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GROUPS OF ISOMETRIES OF A TREE
AND THE KUNZE-STEIN PHENOMENON

CLAUDIO NEBBIA

In this paper we prove that every group of isometries of a ho-
mogeneous or semihomogeneous tree which acts transitively on the
boundary of the tree is a Kunze-Stein group. From this, we deduce a
weak Kunze-Stein property for groups acting simply transitively on a
tree (in particular free groups on finitely many generators).

1. Introduction. Let G be a locally compact group, then G is said to
satisfy the "Kunze-Stein property" or sometimes G is called a "Kunze-
Stein group" if LP{G) * L2(G) c L2(G) for every 1 < p < 2.

This property was discovered by R. A. Kunze and E. M. Stein for
the group SL2(R) [15]. Later the same property was proved for every
connected semisimple Lie group with finite center by M. Cowling [6].
In this paper we prove that every locally compact group of isometries
of a homogeneous or semihomogeneous tree has the Kunze-Stein prop-
erty provided that G acts transitively on the boundary of the tree. The
proof of our Theorem is based on M. Cowling's proof of the Kunze-
Stein phenomenon for SL2(R) [6]. A weaker property is deduced for
discrete groups acting simply transitively on the tree but not on the
tree boundary.

It is known that the group SL2(τc), where K is a local field, may
be realized as a closed subgroup of the group of all isometries of a
homogeneous tree in such a way that SL2(κr) acts transitively on the
boundary [17]. In particular our result implies that SL2(κ) is a Kunze-
Stein group for every local field. This was proved by Gulizia [13] for
a local field K such that the finite residue class field associated with K
is not of characteristic 2.

We follow the terminology and definitions of [6]. In particular A(G)
is the Fourier algebra of G as defined in [7]; COo(<?) denotes the space
of continuous functions with compact support and LP(G), 1 < p <
oc, the usual Lp-space with respect to a fixed left Haar measure. As
observed in [6], a locally compact group G is a Kunze-Stein group if
and only if A(G) C Lq{G) for every q > 2. We will also use the theory
of representations for groups acting on a tree developed by P. Cartier
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[3], A. Figa-Talamanca and M. A. Picardello [11, 12]. A convenient
reference is [12]. In fact the results we quote and use from [12] are
all valid with essentially the same proof when a discrete group acting
simply transitively on a tree replaces the free group [1].

I wish to thank A. Figa-Talamanca for his encouragement during the
preparation of this paper. I would also like to thank Prof. G. Rousseau
for bringing reference [2] to my attention.

2. Notations. We shall give a concise description of the tree and
of the group of isometries. We refer the reader to [3, 17, 18] for
undefined notions and terminology. Let X be a homogeneous tree of
order r; the distance d(x, y) is defined as the length of the unique
geodesic [x, y] connecting x to y. Let Aut(JΓ) be the group of all
isometries of X. We assume also r > 3 (otherwise, for r = 2, Aut(ΛΓ)
is amenable and noncompact, hence it is not a Kunze-Stein group).
AλxX(X) is a locally compact separable group and the stability subgroup
K of a vertex of X is compact and open in Aut(X). A subgroup Γ of
Aut(X) is called simply transitive if it acts transitively on the vertices
and Γ n K = {1}. In other words, Γ acts simply transitively on X iff
the map y e Γ - > y(xo) € X is bijective for a fixed vertex XQ in X.
It is known that every such group is isomorphic to the free product
of t copies of the integers and s copies of the group of order 2 with
2t + s = r [1, 4]. Since K is open, Γ is discrete in Aut(Z). Moreover
Γ K = Aut(JT) and Γ is a lattice. As usual, let (f,h) = f f(g)h(g) dg.

Let Ω be the boundary of the tree, that is the set of equivalence
classes of sequences of distinct vertices {sn: n = 0,1,2,...} such that
d{Si,Si+\) = 1 for every / = 0,1,2,... two such sequences are said to
be equivalent if they have infinitely many common vertices.

Ω is a compact metric space; if XQ G X and ω$ e Ω there exists
a unique sequence of distinct vertices {sn} in the class ω 0 such that
s0 = χ0. In this way, Ω can be regarded as the set of infinite sequences
starting from a fixed vertex Xo in X. There exists a unique probability
measure v on Ω, Aut(ySΓ)-quasi invariant and AΓ-invariant. Let P(g, ω)
be the Poisson kernel, that is, for g e Aut(JSΓ) and ω e Ω, P(g, ω) =
dvg/dv{ω), with vg{a)) = v{g~ιω).

For every complex number z, we define the following representation
of Aut(X):
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It is known that, for t e R, π 1/2+17 are unitary irreducible represen-
tations on L2(Ω); in fact even the restrictions to Γ are irreducible [12,
Pg. 76; 1].

For a fixed vertex XQ in X, let X+ = {x e X: d(x, XQ) is even } and
X~ = X\X+. The partition X+, X~ is independent of the choice of
XQ. If G is a closed unimodular subgroup of Aut(Λf) acting transitively
on X+ but not on the tree, then the representations TΓI^+Z/IG are ir-
reducible for t φ (2m + l)π/2lg(r - 1), m e Z [2, pg. 39, pg. 62].
Let / be the interval [0, n/lg(r - 1)] and c(z) the following complex
function:

Finally, let dm be the following measure:

dm(t) = [(r - \)lg{r - l)/4πr|c(J + ι ί ) | 2 ] * .

3. The results. Let G be a closed noncompact subgroup of Aut(JSΓ)
acting transitively on Ω, and KQ = GnK. Since Ko is compact open
in G we can assume that its measure is one.

PROPOSITION 1. Ko acts transitively on Ω.

Proof. Since G/KQ is countable, Baire's theorem implies that every
orbit of KQ on Ω is open. By [17, Prop. 3.4], there exist g € G, a
sequence {sn} c X, n e Z and i$ e Z IQΦ 0, such that d(sn,sn+\) = 1

and g(sn) = sΛ+/0 for every n e Z. In this proof we realize Ω as the set
of all infinite sequences {tn} issued from t$ = SQ. Therefore the sets:
E(x) = {{tn} e Ω: tj = x} with x e l and d(sQ, x) = 7 form a basis
for the topology of Ω. Let ω\ = {SQ, S\,...} and ω^ = {% 5_i, 5_2,...}.

Since KQCU\ and KQOI are open, it follows that there exists j > 0
such that £($/) C KQCUI and E(s-j) c ^ 0 ω 2 . Using the automorphism
g, it is not hard to show that KQ acts transitively on ZE(s- \) and Cls (si),
respectively. Obviously, ZE(s-\) πίE(s\) Φ 0 and ZE(S-\)UZE(S\) =
Ω. This means that Âo acts transitively on Ω.

PROPOSITION 2. Let G be a closed noncompact subgroup ofX\xl(X)
acting transitively on Ω. Then either G acts transitively on the vertices
ofX, or G has two orbits X+ and X~.

Proof. By Proposition 1, Ko acts transitively on Ω, that is, KQ acts
transitively on the set iSjξ0 = {y e X: d(so,y) = n) for every n > 0.
Moreover for every g e G, gΛ^g"1 acts transitively on S% for every
n > 0 and £($0) = *• I n particular for every x e G(s0), G(SQ) is an
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infinite union of sets Sjj. This implies that if x, y e G(SQ) d(x, y) = m,
then S* US^ c G(s0). Therefore S* c G(s0) implies that:

+OO

U S*m c G(s0).
7=0

If (/(so) contains vertices x and j ; with d(x, y) — 1, then G^o) = ^
and G is transitive on X. Suppose now G(SQ) Φ X\ thus G(SQ) C X+ .
Let ί = min{ra > 0 : S% c C?(Jo)} It follows that (?0so) n S$ = 0
for 0 < m < 2t m φ t and U fo^j? c G^o)- L e t x Ξ Sf° and
[%x] = {%Xi,X2,...,X/-i,x} the geodesic connecting SQ to x; we
can choose y e X in such a way that d(y, x) = ί, d(y, SQ) = 2t -2 and
[x, s0] Π [x, y] = [x, xt-\] = {x, Xr-i}. Since d(x, >;) = ί, y e G{s0) but
y e Ss

2°t_2 so that 5r2°ί_2 C G(s0). This implies that 2ί - 2 = ,̂ that is,
ί = 2 and G(ΛΌ) = X+. Similarly, we can prove that G(s\) = X~, with

The aim of this note is to prove the following Theorem.

THEOREM 1. Every closed subgroup G of Aut(X) acting transitively
on Ω is a Kunze-Stein group.

It is enough to prove the Theorem for noncompact groups.
First, we observe that:

\\nι/2^it\G(u)\\2

HSdm(t) < \\u\\2

2 for every u in C00(G).

Indeed (G, Ko) is a Gelfand pair because Ko acts transitively on Ω
and g~ι e KogKo for every g in G [9, Prop. 1.2]. The representations
π\/2+it\G a r e irreducible iff 1 (the function identically one on Ω) is
a cyclic vector. By Proposition 2, we have two possibilities: if G is
transitive on X, then the representations 7t\/2+it\G a r e irreducible for
every t e J [12, pg. 76; 1]; otherwise for t e / , t Φ π/2lg(r - 1) [2,
pg. 39, pg. 62].

Since, for Gelfand pairs, the Plancherel measure on the irreducible
unitary representations of G having a A^-fixed vector depends only on
the right AΓ0-invariant functions [9, Th. 4.2; 16, pg. 65], to prove the
inequality, it is enough to prove that

for every right ^-invariant function u in CQQ(G). TO show this, let
T be the following projection on L 2(Ω): Tf = [JΩf{ω)du{ω)]l for
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/ G L2(Ω). We have T = JKQ nι/2+it(k) dk (recall that Ko is transitive
on Ω). Let Aut(Λf) = ΓK; every function u right AΓ0-invariant on G
corresponds to a function ύ on Γ in such a way that ||w||2 = H#ll

Therefore ||πi/2+/ίlG(w)ll//s = Hπi/2+z7lr(#)l|lL2(Ω); hence the equal-
ity follows from [12, pg. 86; 1]. The proof of Theorem 1 is based on
the following two Lemmas.

In the next Lemma, we denote by G a locally compact group and
by Lf(G) the space of all functions / in L°°(G) such that \\f\\oo < 1;
we assume φ to be a complex continuous function on the strip S —
[a, β]xR with 0<a<%<β<l, analytic on S° = {a, β) x R a n d
such that (1) φ is bounded on S\ (2) \φ(x + it)\ > h(x) > 0 for every
t e R and a<x<β,xφ\. With these notations, we have:

LEMMA 1 (M. Cowling [6]). Let F: S -+ Lf (G) be a continuous
map, analytic on S° (i.e. (Fz, u) is an analytic function for every u in
Coo{G)). If there exists a positive constant c such that

K*Ί/2+ιϊ> u)\2\Φ{\ + it)\ dt < c\\u\\2

2 for every u in C00(G),

then the function F\/2 is in Lq(G) for every q > 2.

Proof. This Lemma is obtained from Lemma 2.1 of [6, pg. 215]
where S = [a, β] x R, q — qf = 2, X = G and XQ is a singleton,
observing that the function (z/z-2)n could be replaced with a general
analytic function φ with the properties (1) and (2).

LEMMA 2. The coefficients of the quasi-regular representation on Ω,
that is the functions:

for ξ, η in L2(Ω) and g in G

are in Lq(G) for every q > 2.

Proof. Since \(πι/2{g)ξ, η)\ < {πι/2{g)\ξ\, \η\) it is enough to prove
the Lemma for ξ > 0, η > 0 and \\ξ\\2 = \\η\\2 = 1. Define ξz = ξ2z and
ηz = ^2-2z f ( ) Γ ξ(ω) φOφ η(ω^ ξ z ^ = o for ξ(ω) = 0; similarly

ηz(ω) = 0 for η(ω) = 0. In particular ξX/2 — ξ and η{/2 = η. Let
z = δ + it e S and p = l/δ > 1, q = p/(p - 1) = 1/(1 - δ) the
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conjugate index of p; it is easy to see that:

{2)ηzeL*{a),\\ηz\\g = l.
(3) \\πz(g)u\\p = \\u\\p for every u in Z/(Ω) and g in G.
Let ψ(z) = exp(z2 - 1); |y(z) | < 1 on S and the map Fz =

ψ(z)(πz( )ξz,ηz) is a continuous map on S into L^{G), analytic on
5°. Since Fx/2 = exp(- |)(^i/2()^ */)> to prove the Lemma, it suffices
to show that:

L K*Ί/2+if. w)l2l^(i + ίOI Λ < c\\u\\2

2 for every u in C00(G)
R

and some analytic function φ.
Let 0(z) = (r - l)/g(r - l)/[4πrc(z)c(l - z)] where c(z) is the

function defined in the preliminaries. φ(z) = 0(z + πi/lg{r - 1))
and so φ is bounded. Since 0(z) / 0 for Re z Φ 5, it follows that:
|0(JC + zί)l ^ min{|0(x + ii)\: ί G R} > 0, for every x φ \, a < x < β.
We have \φ{\ + it)\ dt = drn(t). Let Jk be the interval

h = [fer//^(r - 1), (k + l)π/lg(r - 1)] for k G Z;

therefore Jo = «̂  The functions \\7tι/2+it(u)\\HS a n d ^ ^ ( 0 are peri-
odic; hence, for every k G Z:

= / \\πi/2+it{u)\\2

HSdm{t).

Let hji be the maximum of the function

+ OO

\ψ{\ + it)\2 = exp(-3/2 - It1) on 4 and J^ hk = c < +°o
— oo

Finally, we have:

+OO

- o o

+OO

Mi + it)\2\(*ι/2+u

hk \\πi/2+it(u)\\2

HSdm(t) = c \\πλ/2+it{u)\\2

HSdm{t)
J Jk JJ

<c\\u\\l

(recall that ||£i/2+/f||2 = Wm/i+ith = 1)
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Proof of Theorem 1. If G acts transitively on Ω, then Ω ~ G/Go

where Go is the stability subgroup of a fixed point ωo in Ω. By the
"principe de majoration" of C. Herz [14], for every / in A(G) there
exists a coefficient of π 1 / 2 such that: \f{g)\ < (7Cι/2{g)ζ, η) for every
g in G. Hence, from Lemma 2, A(G) c Lq{G) for every q > 2 and G
is a Kunze-Stein group.

REMARK. We shall say that a vertex v of a tree is of homogeneity
/ if v belongs to exactly / edges. Let X\q be a semihomogeneous tree,
that is, a tree such that every vertex is of homogeneity / or q and two
adjacent vertices are of homogeneity / and q, respectively. We suppose
I Φ q, otherwise X is a homogeneous tree. Let S/ and Sq be the subsets
of vertices of homogeneity / and q, respectively. Theorem 1 is true
for semihomogeneous trees, with the same proof.

Indeed, if G is a closed noncompact subgroup of Aut(X/^) acting
transitively on the boundary of X\q, then G Π KVo acts transitively on
the boundary for every vertex v0. Moreover G(v0) = £/ and G(w0) =
Sq for every VQ e 5/ and w0 e Sq. Hence, without loss of generality, we
can suppose that I < q. The representations n\/2+it\G are irreducible
[2, pg. 62] and the Plancherel measure of the Gelfand pair (G, GnKVo)
is a multiple of |c(^ + z7)Γ2 f°Γ a n analytic function c(z) [10, pg. 153],
The proof proceeds in the same fashion as for homogeneous trees.

4. Simply transitive subgroups. Let Γ be a simply transitive sub-
group of Aut(X); for η e L2(Ω) we define, as in [11; 1], the Poisson
transform of Γ: ρ{η)(x) = (tfi/2(x)l, Vi)

COROLLARY. ρ(L2(Ω)) c lq{T) for every q>2.

Proof. By Theorem 1, f{g) = <π1 / 2(g)l, η) e Lq(Aut(X)) for every
q > 2. Let Aut(ΛΓ) = TK and g = xk with xeΓandke K\ therefore
^1/2(^)1 = πifi(χ)l because v is K-invariant and so

\p{n)\\ι\D = ll/ll£f(Autw)

The Corollary follows.
Γ is not a Kunze-Stein group (in a discrete Kunze-Stein group ev-

ery amenable subgroup is finite); nevertheless, we can prove a "weak
Kunze-Stein property":

/r*(Γ) *r /2(Γ) C /2(Γ) for every 1 < p < 2, where If is the space
of radial functions in lp, that is, the functions which depend only on
the length of the words of Γ and *p means the convolution product of
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Γ. It is easy to see that the "weak Kunze-Stein property" is equivalent
to the following: Ar(Γ) c lq(Γ) for every q > 2. This was proved in
[5] for free groups on finitely many generators. Notice that Ar(Y) =
/2(D*Γ/2(Γ).

THEOREM 2. The following hold:
(1) /r

2(Γ) * Γ /2(Γ) c lq{T) for every q>2.
(2) IP(Γ) * Γ 1}{T) C /2(Γ) for every 1 < p < 2.

Proof. It is enough to prove (2); (1) follows by duality argument.
Putting f(xk) = f(x) with x e Γ and k e K, it is possible to iden-
tify the functions / on Γ with the right ίΓ-invariant functions / on
Aut(ΛΓ) = YK. The radial functions on Γ correspond to the bi K-
invariant functions on Aut(X). Let / E /P(Γ) for 1 < p < 2 and
φ E /2(Γ), then the function / * φ is right ^-invariant; hence, by The-
orem 1, the restriction to Γ is in /2(Γ). Moreover: (/ * φ)\Γ = / * Γ φ
and, from this, Theorem 2 follows.
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