POSITIVE ANALYTIC CAPACITY BUT ZERO BUFFON NEEDLE PROBABILITY

Peter W. Jones and Takafumi Murai

There exists a compact set of positive analytic capacity but zero Buffon needle probability.

1. Introduction. For a compact set E in the complex plane C, $H^{\infty}(E^{c})$ denotes the Banach space of bounded analytic functions outside E with supremum norm $\|\cdot\|_{H^{\infty}(E^{c})}$. The analytic capacity of E is defined by

$$\gamma(E) = \sup\{|f'(\infty)|; f \in H^{\infty}(E^{c}), \|f\|_{H^{\infty}(E^{c})} \le 1\},\$$

where $f'(\infty) = \lim_{z\to\infty} z(f(z) - f(\infty))$ [1, p. 6]. Let $\mathscr{L}(r,\theta)$ $(r > 0, -\pi < \theta \le \pi)$ denote the straight line defined by the equation $x\cos\theta + y\sin\theta = r$. The Buffon length of E is defined by

$$Bu(E) = \iint_{\{(r,\theta);\mathscr{L}(r,\theta)\cap E\neq\emptyset\}} dr d\theta.$$

Vitushkin [7] asked whether two classes of null-sets concerning $\gamma(\cdot)$ and $Bu(\cdot)$ are same or not (cf. [2], [3]). Mattila [4] showed that these two classes are different. (He showed that the class of null-sets concerning $Bu(\cdot)$ is not conformal invariant. Hence his method does not give the information about the implication between these two classes.) The second author [5] showed that, for any $0 < \varepsilon < 1$, there exists a compact set E_{ε} such that $\gamma(E_{\varepsilon}) = 1$, $Bu(E_{\varepsilon}) \leq \varepsilon$. The purpose of this note is to show

THEOREM. There exists a compact set E_0 such that $\gamma(E_0) = 1$, $Bu(E_0) = 0$.

2. Cranks. To construct E_0 , we begin by defining cranks. The 1dimension Lebesgue measure is denoted by $|\cdot|$. For a finite union Eof segments in C, its length is also denoted by |E|. For $\rho > 0, z \in C$ and a set $E \subset C$, we write $[\rho E + z] = \{\rho \zeta + z; \zeta \in E\}$. With $0 \le \varphi < 1$ and a segment $J \subset C$ parallel to the x-axis, we associate the closed segment $J(\varphi)$ of the same midpoint as J, parallel to the x-axis and of length $(1 + \varphi)|J|$. With a positive integer $q, 0 \le \varphi < 1$ and a segment J parallel to the x-axis, we associate

$$J(q,\varphi) = \bigcup_{k=1}^{2^{q-1}} [J_{2k-1}(\varphi) + i2^{-q}|J|] \cup \bigcup_{k=1}^{2^{q-1}} J_{2k}(\varphi),$$

where $\{J_k\}_{k=1}^{2^q}$ are mutually non-overlapping segments on J of length $2^{-q}|J|$; they are ordered from left to right. The set $J(q, \varphi)$ is a union of 2^q closed segments of length $2^{-q}(1+\varphi)|J|$. The segment $\Gamma_0 = \{x; 0 \le x \le 1\} \subset \mathbb{C}$ is called a crank of type 0. For a finite sequence $\{\varphi_j\}_{j=0}^n, \varphi_0 = 0 \ (n \ge 1)$ of non-negative numbers less than 1, a finite union Γ of closed segments is called a crank of type $\{\varphi_j\}_{j=0}^n$ if there exists a crank $\Gamma' = \bigcup_{k=1}^l J_k \ (\{J_k\}_{k=1}^l$ are components of Γ') of type $\{\varphi_j\}_{j=0}^{n-1}$ such that

$$\Gamma = \bigcup_{k=1}^{l} J_k(q_k, \varphi_n)$$

for some *l*-tuple (q_1, \ldots, q_l) of positive integers larger than or equal to $q_0 = 100$. We write $\Gamma'[\varphi_n \Gamma$. For a sequence $\{\varphi_j\}_{j=0}^{\infty}, \varphi_0 = 0$ of non-negative numbers less than 1, a set Γ is called a crank of type $\{\varphi_j\}_{i=0}^{\infty}$, if there exists a sequence $\{\Gamma_n\}_{n=0}^{\infty}$ of cranks such that

(1)
$$\Gamma_n \text{ is of type } \{\varphi_j\}_{j=0}^n$$

(2)
$$\Gamma_0\left[\varphi_1\,\Gamma_1\left[\varphi_2\cdots\right]\right]$$

(3)
$$\Gamma = \bigcap_{n=0}^{\infty} \overline{\bigcup_{j=n}^{\infty} \Gamma_j}.$$

We write by \mathbf{O}_n the finite sequence of n zeros $(n \ge 1)$. For a finite union Γ of segments, $L^p(\Gamma)$ $(1 \le p \le \infty)$ denotes the L^p space on Γ with respect to the length element $|d\dot{z}|$. We define an operator \mathscr{H}_{Γ} on $L^p(\Gamma)$ by

$$\mathcal{H}_{\Gamma}f(z) = \frac{1}{2\pi i} \text{p.v.} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} |d\zeta|$$
$$= \frac{1}{2\pi i} \lim_{\varepsilon \to 0} \int_{|\zeta - z| > \varepsilon, \zeta \in \Gamma} \frac{f(\zeta)}{\zeta - z} |d\zeta|.$$

The following fact is already known.

LEMMA 1 ([5]). For any positive integer m, there exist a crank Γ_m^* of type \mathbf{O}_{m+1} and a non-negative function g_m^* on Γ_m^* such that g_m^* is a constant on each component of Γ_m^* ,

$$\|g_m^*\|_{L^1(\Gamma_m^*)} = 1, \quad \|g_m^*\|_{L^{\infty}(\Gamma_m^*)} \le C_1, \quad \|\operatorname{Re} \mathscr{H}_{\Gamma_m^*} g_m^*\|_{L^{\infty}(\Gamma_m^*)} \le C_1 \sqrt{m}, \\ Bu(\Gamma_m^*) \le C_1 / m^{9/10},$$

where $\operatorname{Re} \zeta$ is the real part of ζ and C_1 is an absolute constant.

Our method is as follows. We define a sequence $\{n(k)\}_{k=0}^{\infty}$ of nonnegative integers with large gaps. Choosing $\{\varphi_j\}_{j=0}^{10n(1)}$ suitably, we define a crank $\Gamma_{10n(1)}$ of type $\{\varphi_j\}_{j=0}^{10n(1)}$. Then $|\Gamma_{10n(1)}| = \prod_{\mu=1}^{10n(1)} (1+\varphi_{\mu})$. Replacing each component of $\Gamma_{10n(1)}$ by a crank similar to $\Gamma_{n(2)-10n(1)}^*$ in Lemma 1, we construct a crank $\Gamma_{n(2)}$ of type $\{\varphi_j\}_{j=0}^{n(2)}$, where $\varphi_j = 0$ $(10n(1) + 1 \le j \le n(2))$. Then we see that

$$1/\gamma(\Gamma_{n(2)}) \le 1/\gamma(\Gamma_{10n(1)}) + \operatorname{Const}(n(2) - 10n(1))^{1/2} / \prod_{j=1}^{10n(1)} (1 + \varphi_j)$$

$$Bu(\Gamma_{n(2)}) \le C_1 \prod_{j=1}^{10n(1)} (1+\varphi_j)(n(2)-10n(1))^{-9/10}.$$

Our sequence $\{\varphi_j\}_{j=0}^{10n(1)}$ is chosen so that

$$n(2) - 10n(1) = \left\{ \prod_{j=1}^{10n(1)} (1 + \varphi_j) \right\}^{4/3}$$

Hence

$$\frac{1/\gamma(\Gamma_{n(2)}) \le 1/\gamma(\Gamma_{10n(1)}) + \operatorname{Const}(n(2) - 10n(1))^{-1/4}}{Bu(\Gamma_{n(2)}) \le C_1(n(2) - 10n(1))^{-3/20}}.$$

Replacing each component of $\Gamma_{n(2)}$ by a suitable crank, we construct a crank $\Gamma_{10n(2)}$ of type $\{\varphi_j\}_{j=0}^{10n(2)}$. Replacing each component of $\Gamma_{10n(2)}$ by a crank similar to $\Gamma_{n(3)-10n(2)}^*$, we construct a crank $\Gamma_{n(3)}$ of type $\{\varphi_j\}_{j=0}^{n(3)}$, where $\varphi_j = 0$ $(10n(2) + 1 \le j \le n(3))$. The sequence $\{\varphi_j\}_{j=n(2)+1}^{10n(2)}$ is chosen so that $|(n(3) - 10n(2)) - (\prod_{j=1}^{10n(2)}(1 + \varphi_j))^{4/3}|$ is small. We see that

$$1/\gamma(\Gamma_{n(3)}) \le 1/\gamma(\Gamma_{10n(1)}) + \operatorname{Const}(n(2) - 10n(1))^{-1/4} + \operatorname{Const}(n(3) - 10n(2))^{-1/4} + \text{(negligible quantity)}, Bu(\Gamma_{n(3)}) \le C_1(n(3) - 10n(2))^{-3/20}.$$

Repeating this argument, we define a sequence $\{\Gamma_{n(k)}\}_{k=2}^{\infty}$ of cranks such that

$$\limsup_{k\to\infty} 1/\gamma(\Gamma_{n(k)}) < \infty, \qquad \lim_{k\to\infty} Bu(\Gamma_{n(k)}) = 0.$$

Then the analytic capacity of the limit crank is positive and its Buffon length is zero.

3. Lemmas.

LEMMA 2. Let Γ_n be a crank of type $\{\varphi_j\}_{j=0}^n$, g_n be a non-negative function on Γ_n such that g_n is a constant on each component of Γ_n , and let $\{\varphi_j\}_{j=n+1}^{n+m}$ be non-negative numbers less than 1. Then there exist a crank Γ_{n+m} of type $\{\varphi_j\}_{j=0}^{n+m}$ and a non-negative function g_{n+m} on Γ_{n+m} such that

(4) g_{n+m} is a constant on each component of Γ_{n+m} ,

(5)
$$\|g_{n+m}\|_{L^1(\Gamma_{n+m})} = \|g_n\|_{L^1(\Gamma_n)}$$

(6)
$$||g_{n+m}||_{L^{\infty}(\Gamma_{n+m})} \leq ||g_n||_{L^{\infty}(\Gamma_n)} / \prod_{\mu=n+1}^{n+m} (1+\varphi_{\mu}),$$

(7)
$$\|\operatorname{Re} \mathscr{H}_{\Gamma_{n+m}} g_{n+m}\|_{L^{\infty}(\Gamma_{n+m})}$$

$$\leq \|\operatorname{Re} \mathscr{H}_{\Gamma_{n}} g_{n}\|_{L^{\infty}(\Gamma_{n})} + \|g_{n}\|_{L^{\infty}(\Gamma_{n})} \sum_{j=n+1}^{n+m} \left\{ 1 / \prod_{\mu=n+1}^{j} (1+\varphi_{\mu}) \right\}.$$

We can write $\Gamma_n = \bigcup_{k=1}^{l_n} J_k^{(n)}$ with its components $\{J_k^{(n)}\}_{k=1}^{l_n}$. We put

$$\Gamma_{n+1} = \bigcup_{k=1}^{l_n} J_k^{(n)}(q_{n+1}, \varphi_{n+1}),$$

where q_{n+1} ($\geq q_0 = 100$) is determined later. Suppose that $\{\Gamma_{\mu}\}_{\mu=n+1}^{j}$ have been defined. We can write $\Gamma_j = \bigcup_{k=1}^{l_j} J_k^{(j)}$ with its components $\{J_k^{(j)}\}_{k=1}^{l_j}$. We put

(8)
$$\Gamma_{j+1} = \bigcup_{k=1}^{l_j} J_k^{(j)}(q_{j+1}, \varphi_{j+1}).$$

102

Thus $\{\Gamma_j\}_{j=n+1}^{n+m}$ are defined; $\{q_j\}_{j=n+1}^{n+m}$ are determined later. Let $n + 1 \le j \le n+m$. We define a non-negative function g_j on Γ_j as follows. Each component $J_k^{(n)}$ of Γ_n generates $2^{q_{n+1}+\dots+q_j}$ components of Γ_j . On these components, we put

$$g_j(z) = \left\{ \frac{1}{|J_k^{(n)}|} \int_{J_k^{(n)}} g_n(\zeta) |d\zeta| \right\} / \prod_{\mu=n+1}^j (1+\varphi_\mu).$$

Since the total length of these $2^{q_{n+1}+\cdots+q_j}$ components is

$$|J_k^{(n)}| \prod_{\mu=n+1}^j (1+\varphi_\mu),$$

the integration of g_j over these components is equal to $\int_{J_k^{(n)}} g_n(\zeta) |d\zeta|$. Hence $||g_j||_{L^1(\Gamma_j)} = ||g_n||_{L^1(\Gamma_n)}$. Evidently, g_j is a constant on each component of Γ_j . We have

$$\|g_j\|_{L^{\infty}(\Gamma_j)} \leq \|g_n\|_{L^{\infty}(\Gamma_n)} \bigg/ \prod_{\mu=n+1}^j (1+\varphi_{\mu}).$$

In particular, (4)-(6) hold. To prove (7), we estimate

$$\|\operatorname{Re} \mathscr{H}_{\Gamma_{j+1}} g_{j+1}\|_{L^{\infty}(\Gamma_{j+1})}$$

Recall (8). We have

$$J_{k}^{(j)}(q_{j+1},\varphi_{j+1}) = \bigcup_{\mu=1}^{\sigma_{j+1}} [J_{k,2\mu}^{(j)}(\varphi_{j+1}) + i2^{-q_{j+1}} |J_{k}^{(j)}|]$$
$$\cup \bigcup_{\mu=1}^{\sigma_{j+1}} J_{k,2\mu-1}^{(j)}(\varphi_{j+1}) \qquad (\sigma_{j+1} = 2^{q_{j+1}-1}, 1 \le k \le l_{j}),$$

where $\{J_{k,\mu}^{(j)}\}_{\mu=1}^{2\sigma_{j+1}}$ are mutually non-overlapping segments on $J_k^{(j)}$ of

length $2^{-q_{j+1}}|J_k^{(j)}|$; they are ordered from left to right. Let

$$z_0 \in \bigcup_{\mu=1}^{\sigma_{j+1}} [J_{k_0,2\mu}^{(j)}(\varphi_{j+1}) + i2^{-q_{j+1}} |J_{k_0}^{(j)}|]$$

and let z_0^* be the nearest point on $J_{k_0}^{(j)}$ to z_0 . Then

$$\begin{split} L_{1} &= \left| \operatorname{Re} \frac{1}{2\pi i} \operatorname{p.v.} \int_{J_{k_{0}}^{(j)}(q_{j+1},\varphi_{j+1})} \frac{g_{j+1}(\zeta)}{\zeta - z_{0}} |d\zeta| \\ &- \operatorname{Re} \frac{1}{2\pi i} \operatorname{p.v.} \int_{J_{k_{0}}^{(j)}} \frac{g_{j}(\zeta)}{\zeta - z_{0}^{*}} |d\zeta| \right| \\ &= \left| \operatorname{Re} \frac{1}{2\pi i} \sum_{\mu=1}^{\sigma_{j+1}} \operatorname{p.v.} \int_{J_{k_{0}}^{(j)}(2\mu-1)} \frac{g_{j+1}(\zeta)}{\zeta - z_{0}} |d\zeta| \right| \\ &\leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2^{-q_{j+1}} |J_{k_{0}}^{(j)}|}{(x - \operatorname{Re} z_{0})^{2} + (2^{-q_{j+1}} |J_{k_{0}}^{(j)}|)^{2}} \|g_{j+1}\|_{L^{\infty}(\Gamma_{j+1})} dx \\ &\leq \left\| g_{n} \right\|_{L^{\infty}(\Gamma_{n})} \Big/ \left\{ 2 \prod_{\mu=n+1}^{j+1} (1 + \varphi_{\mu}) \right\}. \end{split}$$

Let

$$\rho_j = \min_{1 \le k \le l_j} \operatorname{dis}(J_k^{(j)}, \Gamma_j - J_k^{(j)}), \quad \tau(q_{j+1}) = 2^{-q_{j+1}} \max_{1 \le k \le l_j} |J_k^{(j)}|,$$

where dis (\cdot, \cdot) is the distance. We choose, for a while, $q_{j+1} (\geq q_0)$ so that $\tau(q_{j+1}) \leq \rho_j/10$. Since

$$\begin{split} &\int_{[J_{k2\mu}^{(j)}(\varphi_{j+1})+i2^{-q_{j+1}}|J_k^{(j)}|]} g_{j+1}(\zeta) |d\zeta| = \int_{J_{k2\mu}^{(j)}} g_j(\zeta) |d\zeta|, \\ &\int_{J_{k2\mu-1}^{(j)}(\varphi_{j+1})} g_{j+1}(\zeta) |d\zeta| = \int_{J_{k2\mu-1}^{(j)}} g_j(\zeta) |d\zeta| \\ &\quad (1 \le k \le l_j, 1 \le \mu \le 2^{q_{j+1}-1} \ (=\sigma_{j+1})), \end{split}$$

we have

$$\begin{split} L_{2} &= \left| \operatorname{Re} \frac{1}{2\pi i} \int_{\Gamma_{j+1} - J_{k_{0}}^{(j)}(q_{j+1}, \varphi_{j+1})} \frac{g_{j+1}(\zeta)}{\zeta - z_{0}} |d\zeta| \\ &- \operatorname{Re} \frac{1}{2\pi i} \int_{\Gamma_{j} - J_{k_{0}}^{(j)}} \frac{g_{j}(\zeta)}{\zeta - z_{0}^{*}} |d\zeta| \right| \\ &\leq \frac{1}{2\pi} \sum_{k \neq k_{0}} \left\{ \sum_{\mu=1}^{\sigma_{j+1}} \left| \int_{[J_{k2\mu}^{(j)}(\varphi_{j+1}) + i2^{-q_{j+1}} |J_{k}^{(j)}|]} \frac{g_{j+1}(\zeta)}{\zeta - z_{0}} |d\zeta| \\ &- \int_{J_{k2\mu}^{(j)}} \frac{g_{j}(\zeta)}{\zeta - z_{0}^{*}} |d\zeta| \right| \\ &+ \sum_{\mu=1}^{\sigma_{j+1}} \left| \int_{J_{k2\mu-1}^{(j)}(\varphi_{j+1})} \frac{g_{j+1}(\zeta)}{\zeta - z_{0}} |d\zeta| - \int_{J_{k2\mu-1}^{(j)}} \frac{g_{j}(\zeta)}{\zeta - z_{0}^{*}} |d\zeta| \right| \right\} \\ &\leq \operatorname{Const} \tau(q_{j+1}) \rho_{j}^{-2} \sum_{k \neq k_{0}} \sum_{\mu=1}^{2^{q_{j+1}}} \int_{J_{k\mu}^{(j)}} g_{j}(\zeta) |d\zeta| \\ &\leq \operatorname{Const} \tau(q_{j+1}) \rho_{j}^{-2} ||g_{j}||_{L^{1}(\Gamma_{j})} \\ &= \operatorname{Const} \tau(q_{j+1}) \rho_{j}^{-2} ||g_{n}||_{L^{1}(\Gamma_{n})}. \end{split}$$

Thus

(9)
$$|\operatorname{Re} \mathscr{H}_{\Gamma_{j+1}} g_{j+1}(z_0)| \leq |\operatorname{Re} \mathscr{H}_{\Gamma_j} g_j(z_0^*)| + L_1 + L_2$$

 $\leq ||\operatorname{Re} \mathscr{H}_{\Gamma_j} g_j||_{L^{\infty}(\Gamma_j)} + ||g_n||_{L^{\infty}(\Gamma_n)} / \left\{ 2 \prod_{\mu=n+1}^{j+1} (1+\varphi_{\mu}) \right\}$
 $+ \operatorname{Const} \tau(q_{j+1}) \rho_j^{-2} ||g_n||_{L^1(\Gamma_n)}.$

In the same manner, we have (9) for any point z_0 in

$$\bigcup_{\mu=1}^{\sigma_{j+1}} J_{k_0,2\mu-1}^{(j)}(\varphi_{j+1}).$$

Since k_0 $(1 \le k_0 \le l_j)$ is arbitrary, $\|\operatorname{Re} \mathscr{H}_{\Gamma_{j+1}} g_{j+1}\|_{L^{\infty}(\Gamma_{j+1})}$ is dominated by the summation of the last three quantities in (9). Consequently,

(10)
$$\|\operatorname{Re} \mathscr{H}_{\Gamma_{n+m}} g_{n+m} \|_{L^{\infty}(\Gamma_{n+m})}$$

 $\leq \|\operatorname{Re} \mathscr{H}_{\Gamma_{n+m-1}} g_{n+m-1} \|_{L^{\infty}(\Gamma_{n+m-1})}$
 $+ \|g_n\|_{L^{\infty}(\Gamma_n)} / \left\{ 2 \prod_{\mu=n+1}^{n+m} (1+\varphi_{\mu}) \right\}$
 $+ \operatorname{Const} \tau(q_{n+m}) \rho_{n+m-1}^{-2} \|g_n\|_{L^1(\Gamma_n)} \leq \cdots \leq \|\operatorname{Re} \mathscr{H}_{\Gamma_n} g_n\|_{L^{\infty}(\Gamma_n)}$
 $+ \|g_n\|_{L^{\infty}(\Gamma_n)} \sum_{j=n+1}^{n+m} 1 / \left\{ 2 \prod_{\mu=n+1}^{j} (1+\varphi_{\mu}) \right\}$
 $+ \operatorname{Const} \|g_n\|_{L^1(\Gamma_n)} \sum_{j=n+1}^{n+m} \tau(q_j) \rho_{j-1}^{-2}.$

Since $\lim_{q\to\infty} \tau(q) = 0$, we can inductively define $\{q_j\}_{j=n+1}^{n+m}$ so that (7) holds. This completes the proof of Lemma 2.

LEMMA 3. Let Γ_n be a crank of type $\{\varphi_j\}_{j=0}^n$, g_n be a non-negative function on Γ_n such that g_n is a constant on each component of Γ_n , and let m be a positive integer. Then there exist a crank Γ_{n+m} of type $\{\varphi_j\}_{j=0}^{n+m}$ with $\varphi_j = 0$ $(n+1 \le j \le n+m)$ and a non-negative function g_{n+m} on Γ_{n+m} such that

(11) g_{n+m} is a constant on each component of Γ_{n+m} ,

(12)
$$\|g_{n+m}\|_{L^{1}(\Gamma_{n+m})} = \|g_{n}\|_{L^{1}(\Gamma_{n})}$$

(13)
$$||g_{n+m}||_{L^{\infty}(\Gamma_{n+m})} \leq C_1 ||g_n||_{L^{\infty}(\Gamma_n)}$$

(14)
$$\|\operatorname{Re} \mathscr{H}_{\Gamma_{n+m}} g_{n+m}\|_{L^{\infty}(\Gamma_{n+m})} \\ \leq \|\operatorname{Re} \mathscr{H}_{\Gamma_{n}} g_{n}\|_{L^{\infty}(\Gamma_{n})} + C_{2} \sqrt{m} \|g_{n}\|_{L^{\infty}(\Gamma_{n})},$$

(15)
$$Bu(\Gamma_{n+m}) \leq C_1 |\Gamma_n| / m^{9/10}$$

where C_1 is the constant in Lemma 1 and C_2 is an absolute constant.

We can write $\Gamma_n = \bigcup_{k=1}^l J_k$ with its components $\{J_k\}_{k=1}^l$. Let z_k be the left endpoint of J_k $(1 \le k \le l)$. We put

$$\Gamma_{n+m} = \bigcup_{k=1}^{l} \Lambda_k, \quad \Lambda_k = [|J_k|\Gamma_m^* + z_k],$$

ANALYTIC CAPACITY

$$g_{n+m}(z) = g_m^*((z-z_k)/|J_k|)g_n(z_k) \qquad (z \in \Lambda_k, \ 1 \le k \le l),$$

where Γ_m^* , g_m^* are the crank and the function in Lemma 1, respectively. Then Γ_{n+m} is a crank of type $\{\varphi_j\}_{j=0}^{n+m}$. Evidently, (11) and (12) hold. Lemma 1 immediately yields (13) and (15). Let $z_0 \in \Lambda_{k_0}$ and let z_0^* be the projection of z_0 to J_{k_0} . Then Lemma 1 shows that

$$\begin{aligned} |\operatorname{Re} \mathscr{H}_{\Gamma_{n+m}} g_{n+m}(z_0) - \operatorname{Re} \mathscr{H}_{\Gamma_n} g_n(z_0^*)| \\ &\leq \left| \operatorname{Re} \frac{1}{2\pi i} \int_{\Lambda_{k_0}} \frac{g_{n+m}(\zeta)}{\zeta - z_0} |d\zeta| - \operatorname{Re} \frac{1}{2\pi i} \int_{J_{k_0}} \frac{g_n(\zeta)}{\zeta - z_0^*} |d\zeta| \right| + \frac{1}{2\pi} L^0 \\ &= \left| \operatorname{Re} \frac{1}{2\pi i} \int_{\Lambda_{k_0}} \frac{g_{n+m}(\zeta)}{\zeta - z_0} |d\zeta| \right| + \frac{1}{2\pi} L^0 \\ &= \left| \operatorname{Re} (\mathscr{H}_{\Gamma_m^*} g_m^*) \left(\frac{z_0 - z_k}{|J_k|} \right) \right| g_n(z_k) + \frac{1}{2\pi} L^0 \\ &\leq C_1 \sqrt{m} \|g_n\|_{L^{\infty}(\Gamma_n)} + \frac{1}{2\pi} L^0, \end{aligned}$$

where

$$L^{0} = \sum_{k \neq k_{0}} \left| \int_{\Lambda_{k}} \frac{g_{n+m}(\zeta)}{\zeta - z_{0}} |d\zeta| - \int_{J_{k}} \frac{g_{n}(\zeta)}{\zeta - z_{0}^{*}} |d\zeta| \right|.$$

Let $\{\Gamma_j\}_{j=0}^n$ be cranks such that

$$\Gamma_0\left[\varphi_1\,\Gamma_1\left[\varphi_2\cdots\left[\varphi_n\,\Gamma_n\right]\right]\right]$$

For $1 \le k \le l$, $0 \le j \le n$, $\gamma_k(j)$ denotes the component of Γ_j generating J_k . In particular, $\gamma_k(n) = J_k$ $(1 \le k \le l)$. We put

$$L_{j}^{0} = \sum_{k \in \mathscr{F}_{j}} \left| \int_{\Lambda_{k}} \frac{g_{n+m}(\zeta)}{\zeta - z_{0}} |d\zeta| - \int_{J_{k}} \frac{g_{n}(\zeta)}{\zeta - z_{0}^{*}} |d\zeta| \right| \qquad (1 \le j \le n).$$

where

$$\mathscr{F}_{j} = \{1 \le k \le l; k \ne k_{0}, \gamma_{k}(j-1) = \gamma_{k_{0}}(j-1), \gamma_{k}(j) \ne \gamma_{k_{0}}(j)\}.$$

Then

$$L^0 = \sum_{j=1}^n L_j^0.$$

Since Γ_m^* is a crank of type \mathbf{O}_{m+1} , a geometric observation shows that, for any $z \in \Lambda_k$ $(1 \le k \le l)$,

$$\operatorname{dis}(z, J_k) \le 2|J_k| \{2^{-q_0} + 2^{-2q_0} + \dots + 2^{-mq_0}\} \le \frac{1}{100} |J_k|.$$

Hence Λ_k is contained in the square $Q_k = \{z + is; z \in J_k, 0 \le s \le |J_k|/100\}$ $(1 \le k \le l)$. Since $|\gamma_k(n)| = |\gamma_{k_0}(n)|$ $(k \in \mathscr{F}_n)$, we have, for $k \in \mathscr{F}_n$,

$$dis(Q_k, Q_{k_0}) \ge dis(\gamma_k(n), \gamma_{k_0}(n)) - \frac{1}{100} \{|\gamma_k(n)| + |\gamma_{k_0}(n)|\}$$

= dis(\gamma_k(n), \gamma_{k_0}(n)) - \frac{1}{50} |\gamma_{k_0}(n)|.

For any $1 \leq j \leq n - 1$, $z \in Q_k$,

$$\begin{aligned} \operatorname{dis}(z,\gamma_{k}(j)) &\leq \sum_{\mu=j+1}^{n} \left\{ \frac{|\gamma_{k}(\mu)|}{(1+\varphi_{\mu})} + |\gamma_{k}(\mu)| \right\} + \frac{1}{100} |J_{k}| \\ &\leq 2|\gamma_{k}(j)| \sum_{\mu=j+1}^{n} |\gamma_{k}(\mu)|/|\gamma_{k}(j)| + \frac{1}{100} |\gamma_{k}(j)| \\ &\leq 2|\gamma_{k}(j)| \{2^{-q_{0}}(1+\varphi_{j+1}) + 2^{-2q_{0}}(1+\varphi_{j+1})(1+\varphi_{j+2}) \\ &+ \dots + 2^{-(n-j)q_{0}}(1+\varphi_{j+1}) \cdots (1+\varphi_{n})\} + \frac{1}{100} |\gamma_{k}(j)| \\ &\leq 2|\gamma_{k}(j)| \{2^{-(q_{0}-1)} + 2^{-2(q_{0}-1)} + \dots\} + \frac{1}{100} |\gamma_{k}(j)| \leq \frac{1}{50} |\gamma_{k}(j)|. \end{aligned}$$

Since $|\gamma_k(j)| = |\gamma_{k_0}(j)|$ $(k \in \mathscr{F}_j)$, we have, for $k \in \mathscr{F}_j$, $1 \le j \le n-1$,

(16)
$$\operatorname{dis}(Q_{k}, Q_{k_{0}}) \geq \operatorname{dis}(\gamma_{k}(j), \gamma_{k_{0}}(j)) - \frac{1}{50} \{|\gamma_{k}(j)| + |\gamma_{k_{0}}(j)|\} \\ = \operatorname{dis}(\gamma_{k}(j), \gamma_{k_{0}}(j)) - \frac{1}{25} |\gamma_{k_{0}}(j)|.$$

Thus (16) holds for any $k \in \mathscr{F}_j$, $1 \le j \le n$. Let $1 \le j \le n$. Since

$$\int_{\Lambda_k} g_{n+m}(\zeta) |d\zeta| = \int_{J_k} g_n(\zeta) |d\zeta| \qquad (1 \le k \le l),$$

we have

$$(17) \quad L_{j}^{0} = \sum_{k \in \mathscr{F}_{j}} \left| \int_{\Lambda_{k}} \left\{ \frac{1}{\zeta - z_{0}} - \frac{1}{z_{k} - z_{0}^{*}} \right\} g_{n+m}(\zeta) |d\zeta| \\ + \int_{J_{k}} \left\{ \frac{1}{z_{k} - z_{0}^{*}} - \frac{1}{\zeta - z_{0}^{*}} \right\} g_{n}(\zeta) |d\zeta| \\ \leq \text{Const} \sum_{k \in \mathscr{F}_{j}} (|J_{k}| + |J_{k_{0}}|) \text{dis}(Q_{k}, Q_{k_{0}})^{-2} \int_{J_{k}} g_{n}(\zeta) |d\zeta| \\ \leq \text{Const} ||g_{n}||_{L^{\infty}(\Gamma_{n})} \sum_{k \in \mathscr{F}_{j}} (|J_{k}| + |J_{k_{0}}|) |J_{k}| \text{dis}(Q_{k}, Q_{k_{0}})^{-2}.$$

The segment $\gamma_{k_0}(j-1)$ generates 2^{q_j} components $\{\lambda_{\nu}\}_{\nu=1}^{2^{q_j}}$ of Γ_j of length $|\gamma_{k_0}(j)|$, where $q_j = \log\{(1+\varphi_j)|\gamma_{k_0}(j-1)|/|\gamma_{k_0}(j)|\}/\log 2 \ (\geq q_0)$. We may assume that $\lambda_1 = \gamma_{k_0}(j)$. Let

$$\mathcal{F}_{j,\nu} = \{k \in \mathcal{F}_j; \lambda_\nu = \gamma_k(j)\} \qquad (2 \le \nu \le 2^{q_j}).$$

Then
$$\mathscr{F}_{j} = \bigcup_{\nu=2}^{2^{q_{j}}} \mathscr{F}_{j,\nu}$$
. We have, for $2 \le \nu \le 2^{q_{j}}$,

$$\sum_{k \in \mathscr{F}_{j,\nu}} (|J_{k}| + |J_{k_{0}}|)|J_{k}|$$

$$\le |\lambda_{1}|2^{-q_{0}(n-j)} \prod_{j < \mu \le n} (1 + \varphi_{\mu}) \sum_{k \in \mathscr{F}_{j,\nu}} |J_{k}|$$

$$= |\lambda_{1}|^{2}2^{-q_{0}(n-j)} \left\{ \prod_{j < \mu \le n} (1 + \varphi_{\mu}) \right\}^{2} \le |\lambda_{1}|^{2}2^{-(q_{0}-2)(n-j)},$$

where $\prod_{j < \mu \le n} (1 + \varphi_{\mu})$ denotes 1 if j = n.

Hence a geometric observation and (16) show that the last quantity in (17) is dominated by

$$\begin{aligned} \operatorname{Const} &\|g_n\|_{L^{\infty}(\Gamma_n)} \sum_{\nu=2}^{2^{q_j}} \sum_{k \in \mathscr{F}_{j,\nu}} (|J_k| + |J_{k_0}|) |J_k| \operatorname{dis}(Q_k, Q_{k_0})^{-2} \\ &\leq \operatorname{Const} \|g_n\|_{L^{\infty}(\Gamma_n)} \sum_{\nu=2}^{2^{q_j}} \operatorname{dis}(\lambda_{\nu}, \lambda_1)^{-2} \sum_{k \in \mathscr{F}_{j,\nu}} (|J_k| + |J_{k_0}|) |J_k| \\ &\leq \operatorname{Const} \|g_n\|_{L^{\infty}(\Gamma_n)} |\lambda_1|^2 2^{-(q_0-2)(n-j)} \sum_{\nu=2}^{2^{q_j}} \operatorname{dis}(\lambda_{\nu}, \lambda_1)^{-2} \\ &\leq \operatorname{Const} \|g_n\|_{L^{\infty}(\Gamma_n)} |\lambda_1|^2 2^{-(q_0-2)(n-j)} \sum_{\mu=1}^{\infty} (|\lambda_1|\mu)^{-2} \\ &\leq \operatorname{Const} \|g_n\|_{L^{\infty}(\Gamma_n)} 2^{-(q_0-2)(n-j)}. \end{aligned}$$

Thus

$$\begin{aligned} |\operatorname{Re}\mathscr{H}_{\Gamma_{n+m}}g_{n+m}(z_0)| &\leq |\operatorname{Re}\mathscr{H}_{\Gamma_n}g_n(z_0^*)| \\ &+ C_1\sqrt{m}||g_n||_{L^{\infty}(\Gamma_n)} + \frac{1}{2\pi}\sum_{j=1}^n L_j^0 \\ &\leq ||\operatorname{Re}\mathscr{H}_{\Gamma_n}g_n||_{L^{\infty}(\Gamma_n)} + C_1\sqrt{m}||g_n||_{L^{\infty}(\Gamma_n)} \\ &+ \operatorname{Const}||g_n||_{L^{\infty}(\Gamma_n)}\sum_{j=1}^n 2^{-(q_0-2)(n-j)}, \end{aligned}$$

which shows that

$$|\operatorname{Re}\mathscr{H}_{\Gamma_{n+m}}g_{n+m}(z_0)| \leq ||\operatorname{Re}\mathscr{H}_{\Gamma_n}g_n||_{L^{\infty}(\Gamma_n)} + C_2\sqrt{m}||g_n||_{L^{\infty}(\Gamma_n)}$$

for some absolute constant C_2 . Since $z_0 \in \Gamma_{n+m}$ is arbitrary, this gives (14). This completes the proof of Lemma 3.

LEMMA 4. Let Γ be a crank of type $\{\varphi_j\}_{j=0}^{\infty}$, and let $\{\Gamma_n\}_{n=0}^{\infty}$ be a sequence of cranks satisfying (1)-(3). If $\liminf_{n\to\infty} Bu(\Gamma_n) = 0$, then $Bu(\Gamma) = 0$.

Let \mathscr{P}^{θ} $(-\pi/2 < \theta \leq \pi/2)$ denote the straight line defined by the equation $x \sin \theta - y \cos \theta = 0$. For a set $E \subset \mathbf{C}$, $\operatorname{proj}_{\theta}(E)$ denotes the projection of E to \mathscr{P}^{θ} . We have

$$Bu(E) = \int_{-\pi/2}^{\pi/2} |\operatorname{proj}_{\theta}(E)| \, d\theta.$$

We can write $\Gamma_n = \bigcup_{k=1}^{l_n} J_k^{(n)}$ with its components $\{J_k^{(n)}\}_{k=1}^{l_n}$. In the same manner as in the proof of (14), we have

$$\Gamma \subset \bigcup_{k=1}^{l_n} \{z; \operatorname{dis}(z, J_k^{(n)}) \le |J_k^{(n)}| \} \left(= \bigcup_{k=1}^{l_n} R_k^{(n)}, \operatorname{say} \right).$$

Hence, for any $-\pi/2 < \theta \le \pi/2$,

$$|\operatorname{proj}_{\theta}(\Gamma)| \leq \left|\operatorname{proj}_{\theta}\left(\bigcup_{k=1}^{l_n} R_k^{(n)}\right)\right|.$$

We can decompose $\{k; 1 \le k \le l_n\}$ into a finite number of mutually disjoint sets $\{\mathscr{G}^{\theta}_{\mu}\}_{\mu=1}^{\nu_{\theta}}$ so that $\operatorname{proj}_{\theta}(\bigcup_{k\in\mathscr{G}^{\theta}_{\mu}}J_{k}^{(n)})$ is connected. Then a geometric observation shows that

$$\begin{vmatrix} \operatorname{proj}_{\theta} \left(\bigcup_{k \in \mathscr{G}_{\mu}^{\theta}} R_{k}^{(n)} \right) \end{vmatrix} \leq \left| \operatorname{proj}_{\theta} \left(\bigcup_{k \in \mathscr{G}_{\mu}^{\theta}} J_{k}^{(n)} \right) \right| \\ + \operatorname{Const} \left(\frac{\pi}{2} - |\theta| \right)^{-1} \max_{k \in \mathscr{G}_{\mu}^{\theta}} |\operatorname{proj}_{\theta} (J_{k}^{(n)})| \\ \leq \operatorname{Const} \left(\frac{\pi}{2} - |\theta| \right)^{-1} \left| \operatorname{proj}_{\theta} \left(\bigcup_{k \in \mathscr{G}_{\mu}^{\theta}} J_{k}^{(n)} \right) \right| \qquad (1 \leq \mu \leq \nu_{\theta}), \end{aligned}$$

and hence

$$|\operatorname{proj}_{\theta}(\Gamma)| \leq \operatorname{Const}\left(\frac{\pi}{2} - |\theta|\right)^{-1} \sum_{\mu=1}^{\nu_{\theta}} \left|\operatorname{proj}_{\theta}\left(\bigcup_{k \in \mathscr{G}_{\mu}^{\theta}} J_{k}^{(n)}\right)\right|$$
$$= \operatorname{Const}\left(\frac{\pi}{2} - |\theta|\right)^{-1} |\operatorname{proj}_{\theta}(\Gamma_{n})|.$$

We have, for any $0 < \varepsilon < \pi/2$,

$$\int_{-(\pi/2)+\varepsilon}^{(\pi/2)-\varepsilon} |\operatorname{proj}_{\theta}(\Gamma)| \, d\theta \leq \operatorname{Const} \int_{-(\pi/2)+\varepsilon}^{(\pi/2)-\varepsilon} \left(\frac{\pi}{2} - |\theta|\right)^{-1} |\operatorname{proj}_{\theta}(\Gamma_n)| \, d\theta$$
$$\leq \operatorname{Const} \varepsilon^{-1} B u(\Gamma_n).$$

Since $\liminf_{n\to\infty} Bu(\Gamma_n) = 0$, this shows that the first quantity equals zero. Since $0 < \varepsilon < \pi/2$ is arbitrary, $Bu(\Gamma) = 0$. This completes the proof of Lemma 4.

4. Construction of E_0 . Let p_n be the integral part of $(3/2)^{4n/3}$ $(n \ge 1)$. We define a sequence $\{n(k)\}_{k=1}^{\infty}$ of positive integers by n(1) = 10,

$$n(k+1) = 10n(k) + p_{10n(k)} \qquad (k \ge 1)$$

We define a sequence $\{\varphi_j\}_{j=0}^{\infty}$ of non-negative numbers by $\varphi_0 = 0$,

$$\begin{array}{ll} \varphi_{j} = \frac{1}{2} & (1 \leq j \leq n(1)), \\ \varphi_{j} = \frac{1}{2} & (n(k) < j \leq 10n(k), \ k \geq 1), \\ \varphi_{j} = 0 & (10n(k) < j \leq n(k+1), \ k \geq 1). \end{array}$$

We use Lemma 2 with Γ_0 , $g_0 = 1$ and $\{\varphi_j\}_{j=0}^{10n(1)}$. There exist a crank $\Gamma_{10n(1)}$ of type $\{\varphi_j\}_{j=0}^{10n(1)}$ and a non-negative function $g_{10n(1)}$ on $\Gamma_{10n(1)}$ such that $g_{10n(1)}$ is a constant on each component of $\Gamma_{10n(1)}$,

$$\|g_{10n(1)}\|_{L^{1}(\Gamma_{10n(1)})} = 1, \qquad \|g_{10n(1)}\|_{L^{\infty}(\Gamma_{10n(1)})} \leq 1 / \prod_{\mu=1}^{10n(1)} (1 + \varphi_{\mu}),$$

$$\begin{aligned} \|\operatorname{Re} \mathscr{H}_{\Gamma_{10n(1)}} g_{10n(1)} \|_{L^{\infty}(\Gamma_{10n(1)})} \\ &\leq \|\operatorname{Re} \mathscr{H}_{\Gamma_{0}} g_{0} \|_{L^{\infty}(\Gamma_{0})} + \sum_{j=1}^{10n(1)} 1 / \prod_{\mu=1}^{j} (1 + \varphi_{\mu}) \\ &= \left\{ \sum_{j=1}^{n(1)} 1 / \prod_{\mu=1}^{j} (1 + \varphi_{\mu}) \right\} + \sum_{j=n(1)+1}^{10n(1)} 1 / \prod_{\mu=1}^{j} (1 + \varphi_{\mu}). \end{aligned}$$

Using Lemma 3 with n = 10n(1), $m = p_{10n(1)}$, we obtain a crank $\Gamma_{n(2)}$ of type $\{\varphi_j\}_{j=0}^{n(2)}$ and a non-negative function $g_{n(2)}$ on $\Gamma_{n(2)}$ such that $g_{n(2)}$ is a constant on each component of $\Gamma_{n(2)}$,

$$\|g_{n(2)}\|_{L^{1}(\Gamma_{n(2)})} = \|g_{10n(1)}\|_{L^{1}(\Gamma_{10n(1)})} = 1,$$

$$\|g_{n(2)}\|_{L^{\infty}(\Gamma_{n(2)})} \le C_{0}\|g_{10n(1)}\|_{L^{\infty}(\Gamma_{10n(1)})} \le C_{0} / \prod_{\mu=1}^{10n(1)} (1+\varphi_{\mu})$$

$$\begin{split} \| \mathbf{Re} \,\mathscr{H}_{\Gamma_{n(2)}} g_{n(2)} \|_{L^{\infty}(\Gamma_{n(2)})} \\ &\leq \| \mathbf{Re} \,\mathscr{H}_{\Gamma_{10n(1)}} g_{10n(1)} \|_{L^{\infty}(\Gamma_{10n(1)})} + C_0 \sqrt{p_{10n(1)}} \| g_{10n(1)} \|_{L^{\infty}(\Gamma_{10n(1)})} \\ &\leq \left\{ \sum_{j=1}^{n(1)} 1 \Big/ \prod_{\mu=1}^{j} (1 + \varphi_{\mu}) \right\} + \sum_{j=n(1)+1}^{10n(1)} 1 \Big/ \prod_{\mu=1}^{j} (1 + \varphi_{\mu}) \\ &+ C_0 \sqrt{p_{10n(1)}} \Big/ \prod_{\mu=1}^{10n(1)} (1 + \varphi_{\mu}), \end{split}$$

$$Bu(\Gamma_{n(2)}) \le C_0 |\Gamma_{10n(1)}| / p_{10n(1)}^{9/10} = C_0 \prod_{\mu=1}^{10n(1)} (1 + \varphi_{\mu}) / p_{10n(1)}^{9/10},$$

where $C_0 = \max\{C_1, C_2\}$. Using Lemma 2 with n = n(2), m = 9n(2), we obtain a crank $\Gamma_{10n(2)}$ and a non-negative function $g_{10n(2)}$. Using Lemma 3 with $n = 10n(1), m = p_{10n(2)}$, we obtain a crank $\Gamma_{n(3)}$ and a non-negative function $g_{n(3)}$. Repeating this argument, we obtain a crank $\Gamma_{n(k)}$ $(k \ge 2)$ of type $\{\varphi_j\}_{j=0}^{n(k)}$ and a non-negative function $g_{n(k)}$ on $\Gamma_{n(k)}$ such that $g_{n(k)}$ is a constant on each component of $\Gamma_{n(k)}$,

$$\begin{split} \|g_{n(k)}\|_{L^{1}(\Gamma_{n(k)})} &= 1, \\ \|g_{n(k)}\|_{L^{\infty}(\Gamma_{n(k)})} \leq C_{0}^{k-1} / \prod_{\mu=1}^{10n(k-1)} (1+\varphi_{\mu}), \end{split}$$

$$\begin{split} \| \operatorname{Re} \mathscr{H}_{\Gamma_{n(k)}} g_{n(k)} \|_{L^{\infty}(\Gamma_{n(k)})} \\ & \leq \left\{ \sum_{j=1}^{n(1)} 1 / \prod_{\mu=1}^{j} (1+\varphi_{\mu}) \right\} + \sum_{\nu=1}^{k-1} \sum_{j=n(\nu)+1}^{10n(\nu)} \left\{ C_{0}^{\nu-1} / \prod_{\mu=1}^{j} (1+\varphi_{\mu}) \right\} \\ & + \sum_{\nu=1}^{k-1} \left\{ C_{0}^{\nu} \sqrt{p_{10n(\nu)}} / \prod_{\mu=1}^{10n(\nu)} (1+\varphi_{\mu}) \right\}, \end{split}$$

$$Bu(\Gamma_{n(k)}) \le C_0 \prod_{\mu=1}^{10n(k-1)} (1+\varphi_{\mu})/p_{10n(k-1)}^{9/10}$$

Let $\Gamma = \bigcap_{j=1}^{\infty} \overline{\bigcup_{k=2}^{\infty} \Gamma_{n(k)}}$. Then Γ is a crank of type $\{\varphi_j\}_{j=0}^{\infty}$. We have

$$Bu(\Gamma_{n(k)}) \leq C_0 \prod_{\mu=1}^{10n(k-1)} (1+\varphi_{\mu}) p_{10n(k-1)}^{-9/10}$$

$$\leq \text{Const} \left(\frac{3}{2}\right)^{10n(k-1)} \left(\frac{3}{2}\right)^{-(4/3)(9/10)10n(k-1)}$$

$$= \text{Const} \left(\frac{3}{2}\right)^{-2n(k-1)},$$

which shows that $\lim_{k\to\infty} Bu(\Gamma_{n(k)}) = 0$. Hence Lemma 4 gives that $Bu(\Gamma) = 0$.

We now show that $\gamma(\Gamma) > 0$. Let $k \ge 1$. Then

$$\int_{\Gamma_{n(k)}} g_{n(k)}(\zeta) |d\zeta| = 1.$$

Since $n(\nu) \ge 10n(\nu - 1)$ ($\nu \ge 2$), n(1) = 10, we have $n(\nu) \ge 10^{\nu}$ ($\nu \ge 1$), and hence

$$\|g_{n(k)}\|_{L^{\infty}(\Gamma_{n(k)})} \leq C_0^{k-1}\left(\frac{3}{2}\right)^{-9n(k-1)} \leq \text{Const.}$$

Since

$$\begin{split} \sqrt{p_{10n(\nu)}} & \left\{ \prod_{\mu=1}^{10n(\nu)} (1+\varphi_{\mu}) \right\}^{-1} \leq \sqrt{p_{10n(\nu)}} \left(\frac{3}{2}\right)^{-9n(\nu)} \\ \leq & \operatorname{Const} \left(\frac{3}{2}\right)^{(4/3)(1/2)10n(\nu)} \left(\frac{3}{2}\right)^{-9n(\nu)} \\ = & \operatorname{Const} \left(\frac{3}{2}\right)^{-(7/3)n(\nu)} \qquad (\nu \geq 1), \end{split}$$

we have

$$\|\operatorname{Re} \mathscr{H}_{\Gamma_{n(k)}} g_{n(k)}\|_{L^{\infty}(\Gamma_{n(k)})} \leq \operatorname{Const.}$$

Hence we can define a non-negative function h_k on $\Gamma_{n(k)}$ so that

$$\begin{split} &\int_{\Gamma_{n(k)}} h_k(\zeta) |d\zeta| = \eta_0, \quad \|h_k\|_{L^{\infty}(\Gamma_{n(k)})} \leq 1/2, \\ &\|\operatorname{Re}\mathscr{H}_{\Gamma_{n(k)}}h_k\|_{L^{\infty}(\Gamma_{n(k)})} \leq 1/2, \\ &h_k(\zeta) = 0 \quad \text{at endpoints of each component of } \Gamma_{n(k)}, \\ &h_k \text{ is differentiable along } \Gamma_{n(k)}, \end{split}$$

where η_0 is an absolute constant. Let

$$\hat{h}_k(z) = \frac{1}{2\pi i} \int_{\Gamma_{n(k)}} \frac{h_k(\zeta)}{\zeta - z} |d\zeta|,$$

$$u_k(z) = \operatorname{Re} \hat{h}_k(z), \quad v_k(z) = (\text{the imaginary part of } \hat{h}_k(z)),$$

$$f_k(z) = \{1 - \exp(i\hat{h}_k(z))\}/\{1 + \exp(i\hat{h}_k(z))\} \quad (z \notin \Gamma_{n(k)})$$

(cf. [1, p. 30]). We see easily that f_k is analytic outside $\Gamma_{n(k)}$ and

$$f_k'(\infty) = \frac{1}{4\pi} \int_{\Gamma_{n(k)}} h_k(\zeta) |d\zeta| = \eta_0/4\pi.$$

The non-tangential limit of $|u_k(z)|$ to each point on $\Gamma_{n(k)}$ is dominated by

$$\|h_k\|_{L^{\infty}(\Gamma_{n(k)})} + \|\operatorname{Re}\mathscr{H}_{\Gamma_{n(k)}}h_k\|_{L^{\infty}(\Gamma_{n(k)})} \leq 1.$$

Since $|u_k|$ is sub-harmonic in $\Gamma_{n(k)}^c$ and continuous in $\mathbb{C} \cup \{\infty\}$, we have $\sup_{z \in \Gamma_{n(k)}^c} |u_k(z)| \le 1$. Hence, for any $z \notin \Gamma_{n(k)}$,

$$|f_k(z)|^2 = \frac{1 + \exp(-2v_k(z)) - 2\exp(-v_k(z))\cos(u_k(z))}{1 + \exp(-2v_k(z)) + 2\exp(-v_k(z))\cos(u_k(z))} \le 1,$$

which shows that $||f_k||_{H^{\infty}(\Gamma_{n(k)}^c)} \leq 1$. Since $k \geq 1$ is arbitrary, using an argument of normal families, we obtain $f \in H^{\infty}(\Gamma^c)$ satisfying $f'(\infty) = \eta_0/4\pi$, $||f||_{H^{\infty}(\Gamma^c)} \leq 1$. This shows that $\gamma(\Gamma) \geq \eta_0/4\pi$. Normalizing Γ , we obtain the required set E_0 .

References

- [1] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin/New York, 1972.
- [2] L. D. Ivanov, On sets of analytic capacity zero, in Linear and Complex Analysis Problem Book (Edited by V. P. Havin, S. V. Hruščëv and N. K. Nikol'skii), Lecture Notes in Mathematics, Vol. 1043, Springer-Verlag, Berlin/New York, 1984, 498-501.
- [3] D. E. Marshall, Removable sets for bounded analytic functions, in Linear and Complex Analysis Problem Book (Edited by V. P. Havin, S. V. Hruščëv and N. K. Nikol'skii), Lecture Notes in Mathematics, Vol. 1043, Springer-Verlag, Berlin/New York, 1984, 485-490.
- [4] P. Mattila, Smooth maps, null-sets for integral geometric measure and analytic capacity, Annales of Math., 123 (1986), 303-309.
- [5] T. Murai, Comparison between analytic capacity and the Buffon needle probability, Trans. Amer. Math. Soc. 304 (1987), to appear.
- [6] L. A. Santaló, Introduction to Integral Geometry, Hermann, 1953.
- [7] A. G. Vitushkin, Analytic capacity of sets and problems in approximation theory, Russian Math. Surveys, 22 (1967), 139–200.

Received March 27, 1987.

Yale University New Haven, CT 06520