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Dedicated to the memory of Henry A. Dye

Two extensions of a C*-algebra A by a C* -algebra B can be added,
by the method of Brown, Douglas, and Fillmore, whenever the quotient
multiplier algebra M(A)/A contains two isometries with orthogonal
ranges. If A is stable (i.e., if A = A ® Jf) then such isometries can
be found already in M(A), but if A has a tracial state then this is not
possible. (Hence in the case that A is a separable AF algebra, this is
possible only if A is stable.) Here it is shown that, in the case that A is
a separable AF algebra (assumed to have no nonzero unital quotient),
there exist two isometries in M(A)/A with orthogonal ranges if, and
only if, the space T(A) of tracial states of A is compact.

1. Introduction. In [15] and [14] a systematic study was made of
extensions

where A and B are fixed separable approximately finite-dimensional
C*-algebras. (Then C is also approximately finite-dimensional—see
[1].) An equivalence relation was considered on these extensions
which can be described as the simplest possible notion of equivalence
for the corresponding extensions of dimension ranges,

0 -> D(A) -> D(C) -> D{B) -> 0,

namely, isomorphism at the level of D(C)9 inducing the identity on
D(A) and D(B).

This equivalence relation was shown in [3] to be just the strong
equivalence of Brown, Douglas, and Fillmore [2]. In the case A =
3f, this was already shown in [15]. As pointed out in [15], since
D(3f) = Z+ , it follows easily that the Brown-Douglas-Fillmore group
Exty(2?) depends only on the abelian group K0(B), and is the group
Ext(Ko(B),Z). (Here we do not require extensions to be unital, or
even that B have a unit.) The group Exts(B) was also computed by
Pimsner and Popa, by a different method, in [17] and [16].

It was observed in [15] and [14] that the equivalence classes of es-
sential extensions of A by 2?, when computed as a set, often turn out
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to look like a semigroup, even when A is not stable. (In the case of
stable A, this is of course to be expected.)

It is the purpose of this paper to give an explanation of this phe-
nomenon.

Recall that the essential extensions of A by B may be thought of
as the injective homomorphisms of the C*-algebra B into the quotient
multiplier algebra M(A)/A. Strong equivalence is then unitary equiva-
lence with respect to a unitary in M(A)/A in the connected component
of 1 (therefore, liftable to a unitary in the connected component of
1 in M(A)). Unitary equivalence with respect to an arbitrary unitary
in M(A)/A was called weak equivalence in [2]. Brown, Douglas, and
Fillmore also considered a third, weaker, type of equivalence in [2]
(Definition 3.1 of [2]). In the case B = C, in which extensions are just
projections in M(A)/A, this weakest equivalence is just equivalence
of projections.

Accordingly, if A is such that equivalence classes of essential exten-
sions of A by B can always be added, in some natural sense, then
one would expect that the equivalence classes with respect to the
third, weakest, relation could also be added, in a natural sense. In
the case B = C, when the equivalence classes are just the Murray-
von Neumann equivalence classes of projections, one would expect
that this natural addition coincided with the usual addition of equiv-
alence classes with orthogonal representatives, and so universal ex-
istence of addition would mean that D(M(A)/A), the abelian local
semigroup of equivalence classes of projections in M(A)/A9 was a
semigroup.

While the argument of the preceding paragraph is not conclusive, we
shall now show that if it does happen that D(M(A)/A) is a semigroup,
then there is a natural way of adding strong equivalence classes of es-
sential extensions of A by B. Furthermore, this addition is compatible
with weak equivalence, and also with the third, weaker, equivalence
relation referred to above. Finally, while to prove that the addition
of strong equivalence classes is independent of any choice made in
the construction, we need to assume that A is a separable AF alge-
bra, this is not necessary in the case of weak equivalence, or the third
equivalence relation. In any case, no assumption is necessary on B.

THEOREM. Let A and B be C* -algebras. Suppose that the abelian
local semigroup D(M(A)/A), the range of the dimension on M(A)/A,
is a semigroup. It follows that the weak equivalence classes of essential
extensions of A by B form a semigroup, in a canonical way. This is
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also the case with respect to the third, weaker, equivalence relation of
[2]. The strong equivalence classes can be made into a semigroup in a
way which, while possibly not canonical in general, is canonical at least
in the case that A is a separable AF algebra.

Proof. The hypothesis that D(M(A)/A) is a semigroup implies that
dim(l) + dim(l) is defined in D(M{A)/A). (These two properties are
in fact equivalent.) That dim(l) + dim(l) is defined just says that
there exist isometries v\ and υ2 in M(A)/A with orthogonal ranges,
i.e. such that v%U\ = 0. Since also dim(l)+dim(l)+dim(l) is defined,
we may choose V\ and v2 so that there exists an isometry v3 with range
orthogonal to the ranges of both V\ and v2. We shall always choose v\
and V2 in this way.

Let p\ and p2 be embeddings of B into M(A)/A. With ViPiV*
denoting the embedding b •-• Vipj(b)v*, the images of V\p\V* and
V2P2V2 in M(A)/A are orthogonal, and so the sum v\p\v\ + v2p2^2 *s

also an embedding of B into M(A)/A.
We shall show that this addition is compatible with each of the three

equivalence relations, for fixed V\ and v2. We shall also show that the
resulting addition of weak equivalence classes is independent of the
choice of v\ and V2, and that the same holds for the third equivalence
relation. We shall then show that in the case that A is a separable AF
algebra, also addition of strong equivalence classes defined in this way
is independent of the choice of v\ and υ2. Finally, we shall show that
addition is associative.

Let U\ and U2 be unitaries inM(A)/A. Then the extensions V\p\V*+
V2p2v2 a n ( * vι(uiPιu*\)v\ + V2(u2p2uz)v2 a r e unitarily equivalent by
the unitary

W = V\U\V\ + V2U2VI + (1 - V\V\ - V2VI).

This shows that addition is compatible with weak equivalence. Fur-
thermore, if U\ and U2 are connected to 1 in M(A)/A9 then ViUjV*
is connected to ViV* inside ViV*(M(A)/A)ViV*, and hence w is con-
nected to 1 in M(A)/A. This shows that addition is compatible with
strong equivalence.

Before showing that addition is compatible with the third equiva-
lence relation of [2], let us recall what this is. We shall say that essen-
tial extensions p and p' (considered as embeddings of B in M(A)/A)
are equivalent in the third sense (of Brown, Douglas, and Fillmore) if
there exists x eM(A)/A such that

(1 - x*x)p{B) = (1 - xx*)p'(B) = 0, p'φ) = xp(b)x\ b e B.



90 GEORGE A. ELLIOTT AND DAVID E. HANDELMAN

(In [2], it was specified that x should be a partial isometry, but then
it is not immediate that the relation is transitive, and in the case that
A is arbitrary, or even separable and AF, it is not at all clear how to
prove this.) In this case, we shall write p' = xpx*. (If p is an essential
extension, and if x e M(A)/A is such that (1 -x*x)p(B) = 0, then b H-*
xp(b)x* is also an extension, say /?', and necessarily (l—xx*)p'(B) = 0,
so we may write p1 = xpx*.) Clearly, if ρ\ = x\p\x\ and p'2 = x2pix2,
then

vxp\v\ + v1p
l

1v\ = x{vxpxv\ + v2p2vl)x*

where x = V\X\v\ + v2x2v2. This shows that addition is compatible
with the third equivalence relation.

It is easy to show that for equivalence classes in the third sense,
addition as defined above is independent of the choice of V\ and v2.
If υ[ and v2 are two other isometries with orthogonal ranges (and here
we do not need the existence of a third, v'3)9 then

+ v2p2v2 = x{vιp{v\ + v2p2v$)x*

where x = v\v\ + v2v2.
To show that for weak equivalence, addition as defined above is

independent of the choice of V\ and υ2, we shall use that also ^3 exists
with υ$v$ = 1 and v$V\ = v$υ2 = 0. If v[, v'2, and v'3 are three other
isometries in M{A)/A with orthogonal ranges, we shall show that there
is a unitary u in M(A)/A with uv\ =υ[ and uυ2 = vr

2. It follows that

υ[pιv[* + v'2p2v2 = u{vxpλv\ + v2p2υ2)u*,

as desired.
With Vi and v\ as above, / = 1,2, 3, showing that, for some unitary

u in M(A)/A, uv\ = υ[ and uv2 = v2 is the same as showing that
the projections 1 - (v\vl + v2v2) and 1 - (v[v[* + υ2υ2) are equiva-
lent in M(A)/A. By Theorem 1.4 of [4], the set of all projections in
M(A)/A containing a projection equivalent to 1 maps into a group in
D(M(A)/A), isomorphic to K0(M(A)/A). (This is true in any unital
C*-algebra for the set of projections containing two orthogonal projec-
tions each equivalent to 1, provided that this set is not empty.) Since
the projections 1 - (viv^ + v2v2) and 1 - (υ[v[* + v2v2) majorize ^3^3
and ^3^3* respectively, and belong to the same class in KQ(M(A)/A)

(namely, the class -[1]), it follows that they are equivalent.

To show that for strong equivalence, addition as defined above is
independent of the choice of v\ and v2 (provided that there exists
t>3 with ^3^3 = 1 and v$V\ = v$v2 = 0), it would be sufficient to
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show that if υ[, v2, and v'3 are three other isometries in M(A)/A with
orthogonal ranges, then a unitary ueM(A)/A such that uvγ =v[ and
uv2 = υ2, which exists by the preceding paragraph, can be chosen to be
connected to 1. It is not difficult to see that u can be chosen to be trivial
in K\(M(A)/A). (The projection 1 - (v\V^ + υ2v2) contains an infinite
sequence of orthogonal projections equivalent to 1, and so contains a
unitary belonging to an arbitrary class in K\(M(A)/A), in particular,
to the class [UQ\ where UQ is some unitary with UQV\ = υ[, wô 2 = v'2;
ifu\ is such a unitary inside 1 - {v\v\ + v2v2) then with u = uφ~[x we
have uv\ = v\, UV2 = v'29 and [u] = [uo] - [UQ] = 0.) It is conceivable
that by using the ideas of [4] it is possible to show (assuming the
existence of V\ and υ2) that any unitary u in M(A)/A which is trivial
in K\ is connected to 1. What we can show is that this is true if A
is a separable AF algebra (and then we do not use the existence of V\
and v2): If u is a unitary which is trivial in K\(M(A)/A), so that it is
connected to 1 in some matrix algebra, then it is liftable to a unitary
in some matrix algebra over M(A). On the other hand, u can be lifted
to a partial isometry in M(A) (this part of Lemma 2.6 of [8] is valid
for any AF algebra). The index of this partial isometry is invariant
under perturbation by a matrix with entries in A, and is therefore the
same as the index of the unitary lifting u in a matrix algebra, namely,
0. But if the kernel and cokernel of a partial isometry in M(A) lie
in A and have the same Xo-class, then as A is an AF algebra these
projections are equivalent, and so the partial isometry extends to a
unitary in M(A) (with image u in M(A)/A). By Theorem 2.4 of [8]
(which is valid for any separable AF algebra), the unitary group of
M(A) is connected. Therefore u is connected to 1 in M(A)/A.

Finally, let us show that addition is associative. This can be done
by showing that if p\, p2, and p$ are three extensions, and if (V/)i<i<4
and (v'/)\<i<4 are two sets of four isometries in M(A)/A with orthog-
onal ranges, then the various kinds of equivalence classes of the two
extensions

" +v'2p2V2*+v'3p3v'3*,

are the same. In the case of weak equivalence, or equivalence in the
third sense, the proof can be given just as above for one less isometry.
In the case of strong equivalence, the proof can be given as before if
A is a separable AF algebra. If A is arbitrary, then we can prove that
the strong equivalence classes are the same if the isometries (vj) and
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{v'D all belong to a single sub-C*-algebra D of M(A)/A isomorphic to
the algebra ^ of Cuntz. Indeed, by [4], the unitary group of ^ o is
connected, and so the unitary constructed for weak equivalence also
works for strong equivalence if it can be constructed in the algebra D.
This is the case since Theorem 1.4 of [4], applied before to M(A)/A,
applies equally well to D (and to the set of projections in D containing
a copy of 1—we do not need to know this is the set of all nonzero
projections in D).

The isometries v\ and υ'f that arise in proving associativity are just
monomials in given isometries v\9 v2, and VT, with orthogonal ranges,
namely,

v[=v\, v2 = vxv2, v'3 = v2, v'4 = v3,

v'l = v\9 v" — v2vχ, v'l = v\, v'l = v3.

Furthermore, replacing υ^ by ^3^1 we have that V\,υ2, and υ^ are part
of an infinite sequence V\9V2,v$9... of isometries with mutually or-
thogonal ranges, namely, in the original notation, V\, υ2, v^V\, υ^v2υ\ >
v^v\v\, These generate a sub-C*-algebra D oίM(A)/A isomorphic
to the (simple) C*-algebra <̂oo> as desired.

This completes the proof of the theorem.

With addition of extensions as defined above, the sum of two uni-
tal extensions is no longer unital (except possibly with respect to the
third equivalence relation). If, in D(M(A))9 dim(l) + dim(l) not only
is defined but also is equal to dim(l) (this happens much less often)—
equivalently, if there exist two isometries in M(A)/A with orthogonal
ranges the sum of which is equal to 1—then the sum of two unital
extensions constructed as above but using two such isometries instead
is again a unital extension. It is easy to see that for weak equiva-
lence, or for equivalence in the third sense, this addition of unital
extensions is compatible with equivalence, and the resulting addition
of equivalence classes is canonical and associative. Compatibility of
addition with strong equivalence is also clear; however, the resulting
addition of strong equivalence classes of unitary extensions is not in
general canonical—even in the case A = Jf it depends on the choice
of the two isometries with range projections summing to 1. Neverthe-
less, it is still associative. The reason for this is that in the C*-algebra
generated by two isometries with orthogonal ranges with sum 1 (i.e.,
in the C*-algebra ^2 of Cuntz), every unitary is connected to 1 [4].
Therefore, as before, the proof of associativity of addition of weak
equivalence classes also works for strong equivalence classes.



ADDITION OF C*-ALGEBRA EXTENSIONS 93

Since, as we have seen, it is of interest whether 0^ or ^2> is con-
tained in the quotient multiplier algebra M(A)/A ( ^ for adding ar-
bitrary essential extensions of A by B, and ffi for adding unital ones),
we shall give criteria for this in the case that A is a separable AF al-
gebra. Theorem 3.1 gives criteria for embedding ^Όo, and Theorem
3.3 for embedding ^ 2 As a natural continuation, we shall go on to
give criteria for embedding a more general Cuntz-Krieger algebra &p
in M(A)/A. (Such an embedding is, after all, an extension in its own
right.)

These results are based on a computation of KQ(M(A)) (and
D(M(A))) given in §2.

Some results concerning the semigroup of extensions in various
cases are given in §4.

2. Calculation of K0(M(A)).

2.1. THEOREM. Let Abe a separable AF algebra, and let e and f be
projections in M(A). The following two conditions are equivalent:

(i) e is equivalent to f in M{A).
(ii) D(eAe) = D(fAf).

Proof, Ad(i) => (ii). Let u be a partial isometry in M(A) such that
ueu* = / . If e\ is a projection in eAe then ue\U* is an equivalent
projection in fAf, and any projection in fAf is obtained in this way.
This shows that D(eAe) and D(fAf) are equal as subsets of D{A).

Ad(ii) => (i). Suppose that D(eAe) = D(fAf), by which we mean
equality as subsets of D(A). By Theorem 3.1 of [10] there exist ap-
proximate units (e, ) and (f) of eAe and fAf, respectively, consisting
of projections. As A is separable we may choose (eϊ) and (f) to be
sequential and increasing. Since D(eAe) c D(fAf), for each / there
is a j such that e\ is equivalent to part of /} in A, i.e., [e{\ < [fj] in
D(A). Similarly, since D(fAf) c D(eAe)9 for each / there is a j such
that [f] < [ej\. Hence, passing to subsequences of (e/) and (//), we
may suppose that, for each /,

fo]<[//+iL [fil <

Thus,

Hence, for each /, there is a projection e'2i e A such that e^-x < e'2i <
and, moreover, [e'2i] = [fu]. Similarly, for each / there is a
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projection fl

2i_x e A such that / 2 | _2 < Γ2i_x < fu (here as above, i >
1; by /o we just mean 0), and, moreover, [f{i-\] = [^2/-il Replacing
2̂/ by 4/ a n c l /2/-1 by Z ^ . ! for each /, we have that the sequences

(βi) and (/}), in addition to being increasing approximate units for
eAe and jC4/, respectively, such that [β\] < [f2] < [̂ 3] < LA] < ,
satisfy the stronger condition

all 1.

It follows that with wz, for each /, a partial isometry in ̂ 4 such that

u*m = e, - βι-\ (where eo = 0),

w/w* = // - /i-i (where, as above, / 0 = 0),

the sum Σ ui converges in the strict topology of M(A) to a partial
isometry u e M(A)9 and u*u = e, uu* = / .

2.2. LEMMA. Let A be an AF algebra, let τ be a semifinite lower
semicontinuous trace on A+, and let e be a projection in M(A). It
follows that

τ(e) = s\xpτ(D(eAe)).

Proof. By 6.6.6 of [6] there is a representation of A canonically
associated to τ, and as this is nondegenerate it extends uniquely by
2.10.4 of [6] to a representation of M(A), with the same weak closure.
By 6.6.5 of [6] τ extends uniquely to a faithful semifinite normal trace
on the weak closure of the image of A in this representation, and by
τ(e) we mean the value at e of this extended trace on M(A)+.

By Theorem 3.1 of [10], eAe has an approximate unit (e, ) consisting
of projections. Then β\ converges to e in the strict topology of M(A),
and hence in the weak topology of the bidual of A. Since a normal
trace is weakly lower semicontinuous, and τ(e) > τ(e,) for all /, it
follows that τ{ei) converges to τ(e).

2.3. THEOREM. Let A be an AF algebra, and let e and f be projec-
tions in M(A). Suppose that eAe has no nonzero unital quotient The
following two conditions are equivalent:

(ii) D(eAe)CD(fAf).
(iii) τ(e) < τ(f) whenever τ is a semifinite lower semicontinuous

trace on A+.

Proof. Ad(ii) => (iii). This follows immediately from Lemma 2.2.
Ad (iii) => (ii). Let e\ be a projection in eAe, and, assuming (iii),

let us prove that e\ is equivalent to some projection f\ in fAf.
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First let us prove that for any semifinite lower semicontinuous trace
τ on A+ such that τ{e\) is finite and not zero, τ(e\) < suρτ(D(eAe)).
To see this, note that if sup τ(D(eAe)) is finite and equal to τ{β\), then
the quotient of eAe by the kernel of τ\eA+e is unital. (By Theorem 3.1
of [10], eAe is an AF algebra and therefore so is the quotient. Passing
to the quotient we have that τ is a faithful trace and its supremum
on projections is attained at ex. In particular, for every projection e2

bigger than β\, x(e2 - e\) = 0 and so e2 = β\. Thus e\ is a maximal
projection, but in an AF algebra a maximal projection must be a unit.)
It follows by hypothesis that τ\eA+e is zero, and in particular τ(e\) = 0.
This proves the assertion.

Next denote by T the compact space of tracial states of e\Ae\. By
the result of the preceding paragraph, for every τ e T there exists a
projection e[ e eAe such that τ(e\) < τ(e[), where by τ(e[) we mean
the value at e\ of the smallest extension of τ to a semifinite lower
semicontinuous trace on A+—which is constructed as in the proof of
Lemma 2.2.

By Lemma 2.2, for each semifinite lower semicontinuous trace τ on
A+,

supτ(D(eAe)) = τ(e) < τ(f) = sup τ(D(fAf)).

It follows from this and the preceding paragraph that for each τ € T
there exists a projection g e fAf such that τ{e\) < τ(g).

Let us verify that, for each projection g in A, the map τ »-• τ(g)
from T to R+ U {+00} is lower semicontinuous on Γ. For each τ € T9

from normality of τ in the trace representation, in which the closed
two-sided ideal I of A generated by e\ is nondegenerate, it follows that
τ(#) = sup τ(D(gig)). It is therefore sufficient to show that τ \-> τ(g)
is lower semicontinuous in the case that gel. Since e\ generates the
closed two-sided ideal /, if g is a projection in / then g is equivalent to
a projection in Mn(e\Ae\) inside Mn(I) for some n = 1,2, (This
presumably is true even if A is not an AF algebra, but to establish it
we appeal to the bijective correspondence between closed two-sided
ideals of an AF algebra and order ideals of its dimension group; see
Section 5.1 of [11]. As a consequence of this, g £ / if, and only if,
the equivalence class [g] of g belongs to the order ideal generated by
the equivalence class [ î] of e\> i.e., if and only if [g] < n[e\] for some
n = 1,2, This correspondence of ideal structures is perhaps best
known for separable AF algebras, but follows in general by using the
fact that the collection of separable AF subalgebras of an AF algebra
is upward directed.) It follows that the case g e I is equivalent to the
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case g G Mn{β\Ae\) (the function τ h-> τ(g) is the same). In this case,
then, the function τ \-> τ(g) is in fact continuous on T.

It follows from the preceding two paragraphs and compactness of
T that there exists a finite set P of projections in fAf such that

τ{e{)<supτ(P), T G I

Since D(fAf) is upward directed, there exists a single projection g G
fAf such that τ(e{) < τ(g), τeT.

Let g be such a projection, and let us prove that β\ is equivalent
to a subprojection of g. Denote by / the closed two-sided ideal of
A generated by e\ and g. Since D(J) is upward directed, there is a
projection pinJ such that both β\ and g are equivalent to subprojec-
tions of p. Replacing e\ and p by equivalent projections (recall that
equivalence of projections in A is the same as unitary equivalence in
M(A)), we may suppose that β\ and g are both majorized by p. To
show that β\ is equivalent to part of g in pAp, an AF algebra with
unit, by Theorem 1.4 of [7] (see also Lemma 4.1 of [12]) it is sufficient
to show that τ'{e\) < τ'{g) for every tracial state τ' of pAp.

Let τ' be a tracial state of pAp = pjp, and let us prove that τ'{e\) <
τf(g). First, if τ'(e\) = 0 then τ'(g) Φ 0, since τ'{p) Φ 0 and p belongs
to /, the closed two-sided ideal generated by e\ and g. Therefore in
this case, τ'(e\) < τ'(g). Second, if τ'(e\) Φ 0, denote the restriction of
τ ' ^ i ) " 1 ! ' to e\Ae\ by τ. Then τ G Γ, and if as above we denote by τ
also the least extension of τ to a semifinite lower semicontinuous trace
on pJ+p, then τ < τ'{e\)~xτ'9 since τ'(e\)~ιτ' is a semifinite lower
semicontinuous (in fact, finite continuous) trace on pJ+p agreeing
with τ on β\Je\. In particular, τ(g) < τ/(e\)~ιτ/(g). But since τeT,
by the choice of g we have τ(e\) < τ(g). Therefore in this second
case,

τ'(eι) = τ'(eι)τ(eι)<τ'(eι)τ(g)<τ'(g).

This shows that e\ is equivalent to a projection f\ in gAg. Since
g G fAf, f\ G fAf as desired.

2.4. COROLLARY. Let Abe a separable AF algebra, and let e and

f be projections in M(A). Suppose that neither eAe nor fAf has a

nonzero unital quotient The following two conditions are equivalent:

(i) e is equivalent to f in M(A).
(iii) τ(e) = τ(/) whenever τ is a semifinite lower semicontinuous

trace on A+.
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Proof. This follows immediately from Theorems 2.1 and 2.3.

2.5. COROLLARY. Let A be a separable AF algebra with no nonzero
unital quotient, and let e and f be projections in M{A). The following
three conditions are equivalent:

(i) 1 Θ e is equivalent to 1 Θ / in M2(M(A)).
(iii) τ(e) = τ(/) for all τ e T(A) c T{M{A)).
(iv) τ(e) = τ(/) for all τ e T(M(A)).

Proof. The implications (i) => (iv) and (iv) =>• (iii) are immediate.
Ad (iii) => (i). We shall deduce this from (iii) => (i) of Corollary 2.4,

by showing that the present condition (iii) implies Condition 2.4(iii)
with M2{A) in place of A, and l θ ^ , 1 θ / in place of e, / . Let τ
be a semifinite lower semicontinuous trace on M2(A)+. If τ(l θ 0)
is infinite, then r ( l φ e ) and τ(l © / ) are both infinite and therefore
equal. If τ(l © 0) is zero, then τ(l @e) and τ(l φ / ) are both zero
and therefore equal. If τ(l © 0) is finite and not zero, then we may
suppose that τ(l © 0) = 1 and so τ\A e T(A). Hence in this case
τ(l © e) = τ(l φ / ) follows from (iii).

2.6. THEOREM. Let A be an AF algebra. Ife is a projection in M{A)
then D(eAe) and D((l - e)A(l - e)) are intervals in D(A), and

D(eAe) + D((l - e)A{\ - e)) = D(A).

Conversely, ifD\ and Dι are intervals in D(A) such that

and if A is separable, then there exists a projection e in M(A) such that

A = D(eAe), D2 = D((l - e)A{\ - e)).

Proof. Let e be a projection in M(A). By Theorem 3.1 of [10] both
A\ = eAe and A2 = (1 - e)A{\ - e) are AF algebras. In particular,
D(A\) and D(A2) are intervals in D(A). (The only property of an
interval which is not obviously possessed by D(Ai) is upward direct-
edness, but this holds in the dimension range of an AF algebra.) Since
A\A2 = A2A\ = 0, clearly D(A\) + D(A2) is contained in D(A).

On the other hand, A\+A2 contains an approximate unit for A9 so
every element g of D(A) is majorized by f\ +f2 for some f\ e D(A\),
f2 e D{A2). By the Riesz decomposition property, g < f\+f2 implies
g = g\ + Si with gx < fu g2 < f2, in particular, with gx e D(AX)9

g2eD(A2). This shows that D(A) is contained in D(A\) + D(A2).
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Now let A and D2 be intervals in D(A) such that A + D2 = D{A).
Suppose that A is separable. Let us show that there exist mutually
orthogonal projections

eι,e2,..., /i,/2>

in A such that the finite sums {β\ + f\) + + (e^ + fk) are an ap-
proximate unit for A, the finite sums [e\]-\ h [e^] belong to D\ and
generate D\ as an interval, and the finite sums [f\] H \-[fk] belong
to D2 and generate D2 as an interval. Since D\ and D2 are countable,
there exist sequences

g ι , g 2 > . -> h i f h 2 , . . .

in D\ and D2 respectively such that the finite sums g\ H \-gk belong
to D\ and generate D\ as an interval, and the finite sums h\ H h %
belong to A and generate Z)2 as an interval. Since D\ + D2 = Z> it
follows that the finite sums {g\+h\)-\ \~(gk + hk) belong to D and
generate D as an interval (i.e., eventually majorize any element of D).
Choose inductively mutually orthogonal projections

in A such that [e[ ] = g\, [//] = h\, Denote by B the hereditary sub-
C*-algebra of A generated by e\ >f{,e'2,f2, Since B is the closure of
the union of the sequence P\Ap\ C p2Ap2 c where pk = (e[ +//) +
• Ήe'k+fί)>D(B) = \JD(pkApk). Since [Pι], [p2],... generate/)^)
as an interval, D(B) = D(A). Hence by Theorem 4.3 of [9], B is iso-
morphic to A, and by an isomorphism acting as the identity map from
D(B) to D(A). It follows that with e\,e2,... ,f\,f2,... the images in
A, by such an isomorphism, of the projections e\, e'2,..., //, f 2 , . . . in
B, the required conditions are fulfilled.

2.7. COROLLARY. Let A be a separable AF algebra. There is a bijec-
tive correspondence between unitary equivalence classes of projections
in M(A) and ordered pairs (D\,D2) where D\ and D2 are intervals in
D(A) such that Dx+D2 = D(A).

Proof. This follows immediately from Theorems 2.1 and 2.6.

2.8. LEMMA. Let A be a C*-algebra, and let I be a closed two-sided
ideal of A. The map which to each state of I {i.e., to each positive linear
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functional on I of norm equal to one) associates the unique extension
to a state of A is continuous with respect to the weak* topologies.

Proof Let (ω, ) be a net of states of / converging to the state ω of
/, on each element of /. We must show that ω, converges to ω on
each element of A. (Here we use the same notation for the unique
state extensions to A.) It is sufficient to pass to an arbitrary subnet of
(ω, ) and then show that there exists a subnet converging to ω on A.
By compactness of the unit ball of the dual of A, there is a subnet of
(cύi) converging on A to a positive linear functional φ on A of norm
at most one. Since φ agrees with ω on / and \\φ\\ < 1, and | |ω|/| | = 1,
φ must agree with ω on A.

2.9. LEMMA. Let A be a separable AF algebra with no nonzero unital
quotient. Let f G AffT(M(A)) be such that for some ε > 0,

e < /(τ) < 1 - ε, τ e T(A) c T(M(A)).

It follows that there exists a projection e in M{A) such that

τ G T(A) c T{M{A)).

Proof. Set D{A) = D. We must show that there are intervals Dγ
and D2 in D such that

A +D2 = D, /(τ) = supτ(A), τ G Γ(Λ).

To see that it is sufficient to do this (and also necessary), refer to
Theorem 2.6 and Lemma 2.2.

Define subsets A and D2 of Z) as follows:

D{={ge D; τ(g) < f(τ) for all τ G

A = {# e £>; τ(*) < 1 - /(τ) for all τ G

Let us prove that A and A are intervals in D fulfilling the require-
ments.

Note that the property /(τ) = sup τ(A)> τ £ 7X )̂> is a consequence
of the definition of A and A together with the property D CDι+D2

(to be proved): for each τ G T(A) we have, successively,

/(τ) > supτ(A), 1 - / ( τ ) > supτ(A),

1 = /(τ) + (1 - /(τ)) > supτ(A) + supτ(A)

> supτ(A + A ) > supτ(D) = 1,
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/(τ) = supτ(A), 1 - / ( τ ) = supτ(Z)2).

Thus, what needs to be proved is that D\ and D2 are upward di-
rected, and D\ + D2 = Zλ

Note first that no closed two-sided ideal of A has a nonzero unital
quotient: If / and / are closed two-sided ideals of A such that / c /
and /// is unital, then /// is a direct summand of A/J, and there-
fore at the same time a quotient of A/J, and hence of A. Since by
hypothesis any unital quotient of A is zero, /// is zero.

Note next that if / is a closed two-sided ideal of A, then the restric-
tion map T(M(I)) —> T(M(A)) is affine and continuous, so we may
view / as in AffT(M(I)). Furthermore, there is a natural injection
of T(I) into T{A). Let us show that

A Π D(I) = {ge £>(/); τ(g) < f(τ) for all τ G T{I)},

D2 Π />(/) - {g G />(/); τ(g) < 1 - f(τ) for all τ G Γ(/)}.

Since Γ(7) c T(A), the left sides are contained in the right sides.
Suppose now that g e D(I) and τ(g) < /(τ) for all τ G Γ(7), and
let τ G T(A). If | |τ |/ | | = 1 then τ G Γ(7), so we may assume that
| |τ |/ | | < 1. If τ\I = 0 then τ(g) = 0, and by hypothesis 0 < /(τ),
so τ(g) < /(τ). Assuming τ\I Φ 0, set Hτl/H"1!!/ = τo; then τ 0 G
T(I). Considering the image of τ 0 in T(A), recall that τ 0 is the least
extension of ||τ|VU""1 x|y to a continuous trace on A+. In particular,
To < Ilτl/H"1! on A+, so τ - | |τ |/ | |τ 0 is a trace on A+. Since | |τ |/ | | < 1,
τ - | | τ | / | | τ o 9 έ θ . Set \\T-\\T\I\\^\\-\T-||τ|/||τ0) = τ i ; then T l G Γ(^),
and τ = /loτo + λiτi where λ0 = | |τ |/ | |, λx = ||τ - | |τ |/ | |τ o | | . Evaluating
at 1 gives λ$ + λ\ = 1, and hence since / is affine and positive,

/ ( τ ) = λ o / ( τ o ) + A 1 / ( τ 1 ) > λ o / ( τ o ) .

On the other hand, since τ 0 G T(I), we have τo(g) < / (τ 0 ) . Since
T\\I — 0, combining these inequalities gives

as desired. Together with a similar argument (or the conclusion) with
/ replaced by 1 — / , this shows that the left sides contain the right
sides and so are equal to them.

Let us prove that D\ and D2 are upward directed. Let g\ and g2

be in D\; we must find g e D\ majorizing both g\ and g2. Clearly it
is sufficient to do this inside the ideal of K0(A) generated by g\ and
g2, which we denote by D(I)—/ being the corresponding closed two-
sided ideal of A. By the results of the preceding two paragraphs we
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may just pass to / and suppose that I — A. In particular, K0(A) now
has an order unit (e.g. g\ + #2)- Choose an order unit u of KQ(A)\

since D is upward directed and u G nD for some n = 1,2,..., it is
possible to choose u in D. Denote the state space S(KQ(A), ύ) by S.
For each τ G S set supτ(Z)) = | |τ| |; since ueD and τ(u) = 1, | |τ| | > 1.
If τ G S and | |τ | | < -hoc then HτH"1! G T(A), so we may define an
extended positive real-valued function / on S by

j ( +00, | |τ | | = +oo,
K)

 I/(IITII- 'TJIITII, | | τ | | < + o o .

We shall prove that / is affine and lower semicontinuous on S. By
Lemma 2.8, the map T(A) —• T(M(A)) is continuous, so we may view
/ as a continuous affine function on T(A). We shall also denote by /
the unique affine extension of / to the convex cone ΈL+T(A) which is
0 at 0. Let us first show that / is lower semicontinuous on R+Γ(^4).
Let λiTi converge to λx, where τ, and τ belong to T(A) and λ, and λ
to R+. To show that l iminf/^τ/) > f(λx) it is sufficient to pass to
an arbitrary subnet and then show that this holds at least for some
subnet, so we may suppose that Λ/ converges to λ' G R+ U {+oc}. If
λ' = +oc then as /(λ/τ/) = A//(T/) > λtε, /(/1/T/) -> +oc. If λ' = 0
then as ||τ, || = 1, λ, τ, -^ 0 and /(λτ) = /(0) = 0. In both these cases
the inequality liminf/(Λ/τ, ) > f{λτ) is trivial. If 0 < λ' < +00, then
)I%i converges to λx. Since T(M(A)) is compact we may pass to a
subnet and suppose that τz converges in T(M(A)), say to xf. Since
λ'x* agrees with λx on ^, λ'x1 > λx on M(^) (i.e. on M(A)+). By
continuity of / on T(M(A))9 /(τ/) -^ /(τ ' ) . Hence

as desired. (Here the inequality f(λ'x') > f(λx) is in terms of the
affine extension of / to the cone R¥T(M(A)), equal to 0 at 0. The
inequality holds since / is still positive, and since λ'x' = λx+(λ'x'-λx),
and λ'x' - λx e R+T(M(A)).)

Now let us prove that / is affine and lower semicontinuous on S.
Note that if τ e S and J(x) < +00, then J(x) = /(τ) . It follows that J
is affine and lower semicontinuous where it is finite. Since f(x) = -hoc
exactly when | |τ| | = -hoc, it follows that / is affine on S. (We must
use the convention 0 (+00) = 0.) Since / > ε on T(A), we have
/(τ) > β||τ|| for all τ G R+Γ(y4), and so /(τ) > β||τ|| for_all τ e S.
Since τ ι-> | |τ| | = supτ(Z)) is lower semicontinuous on 5, / is lower
semicontinuous at each point of S where it is infinite.
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Since A = {g G D{A)\τ{g) < J(τ) for all τ e S}, it follows by
Lemma 2.10 of [14] that A is upward directed. Replacing / by 1 - /
we deduce that D2 is upward directed.

Next let us prove that A + D2 c D. If g{ G A and g2 G D2 then
gi + gi^ K0(A)+ and, for all τ G T(A),

τ(g\ + gi) = τ(*i) + τ(g2) < /(τ) + (1 - /(τ)) = 1.

To prove that g\ + g2 belongs to D we may pass to the closed two-
sided ideal of A generated by a projection with dimension g\ + g2.
(Cf. above.) Then g\ + g2 is an order unit for KQ(A), and it follows
by Proposition 7.7 of [14] that g\+g2^D. (The hypothesis of Propo-
sition 7.7 of [14] that D be soft holds by Proposition 7.5 of [14], as A
has no nonzero unital quotient.)

Finally, let us prove that D C Dx + D2. Let g G D. To prove
that g G A + D2 we may pass to the closed two-sided ideal of A
generated by a projection with dimension g. (Cf. above.) Then g is
an order unit for K0(A), and we may apply Theorem 4.3(a) of [14] with
Gx = K0(A), G2 = ZθZ, ux = g,G=Gx@G2, and/: n~l(G+) - Λ(SΊ)
the additive map which on G\ is the canonical map, on (1,0) e G2

is the function / defined above, and on (0,1) e G2 is the function
(1 - /)"" obtained by replacing / by 1 - / in the definition of / " .
The map / is judiciously infinite in the sense of [14] because A has
no nonzero unital quotient. By Theorem 4.3(a) of [14], G becomes a
dimension group in an order with respect to which

where [0, (1,0)] denotes the interval in G between 0 and (1,0) G G2.
Furthermore, in this order,

(this holds for any element of D). In this step we have again used
Proposition 7.7 of [14], which is applicable as D is soft. Since (1,1) =
(1,0) + (0,1), by Riesz interpolation in G we have g = g\ + g2 with
g\ G [0, (1,0)], g2 G [0, (0,1)]. Since g G G+, also gx and g2 are in Gu

which is an ideal of G. Therefore g\ €D\, g2eD2.

2.10. THEOREM. Let A be a separable AF algebra with no nonzero
unital quotient T(A) is dense in T(M(A)) in the weak" topology.
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Proof. (The result may hold for any separable AF algebra A, but our
proof depends on Corollary 2.5 and Lemma 2.9, which are not valid
in the general case.)

Note first that K0(M(A)) separates the points of T(M(A)). This fol-
lows immediately from the fact, established in the proof of Theorem
3.1 of [8], that M(A) is generated as a Banach space by its projections.
(More precisely, it was shown in [8] that, for any separable AF alge-
bra A, each element of A is a sum of four elements—one in A, and
each of the three others commuting with some sequential increasing
approximate unit for A consisting of projections, and therefore a limit
of linear combinations of projections.)

It follows by the Hahn-Banach theorem that Q times the image of
K0(M(A)) in AST(M(A)) is norm dense.

By Lemma 2.9, if an element of K0{M(A)) is greater than ε on T(A)
for some ε > 0, it is equal on T{A) to the class of some projection
in a matrix algebra over M(A). Let [e] - [f] be such an element of
KQ(M(A)). Passing to a matrix algebra over M{A), we have orthog-
onal projections e, / , and g in M(A) with [e] - [f] and [g] agreeing
on T(A), i.e. with e and f + g agreeing on T{A). By (iii) => (iv)
of Corollary 2.5, e and f + g agree on T(M(A)). This shows that
[e] - [f] is positive (in fact, greater than ε) on all of T(M{A)).

It follows that if the product of an element of Q and an element
of the image of K0(M(A)) in Aff T{M{A)) is greater than some ε >
0 on T(A) then it is positive on T(M(A)). By the density of such
elements in AffT(M(A)), we deduce that if an arbitrary element of
AST(M(A)) is positive on T(A) then it is positive on T(M(A)). (If
/ e AffT(M(A)) is positive on T(A) and ε > 0 then f+e > 0 on T(A)
and so g > ε/2 on T(A) whenever \\f - g\\ < ε/2. If in addition g
belongs to Q times the image of KQ(M(A))9 then it follows (as shown
above) that g > 0 on T(M(A)). Hence / + ε/2 > 0 on T(M(A))9 for
arbitrary ε > 0, i.e. / > 0 on T(M(A)).)

By the Hahn-Banach separation theorem (applied to the dual of
AffT(M(A)) with the weak* topology) it follows that T(A) is dense
in T(M(A)).

2.11. THEOREM. Let A be a separable AF algebra with no nonzero
unital quotient. Let f e AffT(M(A)) be such that

0 < / ( τ ) < 1, τeT(M(A)).
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It follows that there exists a projection e in M(A) such that

τ(e) = f(τ), τeT(M(A)),

x[e) = +00, τ an infinite semifinite lower semicontinuous

trace on A+.

Proof. By compactness of T(M(A)) there exists e > 0 such that

ε < / ( τ ) < 1-ε, τeT(M(A)).

Hence by Lemma 2.9 there exists a projection e e M(A) such that

f(τ) = x(e), τeT(A)CT(M(A)).

By Theorem 2.10, T(A) is weak* dense in T(M(A))9 so the equality
holds for all τ e T(M(A)).

The construction of Lemma 2.9 in fact yields a projection e sat-
isfying the second condition of the theorem as well. To see this,
choose n e {2,3,...} such that \/n < min(ε, 1 - ε), and denote
{g e D\τ(g) < l/n for all τ e T(A)} by DX/n. From the construc-
tion of e it is immediate that Dχjn c D(eAe). On the other hand, the
proof of Theorem 2.9 shows that D{/n is an interval, and the sum of
Dχjn taken n times is equal to D. It follows that if τ(l) = +oo, i.e.
suρτ(D) = +00 (recall D = D(A))9 then supτ(A/«) = +°° a n d hence
x(e) = +oo.

2.12. COROLLARY. Let Abe a separable AF algebra with no nonzero
unital quotient. The canonical map

K0(M(A))-+AffT(M(A))

is bijective. It takes K0(M(A))+ into a semigroup of positive elements
of AST (M (A)), containing the semigroup of strictly positive elements,
together with 0. In the case that A is simple, the image ofK0(M(A))+

is equal to the latter semigroup if and only if T(A) = T{M{A)).

Proof. Let us first show that the map is injective. We must show
that if e and / are projections in M(A) (or in a matrix algebra over
M(A)) such that x(e) = τ(/) for every τ e T(M(A)), then the classes
of e and / in KQ(M(A)) are equal. This follows immediately from
(iv)=*(i) of Corollary 2.5.

Let us next show that any strictly positive element of Aίf T(M(A)) is
the function on T(M{A)) determined by a projection in some
matrix algebra over M{A). Since T{M{A)) is compact there exist
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n G {1,2,...} and ε > 0 such that the given function lies between ε
and n - ε on T(M(A)). The existence of a suitable projection in
Mn(M(A)) follows from Theorem 2.11 with Mn(A) in place of A.

Let us show next that the map is surjective. This follows from the
preceding paragraph, since any element of Aff T(M{A)) is a difference
of strictly positive elements (one of which, for example, is a constant
function).

Finally, if A is simple then every nonzero element of A+ is strictly
positive on T(A). Hence, if A is simple, every nonzero projection in
M(A) is strictly positive on T(A), and, if T(A) = T(M(A)), therefore
also on T(M(A)).

2.13. REMARK. If A has a nonzero unital quotient then of course
Corollary 2.12 fails. The map K0(M(A)) -• AffT(M(A)) is not sur-
jective, and need not be injective.

In any case, however, as shown in the proof of Theorem 2.10,
KQ(M(A)) separates the points of T(M(A)), so Q times its image
is norm-dense in AST(M(A)).

Furthermore, the canonical pre-order in KQ(M(A)) is an order (even
if the map into Aff T(M(A)) is not injective). To see this, it is enough
to prove, after passing to a matrix algebra, that if e, / , and g are
orthogonal projections in M(A) such that e + f + g is equivalent to e
then also e + / is equivalent to e. If e + f + g is equivalent to e in
M(A) then

D(eAe)CD((e
c D({e + f + g)A{e + f + g)) = D{eAe),

whence by Theorem 2.1, e + f is equivalent to e.
It seems to be an interesting question whether the image of

KQ{M{A)Y always contains the strictly positive elements in the
image of KQ(M(A)). (This is true if A is unital by Theorem 1.4 of

mo
A closely related question is whether every state of KQ(M(A)) (nor-

malized on 1) comes from a tracial state of M{A). Indeed, if the
tracial states of M(A) separate points of KQ(M(A))9 and the prop-
erty of the preceding paragraph holds (e.g., by Theorem 2.12, if A has
no nonzero unital quotient), then the present property follows. (A
state on KQ(M(A)) in this case determines a functional on Q times
the image of KQ(M(A)) which is positive on Q times the image of
KQ(M(A))+. The latter subset contains the strictly positive elements
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in Q times the image of KQ(A), and these are dense in the set of all
strictly positive elements of AffT(M(A)). Hence this functional is
continuous on Q times the image of KQ(M(A)) and its extension by
continuity to AffT(M(A)) is positive. This functional is therefore
evaluation at some point of T(M(A)), which is then a tracial state on
M(A) extending the given state of K0(M(A)).)

Conversely, if every state of K0(M(A)) comes from a tracial state
of M(A), then it follows by Theorem 1.4 of [7] that for any element
g of KQ(M(A)) which is strictly positive in AffT(M(A))9 there exists
n e {1,2,...} such that ng e K0(M(A))+. (Does this imply that
geK0{M{A))+Ί)

2.14. EXAMPLE. It is interesting, in view of Corollary 2.12, to
decide when T{M{A)) is equal to T(A). This condition is necessary
for the map from K0(M(A)) to the ordered group AffT(M(A)) with
the strict pointwise order to be an order isomorphism, whether A is
simple or not. (If T(A) φ T(M(A)), then T(A) φ 0 (since if T{A) =
0, A is stable and T(M(A)) = 0), and by (i) => (ii) of Theorem 3.1
below, T{M{A)/A) φ 0, so for some projection e e A, [e] is not
zero on T(A) c T(M{A)) but of course [e] is zero on T(M(A)/A) c

As we shall show in Theorem 3.1 below, T(A) = T(M(A)) if and
only if T(A) is compact (in the weak* topology from the duality with
A). (To show this, we shall assume that A has no nonzero unital quo-
tient.) If T(A) is finite-dimensional, then of course T(A) is compact
and so T(A) = T(M(A)). If T(A) is of infinite dimension, however,
then, as we shall show in the following theorem, there exists a sep-
arable AF algebra B such that A is isomorphic to a full hereditary
sub-C*-algebra of B and T(B) is not compact.

Using [7] and [9], it is possible to construct such an example with
A simple, and even with T(A) isomorphic to the simplest infinite-
dimensional simplex S(c), the state space of the C*-algebra c of con-
vergent complex sequences. (In this last case, the convex hull of
T(B) U {0} must be isomorphic to the same simplex, and it follows
that T(B) is the set of all infinite convex combinations of its extreme
points, which form a discrete set.)

2.15. THEOREM. Let G be a dimension group, and let D be an in-
terval in G. Denote by S(G,D) the space of all positive functionals τ
on G with supτ(Z>) = 1. The following two conditions are equivalent

(i) For every interval D' D D, the state space S(G, Df) is compact

(ii) S(G,D) is finite-dimensional
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Proof. Ad(ii) => (i). For every interval D' D D, the restriction map
S(G,D') -> R+S(G,D) is injective (since G = ZD) and affine, so if
S(G,D) is finite-dimensional so also is S(G, D').

Ad(i) => (ii). Our proof is indirect. Suppose that S(G,D) is of
infinite dimension. Since the convex hull of S(G, D) and 0 is compact,
it follows that there exists an infinite sequence (τΛ) of distinct extreme
points of S(G, D). For each n — 1,2,... choose en e G+ such that

τn(en) >n, τk(en) < 2~"\ \<k<n.

To see that such en e G+ exists, for each fixed n, note that by Theorem
4.8 of [13], for each g e G+ the ideal H = H(g) of G generated by
g has dense image in the subgroup of AffS(H, g) comprising those
functions which at each extreme point τ e S(H, g) take values in
τ(H) c R. Choose gn e G+ such that τn(gn) > n. Since 0 e τ(H) for
any τ G S(H, gn), and for each k = 1,2,..., n, either τk(H) = 0 or
τk{gn)~xτk e S(H, gn), there exists en e H+ such that τk{en) is close to
0 for 1 < k < n and τn{en) is close to τn(gn). If these approximations
are close enough, then τn(en) > n and τk(en) < 2~n, 1 < k < n, as
desired.

If S(G, D) is not compact, then (i) is violated with D in place of D1.
It remains to consider the case that S(G,D) is compact. In this case,
since D is upward directed there exist eo e D and ε > 0 such that

τ(e0) > ε for all τ e S(G, D).

Now denote by Df the interval of G generated by the set

{e + ex + '-' + em;eeD,m= 1,2,...}.

For each n = 1,2,... and each g e D1\ choosing e e D and m > 1
such that g < e + β\ Λ h em, we have

τn(g) < τn(e) + τn{ex) + • + τn(em)

< 1 + τn(ex) + + τn(en) + 2 ' ^ + . . + 2~m

<2 + τn(eι + . . + en).

Since en € / ) ' and τn{en) > n we have

It follows that with τ'n = (supτ^φ'))" 1 ^^. w e h a v e τ« ^ S{G,D') and
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On the other hand, for any τ' e S(G,Df), τf is not zero on D (since
Z+£> = G+), and so τ'(e0) > 0 (in fact τf(e0) > supτ'(D)e > 0). If
S(G, D1) were compact then there would exist εf > 0 with

τ'(eo)>ε' for all τ' e S(G,D').

This would contravene the estimates τ(

n(βo) < n~ι.

3. Embedding &n in M{A)/A.

3.1. THEOREM. Let A be a separable AF algebra with no nonzero
unital quotient. The following nine statements are equivalent:

(i) T(M(A)/A) = 0.
(ii) T(A) = T(M(A)).

(iii) The image ofT(A) in T(M(A)) is compact.
(iv) T{A) is compact.
(v) For some g e K0(A), τ(g) > 1 for all τ e T(A).

(vi) The image ofK0(A) in AffT(M(A)) is dense.
(vii) There exists a unital morphism ^ —• M(A)/A.

(viii) D(M(A)/A) is a semigroup.
(ix) S(Ko(M(A)/A),[l]) = 0.

Proof. Ad(i) => (ii). Let τ e T(M{A)). Denote by τ ; the smallest
extension of τ|̂ 4 to a trace on M(A). Then τ' - τ is a positive bounded
trace on M{A) which is zero on A and therefore, if (i) holds, zero. This
shows that τ belongs to the image of T(A) in T(M(A)).

Ad(ii) => (iii). This implication is immediate.
Ad (iii) => (iv). This implication follows from the continuity of the

restriction map from T(M(A)) into the dual of A, which takes the
image of T(A) in T(M(A)) back into T(A).

Ad (iv) => (v). If T(A) is compact, then as D(A) is upward directed,
there exist n e {1, 2,... } and a projection e e A such that

Hence if g denotes n[e] in ΛΓo(̂ 4)? (v) holds.
Ad(v) => (i). Let g e K0(A) be such that τ(g) > 1 for all τ G

Γ(^). By Theorem 2.10, τ(g) > 1 for all τ e T(M(A)). (i) follows
immediately.

Ad(ii) => (vi). (This implication clearly needs some restriction on
A, but perhaps only that A have no finite-dimensional quotient. All the
other implications considered may hold for any separable AF algebra
A.) Suppose that T(A) = T{M(A)). Let / e AffT(M(A)). To show
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that / can be approximated on T(M{A)) by an element of the group
KQ(A), it is sufficient to consider the case that for some ε > 0, ε <
f < 1 — ε. (Instead of approximating / , approximate the functions
(/ + 2\\f\\)/k and 2\\f\\/k where k is an integer greater than 3||/||;
this yields an approximation of f/k and hence of / = k(f/k).) In
this case, by Lemma 2.9 there exists a projection e e M(A) such that
/(τ) = τ(e), τ e T(M(A)). By Lemma 2.2, for each τ e T{A), τ{e) =
s\xpτ{D{eAe)). By Theorem 3.1 of [10], D(eAe) is upward directed.
Since T(A) is compact (as T(A) = T(M(A)))9 by Dini's theorem e
can be approximated uniformly on T(A) by [̂ o] Ξ D(eAe). Since
T(A) = T(M(A))9 this says that [e0] approximates / on T(M(A)).

Ad(vi) => (v). This implication is immediate.
Ad(iv) => (vii). Suppose that T(A) is compact. We must construct

an infinite sequence of isometries in M(A)/A with pairwise orthogonal
range projections. It is of course enough to construct two isometries
with orthogonal ranges. (If U\ and U2 are such, then u2, U\Uι, u\U2,...
have pairwise orthogonal ranges.)

As T(A) is compact, and D(A) is upward directed, there exists a
projection p e A such that

τ(p) > 0, τ G T{A).

Again by compactness oϊT(A), there exists ε > 0 such that

τ(p) >2ε, τe T(A).

By Lemma 2.2, for any τ e T(A), supτ(D(A)) = τ(l) = 1. As T(A) is
compact and D(A) is upward directed, by Dini's theorem there exists
a projection q e A such that

τ{q)> 1-e, T

Combining these inequalities, we have

τ((l - p) θ (1 - q)) < 1 - 2ε + ε = 1 - ε, τ e

Since A has no nonzero unital quotient,

(If τ(p) = 1 then since τ(l) = 1 it follows that the quotient of A by
the largest closed two-sided ideal / of A on which τ is zero is unital
(see proof of Theorem 2.3), whence A/1 = 0; this contravenes τ Φ 0.)
Since T(A) = T(M(A)) (by (iv) => (ii)), we have

0 < τ((l - p) Θ (1 - q)) < 1, τ G
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Hence by Theorem 2.11 there exists a projection e £ M(A) such that

τ(e) = τ((l - /?) Θ (1 - q))9 τ e T(M(A)),

τ{e) = +oo, τ an infinite semifinite lower semicontinuous

trace on A+.

It follows by (iii) => (i) of Corollary 2.4 (with A = M2(A)9 e = e®0,
and / = (1 - p) Θ (1 - q)) that e Θ 0 is equivalent to (1 - p) 0 (1 - q)
in M(M2(A)).

This shows that (1 - p) Θ (1 - q) is equivalent to part of 1 Θ 0 in
Af(Af2(-4)). Since 2)(-4) is upward directed, p and q are both equiva-
lent to part of a single projection r in 4. It follows that (1 - r) Θ (1 - r)
is equivalent to part of 1 Θ 0 in M(M2(A)). In other words, there are
two orthogonal projections β\ and e2 in M(A), each equivalent to 1 -r
in M(A). Since r e A, the images of £i and e2 in M(A)/A, which are
of course orthogonal, are each equivalent to 1. This shows that there
are two isometries in M(A)/A with orthogonal ranges.

Ad(vii) => (viii). Let u and v be isometries in M(A)/A with or-
thogonal ranges. In other words, u*u = υ*v = 1, and uu*, vv*, and
1 - uu* - vυ* are orthogonal projections. Equivalently, in the local
semigroup D(M(A)/A), dim(l) + dim(l) is defined. It follows that
D(M(A)/A) is a semigroup.

Ad (viii) => (ix). If D(M(A)/A) is a semigroup then, in the pre-
ordered group K0{M(A)/A), [1] + [1] < [1]. Applying any τ e
S(K0(M(A)/A), [1]) to this inequality would yield 1 + 1 < 1 in R.

Ad(ix) => (i). This implication is immediate.

3.2. LEMMA. Let G be a dimension group and let D, Dϊt and D2 be
intervals in G+ (i.e. upward directed, hereditary subsets ofG+). The
following implications hold:

(1) A + A cz>2 + z>2=>A ς D 2 .
(2) D + D+D{CD + D + D2=>D+DιCD + D2.

Proof. Ad 1. Let £i be in A> and suppose that g\+ g\ = g'2 + g2

with g2,g2 e D2. Since D2 is upward directed there exists g2 e D2

with g2 > g'2, g'{. Then 2g{ < 2g2, whence gx < g2. Since D2 is

hereditary, g\ e D2.
Ad2. If D+D + Dι CD+D+D2, then

D + D + A + A Q D + D + A + A C 2) + D + D2 + D2.

Hence by Part 1, with A replaced by D+A and Z>2 replaced by Z>+Z>2

(note that D+A is upward directed and hereditary), D+Dχ CD+D2.
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3.3. THEOREM. Let A be a separable AF algebra. For each n =
1,2,... the following three statements are equivalent:

(i) (n - l ) [ l ] = 0 in KO(M(A)/A).
(ii) (n - 1)[1] belongs to the image ofK0(A) in K0(M(A)).

(iii) There exists a unital morphίsm @n —> M(A)/A.

Proof. Ad(i) => (ii). By elementary algebraic ΛΓ-theory, the canoni-
cal sequence of AVgroups corresponding to the short exact sequence

0 -> A -> M{A) — M{A)/A -> 0

is exact at the midpoint, (i) => (ii) follows immediately.
Ad(ii) => (iii). Suppose first that n > 1 and that (n - 1)[1] be-

longs to the image of KQ(A) in KQ(M(A)). In other words, for some
d = 1,2,... there exist projections p and q in M^(^4) such that, in
K0(M(A))9

This means that, for some k = 1,2,..., the orthogonal sum of q
and n - 1 + k copies of 1 is equivalent in Md+n_χJrk{M{A)) to the
orthogonal sum of p and k copies of 1.

In the case k = 1, this says that the orthogonal sum of q and n
copies of 1 is equivalent in Mn+d{M{A)) to the orthogonal sum of p
and 1. Since p and q belong to A, this implies that the orthogonal
sum of n copies of 1 e M(A)/A is equivalent in Mn(M(A)/A) to 1.
This of course is the same as saying that 1 e M(A)/A is the sum of
n orthogonal projections in M(A)/A, each equivalent to 1. In other
words, there is a unital morphism (?n —• M(A)/A.

We shall now reduce the case k > 1 to the case k = 1 by using
Lemma 3.2. We have, in K0(A), that the sum of the interval D(A)
taken n — 1 + k times and the interval [0, [q]] is equal to the sum of
the interval D(A) taken k times and the interval [0, [/?]]. (This is an
immediate consequence of our data, and in fact by Theorem 2.1 is
a reformulation of it.) If k > 1, we may apply Lemma 3.2, Part 2,
with D = D(A)9 A the sum of D(A) taken n - 1 + k - 2 times and
[0, [<?]], and Z>2 the sum of D{A) taken k-2 times and [0, [/?]]. From
D+D+Dι = D+D+D2, which we have, thus follows Z)+A =D+D2,
i.e., the sum of Z>(yί) taken n- l+k- I times and [0, [<?]] is equal to
the sum of D(-4) taken k - 1 times and [0, [/?]]. If /c - 1 > 1, we may
repeat this argument with k - 1 in place of A:, and continue in this
way until finally we deduce that the sum of D(A) taken n — l + \=n
times and [0, [q]] is equal to the sum of D(A) taken once and [0, [/?]].
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By Theorem 2.1, it follows that the orthogonal sum of q and n copies
of 1 in Md+n(M(A)) is equivalent in Md+n(M(A)) to the orthogonal
sum of p and 1. This is the case k = 1, dealt with in the preceding
paragraph.

Finally, we must show that the statements (i), (ii), and (iii) are
equivalent in the case n = 1. Actually, in this case they are all true.
(i) and (ii) are true trivially, and (iii) is true since <9\ (= C(T)) has a
quotient isomorphic to C.

Ad (iii) => (i). A unital morphism ffn —• M(A)/A induces a mor-
phism (tfoWiMl]) - (KO(M(A)/A),[1]). Clearly n[l] = [1] in

3.4. REMARK. If it is assumed that A has no nonzero unital quo-
tient, then the equivalent statements of Theorem 3.3 are also equiva-
lent to the following one:

(iv) n - 1 belongs to the image of K0(A) in AffT(A).
The implication (ii) => (iv) is obvious. The implication (iv) =>

(ii) follows from Theorem 2.10 and the statement of injectivity in
Corollary 2.12.

Statement (iv) should be compared with Statement (v) of Theorem
3.1.

3.5. THEOREM. Let A be a separable AF algebra with no nonzero
unital quotient Let P be adxd matrix of zeros and ones with no row
or column consisting entirely of zeros. Assume that T(A) is compact
It follows that every morphism of groups

-> K0(M(A)/A)

is induced by a morphism of C*-algebras

&P -> M(A)/A,

and if the group morphism takes [1] into [1] then the C*-algebra mor-
phism may be chosen to take 1 into 1.

Proof. Using the hypotheses on A (including that T(A) is com-
pact), we shall construct an additive map from K0(M(A)/A) to the
abelian local semigroup D(M(A)/A) of Murray-von Neumann equiv-
alence classes of projections in M(A)/A (i.e. the dimension range of
M(A)/A), which is a right inverse to the canonical map D(M{A)/A) -*
KQ(M(A)/A)9 and which takes the class of 1 into the class of 1. As
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we shall show, the theorem follows immediately from the existence of
such a map K0(M(A)/A) -> D(M(A)/A).

By the proof of Lemma 2.9 in the case / = j , there exists a projec-
tion e\β G M(A) such that β\β is equivalent to 1 - e\β. Let us show
that the canonical map

d(eι/2 +A) + D(M(A)/A) -> K0(M(A)/A)

is bijective. The inverse of this map,

K0(M(A)/A) -> d(eι/2 + A) + D(M(A)/A) C D(M(A)/A),

then clearly has the properties stipulated above.
Let us first show that the map is injective. By [1], any projection

in M(A)/A is the image e + A of a projection e in M(A). We shall
denote e + A by e. Since (1 - eϊ/2)A(l - eι/2) is also AF ([10], The-
orem 3.1), the same holds with this algebra in place of A. In other
words, any projection majorizing έ\β in M(A)/A is the image of a
projection majorizing β\β *n A. Therefore, what we must show is that
if β\j2 + e and β\β + f are projections in M{A) with the same image
in KQ(M(A)/A), then έ\β + e and έγp + / are equivalent in M(A)/A.
Recall that, as pointed out in the proof of (i) => (ii) of Theorem 3.3,
K0(M(A)/A) D KQ(M(A))/K0(A). Hence, in K0(M(A)),

In other words, there exist projections e' and / ' in some matrix algebra
over A such that

e + e'] = [eι/2 + f + f] in K0(M(A)).

In particular, for every τ e T(M(A)),

τ(eι/2 + e + e') = τ(eι/2 + f + f).

Hence by Corollary 2.5,with β\β in place of 1,

βiβ + e + e' is equivalent to β\β + f + f,

in a matrix algebra over M(A). Passing to the quotient, as e' and / '
map into zero in M(A)/A, we have

έ\β + e is equivalent to έ\β + / in M(A)/A,

as desired.
Let us now show that the map is surjective. For this we shall have

to use the hypothesis that T(A) is compact, which, by Theorem 3.1, is
equivalent to density of the image of K0(A) in AffT(M(A)). By the
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six-term exact sequence of Bott periodicity applied to the extension
A — M(A) -> M(A)/A9 since KX(A) = 0, we have K0(M(A)/A) =
KQ(M(A))/KQ(A). Therefore, to prove surjectivity, we must prove
that for any g e K0(M(A)) there exists h € K0(A) such that g + h is
the class in KQ(M(A)) of a projection in M(A) majorizing £1//2 Let
g € K0(M(A)). By density of KQ(A) in AffT(Af (Λ)), there exists
fιeKo(A) such that

Hence by Lemma 2.9, with the AF algebra (1 - eι/2)A(l -
(see Theorem 3.1 of [10]) in place of A, there exists a projection e G

s u c h t h a t

τ(<?) = τ(g + h) - \, τe T{M{A))f i.e.,

e) = τ(g + h)ί τeT(M(A)).

By Corollary 2.12, this says that [e{/2 + e] = g + h in K0(M(A))9 as
desired.

Finally, let us note that the existence of an additive map

ψ: K0(M(A)/A) -> D(M(A)/A)

taking [1] into [1] and acting as a right inverse to the canonical map
D(M(A)/A) —• KQ(M(A)/A), which we have just established, implies
Theorem 3.5. By definition [5], &p is the C*-algebra generated univer-
sally by finitely many partial isometries with certain additive relations
among their range and support projections (finitely many relations,
each one involving only finite sums). Such relations may be expressed
in D(0p), and by mapping canonically into KQ(&P), from there by a
given map into KQ(M(A)/A), and from there by ψ into D(M(A)/A),
one has similar relations in D(M(A)/A). This means that one has
partial isometries with the appropriate relations in M(A)/A (inducing
these relations in D(M(A)/A)). By universality, one has a morphism
<9p -> M(A)/A, giving rise to the given map KQ{0P) -• KO(M(A)/A).
Furthermore, if the given map takes [1] into [1], then, since the sum
of the range projections of the generating partial isometries in <fp is
equal to 1, the sum of the corresponding classes in D(M(A)/A) is
equal to [1]. Hence partial isometries with the appropriate relations
in M(A)/A can be chosen as above and in addition with the sum of
the range projections equal to 1. Then the morphism (fP —> M(A)/A
is unital.
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3.6. Theorem 3.3 is not a special case of Theorem 3.5, since in
Theorem 3.3 A is allowed to have a unital quotient. Note that, by the
proof of (i) => (iv) of Theorem 3.1, compactness of T(A) is a conse-
quence of any of the conditions of Theorem 3.3. Hence, although it is
not clear whether the assumption that T(A) be compact is necessary
in general in Theorem 3.5, at least it is superfluous in the case that the
class [1] G Ko(M(A)/A) is of finite order. This leads to the following
result.

COROLLARY. Let A be a separable AF algebra with no nonzero unital
quotient, and let P be a d x d matrix of zeros and ones with no row or
column consisting entirely of zeros. Assume that the range of 1 - PXΐ

on Zd contains a nonzero vector with all entries equal {This holds if
det(l —P)φQ.) It follows that every morphism of groups

K0(d?p)->K0(M(A)/A)

taking [1] into [1] is induced by a unital morphism of C*-algebras

&P -+ M(A)/A.

Proof. The assumption on P is exactly that the class [1] G K0(<fp)
(= coker(l - Ptτ)\Zd) is of finite order. (See [4] and [18].) Hence
by hypothesis, [1] G KQ(M(A)/A) is of finite order. The conclusion
follows by Theorems 3.3, 3.1, and 3.5 as observed above.

4. Calculation of nonstable Ext.

4.1. Our first observation is that if A is a separable AF algebra and
B is a unital C*-algebra, and if M(A)/A contains two isometries with
orthogonal ranges, then for (essential) extensions of A by B for which
the complement of the image of the unit of B in M{A)/A contains a
projection equivalent to the unit of M(A)/A (for instance, extensions
for which the image of the unit of B in M(A)/A is contained in the
range projection of one of the two isometries with orthogonal ranges),
all three notions of equivalence coincide.

This is seen as follows. As pointed out in the proof of Theorem
1, it follows from Theorem 1.4 of [4] that cancellation holds for the
equivalence classes of projections in M(A)/A containing a copy of
1 G M(A)/A (this uses the hypothesis that ^Όo is unitally embedded
in M(A)/A). If p\ and pi are two embeddings of B in M(A)/A such
that p\(l) and />2(1) (here 1 denotes the unit of B) are each orthog-
onal to copies of 1 G M(A)/A, then there exist isometries v\ and
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v2 in M(A)/A with ranges orthogonal to each other and to p\(l),
and isometries v[ and υ'2 with ranges orthogonal to each other and
to pι{\). Suppose that p\ and pi are equivalent in the third sense
(the weakest). Since B is unital, this means that there exists a par-
tial isometry w0 intertwining p\ and p2 such that UQUQ = p\{l) and
UQUQ = ^2(1 )• Then, with U\ = u$ + v[υ*, U\ is a partial isometry
with support p\{\) + v\v\ and range pi{\) + v[*v[. By cancellation,
it follows that the complements of these projections (each of which
contains a copy of 1 e M(A)/A—the first v^i and the second v^v^)
are also equivalent; in other words, there exists a unitary u e M(A)/A
extending U\ (i.e. agreeing with U\ on its support). As in the proof
of Theorem 1, we may multiply u on the right by a unitary equal to 1
on the support of U\ to obtain that u is in the connected component
of 1 in the unitary group of M(A)/A. (This uses that A is a separable
AF algebra.) Since p\ and p2 are intertwined by u, they are strongly
equivalent, as desired.

4.2. The preceding observation has the following consequence. Let
A and B be as in 4.1, and consider the subset of extensions of A by B
described in 4.1 (i.e. those for which there is a copy of 1 e M(A)/A
orthogonal to the image of B in M(A)/A). Note that the sum of any
two extensions of A by B, as defined in Theorem 1, is one of these.
In particular, the equivalence classes of these extensions, in any sense
(all are the same, by 4.1), form a semigroup—a subsemigroup of the
semigroup of equivalence classes of all extensions of A by B, in the
same sense. Denote this semigroup by E(B,A). E(B,A) is in fact
equal to the semigroup of equivalence classes of all extensions of A by
B in the third sense. (An arbitrary extension, p, is equivalent in the
third sense of Brown, Douglas, and Fillmore to V\pv\ where v\ and vi
are isometries with orthogonal range.) On considering equivalence in
the third sense, one sees immediately that E(B, A) is a subsemigroup
of E(B,A ®3f). Hence E(B,A) is a subsemigroup of Ext(B,A), or
Exts(B, A), the usual semigroup of (nonunital) extensions of A® 5? by
B with respect to weak or strong equivalence. (It is the subsemigroup
consisting of all extensions of A <g> X by B for which the image of B
in M{A®3£)jfA®3? is contained in the corner algebra determined by
the projection 1 ®e\\ e M{A®X\ where e\\ denotes a fixed minimal
projection in Xϊ) It is also a subsemigroup of Ext(i? ®3£,A), or

4.3. The preceding result permits the semigroup E(B,A) (of exten-
sions of A by B such that there is a copy of 1 G M(A)/A orthogonal to



ADDITION OF C* -ALGEBRA EXTENSIONS 117

the image of B in M(A)/A—with any kind of equivalence (see 4.1))
to be computed in the case that also B is a separable AF algebra. Since
E(B, A) is a certain subsemigroup of Ex\s(B®Jίr, A) (the semigroup of
strong equivalence classes of extensions of A®3£ by B®J£), by [1] and
[3] we are looking at a certain subsemigroup of Extάim(Ko(B), K0(A)),
the semigroup of (equivalence classes of) dimension group extensions
of KQ(A) by KQ(B). If we stick to the case that A is simple (or consider
only stenotic extensions for more general A—assuming that A contains
a full projection), the semigroup Extά[m(Ko(B) f KQ(A)) is computed in
Theorem 4.3 and Proposition 6.4 of [14].

As a result, one deduces that E(B,A) has a zero, and that if every
trace on A is finite, then E{B, A) is a group. (Here we are assuming
that A and B are separable AF, A is simple, ^ o embeds unitally in
M{A)/A, and B is unital; presumably the assumption that B is unital
is unnecessary—but it is not clear how to remove it.)

These facts are deduced as follows. One has to describe E(B, A) as
a subset of Extaim(Ko(B),Ko(A)) in terms of the description of this
larger set given in Theorem 4.3 of [14]. We shall obtain such a descrip-
tion of E(B, A) by modifying Theorem 7.8 of [14], which describes the
subset of Extάim(K0(B), K0(A)) corresponding to the unital extensions
of A by B, i.e. of D(A) by D(B). Actually, the desired modification
of Theorem 7.8 of [14] is just an application of this theorem. What
we want are the unital extensions of eAe by B for various projections
e in M(A) (e φ A) such that the image of 1 - e in M(A)/A contains
a copy of 1, which is the same as to say that 1 - e and 1 can both
be made smaller, the latter just by subtracting a projection in A, so
that they become equivalent (compare 4.4 below). In other words (see
Theorem 2.6), what we want are the unital extensions of D\ by D(B)
for (nonunital) intervals D\ with D\ + D2 + DT, = D(A) for some in-
tervals Z>2 and Z>3 such that D$ + D4 = D(A) for some unital Z>4, i.e.
A = [0, g] for some g e D(A).

With this description of E(B,A), let us deduce the existence of a
zero element. Note first that the semigroup Extάim(Ko(B), K0(A)) has
a zero element, namely, the group-split dimension group extension
constructed as in Theorem 7.11 of [14] with the map λ: K0(B)+ —•
A(S\) of that theorem taken to be zero. Now note that the construc-
tion in Theorem 7.11 of [14] in fact yields a unital extension of D(A)
by D(B), and so the zero of Extάim(K0(B), KQ(A)) belongs to the sub-
semigroup E(B,A).
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Finally, suppose that every trace on A is finite, and let us show that
E(B, A) is a group. The hypothesis means (in the case that A is simple,
as assumed) that every positive additive map K0(A) —> R is bounded
on D(A), and therefore also bounded on any D\ C D(A). Hence (by
Theorem 7.8 of [14]) for any element of Extdim(^o(^)> KQ(A)) arising
from a unital extension of D\ by D(B) with D\ C D(A), any additive
map /: n~l(Ko(B)+) —• Λ(5Ί) associated as in Theorem 4.3 of [14]
with this element must be finite-valued, i.e., have values in ASS\.
In particular by the above description of S(B,A) this holds for any
element of E(B9A).

Conversely, let us show that any element of Έxlfcm{Ko(B), K$(A))
for which the associated additive map /: π~ι(Ko(B)+) —> Λ(5Ί) of
Theorem 4.3 of [14] takes values in Aff5Ί (this property is independent
of the choice of /) belongs to E(B,A). Fix a decomposition D(A) =
Dx + D2 + D3 where D\ is nonunital and D3 + D4 = D(A) for some
unital D4. (Equivalently (by 4.4 below and Theorem 2.6—see above),
fix a projection e in M{A), e £ A, such that the image of 1 - e in
M(A)/A contains a copy of 1.) Then in Theorem 7.8 of [14], if there
is no u with π(u) = [1] e KQ(B) such that l{u) = d (where d is
the map S\ 3 τ »-• supτ(D(A))), anyway choose u with l(u) strictly
positive, and subtract an element of KQ(A) from u so that also l(ύ)
is strictly less than d\ (the map τ ι-> supτ(Z>i)) (Recall that as A
is simple and not elementary, by Theorem 4.8 of [13] the image of
KQ(A) is dense in Aff5Ί.) By Theorem 2.6, there exists a projection
/1 E M(A) such that D(f{Af{) = Dλ. Since d{ e AffSu and every
trace on f\Af\ is finite, we have that T{f\Af\) is compact, and so for
some ε > 0, e < l(ύ) < 1 — ε on T(f\Af\)9 where now l(u) denotes
the homogeneous extension of l{u) e Aίf5Ί. Hence by Lemma 2.9,
there exists a projection / e f\M(A)f\ such that τ(/) = l(u) for
τ G T(fχAfι)9 i.e. τ(/) = /(w) for τ e S\. Furthermore, with / as
constructed in Lemma 2.9, f φ A. In other words (see Theorem 2.6),
we have D\ = D5 + D6 with D5 nonunital, and d5 = l(u). Thus, the
given element of Extάim(Ko(B), KQ(A)) arises from a unital extension
of D5 by D(B), and, furthermore, D5 + (D6 + Z>2) + D3 = D(^) and
Z>3 + Z)4 = Z>(̂ 4) with Z)4 unital. This shows that the given element of
Extdim(*o(*). *o(Λ)) belongs to E{BtA).

Thus, in the case that every trace on A is finite, the description
of the semigroup E(B, A) becomes especially simple; it is just the set
of elements of Extaim(K0(B), KQ(A)) for which the additive map / of
Theorem 4.3 of [14] is finite-valued. Inspection of the description of
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addition in the semigroup Ext^m(Ko(B),Ko(A)) given in Proposition
6.4 of [14] shows that the subsemigroup of such elements is in fact a
subgroup. This shows that, in this case, E(B, A) is a group.

4.4. Let us consider the special case that B = C. Then, assuming
that D(M(A)/A) is a semigroup, we have E{C, A) £ D(M(A)/A)\{0}.
(As pointed out in 4.2, E(B, A) is isomorphic to the semigroup of all
equivalence classes of (essential) extensions with respect to equiva-
lence in the third sense—i.e., since B is unital, equivalence with re-
spect to a partial isometry.) From 4.3 we deduce that, in the case that
A is simple, the semigroup D(M(A)/A) \ {0} has a zero element, and
if every trace on A is finite, then D(M{A)/A) \ {0} is a group.

Let us show that, for any AF algebra A,

D(M(A)/A) = D(M(A))/D(A).

By the right hand side we mean D(M(A)) modulo the equivalence
relation generated by identifying g with g + h if h e D(A) (and g, g +
h e D(M(A))). By [1] we know that every element of D(M(A)/A)
is the canonical image of an element of D(M(A)). We shall show
that if / and g are elements of D(M(A)) such that the images of /
and g in D(M(A)/A) are equal, then there exist k e D{M{A)) and
x, y G D(A) such that / = k + x and g = k + y. (The assertion
D(M(A)/A) = D(M(A))/D(A) follows.) Let p and q be projections
in M(A) such that the images of p and q in M(A)/A are equivalent,
by a partial isometry v e M(A)/A. By Theorem 3.1 of [10], pAp is
approximately finite-dimensional. Hence by the proof of Lemma 2.6
of [8] (compare the second last paragraph of the proof of Theorem 1
above), there exists a partial isometry VQ in M(A) lifting v such that
VQVO < P and VQVQ < q. Since VQ lifts v, P-VQVQ and q - VOVQ belong
to A, as desired.

Let us just point out that this relation, or also the relation

K0(M(A)/A) £ Ko(M(A))/Ko(A),

together with §2, makes it possible to distinguish between M(A\)/Aι
and M{A2)jAι for certain pairs of finite matroid C*-algebras A\,
Aι—a problem left open in [8]. (For A finite matroid, the invariant
D(M(A)/A) is the group R/KQ(A), which tells which prime numbers
divide K0(A).)

4.5. Finally, let B be an arbitrary separable commutative C*-algebra.
By analogy with the case that B is AF, one might ask whether the semi-
group E{B, A) (with A simple separable AF such that ^oo Q M{A)/A)
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has a zero element, and whether, if every trace on A is finite, it is a
group. If B is not AF, we must leave this question completely open.
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