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SOME ASPECTS OF DIFFERENTIAL GEOMETRY
ASSOCIATED WITH HYPOELLIPTIC

SECOND ORDER OPERATORS

THOMAS J. S. TAYLOR

I investigate some aspects of the geometry of the ^characteristics
of a class of hypoelliptic second order partial differential operators.
The resulting geometry looks quite a bit like Riemannian geometry,
although with interesting differences.

1. Introduction. In this paper, we investigate the relationship be-
tween certain problems in the calculus of variations and the geometry
of the bicharacteristics of a second order hypoelliptic operator.

Let M denote a connected C°° manifold of dimension m. Let Δ
denote a second order hypoelliptic partial differential operator on M.
We assume that the set of second order zeros of the principal symbol
of Δ is a smooth submanifold of T*M. Since Δ is second order it is
always possible, at least locally, to find a function V(x) and vector
fields {gi}n

i=0 such that Δ = ]C?=i Cfgf + go + V{x) for some constants
cι = ± 1 . Hόrmander [19] has shown that a sufficient condition that Δ
be hypoelliptic is that the sign of the c, doesn't change and that the
evaluation map on vector fields is at each point x e M onto TXM when
restricted to the Lie algebra of vector fields (over R) generated by the
vector fields {gi}n

i=0. In this paper I will be interested in hypoelliptic
operators which satisfy the stronger condition that the Lie algebra
generated by {g/}"=1 is onto TM.

Now, because Δ is of second order, Δ defines a quadratic form G*
on T*M: if fx, f2 e C°°(M) and fx (JC) = f2(x) = 0, then

Because Δ is hypoelliptic, G* is a nonnegative quadratic form, and,
in fact, locally G* = ]Γ"=1 gt ® gim Note that when n < m, G* is
degenerate, i.e., kerG* Φ {0}.

Let D c TM be the distribution spanned locally by the vector fields
{£/}?=i W e assume that D is of constant rank, or equivalently, that
ker G* is of constant dimension.

355
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It has been pointed out by Brockett [3] that the quadratic form G*
endows M with a structure that is in many ways similar to Riemannian
structures, so much so that he uses the phrase "singular Riemannian
geometry". In fact, the singular Riemannian dual metric tensor G*
and various properties of the singular Riemannian geometry can be
obtained as the limits of properties of a parameterized family of dual
Riemannian metric tensors, G*, as ε —• 0; see Gunther [10]. The asso-
ciated Riemann metrics Gε have some components which go to oo as
ε -» 0, hence the adjective "singular". The term "singular Riemannian
geometry" has also been applied to Riemannian manifolds with coni-
cal singularities, but for lack of a better expression, I will continue to
use the terminology of Brockett.

In this paper I will discuss some previously known properties of
the singular Riemannian geodesic flow (or equivalently, the bichar-
acteristic flow of the operator Δ) as well as prove some new results.
Now, Gaveau [8] has discussed this flow. Certain errors of [8] are cor-
rected in [3]. Nagel, Stein and Wainger [16], and Fefferman and Phong
[7] have discussed properties of pseudometrics which are related to
the distance function associated to a singular Riemannian structure.
Gromov [9] has discussed some of the metric properties of singu-
lar Riemannian geometry; he calls the associated distance function a
"Carnot-Caratheodory metric". Mitchell [18] discusses Hausdorff di-
mension properties of Carnot-Caratheodory metrics. Strichartz [19]
has discussed in some detail properties of the exponential map.

In §2, I develop some aspects of singular Riemannian geometry,
both intrinsic and in relation to Riemannian geometry, and I also
develop some connections between the geodesic problem for singular
Riemannian geometry and certain techniques and problems of optimal
control theory. In §3, I discuss results concerning certain "complete"
singular Riemannian exponential maps, in particular that every two
points are connected by a minimizing geodesic and that geodesies do
not minimize past the first conjugate point. Some of these results are
due to Gromov [9] and other authors and some are original. I use these
results in §4 to investigate singular Riemannian geodesic coordinates
connected with a point x e M; these coordinates may be defined on
open geodesic cones with x as the base point.

The work in this paper was in part motivated by a desire to ap-
ply the techniques of Kannai [14] to the study of the asymptotics of
hypoelliptic diffusion equations. These applications will appear in a
sequel.
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2. Background. Assume that our second order operator Δ is locally
of the form Δ = Σϊ=ι gf + lower order, where {gi}n

i=x are vector fields
on M, which are nonvanishing. We assume also that the Lie algebra
generated by {£/}"=1 has the property that it spans the tangent space
of M, so that Δ is hypoelliptic. Then, by our earlier assumptions, the
distribution D spanned by {&}f=1 is of constant rank, and satisfies the
property that the smallest integrable subbundle of TM which contains
D is TM itself.

Now consider the quadratic form G* induced by Δ on T*M. Be-
cause G* = Σ * = 1 gi <g> gi9 the kernel of G* is DL, (= the annihilator
of D in T*M). Thus, although G* is degenerate, G* factors to a pos-
itive definite form G* on T*M/DL. Also, G* determines a mapping
Γ: T*M -+ TM, an element ξ e T*M is mapped into the element

Γ(ζ) = G*(ζ,o) = Σξ(gi(x))gi(x) e TXM.

Clearly the image of Γ is D and the kernel of Γ is D1. Thus, Γ
factors to an isomorphism f from T*M/DL to D, indeed for ξ e
T*M/DL, f (I) = G*(ξ, o). (Note that T*M/DL is D\ the dual space
of D.)

G* also induces a positive definite quadratic form on Z), call it G,
defined for v, w e D by G(υ,w) = (j*(f~1t>,f~1w). One may verify
that the vector fields {gi}"^ form an orthonormal frame for D with
respect to G. Now, suppose that c: [0,1] —> M is a smooth curve in M
such that c(t) eD for t e [0,1]. We may, in analogy with Riemannian
geometry, assign an arc length to this curve by the formula length(c) =

Jo1 VWTέJdt.
At this juncture, it is fruitful to apply a controllability result to learn

that, under the conditions we have imposed on the distribution £>,
given any two points x, y £ M there exists a smooth curve c: [0,1] —•
M such that c(0) = x, c(l) = y and c(t) eD for all t. Indeed, because
the Lie algebra generated by {̂ /}"=1 spans TM, Chow's Theorem (as
discussed in Ballieul [1], for example) gives us the existence of a curve
of the required type.

Therefore, for every two points x,y e M, we can define the dis-
tance, r(x, y), between x and y by

r(x,y) = inf y/G(έ7έ)dt,
Jo

where the infimum is to be taken over all absolutely continuous curves
connecting x and y with c(t) € D a.e. with respect to t.
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We call r(x,y) "the singular Riemannian distance" between x and
y, for it is easy to see that r(x9 y) = r(y, x) and r(x9 y) = 0 =>• x = y,
while the triangle inequality for r(x,y) follows from the fact that
r(x,y) is independent of parameterization of the curves c(t): for
Ci{t): [0,1] - • M for i = 1,2 with <*/(/) e D a.e. such that ci(0) = x,

= y = c2(0), C2(l) = z we can define

' € [0,1/2],
l), / 6 [1/2,1],

and c(t) will have a length with respect to G which is no smaller than
the infimum of the lengths of all curves tangent to D which go from
x to y. Thus r: M x M —• R+ is a globally defined distance function.

Let / = [A,B] be a closed interval. Define a locally minimizing
singular Riemannian geodesic to be a curve c: / —• M such that for
a,b e / sufficiently close r(c(#), c(fc)) = length(c([<z, b])), and define a
minimizing geodesic between x = c(A) and y = c(B) to be a geodesic
such that r(x, y) = length(c([4,5])).

Assume, for the moment, that the distribution D is trivial, so that
there are globally defined vector fields ga such that G* = Σga ® &.
Also, assume that the R-linear span of {&J2=i consists of complete
vector fields. Given a curve c: [0,1] —• M such that c e D for all
t we can define an H-tuple of functions ua: [0,1] -• R by Mfl(ί) =
G(ga,c(t)). Then, c(ί) is a solution of the differential equation

(1) έ(t) =
a=\

A family of such differential equations, parameterized by the func-
tions {u\,...,un} is called a control system; the n-tuple u is called
a control. It follows from the above discussion that the control sys-
tem (1) has the property that for any x,y e M there is a control
u = (u\,...,un) such that the solution c has the property that c(0) = x,
c(\) = y. A control system with this property is said to be "control-
lable", and the control u is said to "steer" x to y.

Now the control system (1) may be solved for any control u with
the property that u\9...,un are each in Lι[0,1). If we make R" =
R x R x x R (n times) into an inner product space with the standard
quadratic form ( , ) = (Γs on the diagonal) then the set of controls
u with this property is Lι([0,1]; Rn) = {u: /J y/(u, u) dt < oo}. The
completeness conditions on {̂ /}"=1 imply that control system (1) de-
fines a map h: Lι([0,1]; Rn) x M -> M\ if c(t, U,XQ) is the solution
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of (1) with initial condition c(0) = x0 for a given MeI ι ([0,l];R"),
we define h(u,xo) = c(l,w,Xo)

The following lemma is a simple consequence of GronwalΓs lemma.

LEMMA 1. The mapping h(o, χQ): Lι([0,1]; Rn) -* M is continuous.

Now, since {ga}
n

a=\ is an orthonormal frame for D,

G(c, C) = G(JT gaua(t), £ gbub(tή
\a=l b=l /

n

Ua(t)ub(t)G(ga,gb)

α,ύ=l α=l

Thus,

, y) = inf^ yj^ua(t)2 dt = inf\\u\\L,

where the infimum is taken over all u which steer x to y.
We then have:

LEMMA 2. Let r be the singular Riemannian distance function. Then
r is a continuous map M x M —• R.

Proof. Suppose that r is not continuous. Then, there exists z, y e
M, ε > 0 and a sequence of points {zk,yk) E M xM which converges
to (z, y) and such that \r{z,y) - r(zk,yk)\ > ε. Then, the triangle
inequality implies that r(z, zk) + r(y, yk) > ε. By Lemma 1 the so-
lution γ(t,y) of the control system (1) is a continuous mapping from
Lι([Q, 1]; Rn) to M. Since (1) is controllable for every sequence yk

(or zk) there is a sequence of uk in L1 such that ^ = h(ukyy). Now
let Ω# c L1 be the subspace of all functions such that u is constant
on each open interval

The dimension of QN is πiV, so that ΩN may be identified with RnN.
It is then a consequence of the definition of Λ(0, y) that λ(0, y)|Ωjv is
a C 0 0 mapping of Ω# into M. But, it is established in the literature
of control theory (see [4], the proof of theorem one, for example),



360 THOMAS J. S. TAYLOR

that for N sufficiently large h(t, y) maps neighborhoods of zero in ΩN

onto neighborhoods of y in M. Thus, h(0,y) maps neighborhoods
of zero in Lι into neighborhoods of y in M. But this implies that
the Wfc may be chosen in such a way as to approach zero as k —• oo.
But the length of the path s —• c(s, y, u^) for s e [0, t] is just the L 1

norm of w ,̂ while we have assumed that the optimal distance of the
yk (or Zfc) is bounded below. This is a contradiction. Thus r is jointly
continuous. D

An easy localization argument gives:

COROLLARY 1. A singular Riemannian distance r(x,y) is continu-
ous.

3. The singular Riemannian exponential map. In Riemannian geom-
etry, there are several different but equivalent notions of a complete
Riemannian manifold, M9 for example, that M is a complete met-
ric space with respect to the Riemannian distance function or that
the geodesic flow is complete. For a complete Riemannian manifold,
every two points can be joined by a minimizing geodesic. In the sin-
gular Riemannian case, the issue is not so clear. We have, however,
the following which is a particular case of a theorem of Gromov [9].

THEOREM 1. If the metric space (M, r), with r the singular Rieman-
nian metric, is complete then:

(a) the closed geodesic balls are compact
(b) any two points x,y e M may be joined by a minimizing geo-

desic.

Suppose that G is a Riemannian metric on M. One method of
obtaining a singular Riemannian metric G is simply to restrict G to
the distribution D. The following theorem follows from a statement
in Gromov's book.

THEOREM 2. Suppose that G is the restriction to D of a complete
Riemannian metric G, and that r is the singular Riemannian distance
associated to G. Then (M, r) is complete.

Proof (outline). Suppose f is the Riemannian distance. Then r > f
because the length of a curve c which is tangent to D is the same with
respect to G as to G, but for r one can minimize only over such curves,
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while for r one can minimize over all curves. Thus, any sequence
Cauchy for r is also Cauchy for r. Conversely, suppose {xn} c M
is Cauchy for r, then there is an x e M such that xn converges to x.
But, since r is continuous r(xn, x) converges to zero, and r(xn, xn+m) <
r(xn,x) + r(xn+m,x). D

On the other hand, the converse of this theorem, that every complete
singular Riemannian metric is the restriction of a complete Rieman-
nian metric is not so clear (to the author). The next theorem gives
sufficient conditions, of a different type than Gromov's, for two ar-
bitrary points to be connected by a minimizing singular Riemannian
geodesic.

THEOREM 3. Assume that G* is globally of the form Σa=\ Sa®ga with
{ga}a=\ globally defined vector fields with R-span consisting of complete
vector fields. Then we have that every two points are connected by a
minimizing singular Riemannian geodesic.

Proof. Let c: [0,1] —• M be a smooth curve in M which is tangent
to D for all t in [0,1], so that c is a solution of the differential equation

(1) έ(t) =
a=l

and conversely, any solution c of such a differential equation is a curve
in M which is tangent to D. Now, exactly as in the Riemannian case,
the singular Riemannian geodesic problem may be phrased: Find a
curve c: [0,1] —• M which is tangent to D such that c(0) = x, c(l) = y
and which minimizes the functional

I2(c)= / G(c,c)dt.
Jo

Such an extremal c will also minimize the length /J y/G(c,c)dt and
will have the property that G(c, c) is independent of t and that I2(c) =
r(x,y)2.

Now, recall that the vector fields {ga}a=\ a r e a n orthonormal frame
for D, so that G(ga,gt) = δ^. If we substitute the differential equation
(1) in the functional I2(c) we have that I2(c) is equal to the functional
of u

η(u)= f J2ua{t)2dt.
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Thus, the singular Riemannian geodesic problem may be rephrased:
Find an /2-tuple of functions u(t) such that the solution c(t) of the
initial value problem

(2) c(t) = Σ,ga(c(t))ua(t); c(0)=x
a=\

satisfies the condition c(l) = y, i.e., u steers the differential equation
(1) from x to y and such that, among all ^-tuples which steer x to y,
u minimizes η(u).

This way of considering the matter is the archetype of the (nonlin-
ear) "optimal control problem" so that the deep results of Cesari [6]
concerning the existence of optimal controls may be applied.

Now, all the results of Cesari's paper are in the context of nonlin-
ear optimal control systems on Euclidean spaces, so we will have to
modify our situation. Consider M to be an embedded submanifold
of R 2 m + 1 , by the Whitney embedding theorem. Since M has a tubular
neighborhood in R 2 m + 1

? it's easy to see that we may extend the vector
fields ga to smooth vector fields ga on R 2 m + 1 , in such a way that the
extended vector fields are all tangent to M. Thus, any solution of the
differential equation

(3)

satisfies the property that c(t) e M for all t. Now, let x, y e Λf,
and suppose that ψε e Q ° ( R 2 m + 1 ) satisfies the property that 0 <
ψε < 1 and that ψ£ = 1 on some open neighborhood in R 2 m + 1 of
Eε = {z: r(x, z) < r(x,y) + ε} c M. Then, if u = (u\,..., un) mini-

mizes η(u) among all u which steer the solutions cε of the differential
equation

(4) Ce(t) = Σ Ψε(Ce(t))ga(ce(t))ua(t)
a=\

from x to y, then u will also steer the solutions of equation (3) from
x to y and will minimize η(u) among all such u.

Indeed, we can see this as follows. Since r{x,y) = inf /J y/G(c,c)dt
over all curves c tangent to D such that c(0) = x9 c(l) = y, we have
that for every δ > 0 there is a curve cδ tangent to D and connecting x
to y which has a length < r(x, y)+δ, and which therefore is contained
in Eε for all t if δ < ε.
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I claim that this means that a solution cε of (4) which connects x to
y and which minimizes η(u) has the property that r(x, cB(t)) < r(x, y)
for all ί < 1. Suppose the contrary. Then there exists a to < I such
that r(x, cc(ίo)) = r(x, y) and r(x, cε(t)) < r(x, y) for t < t0, because r
is continuous. Then

ί!

J0
dt = f0J2uα{t)2dt+ f Σuα{t)2 dt.

But, for t < to, Ψε{Ce{t)) = 1, so that for t < to, cε(t) also solves (3)
and is minimizing for t < to, so that

However, the fact that u minimizes η(u) among those u which steer
(4) from x to y implies that the corresponding solution cε(t) of (4) is
an extremal of the functional

ΨΓ2(cε(t))G(ce,ce)dt= ί Y^uα{tγdt,
Jo ~

so that the standard arguments give us that ψ~2G(cε,c£) is independent
of time, hence that Σ uα(t)2 is independent of time, hence that

η(u) = r(x, y)2/t0 + ([1 - to]/to)r(x, y)2 = (l/φr(x, y)2 > r(x, y)2.

Also

ί Ψ£~
l(cε(t)WG(c£fcε)dt = (l/to)r(x,y) > r(x,y).

Jo

But, if we define uδ{t) by uαδ{t) = G(gα, cδ(t)), then, for δ sufficiently
small uδ(t), steers both (3) and (4) from x to y\ the solution in both
cases is cδ because cs(t) is contained in Eε for all t in [0,1], We have,
therefore that

for δ sufficiently small. But, this contradicts the fact that cε{t) is
minimizing, which proves my claim.

Thus, cε{t) is minimizing implies that r(x,cε(t)) < r(x,y), which
implies that u{t) steers x to y for both (3) and (4) and that η(u) is
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the same in both cases. Therefore, in order to show the existence of
a u which steers (3) from x to y it is sufficient to show the existence
of a u which does the job for (4). But, (4) satisfies the conditions of
Existence Theorem III of Cesari [6] if, instead of η(u), we consider
the problem of minimizing the equivalent functional

Thus, the theorem of Cesari implies that there exists a u which steers
(4) from x to y and which minimizes η(u) + 1 among all such u (here,
we have that Cesari's g = go = μ = 1, gιf = 0 for / = 1,2,..., m, and
C = sup ΣaJ \g*a\ where gl

a is the ith component of the vector field ga

with respect to the /th coordinate of some choice of linear coordinate
onR 2 w + 1 ) . D

REMARK. For various reasons, it seems obvious that the singular
Riemannian structures of the last theorem must give rise to a complete
metric on M, although I haven't yet been able to prove it. In this
eventuality, the last theorem will follow from Theorem 1.

Now, recall that a necessary condition that a control u be an optimal
control is that it satisfy the Pontryagin maximum principle. But, for
the Pontryagin maximum principle to be satisfied is equivalent to the
statement that a geodesic is the projection onto M of a solution in
local coordinates of Hamilton's equations on T*M, with Hamiltonian
function G*(p, p). On the other hand, simple localization arguments
lend themselves nicely to give

COROLLARY 2. For an arbitrary singular Riemannian metric, a geo-
desic is a projection of an orbit in T*M of the Hamiltonian vector field
associated to the function G*(p, p).

In Riemannian geometry, there is a converse to this corollary, that
the projection of the geodesic flow is locally minimizing. In our case,
the situation is not so clear.

Now, let H be the Hamiltonian vector field on T*M which is asso-
ciated with the Hamiltonian function G*(p, p). Recall that the expo-
nential map exρx: T*M --• M is defined by cxpx{p) = n exp(H)(x, p)
for p G T*My where π is the canonical projection of T*M on M. We
have the following corollary.
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COROLLARY 3. Assume the conditions of one of Theorems 1, 2, or 3.
The exponential map txpx: T*M -» M is onto.

Proof Every two points are connected by a minimizing geodesic,
hence every two points are connected by a geodesic. But, a geodesic
is the projection of an integral curve of H, so that there is for every
x, y e M an integral curve ξ: [0,1] -» T*M such that π< (̂0) = x and
πξ(l) = y. Then, if £(0) = (x, p) we have expx p = πexp(H)(x, p) =
πξ(l) = y. n

Let SJC be the "unit sphere" with respect to Gx in the cotangent
space T*M, i.e., Sx = {i> = G*(P, P) = 1} (of course, S* is actually a
cylinder).

DEFINITION. Let μx: Sx -» R+ be the function on S* which assigns
to each p e Sx the largest non-negative extended real number T e
[0, oo] such that the geodesic t —• txpx{tp) is minimizing for all t e
[0, Γ).

The properties of the analogous function in Riemannian geometry
are well known. Now, for any p e TXM, the length of the geodesic
t -» cxpx(tp) between t = 0 and t = 1 is >/Gx(p,p). Thus, for
ί < βχ(p), P € 5.x, we have that r(x, exρx(tp)) = /, and, for all
t > 0, r(x,expx(tp)) < t. Thus, for each t > 0, expx(t, •) maps 5^
into /^(ί) = {y: r(x,y) < t}. For r complete, Bx(t) is compact, by
Theorem 1.

We use this compactness to develop a method of considering the
uniform limits of geodesies t —• exρx(tpn), t e [0, a] for some a > 0,
and /?„ a sequence in S*. We have that, for each t, exρx(t, •) maps
Sx into Bx(t); Sx is a completely regular topological space, Bx(t) is
compact. It follows that exρx(t, •) extends to a continuous mapping
expx(/, •) of the Stone-Cech compactification β(Sx) into 5 x (i) . We
have that expx(ί, p) = txpx{tp) for p G SX. Consider now the func-
tion t -* expx(ί,/?), for p e β(Sx). Since 5^ is open and dense in
β(Sx), there always exists a sequence {pn} c Sx such that any neigh-
borhood of p contains all but a finite number of the pn's. By conti-
nuity, expx(tpn) converges to expx(/, p) for each fixed /. Thus,

r(expx(t, p), cxpx(t + ε, /?)) = lim r(expx(tpn)f expx([t + ε]pn))
n+oo

by continuity of r, so that r(expx(ί, p), expx(/ + ε, p)) < ε. Thus, the
function t -» expx(ί, p) is a continuous curve in M which is uniformly
continuous with respect to r.



366 THOMAS J. S. TAYLOR

DEFINITION. In the case that px e β(Sx) - S we call t -> exp^ί, p)
a generalized geodesic.

Note that expx(tpn) converges pointwise in t to expx(t,p); it's an
easy exercise to show that it converges uniformly for t in compacts by
using the uniform continuity and an ε/3 argument.

If there is a generalized geodesic such that r(x, exρx(ί, p)) = t for t e
[0, T]> we can take this as the definition of a minimizing generalized
geodesic.

REMARK. exρx defines a continuous map β(Sx) x [0, Γ] —• M,
but it need not be the case that P\,P2^ β(Sx), p\ φ Pi, implies that
expjc(ί, P\)>Sφx(ί, pi) are different curves: a generalized geodesic may
be equal to a geodesic. Indeed, we have:

LEMMA 3. The only minimizing generalized geodesies are equal to
geodesies.

The proof of this lemma requires the introduction of certain con-
cepts. Suppose that t —• txpx(tf p) is a minimizing generalized geode-
sic for t G [0, T], A repetition of an argument given above implies
that

r ( e x p x ( t , j p ) , e 3 φ J C ( 5 ι , p ) ) <\t — s\ f o r a l l t,s> 0.

For 0 < s < t < T we have

t = r(x, expx(ί, p)) < r(x, exρx(s, p))

+ r(expx{s, p),txpx(t, p))\

the first term is equal s, the second less than or equal t - s, so that
^(exp^^, p), expx(/, p)) = t - s for a minimizing geodesic. It follows
that the curve c(t) = expx(ί, p) satisfies

foralln>0.
n ) \ n

This motivates the following. Let c: [a, b] —• Λf be an arbitrary
absolutely continuous curve. Let HP = {α = to < h < < tn+\ = b)
denote a partition of [a, b]. Define the length functional
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In general, this length might not be the same as the length with respect
to G, see [9] for discussion. We use the convention that the length of
a curve c with respect to G is infinity if c is not in D, a.e. Let l^a'b\c)
denote the length with respect to G of c between c{a) and c(b). We
have

LEMMA 4. />>%) = l^b\c).

Proof. Both lengths are local functional, i.e., ϊ^b\c) = ί^a'd\c) +
ϊ^d'b\c), so that it suffices to work locally. Suppose that ί/2 c U\ c
UQ C M are open neighborhoods of c(a)> such that TUQ is trivial, that
I/2, t/i are compact, that <9£/i is a smooth submanifold and that ί/2 =
{y: r(c(α),y) < Γ} for some T sufficiently small. Let φ e C^(UQ)

satisfy 0 < φ < 1, <£|Γ/2 = 1, </>|£/i > 0, supp(</>) = U{.

We claim that φ~ιG gives rise to a distance r^ on £/i such that
(U\,rφ) is a complete metric space. Indeed, pick a smooth comple-
ment δ oϊD over UQ : 71/Q = D®δ. Pick a smooth frame {ξ\,..., £w-«}
of J; since TUQ is trivial these exist. Declare δ to be orthogonal to D
and {£1,..., ζm-n} to be orthonormal. This gives rise to a Riemannian
metric tensor & = G + H, such that &\D = G. φ~x& is a complete
Riemannian metric on C/χ: the dual tensor of φ~~x& is φ&*, and 0^*
gives rise to a complete geodesic flow on the unit co-sphere bundle in
T*U\. We may see this because the unit co-sphere bundle over any
compact in U\ is compact so that the Hamiltonian vector field η as-
sociated to φ&*, which restricts to the co-sphere bundle, is complete
unless the geodesies of φ~ι& can reach dU\ from an interior point
with a finite length. But any such curve will also have a finite length
with respect to ^ , and φ~ι(c(t)) will blow up as c(t) approaches dU\
faster than any inverse power of the distance from dU\, so that the
length with respect to φ~~ι& is infinity.

Thus our claim follows from Theorem 2. Now, let &ε = G + ε~ιH.
By the above φ~x% is complete on U\ for each ε > 0. Let r! denote
the associated distance. By arguments, in the proof of Theorem 2
rε

φ < rφ: also rε

φ < r% if ex < ε. Let r°φ = limε_+0 r«. It follows that r°φ is
a continuous metric, rφ> r? > r? for ε > 0.

Indeed, the defining properties of a metric are preserved in the limit
of an increasing family of such metrics, continuity follows from the
triangle inequality and the fact that rφ(x,y) > r9(x,y) while Vφ is
continuous. Let Π^ denote the orthogonal projection, with respect to
ί%, on δ (this is independent of ε > 0). Suppose that c is a curve in U9

with ΠjC ^ O o n a subset of finite measure in [a, b] for every b > a,
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so that

ί sJφ-^ε(Πδc,nδc)dt > 0.

For ε > 0, define

ξa

φ

b\c) = 8upΣ'{(c(ί/).c(ί/ +i)). and

It follows from well known results of Riemannian geometry that, for
ε > 0, [rε

φ{x, y)]2 is C°° for x and y sufficiently close, so that ϊ{

ε

a

φ\c) is
equal to the Riemannian length of c with respect to φ~~ι&ε. Indeed, the
triangle inequality implies that refining a partition does not decrease
the sum, so that any such sum is bounded by

dt\

and one may find a sequence of partitions which converges to this
integral. But,

^r}(c(t), c(t + s))\s=0 = >Jφ-χ%{c{t),c{t))

(use geodesic coordinates at c(t)).
Thus,

lffφ

b\c) > ε-1'2 ίb

J a

The inequalities rj < rj < rφ imply that %f\c) < ϊ(

o

a

φ

b\c) < fif*\c).

Thus, ϊ{

o

aφ\c) = ex) and ϊ{

φ

a'b)(c) = oc. Therefore, lfb\c) < oo implies
that c ά D, a.e. But, c e D a.e. implies &£(c,c) = G(c,c) a.e., so
that fε

a

φ \c) is the length of c with respect to φ~ι G for ε > 0 and also

for ε = 0. It follows that rφ(x, y) = inf/^^(c) where the infimum is
over c such that c(a) = x, c(b) = y. Thus, by the remark following
Proposition 1.6 of [9], it follows that lf'b\c) = l{

o

a

φ\c).
But, one may see that rφ(x, y) = r(x, y) for x, y e U2 such that

rφ(c(a), x) + rφ(c(a), y) < 5Γ, since in this case a minimizing geodesic
γ(t) between x and y is contained entirely in U2 (the triangle in-
equality applied to r(c{a),γ(t)) plus the fact that γ{t) is minimizing
does the trick). Thus, for b sufficiently small l$*\c) = l^b){c) and
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Proof of Lemma 3. Suppose that there is a minimizing generalized
geodesic: r{x9tiφx{t9p)) = t, t e [0, T], T> 0. Thus, /(°^(expx( ,p))
= ί for ί G [0, Γ] hence l(0A(expx(-,p)) = ί so that expx( ,p) is
minimizing, hence a geodesic. D

LEMMA 5. Suppose that p e Sx and that μx(p) = T < oo.
exp^Γp) w the first critical value ofcxpx along t -* exp^ίp)

or fλ^re exists another minimizing geodesic or generalized geodesic
connecting x to expx(Tp).

REMARK. Although by Lemma 3, a minimizing generalized geodesic
is equal to a geodesic, it may happen that it is equal to ί -> expx(tp).
Thus, the converse of this lemma is not implied: that the existence of
a minimizing generalized geodesic connecting r and cxpx(Tp) implies
that t —• cxpx(tp) is not minimizing for t > T.

Proof The proof follows closely that of Kobayashi ([15], Theorem
4.2), with exceptions which we describe below. We work in the cotan-
gent space rather than the tangent space. We use Kobayashi's notation:
a cotangent vector is denoted by X instead of p. Kobayashi's vectors
bfcXk are now not necessarily contained in a compact subset of the
cotangent space. However, as expx maps β(Sx) x R+ into M and ex-
tends expx, we see that the pairs (b^.X^) are contained in a compact
subset of j J (^) x R+, so that we may take (bk,Xk) to converge to a
point (b, Y). Then expx(f, Y) is a minimizing geodesic or generalized
geodesic with exp^(^, Y) = expx(bX). Indeed,

r(expx(bX),expx(b, Y)) < r(expx(bX),exρx(akX))

+ r(cxpx(bkXk),exρx(bXk))

+ r(expx{bXk),expx(b,Y)),

since εxpx(akX) = exp^b^X^). But, the first term on the right of
the inequality is less than ε/3 for k sufficiently large since ak \ b,
likewise the second term for \bk-b\< ε/3, and the third term as well
since txpx{tXk) converges to expx(/, Y). Thus, if Y is not equal X,
there is an additional minimizing geodesic or generalized geodesic. If
Y = X, then as Kobayashi shows exp^TX) is a critical value of exρx,
by Theorem 4 (below) the first critical value. D

Now, we have remarked that the property of being locally minimiz-
ing is not so clear for singular Riemannian geodesies as for Rieman-
nian geodesies. In fact, in the Riemannian situation, geodesies are
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(locally) uniformly locally minimizing; this amounts to the statement
that μx is bounded away from zero. A result which follows easily from
Kobayashi ([14], Theorem 4.3) is

LEMMA 6. Suppose that there are no minimizing generalized geo-
desies and that μx is locally bounded away from zero on Sx, then μx is
continuous.

Proof. The proof follows directly from that of Kobayashi, with the
exception that, now his vector Y may be in β(Sx)-Sx. The minimizing
generalized geodesic t -* expx(ί, Y) is equal to some geodesic t ->
expx(tp) for some p is Sx. The only problem with this is that it
may happen that p is Kobayashi's X. We exclude this possibility by
hypotheses which exclude all minimizing generalized geodesic. D

THEOREM 4. Singular Riemannian geodesies do not minimize past
the first critical value of the exponential map.

Proof. The discussion in Sternberg [15], on page 184 through the
first sentence of page 187, follows as well in the singular Riemannian
case as it does for "regular Lagrangians". This is also the case from
the middle of page 192 to the bottom of page 193. The proof of
Steinberg's Lemma 5.3 may be rewritten as follows (in the rest of
the proof, we follow the notation of Sternberg). Since F is locally a
diffeomorphism of U c M, it induces a map F*: TU -+ TM, which
is full rank as a vector bundle morphism (and hence itself a local
diffeomorphism). Thus, there is a sub-bundle D' c TU such that the
biggest integrable sub-bundle of TU containing Df is TU itself, and
such that F* is locally an injection of D' onto D. Then (Df, O = GoF)
is a singular Riemannian structure on U. Moreover, the length, with
respect to G\ of any curve B in U such that B e D1 almost always,
is equal to the length ofFoB with respect to G. Thus, if B does
not minimize with respect to G then F o B does not minimize with
respect to G. Also, since F is a local diffeomorphism, U is covered by a
collection of sets {VQ} such that Fa = F\Va is a diffeomorphism onto
the image of Fa> so that F* is a diffeomorphism of Γ*(image(Fα))
onto T*Va.

It follows then, that the Hamiltonian vector field H associated to the
dual of G is pushed forward along F* to the Hamiltonian vector field
H' associated to the dual of (7, H'\Va = (F*)«,#|image(Fα). Thus,
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we get that the following diagram commutes:

371

where F(z) = x.

Thus, since F is a local diffeomorphism, expx is singular at p e
T*M if and only if exp'z is singular at F*(p)9 so that if the geodesic
t —• expx(tp) does not minimize for t > 1 then neither does t —•

Now, associated to the vector field H1 on T*U there is a vector field
T(H') on T(T*U) (Sternberg, p. 185). Consider the coordinates x\
yι on T*U and coordinates x\ y\ ξ\ ζι on T(T*U), where {JC1'} are
coordinates pulled back from U, {y*} are coordinates on the fibers
of T*U9 {ξ1} are coordinates on the subspace of T(T*U) which are
tangent to the fibers of T*U and {£'} are coordinates corresponding
to the tangent spaces of U. In these coordinates the vector field T{H')
has a representation:

Note that the integral curves of T(H') in T(T*U) project down to
integral curves of H' in T* U. Along an integral curve of H', an in-
tegral curve of T(H') amounts to a solution of the following linear
differential equation:

(4)
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where the matrices A^9 B
ij, Cy, Df are smooth functions of t, and

d(σ*yk

4-Σ-

Cn =

dxJ

d2(ση

•yk\

kl

B" =

4f
kl

But, the differential equation (4) is in Hamiltonian form and, in
fact, are the Hamilton equations corresponding to the following opti-
mal control problem: Find a control v = (v\, v2,..., vn) such that the
differential equation

m

(5)
α=\ 7=1

steers the point <̂i to the point ξι, and such that, among all controls
which steer ζ\ to ξι, v is an extremal of the functional:

(6) δ2η '(υ) = f
Jo

m
dt

where the above matrices aι

a, bL and c/7 are defined as follows (note
that they are smooth functions of t):

i _ AX __
y — Λ j —

But, the functional (6) is the second variation (see Bryson and Ho
[5]) of the functional ηf(u) defining the length of a curve in U with
derivative in D' c TV. Thus, if the function t —• x(t) is a minimizing
geodesic for all of t < T it follows that δ2η'(v) is non-negative.

Now, the Hamiltonian function associated with (4), or equivalently
with (5) and (6) is:

m

is the trajectory associated with an extremal control v, then:

δ2η'(v) =
m

L/=l
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because:

a n d ζi = ~

so that Steinberg's Lemma 5.4 on p. 195 also holds in the singular
Riemannian case. The consequence of this is that:

)

Now, assume that y$ e T*U is a critical point of exρ'z, but that
the geodesic γ: t —> expz(0>o) is minimizing for all ί in [0,1 + e] for
some ε > 0. Now, one solution of the equation (4) along γ is the
zero solution: ζ(t) = ζ(t) = 0 for all t e [0,1 + ε]. Another solution
may be constructed in the following way. Let Co t>e a n element of
ker[df(exρ'z)] c Tyo(T*U). Note that Co is not tangent to the line
spanned by yo in T* U, since, for all ί, the length along γ between y(0)
and γ(t) is [GJ

z*(ry0. ίyo)] ( 1 / 2 ) . and this is strictly increasing if y0 is not
in ker[(7*]. Let s -> y s be a smooth curve in Γ^C/ such that y° = j ; 0

and such that (d/ds)ys\s=0 = Co- Then:

^ )U ](z, y 0 .0 , Co)

for all ί by definition of T(H'). Let

. C(0) = « p [ t f W ] ( z f yo, 0, Co).

Then, (^(ί)ιC(0) i s a solution of (*1) along (x(t),y(t)). Since
exp[tT(H')] is a diffeomorphism for all ί, and exp[/Γ(//;)] =
^(exptί/ί']), the fact that c/(exp'z)(j;o, Co) = (exp'zC Vo)* 0) implies that,
for π the canonical projection of T*U on £/, that

i.e., thatί( l ) = 0. Thus, the value of δ2η'(υ) associated with (ξ(t), ζ(t))
is:

Now, let the curve ^: ί —• ξ(t) be the projection of the integral
curve of T(Hf) with initial condition Co- Then, ξ(t) is not tangent of
infinite order at t = 1 to the curve ξ(t) = 0, for otherwise the two
curves must be equal for all t. Define the curve Ξ: [0,1 + ε] —* R w

to be equal to ξ(t) when t < 1, and equal to 0 when t > 1. Thus, the
curve Ξ(t) gives rise to a control υ for which δ2η'(v) = 0, but on the
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other hand Ξ(t) does not come from a solution of (4) since Ξ(ί) is
not infinitely smooth. Thus, zero is not a minimum of δ2η'(v) near
the curve (x(t),y(t), 0,0), so that (x(t),y(t)) is not minimizing for
t > 1. α

4. Applications. In this section we will assume throughout that the
conditions of Lemma 6 hold. There are examples for which this is
the case; in particular, if Δ is locally diffeomorphic to the "subellip-
tic Laplacian" on the Heisenberg group. The Hamiltonian flow for
G* may then be computed explicitly. A somewhat more general sit-
uation than this is when D has the property that the commutator of
any section of D with D yields TM, i.e., when the doubly character-
istic set of Δ is symplectic. Bismut [2] has discussed this condition.
Strichartz [19] has shown in this circumstance that any geodesic is lo-
cally minimizing; the proof of his Theorem 5.4 gives an estimate of
the distance for which the geodesic expx(tp) is minimizing which is
locally uniform in p. We can also show that there are no minimizing
generalized geodesies in this case, however, the methods required are
more appropriately introduced in the sequel to this paper.

COROLLARY 4. For every x e M, there is an open dense subset of
M, call it U(x), on which the function y —• r(x,y) is infinitely differ-
entiate.

Proof. We know that every two points in M are connected by a
minimizing geodesic, and that geodesies do not minimize past the
first critical point of exρx. Thus, expx is an open map on the set V(x)
of (tp) € T*M such that p is in Sx and such that 0 < t < μx{p).
Since μx is continuous, V(x) is open. But, F(x), the closure of V(x)9

is mapped onto M by exρx. Thus, the image, U(x)9 of V(x) is open
and dense.

Also, we have that for p e Sx and t < μx(p)9 r(x,expx(tp)) = t.
Thus, the pullback (expx)*r(x, y)1 = G*(tp,tp) for y — expx(tp).
Thus, on U(x), r(x, •) is smooth. D

Recall that, if ω is the canonical symplectic form on T*M and ω* is
its dual, the Hamiltonian vector field H associated with the function
h = G*(p, p) is ω*(dh, •). In the standard local coordinates on Γ*M,
H may be written as
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Now recalling also that G* defines a mapping from T*M to its dual
TM, we may see that G*(p,d/dx) may also be written G*(p, •). We
have the following lemma.

LEMMA 7. Suppose that y = expx(spo) e U{x). Then G*y(dr, •),
considered as an element ofDy, is equal to (d/ds) expx(spo).

Proof. Now, cxpx(spo) is the projection π[exp(sH)](x, p0). There-
fore, the tangent vector (d/ds) cxpx(spo) is equal to the push forward

π^[exp(sH)](x,p0) = π*H([exp(sH)](x,p0)) = G*y(p(s), •),

where p(s) is the cotangent vector in T*M which is the image of
Po e T*M under exp(sH). Let V(x) c T*M be the open subset that
is defined in the proof of the previous corollary, so that expx \V(x) is
a diffeomorphism onto its image, U(x), in M.

Now, let ( z ! , z 2 , . . . , zm) be a "spherical" coordinate system on
T*M, i.e., a coordinate system such that (zχ)2(p) = Gx(p, p) and such
that for / > 2, zt(sp) = zt(p) for all s > 0. Then, since expx \V(x) is a
diffeomorphism onto U(x), we may define coordinates {JC, } on U(x)
by xι = [(expx)"1]*z ί. These coordinates have the properties that

(a) xι =r(xr).
(b) The function s —• Xi(εxpx(spo)) is constant for 5 < μx(po), for

/ > 2 .

Thus, we have that for s < μx,

= 1 and ^xi(expx(^/?0)) = 0 for / > 2.

On the other hand, Hamilton's equations give that

where the functions ξ[ are functions on T*U(x) which on each fiber
restrict to the dual basis {ξ\,...,ξm} of the frame {p\,...,pm} —
{dxχ,...,dxmY Thus, (d/dξi)G*{p,p) = IΣJliiGψξj, so that with
respect to the frame {d/dx1},
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DEFINITION. We call the coordinates {x\,...,xm} introduced in
the preceding lemma a "singular Riemannian geodesic spherical coor-
dinate system" on the set U(x).

COROLLARY 5. For y Φ x, let v e Dy, and suppose that y =
exρx(sopo) for some p0 e Sx. Suppose also that

G(v, (d/ds)expx(spo)\s=so) = 0.

Then dr(xf )(v) = 0.

Proof. Recall that in the coordinates defined in the proof of the last
lemma, we have that G*(dr, •) = d/dr. Note also that G*(dr, •) deter-
mines a linear functional on T*U(x), i.e., a tangent vector. In fact,
this tangent vector is in D, since D is the dual space of T*M/(kcτG*).
Thus, G(G*(dr, •), •) defines an element in D* = Γ*M/(ker (?), in fact
G(G*(dr,-),-) = dr, mod(kerG*). But, G(v,d/dr) = G(G*(dr, ),v) =
dr(v) = 0.

COROLLARY 6. With respect to the singular Riemannian geodesic
spherical coordinate system on U{x), we have that G* = d/dr <g> d/dr +
(terms involving only d/dxi ® d/dXj for i, j > 2).

Proof. See Hόrmander [13], (Appendix C.5).

LEMMA 8. Suppose y e U(x). Then r(zχ,z2) is a C°° function of
(z{, z2) e M x M at (z{, z2) = (y, x).

Proof. W e h a v e t h a t t h e r e e x i s t s po G Sx a n d 1 G R + s u c h t h a t
0 < λ < μx(po) and y = εxpx(λp0). Thus, y = πexp(H)(x,λp0).
Suppose p\ is the element of T*M such that (y, p\) = exp(/7)(x, λp0).
Now, the fact that y e U(x) implies that expx is full rank at λp0 by
Theorem 4. But, since exp(H) is a diffeomorphism, this is equivalent
to the fact that dcxp(H) maps Tλpo(T*M) c T(Xtλpo)(T*M) onto a
subspace of T{yfPϊ)(T*M) which is transversal to TPι(T*M). It follows
then, since exp(/7)(y, -p\) = exp(-H)(y, p\), that dexp(H) maps
T-px(TyM) into a subspace of T(X)_λpo)(T*M) which is transversal to
T_λpo(T*M). Thus, expy maps -p\ to x, and dtxpy is full rank at
-p\. Moreover, since dexpx is also full rank at λ'po for 0 < λ1 < λ
it follows that dcxpy is full rank at -λ'p\ for 0 < λ' < 1, so that
x G U(y). Thus, r(z\, z2) G C°°, separately in the variables zx and z2

at [χy y), hence jointly. D
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We have the following easy consequence.

COROLLARY 7. There is a locally finite cover of M of the form
{U(Xi)}i=\ for some countable set of points {Jt/}^ c M.
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