REPRESENTING HOMOLOGY CLASSES OF $C \mathbf{P}^{2} \# \overline{C P}^{2}$

Feng Luo

Abstract

In this paper we determine the set of all second homology classes in $C \mathbf{P}^{2} \# \overline{C P}^{2}$ which can be represented by smoothly embedded twospheres in $C \mathbf{P}^{2} \# \overline{C P}^{2}$.

We say a class $u \in H_{2}\left(M^{4}, \mathrm{Z}\right)$ can be represented by S^{2} if it can be represented by a smoothly embedded 2 -sphere in M^{4}. The purpose of this note is to prove the following.

Theorem. Let η, ξ be canonical generators of $\mathrm{H}_{2}\left(\mathbf{C} \mathbf{P}^{2} \# \overline{\mathrm{P}}^{2}, \mathbf{Z}\right)$. Then $\gamma=a \eta+b \zeta, a, b \in \mathbf{Z}$, can be represented by S^{2} if and only if a, b satisfy one of the following conditions.
(i) $\|a|-| b\| \leq 1$, or
(ii) $(a, b)=(\pm 2,0)$ or $(0, \pm 2)$.

Remark 1. The "if" part of the theorem is known (see Wall [7], Mandelbaum [5, the proof of Theorem 6.6]).

Remark 2. If $p \in \mathbf{Z}$, then $p \eta$ (or $p \xi$) is represented by S^{2} if and only if $|p| \leq 2$ (see Rohlin [6]).

Remark 3. If a, b are relatively prime integers, then $\gamma=a \eta+b \xi$ is realized by a topologically embedded locally flat 2 -sphere by Freedman [2]. Hence smoothness condition in the theorem is essential.

By Remarks 1 and 2, the Theorem follows from the following.
Proposition. Let a and b be two integers satisfying

$$
\left\{\begin{array}{cc}
\text { (i) } & a b \neq 0, \text { and } \tag{*}\\
\text { (ii) } & \|a|-| b\| \geq 2 .
\end{array}\right.
$$

Then $a \eta+b \xi$ is not represented by S^{2}.
Proof. Suppose conversely that $a \eta+b \xi$ is represented by S^{2}. By reversing orientation if necessary, we may assume $n=b^{2}-a^{2}>$ 0 . Let $M^{4}=C \mathbf{P}^{2} \# \overline{C \mathbf{P}}^{2} \#(n-1) C \mathbf{P}^{2}$ with ξ_{i} 's the generators of
$H_{2}\left(M^{4}, \mathrm{Z}\right)$ with respect to the additional $C \mathbf{P}^{2}$'s. Then the homology class $\gamma=a \eta+b \xi+\sum_{i=1}^{n-1} \xi_{i}$ can be represented by a smoothly embedded 2-sphere S in M^{4}. The self-intersection number of S is $S \cdot S=a^{2}-b^{2}+n-1=-1$. Hence the tubular neighborhood N of S in M^{4} is the (-1)-Hopf bundle over S and ∂N is diffeomorphic to S^{3}. Set $W^{4}=\left(M^{4}-\stackrel{\circ}{N}\right) U_{\partial} D^{4}$. It is known that W^{4} is a closed, simply connected smooth 4-manifold with a positive definite intersection form (see Kuga [4, claim 1]). By Donaldson's result (see Donaldson [1]), the intersection form of W^{4} is standard. On the other hand, $M^{4}=W^{4} \# \hat{N}^{4}$ where $\hat{N}^{4}=N^{4} U_{\partial} D^{4}$. So, $\left(H_{2}\left(W^{4}, \mathbf{Z}\right),\langle,\rangle_{W^{4}}\right)$ is isomorphic to $\left(\gamma^{\perp},\langle,\rangle_{M^{4}}\right)$. Hence there exist exactly $2 n \alpha \in H_{2}\left(M^{4}, \mathbf{Z}\right)$ such that $\alpha \cdot \gamma=0$ and $\alpha \cdot \alpha=1$. Writing out the conditions in terms of the base $\left(\eta, \xi, \xi_{1}, \xi_{2}, \ldots, \xi_{n-1}\right)$ by letting $\alpha=x \eta+y \xi+\sum_{i=1}^{n-1} z_{i} \xi_{i}$, we obtain $2 n$ (≥ 16) solutions of the system of Diophantine equations

$$
\left\{\begin{array}{l}
a x-b y+\sum_{i=1}^{n-1} z_{i}=0, \tag{1}\\
x^{2}-y^{2}+\sum_{i=1}^{n-1} z_{i}^{2}=1 .
\end{array}\right.
$$

Claim. If a, b satisfy (*), the above equations have at most four solutions.

Proof. We have $y^{2}-x^{2}=\sum_{i=1}^{n-1} z_{i}^{2}-1 \geq-1$. If $y^{2}-x^{2}=-1$, then $y=0, x= \pm 1$, and $z_{i}=0$ for all i. By (1), this implies $a=0$; if $y^{2}-x^{2}=0$, then only one of z_{i} 's is ± 1, all others are zero. By (1), this implies that $\|a|-| b\| \leq 1$; If $y^{2}-x^{2}=1$, then $y= \pm 1, x=0$, and only two of z_{i} 's are ± 1, all others are zero. So (1) implies $|b| \leq 2$, but $|a| \leq|b|$ by assumption. Therefore, in all cases, a, b fail to satisfy (*). Hence we have $y^{2}-x^{2} \geq 3$.
Assume n^{\prime} of the z_{i} 's are nonzero, say $z_{i_{j}}, j=1,2, \ldots, n^{\prime}$. Then we have

$$
\begin{align*}
(a x-b y)^{2} & =\left(\sum_{j=1}^{n^{\prime}} z_{i_{j}}\right)^{2} \leq n^{\prime} \cdot\left(\sum_{j=1}^{n^{\prime}} z_{i_{j}}^{2}\right) \tag{3}\\
& =n^{\prime}\left(1+y^{2}-x^{2}\right)=n^{\prime}+n^{\prime}\left(y^{2}-x^{2}\right) \\
& \leq n^{\prime}+(n-1)\left(y^{2}-x^{2}\right)=n^{\prime}+\left(b^{2}-a^{2}-1\right)\left(y^{2}-x^{2}\right) \tag{4}\\
& =n^{\prime}+b^{2} y^{2}-b^{2} x^{2}+a^{2} x^{2}-a^{2} y^{2}-\left(y^{2}-x^{2}\right) \\
& =n^{\prime}+a^{2} x^{2}+b^{2} y^{2}-b^{2} x^{2}-a^{2} y^{2}-\sum_{j=1}^{n^{\prime}} z_{i,}^{2}+1
\end{align*}
$$

where (3) follows from Cauchy-Schwarz inequality.

Expanding and re-arranging this implies

$$
\begin{equation*}
(b x-a y)^{2} \leq\left(n^{\prime}-\sum_{j=1}^{n^{\prime}} z_{i_{j}}^{2}\right)+1 \tag{5}
\end{equation*}
$$

Since each $z_{i,} \neq 0,(5)$ implies all these z_{i}, , are ± 1, and $(b x-a y)^{2} \leq$ 1.

There are now only two cases that might happen.
Case 1. $b x-a y= \pm 1$.
Then equalities in (3) and (4) hold. So $z_{1}=\cdots=z_{n-1}= \pm 1$, and (1), (2) reduce to

$$
\begin{gather*}
a x-b y= \pm(n-1), \tag{6}\\
x^{2}-y^{2}+(n-1)=1 .
\end{gather*}
$$

The equation (6) and $b x-a y= \pm 1$ give at most four solutions to the Diophantine equations (1), (2) according to the choice of plus or minus signs.

Case 2. $b x-a y=0$.
Then the equality in (3) must hold because if inequality holds, the left hand side of (3) will reduce at least -4 which contradicts (5) where the right hand side exceeds the left hand side by +1 . By the same argument, the equality in (4) must hold since we have shown that $y^{2}-x^{2} \geq 3$. Therefore, the equality in (5) holds which is again a contradiction. Hence this case gives no solution.

Acknowledgment. The author would like to thank his advisor M. H. Freedman, X.-S. Lin, and R. Skora for many discussions.

After submitting the note, the author learned that similar results were also obtained by T. Lawson.

References

[1] S. K. Donaldson, Self-dual connections and the topology of smooth 4-manifolds, Bull. Amer. Math. Soc., (N.S.) 8 (1983), 81-83.
[2] M. H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom., 17 (1982), 357-453.
[3] M. Kervaire and J. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. USA, 47 (1961), 1651-1657.
[4] K. Kuga, Representing homology classes of $S^{2} \times S^{2}$, Topology, 23 (1984), 133138.
[5] R. Mandelbaum, Four-dimensional topology, Bull. Amer. Math. Soc., (N.S.) 2 (1980), 1-159.
[6] V. A. Rohlin, Two-dimensional submanifolds of four-dimensional manifolds. J. Funct. Anal. and Appl., 5 (1971), 39-48.
[7] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc., 39 (1964), 131-140.

Received February 14, 1986 and in revised form August 5, 1987. This paper was supported in part by NSF/DMS86-3126 and the DARPA/ACMP under contract 86A227500.

University of California, San Diego
LaJolla, CA 92093

