitively on the
boundary [17]. In particular our result implies that SL,(x) is a Kunze-
Stein group for every local field. This was proved by Gulizia [13] for
a local field k such that the finite residue class field associated with x
is not of characteristic 2.

We follow the terminology and definitions of [6]. In particular 4(G)
is the Fourier algebra of G as defined in [7]; Cyo(G) denotes the space
of continuous functions with compact support and L?(G),1 < p <
0o, the usual L?-space with respect to a fixed left Haar measure. As
observed in [6], a locally compact group G is a Kunze-Stein group if
and only if 4(G) c L9(G) for every g > 2. We will also use the theory
of representations for groups acting on a tree developed by P. Cartier
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[3], A. Figa-Talamanca and M. A. Picardello [11, 12]. A convenient
reference is [12]. In fact the results we quote and use from [12] are
all valid with essentially the same proof when a discrete group acting
simply transitively on a tree replaces the free group [1].

I wish to thank A. Figa-Talamanca for his encouragement during the
preparation of this paper. I would also like to thank Prof. G. Rousseau
for bringing reference [2] to my attention.

2. Notations. We shall give a concise description of the tree and
of the group of isometries. We refer the reader to [3, 17, 18] for
undefined notions and terminology. Let X be a homogeneous tree of
order r; the distance d(x, y) is defined as the length of the unique
geodesic [x, y] connecting x to y. Let Aut(X) be the group of all
isometries of X. We assume also r > 3 (otherwise, for r = 2, Aut(X)
is amenable and noncompact, hence it is not a Kunze-Stein group).
Aut(X) is a locally compact separable group and the stability subgroup
K of a vertex of X is compact and open in Aut(.X). A subgroup I'" of
Aut(X) is called simply transitive if it acts transitively on the vertices
and I'n K = {1}. In other words, I' acts simply transitively on X iff
the map y € I — p(xy) € X is bijective for a fixed vertex xg in X.
It is known that every such group is isomorphic to the free product
of ¢ copies of the integers and s copies of the group of order 2 with
2t +s =r[1, 4]. Since K is open, I is discrete in Aut(X). Moreover
I'- K = Aut(X) and I' is a lattice. As usual, let (£ ) = [ f(g)h(g)dg.

Let Q be the boundary of the tree, that is the set of equivalence
classes of sequences of distinct vertices {s,: n =0, 1,2,...} such that
d(s;, siy1) =1forevery i =0,1,2,...; two such sequences are said to
be equivalent if they have infinitely many common vertices.

Q is a compact metric space; if xo € X and wg € Q there exists
a unique sequence of distinct vertices {s,} in the class wg such that
So = Xp. In this way, Q can be regarded as the set of infinite sequences
starting from a fixed vertex xg in X. There exists a unique probability
measure v on Q, Aut(X)-quasi invariant and K-invariant. Let P(g, w)
be the Poisson kernel, that is, for g € Aut(X) and w € Q, P(g w) =
dvg/dv(w), with vg(w) = V(g™ w).

For every complex number z, we define the following representation
of Aut(X):

[7:(2)fl(w) = P*(g w)f(g" ' w).
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It is known that, for ¢ € R, 7,5, are unitary irreducible represen-
tations on L?(Q); in fact even the restrictions to I' are irreducible [12,
pg. 76; 1].

For a fixed vertex xp in X, let X+ = {x € X: d(x, xp) is even } and
X~ = X\X*. The partition X*, X~ is independent of the choice of
Xo. If G is a closed unimodular subgroup of Aut(X) acting transitively
on X* but not on the tree, then the representations 7,5, | are ir-
reducible for t # (2m + 1)n/2lg(r — 1), m € Z [2, pg. 39, pg. 62].
Let J be the interval [0, #/lg(r — 1)] and c(z) the following complex
function:

c(z)=[(r— 12 - 1)/[(r - )72 - 1].

Finally, let dm be the following measure:
dm(t) = [(r — 1)Ig(r — 1)/4nr|c(} + it)|*1dt.

3. The results. Let G be a closed noncompact subgroup of Aut(.X)
acting transitively on £, and Ky = G N K. Since K|, is compact open
in G we can assume that its measure is one.

PROPOSITION 1. K acts transitively on Q.

Proof . Since G/Kj is countable, Baire’s theorem implies that every
orbit of Ky on € is open. By [17, Prop. 3.4], there exist g € G, a
sequence {s,} C X, n € Z and iy € Z iy # 0, such that d(sp, Sp4+1) = 1
and g(sn) = Sp+;, for every n € Z. In this proof we realize Q as the set
of all infinite sequences {¢,} issued from ¢, = sy. Therefore the sets:
E(x) = {{tn} € Q: t; = x} with x € X and d(sp, x) = j form a basis
for the topology of Q. Let w; = {sq,51,... } and w; = {59, 5-1,5_2,... }.

Since Kow; and Kyw, are open, it follows that there exists j > 0
such that E(s;) C Kow; and E(s_ ) C Kow;. Using the automorphism
g, it is not hard to show that K acts transitively on CE(s_,) and CE(s,),
respectively. Obviously, CE(s_;) NCE(s;) # @ and CE(s_;) UCE(s)) =
Q. This means that K acts transitively on Q.

ProPoSITION 2. Let G be a closed noncompact subgroup of Aut(X)
acting transitively on Q. Then either G acts transitively on the vertices
of X, or G has two orbits Xt and X~.

Proof . By Proposition 1, K acts transitively on Q, that is, K, acts
transitively on the set S;° = {y € X: d(sg, y) = n} for every n > 0.
Moreover for every g € G, gKog~! acts transitively on S for every
n > 0 and g(sg) = x. In particular for every x € G(sg), G(sg) is an
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infinite union of sets Sy'. This implies thatif x, y € G(sp) d(x, y) =m
then S}, US}, C G(sp). Therefore S C G(so) implies that:

+o00
U S5 € Gso)-
Jj=0

If G(s¢) contains vertices x and y with d(x, y) = 1, then G(sg) = X
and G is transitive on X. Suppose now G(sg) # X; thus G(sp) C X™*.
Let ¢t = min{m > 0 : S} C G(sp)}. It follows that G(so) N Sy = T
for 0 < m < 2t m # t and U5 S? C G(so). Let x € S} and
[s0, X1 = {s0, X1, X2, ..., Xs—1, X} the geodesic connecting s; to x; we
can choose y € X in such a way that d(y, x) =t, d(y,sp) = 2t — 2 and
[x, solN[x, ¥]1 =[x x;—1]1 = {x, x;—1}. Since d(x,y) =t¢, y € G(sp) but
y € 85_, so that §3°_, C G(sp). This implies that 2t — 2 = ¢, that is,
t =2 and G(sp) = X*. Similarly, we can prove that G(s;) = X, with
d(So,S]) =1

The aim of this note is to prove the following Theorem.

THEOREM 1. Every closed subgroup G of Aut(X) acting transitively
on Q is a Kunze-Stein group.

It is enough to prove the Theorem for noncompact groups.
First, we observe that:

/J 1122l (W) dm(t) < lu|3  for every u in Coo(G).

Indeed (G, Kj) is a Gelfand pair because K|, acts transitively on Q
and g~ ! € KygK, for every g in G [9, Prop. 1.2]. The representations
Ti/2+itlg are irreducible iff 1 (the function identically one on ) is
a cyclic vector. By Proposition 2, we have two possibilities: if G is
transitive on X, then the representations 7/, ;| are irreducible for
every t € J [12, pg. 76; 1]; otherwise for t € J, t # n/2lg(r — 1) [2,
pg. 39, pg. 62].

Since, for Gelfand pairs, the Plancherel measure on the irreducible
unitary representations of G having a K,-fixed vector depends only on
the right Ky-invariant functions [9, Th. 4.2; 16, pg. 65], to prove the
inequality, it is enough to prove that

/J 17022l () s dm(t) = [ul}3

for every right Ky-invariant function # in Cyy(G). To show this, let
T be the following projection on L?(Q): Tf = [ [, f(w) dv(w)]1 for
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fe€L?Q). We have T = || Kk, M1/2+i(k) dk (recall that Ky is transitive
on Q). Let Aut(X) = I'K; every function u right Ky-invariant on G
corresponds to a function # on I in such a way that ||u||; = ||i||; and
T12+itl6 (W) = [y 2400 (@)]T.

Therefore ||y 21ilc (W)l us = 171244 Ir(#)1]| L2(); hence the equal-
ity follows from [12, pg. 86; 1]. The proof of Theorem 1 is based on
the following two Lemmas.

In the next Lemma, we denote by G a locally compact group and
by L°(G) the space of all functions f in L*®(G) such that || f]je < 1;
we assume ¢ to be a complex continuous function on the strip S =
[o, B x R with 0 < & < 1 < B < 1, analytic on S° = (o, ) x R and
such that (1) ¢ is bounded on S; (2) |¢(x + it)| > h(x) > O for every
teRanda<x< B, x# % With these notations, we have:

LEMMA 1 (M. Cowling [6]). Let F: S — L{°(G) be a continuous
map, analytic on S° (i.e. {F, u) is an analytic function for every u in
Coo(G)). If there exists a positive constant ¢ such that

[ 12 164 + i) di < clull for every u in Coo(G),
then the function Fy, is in LY(G) for every q > 2.

Proof. This Lemma is obtained from Lemma 2.1 of [6, pg. 215]
where S = [o, f] xR, g = ¢ = 2, X = G and X, is a singleton,
observing that the function (z/z—2)" could be replaced with a general
analytic function ¢ with the properties (1) and (2).

LEMMA 2. The coefficients of the quasi-regular representation on S,
that is the functions:

(mple)n) = [ PV 0)k(e )@ dv (@)
for&min L*(Q) and g in G
are in L1(G) for every q > 2.

Proof . Since [(n;/5(8)¢ n)| < (m1/2(8)I¢], Inl) it is enough to prove
the Lemma for € > 0, # > 0 and ||&||; = ||n]|> = 1. Define &, = £2? and
n: = 1?27 for é(w) # 0 # n(w), &(w) = 0 for é(w) = 0; similarly
nz(w) = 0 for n(w) = 0. In particular §;, = ¢ and 7/, = 1. Let
z=0+iteSandp=1/6>1,49 =p/(p—-1) =1/(1 —-9) the
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conjugate index of p; it is easy to see that:

(1) §- € LP(Q), |iE:]lp = 1.

(2) n- € LI(Q), |In:zllq = 1.

(3) |7z (g)ullp = ||u||, for every u in LP(Q) and g in G.

Let y(z) = exp(z2 —1); |y(z)] < 1 on S and the map F, =
w(z){n;(-)¢z nz) is a continuous map on S into L{°(G), analytic on
SO. Since Fy/; = exp(—3)(m;/2(-)¢ 1), to prove the Lemma, it suffices
to show that:

J Bz wProE + i) di < el for every u in CoG)

and some analytic function ¢.

Let ¢(z) = (r — 1)Ig(r — 1)/[4nrc(z)c(1 — z)] where c(z) is the
function defined in the preliminaries. ¢(z) = ¢(z + wi/lg(r — 1))
and so ¢ is bounded. Since ¢(z) # O for Rez # %, it follows that:
|¢(x + it)] > min{|¢(x + it)|: t € R} > 0, for every x # 5, a < x < B.
We have |¢(5 + it)| dt = dm(t). Let J; be the interval

Je =lkn/lg(r — 1), (k+ 1)n/lg(r —1)] for k € Z,;

therefore Jo = J. The functions |7/, (u)||ys and dm(t) are peri-
odic; hence, for every k € Z:

/J e 1l () = /J 17020 (0) s d ().

Let A, be the maximum of the function
+00

lw(3 +it)|> =exp(—-3/2—-2*) on J;,  and Zk hy = ¢ < +oo.
—0o0

Finally, we have:

/R (Fyzsie PI6(S + ir)] dt
+o00
= Zk/J lw (3 + i) PUm 21i (WE jario M jarid)|? dm(t)

+00
<3, e [ Izl dm(e) = ¢ [ s dm(o)

2
< cllullz

(recall that (€1 /24icll2 = 11/24ill2 = 1).
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Proof of Theorem 1. If G acts transitively on Q, then Q ~ G/G,
where Gy is the stability subgroup of a fixed point wg in Q. By the
“principe de majoration” of C. Herz [14], for every f in A(G) there
exists a coefficient of 7/, such that: |f(g)| < (m/2(g)¢ 1) for every
g in G. Hence, from Lemma 2, 4(G) C LY(G) for every ¢ > 2 and G
is a Kunze-Stein group.

REMARK. We shall say that a vertex v of a tree is of homogeneity
I if v belongs to exactly / edges. Let X;, be a semihomogeneous tree,
that is, a tree such that every vertex is of homogeneity / or g and two
adjacent vertices are of homogeneity / and g, respectively. We suppose
[ # g, otherwise X is a homogeneous tree. Let S; and S, be the subsets
of vertices of homogeneity / and g, respectively. Theorem 1 is true
for semihomogeneous trees, with the same proof.

Indeed, if G is a closed noncompact subgroup of Aut(X;,) acting
transitively on the boundary of X;,, then G N K,, acts transitively on
the boundary for every vertex vy. Moreover G(vy) = S; and G(wg) =
S, for every vy € S; and wy € S,;. Hence, without loss of generality, we
can suppose that / < g. The representations 7,5, ;| are irreducible
[2, pg. 62] and the Plancherel measure of the Gelfand pair (G, GNK,,)
is a multiple of |c(§+it)|~2 for an analytic function c(z) [10, pg. 153].
The proof proceeds in the same fashion as for homogeneous trees.

4. Simply transitive subgroups. Let I" be a simply transitive sub-
group of Aut(X); for n € L*(Q) we define, as in [11; 1], the Poisson
transform of I': p(n)(x) = (m1,2(x)1, ).

COROLLARY. p(L?(Q)) c 19(T) for every q > 2.

Proof . By Theorem 1, f(g) = (m/2(g)1, n) € L?(Aut(X)) for every
g > 2. Let Aut(X) =T'K and g = xk with x € I" and k € K; therefore
m1/2(g)1 = my2(x)1 because v is K-invariant and so

oM@ = IIf1L2Aut(x))-

The Corollary follows.

I' is not a Kunze-Stein group (in a discrete Kunze-Stein group ev-
ery amenable subgroup is finite); nevertheless, we can prove a “weak
Kunze-Stein property”:

IP(T) #r [?(T') c I%(T) for every 1 < p < 2, where /7 is the space
of radial functions in /?, that is, the functions which depend only on
the length of the words of I" and * means the convolution product of
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I'. It is easy to see that the “weak Kunze-Stein property” is equivalent
to the following: A4,(I') ¢ /4(T') for every g > 2. This was proved in
[5] for free groups on finitely many generators. Notice that 4,(I") =
I(T) xr I2(T).

THEOREM 2. The following hold:
(1) I2(T) #r [2(T) C 19(T) for every q > 2.
(2) IP(T) »p X)) c I3(T) for every 1 < p < 2.

Proof. 1t is enough to prove (2); (1) follows by duality argument.
Putting f(xk) = f(x) with x € T and k € K, it is possible to iden-
tify the functions f on I' with the right K-invariant functions f on
Aut(X) = T'K. The radial functions on I" correspond to the bi K-
invariant functions on Aut(X). Let f € /P(T') for 1 < p < 2 and
¢ € [2(T"), then the function f * ¢ is right K-invariant; hence, by The-
orem 1, the restriction to I is in /2(I"). Moreover: (f * ¢)|r = f *r ¢
and, from this, Theorem 2 follows.
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