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Let M be a von Neumann algebra and let A be a maximal abelian
self-adjoint subalgebra (masa) of M. A subalgebra T of M is called
triangular (with respect to A) if T Π V = A, where T* denotes the
collection of adjoints of the elements in Ί. If Ί is not contained
in any larger triangular subalgebra of M9 then T is called maximal
triangular. If A is a Cartan subalgebra, then M may be realized as an
algebra of matrices indexed by an equivalence relation on a standard
Borel space and if T is σ-weakly closed and maximal triangular, then
T may be realized as the collection of matrices supported on the graph
of a partial order that totally orders each equivalence class. In this
paper we will be concerned with the relation between the structure of
these algebras and the theory of analytic operator algebras. It turns
out that this relation is complex: it involves the cohomology of the
equivalence relation, the order type of the partial order and the type
ofM.

The concept of a triangular algebra was introduced formally in
1959 by Kadison and Singer in their fundamental paper [KS] which
launched the theory of non-self-adjoint operator algebras. Their ob-
jective was to develop a theory of operator algebras whose elements
could simultaneously all be put into triangular form. It is an elemen-
tary exercise to see that when M is the full algebra of n by n matrices
and when A is the subalgebra of diagonal matrices, a masa in M, then
given a triangular subalgebra Ί of M, it is possible to conjugate X by
a permutation matrix so that the matrices in X are all upper triangu-
lar. Moreover, T is maximal triangular if and only if % is (unitarily
equivalent) to the algebra of all upper triangular matrices. In [MSS]
we began a study of triangular algebras where it is assumed that A is
a Cartan subalgebra of M in the sense of Feldman and Moore [FM1].
(This means that there is a faithful normal expectation from M onto
A and that the group of unitary operators in M that normalizes A
generates M.) Feldman and Moore showed that if A is a Cartan sub-
algebra of M, then there is a standard Borel measure space {X,3B, μ)
and a Borel equivalence relation R c X x X, with the property that
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each equivalence class is countable, such that the operators in M may
be represented as matrices indexed by R. (The product between ma-
trices may have to be twisted by a certain 2-cocycle and so we write
M = M(R,s) where s is the 2-cocycle.) In this representation, A is
realized as L°°(μ) represented by the bounded measurable functions
on the diagonal Δ. It is a consequence of our Spectral Theorem for
Bimodules, Theorem 2.5 of [MSS], that if T is a σ-weakly closed trian-
gular subalgebra of M with respect to A, then there is a Borel subset P
of i? such that T consists of all operators whose matrices are supported
on P and, moreover, P is a partial order, i.e., a transitive, reflexive
and antisymmetric relation. In fact, ignoring details about null sets,
there is a one to one correspondence between such Borel partial orders
and σ-weakly closed triangular subalgebras of M(R,s), and we write
T = %{P). It turns out that X is maximal triangular, if and only if
P totally orders every equivalence class of R. Thus, in every basic
respect, the theory we developed generalizes the theory of triangular
subalgebras of the n x n matrices.

Actually, in [MSS], we worked with the slightly more tractable class
of subdiagonal algebras, first introduced by Arveson in [Al]. As is
shown in [MSS], every (maximal) subdiagonal algebra of M contain-
ing A is of the form %{P) for a transitive reflexive relation P satisfying
P U Θ(P) = R, where θ(x, y) = (y,x). Thus, in effect, such algebras
are algebras of block upper triangular matrices. These are our primary
objects of study.

In this paper, our objective is to see how this theory is related to the
theory of analytic operator algebras as developed in [LM]. Recall that
if 9t is a von Neumann algebra and if a = {at} ten is a one parameter
group of automorphisms of fH, then the collection //°°(α), which is
defined to be all those a in R such that the map t —> p{at{άj) lies in
the classical Hardy space H°°(R) for every normal state on 9ί, is a σ-
weakly closed subalgebra of 9Ί called the algebra of analytic operators
in 9ί. We are interested in how analyticity considerations are reflected
in P, X(P) and M{R, s). We will see that given P, there is a real-valued
function d on R such that P = {(x, y) e R\d(xy y) > 0}. Of course the
characteristic function of P will do, but there are other choices which
are more natural from our perspective. This d will be used to show
that X(P) may always be represented as the intersection of M(R,s)
with a nest algebra in a nontrivial way. It will be shown that %{P)
is an analytic operator algebra in M(R, s) if and only if it is possible
to choose d to be a cocycle for 7?, and %{P) is a nest subalgebra of
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M(R, s) if and only if it is possible to choose d to be a coboundary. We
will show, too, that if %(P) is an analytic operator algebra in M(R,s)
for every P, then for each P, %(P) is a nest subalgebra of M(R, s).
Moreover, assuming M(R,s) is hyperfinite, this happens if and only
if M(R, s) is type I. In fact, if M(R, s) is type I, then every Z(P) is a
nest subalgebra of M(R,s). In a sense, this is a generalization of the
assertion that a σ-weakly closed, maximal triangular algebra in the full
algebra of operators on Hubert space is hyper-reducible and therefore
a nest algebra [A3]. When we began our study of algebras of the form
£(/>), we had hoped that they all would be analytic subalgebras of
their enveloping von Neumann algebras. We wanted this in order to
be able to make use of the invariant subspace theory developed in
[LM] and elsewhere. Of course, this hope is now wrong. There must
be P's for which %(P) is not analytic. We will construct and examine
some explicit examples. We will show that if X(P) equals H°°{a) for a
periodic action a on M{R,s), then necessarily, M(R,s) is hyperfinite
and %(P) decomposes as the direct sum of an analytic crossed product,
determined by a Borel automorphism of a measure space, and a nest
subalgebra of M(R',s) where R1 is a "corner" of R. We will show,
too, that if X(P) is analytic, then necessarily the order type of each
R-equivalence class is very restricted.

The next section is devoted to some preliminary material taken from
[FM1, 2] and from [MSS]. Section 3 is concerned with how our alge-
bras are related to analytic operator algebras. We examine in partic-
ular what happens when M is type I, and we draw some interesting
conclusions about the relation between partial orders and the cohomol-
ogy of R. Section 4 is devoted to the study of periodic flows. Here
we give a first example where one of our algebras is not an analytic
subalgebra of M(R,s). Finally, in §5, we construct and analyze some
other explicit examples of sets P such that %{P) is not an analytic
subalgebra of M(R, s).

Throughout this paper, all Hubert spaces will be complex and sep-
arable. If X is a Hubert space, then the algebra of all bounded linear
operators on <%* will be denoted &(<%"). All measure spaces are stan-
dard Borel spaces.

2. Preliminaries. We recall here certain terminology, notation, and
facts from the Feldman-Moore theory [FM1, 2] and from our paper
[MSS].
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Throughout, X will denote a standard Borel space and 53 will denote
the underlying σ-field, called the σ-field of Borel sets in X. An equiv-
alence relation R c X x X is called standard if it is simply a Borel
subset relative to the product σ-field. If R is an equivalence relation
on X and if B c X, we write R(B) = {y\(x, y) e R for some x e B}\
we write R(x) for R({x}), x e X. We call R countable (finite) if R(x)
is countable (finite) for every x € X. Throughout, our equivalence
relations will be standard and countable. If R is such an equivalence
relation, the product σ-field 53 x 03 restricted to R will be denoted W.
The functions π/ and πr mapping R into X according to the formulas
πι(x,y) = x and πr(x, y) = y are called the left and right projections,
respectively. Also, the map θ: R —• R defined above by the formula
θ(χ, y) = (y,x) plays an important role for us; it is called inversion.

A σ-finite measure μ on (X, 53) is called quasi-invariant relative to
the (standard, countable) equivalence relation R if μ(R(A)) = 0 for all
sets A such that μ(A) = 0. (Note that since π/ and πr are countable-
to-one, they map sets in g7 to sets in 53; consequently, R(A) e 53 for
all A e 53.) We note that by Theorem 1 of [FM1], given an equiva-
lence relation R of the type we are considering, there is a countable
group G acting on X by Borel automorphisms such that R = RG :=
{(x, g - x)\x G X, g G G). Observe that a measure μ on X is quasi-
invariant under RQ if and only if μ is quasi-invariant under the action
of G in the usual sense.

A quasi-invariant measure μ on X induces two measures v{ and vr

on (R, &) via the formulas

= J\π-ι(x)nC\dμ(x),

and

\π~ι{x)Γ\C\dμ(x),= J
where C G ? and where, for any set S,\S\ denotes the cardinality of S.
The measures v\ and vr are called the left and πg/zί counting measures
on ^ determined by μ. (Note that the assumption that R is countable
and standard implies that the functions l ^ " 1 ^ ) n C\ and I π " 1 ^ ) Π C\
are Borel functions on X for each C e &.) The quasi-invariance
of μ is equivalent to the assertion that v\ and vr are mutually abso-
lutely continuous (cf. Proposition 2.1 and Theorem 2 of [FM1]). The
Radon-Nikodym derivative dvιjdvr will be denoted D. We will say
that μ is invariant if Z> = 1 a.e. Observe that when R = RQ, invariance
in this sense is the same as the usual term.
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Let A and B be Borel subsets of X and let φ be a Borel isomorphism
mapping A onto B. We call 9? a partial Borel isomorphism on X\
we call ^ the domain of φ and write A = d(φ), and we call B the
range of φ and write 5 = r(φ). Evidently, φ o φ~x = idr(^) and
φ~xoφ = iά^φ) where for any set i c i , id^ denotes the partial Borel
isomorphism that is the identity on A. The graph of φ will be denoted
Γ(φ). We prove in Lemma 2.1 of [MSS] that each Borel set in C can
be written as the countable disjoint union of graphs of partial Borel
isomorphisms.

For the remainder of this paper we fix a quasi-invariant measure μ
on X and we write v for i/Γ. We normalize μ to have total mass 1 there
is no loss in generality in doing this. Recall that a 2-cocycle (with val-
ues in T) is a Borel map s from R^ = {(z,y,x) G X3\(z,y), (y,x) E
R} such that if (x, y), (y, z), and (z, t) e i?, then s(t, z, x)s(z, y, x) =
s(t, y,x)s(t, z, y). We fix such a cocycle s and assume that s is skew
symmetric in its three variables. (The reader should consult §§6 and
7 of [FM1] for the cohomology of equivalence relations.)

A Borel function a on R is called left (resp. right) finite if

sup (\{z\a(x, z) φ 0}| + \{z\a(z, y) φ 0}|) < 00
(χ,y)eR

and a is bounded (resp. D~χl2a is bounded). Proposition 2.1 of [FM2]
shows that if a is a left finite function and if b is a right finite function
then the following formulas define bounded operators La and R^ on
the Hubert space L2(R,v):

a n d

where ξ G L2(R,v). Observe that since a is left finite, while b is
right finite, the above sums are in fact finite. Using the fact that s is
a skew symmetric 2-cocycle, straightforward calculations reveal that
LaLb = Lab,RaRb = Rba>L*a = La*, and Ra = Ra^ where αfc(Λ:, z) =

)5(x,};,z),a*(x,j;) = α(y,x), and α*(x,y) =

Thus, the left finite functions (resp. right finite
functions) form a *-algebra and L (resp. R) is a ^representation
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(resp. *-antirepresentation) on L2{R, v). The von Neumann algebras
generated by the images of L and R will be denoted M(R,s) and
M(R,s).

In Proposition 2.5 of [FM2], it is shown that M(R,s) = M{R,s)'
and that if ΦQ denotes the characteristic function of the diagonal Δ on
i?, then φ0 is a separating and cyclic vector for M(R, s) (and M(R, s)).
Each operator T in M(R,s) (resp. M(R,s)) has a "matrix" represen-
tation. Indeed, if a(T) (resp. b(T)) denotes Tφ0 when T G M(R,s)
(resp. T G M(R,s)), then the sum (2.1) converges with a replaced by
a{T) (resp. b replaced by b(T)) and the sum gives Tζ. (See Proposi-
tion 2.6 of [FM2].)

Let A (= .4(i?,s)) be {T G M(i?,5)|α(Γ) is supported on Δ}. Then
A is a Cartan subalgebra of M(R, s) in the sense defined in the intro-
duction. The expectation from M(R, s) onto A is given by the formula
E(La) = Lα.<£0 where a - ΦQ is the (pointwise) product of a with the
characteristic function ΦQ of Δ. We will write E(a) for a-ΦQ. The main
result of [FM2], Theorem 1, asserts that if A is a Cartan subalgebra of
a von Neumann algebra M, then there is a standard equivalence rela-
tion R, a quasi-invariant measure, and a skew symmetric 2-cocycle s,
so that Λ/ is isomorphic to M(R,s) in such a way that A is carried to
A(R,s). Moreover, the measure class of μ and the cohomology class
of s are isomorphism invariants of M(R,s).

Since the characteristic function of the diagonal, φ0, is a cyclic
and separating vector for M(R,s)9 one can compute the ingredients
of the Tomita-Takesaki theory for the pair (M(R,s),φo). It turns
out that the modular conjugation operator / is given by the formula
(Jζ)(x,y) = ξ{y,x)D~χl2(y, x) and the modular operator Δ is given
by the formula (Δξ)(x,y) = D(x,y)ξ(x,y) (see Proposition 2.8 of
[FM2]). According to Proposition 2.9 of [FM2], the algebra £ gener-
ated by A{R, s) and JA(R, s)J (c M(R, s)) turns out to be a maximal
abelian subalgebra of the full algebra of operators on L2(R, v) and may
be identified with L°°(R, υ) acting on L2(R, v) by pointwise multipli-
cation. This has the very useful consequence that a (closed) subspace
of L2(R, v) that is invariant under L~a and R~a for all a G L°°(X, μ),
where

y γ —

must be of the form L2{Y,v) for some Borel subset Y of R. The
Spectral Theorem for Bimodules, Theorem 2.5 of [MSS] is an essential
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generalization of this fact. It asserts that each σ-weakly closed linear
subspace of M(R,s) that is a bimodule over A(R,s), i.e. it is closed
under left and right multiplication by elements in A(R, s)9 must consist
of all the operators in M(R, s) whose matrices are supported on some
Borel set B in R. Conversely, of course, given B, the set of operators
whose matrices are supported on B is a σ-weakly closed bimodule. We
write %{B) for the collection of all such operators. The proof in [MSS]
is rather technically involved, but recently Mercer [M] discovered a
very elegant and elementary proof.

If φ is a partial Borel isomorphism on X and if F(φ) is the charac-
teristic function of its graph Γ(φ), then LF^ is a partial isometry in
M(R,s) that is zero if and only if u(Γ(φ)) = 0; equivalently, if and
only if μ(d(φ)) — 0. The algebraic facts about the partial isometries
L F(φ) a r e spelled out in Lemma 2.3 of [MSS]. Basically, in our theory,
these partial isometries play the role that matrix units play in algebra.
One useful consequence of the Spectral Theorem for Bimodules is
that each σ-weakly closed bimodule is the σ-weakly closed bimodule
generated by the Lp(φ) contained in it.

The following lemma is proved as Lemma 2.4 of [MSS] and is very
useful for showing that certain sets are Borel. We state it here for easy
reference as

LEMMA 2.1. (1) Let Xn = {x||i?(x)| = n},n < oo. There exist Borel
functions

φk: \J{Xn\n>k}-+\J{Xn\n>k},

1 < k < oo, such that for each x e X, the map k —• ψk{x) is a bijection
from {1,2,..., \R(x)\} (or N, if\R(x)\ = oo) onto R(x).

(2) For i = 1,2, let gi be a Borel function defined on Borel subset Y\ c
X mapping Yt into X. Define g\ x gι by the formula g\ x g2(x, y) =
(g\(x),g2(y))' Thengxxg2 is a Borel map and {x e X\g\(x) =
is a Borel subset of X.

If B\ and B2 are subsets of i?, we write B\ o B2 — {(x, y)\ there is
a z e X such that (x, z) e B\ and (z, y) e B2}. Using Lemma 2.1,
it is shown in Lemma 3.1 of [MSS] that B\ o B2 is a Borel subset
of R if each Bf is. In an analogous fashion the π-fold composition,
B\ oB2 o. oBn, of sets B\, B2,..., Bn C R may be defined. Let P be a
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Borel subset of R and consider the following assertions:

v{P Π Θ(P)\A) = ιs(A\P Π Θ(P)) = 0;

(P2) v(R\(PUΘ(P))) = 0;

(P3) v(PoP\P) = 0;

(Qi) Pnθ(P)=A;

(Q2) R = Pu Θ(P); and

(Q3) PoPCP.

Assertion (Qj) states that P is an antisymmetric relation, and assertion
(Q3) states that P is a transitive relation. If P satisfies (Qi) and (Q3),
then assertion (Q2) asserts that relative to R,P is a total order; i.e.,
P totally orders each equivalence class determined by i?. Evidently,
assertions (P!),(P 2), and (P3) are variants of (Qi),(Q2), and (Q3)
modulo null sets. Lemma 3.1 of [MSS] shows that a set satisfying
(Pi), (P2), and (P3) differs from a set satisfying (QO, (Q2), and (Q3)
by a null set. The point of introducing these conditions is that if B, Bγ,
and B2 are Borel sets in i?, then %{B{) %{B2) C %{B) if and only if
B\ o 2?2 c B a.e. v\ 1(2?) is a subalgebra of M if and only if B satisfies
(P3); X(0(5)) = τ(BY;ιy(R\(B{ uB2)) = 0 if and only if%{Bx)+%{B2)
is σ-weakly dense in M{Rys), and hence B satisfies (P2) if and only
if %{B) +(l(B)* is σ-weakly dense in M(R,s)\ and B satisfies (Pi) if
and only if %{B) Π %{B)* = A(R,s). These statements are all proved
in Theorem 3.2 of [MSS]. It follows from this that %(B) is a von
Neumann algebra if and only if B is a sub-equivalence relation of R.
Moreover, by Theorem 3.4 of [MSS], the map which takes a matrix
in M{R,s) to its restriction to B is a faithful, normal, conditional
expectation from M{R,s) onto %{B). We denote this expectation by
Φ. In particular, when B = Δ, then Φ = E.

Let 21 be a σ-weakly closed subalgebra of a von Neumann algebra
53, suppose that 1 is in 21 and suppose there is a faithful normal ex-
pectation Ψ from 03 onto 2tn2t*. Then we say that 21 is a subdίagonal
subalgebra of 53 (with respect to Ψ) in the sense of Arveson [A], in
case Ψ is multiplicative on 21, i.e., Ψ(ab) = Ψ(a)x¥(b) for all a and
b in 21, and the σ-weak closure of 21 + 21* is 53. Actually, this is not
exactly the definition in [A], but it is more serviceable from our per-
spective. It does no harm to assume that 21 is σ-weakly closed because
the subdiagonal algebras that concern us are maximal in the sense
that they are not contained in any larger subalgebra of 53 on which Ψ
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is multiplicative, and any such algebra is σ-weakly closed. Arveson in-
troduced these algebras in an effort, in part, to overcome some of the
difficulties in the Kadison-Singer theory. Our concern with them here
arises as follows: Denote by φ the collection of all Borel subsets P of
R that satisfy (Pi), (P2), and (P3). Note that we may assume for most
purposes that each P in φ satisfies (Qi), (Q2X and (Q3). Also, write
φ' for the collection of all Borel subsets P of R that satisfy (P2), (P3),
and the equation v(Δ\P) = 0. Then %{P) is an algebra for all P e Φ
and Z(P Π Θ(P)) = Z(P) Π Z(P)* is a von Neumann algebra that is
the range of the unique faithful normal expectation Φ on M(R, s) as
noted above. Theorem 3.5 of [MSS] asserts that the map P —• X(P)
is a bijection between φ (where we identify two sets that differ by a
i/-null set) and the set of all maximal subdiagonal subalgebras of M
that contain A(R,s). Moreover (and this is Corollary 3.6 of [MSS]),
each X(P), P E φ, is triangular and each σ-weakly closed maximal
triangular subalgebra of M(R, s) with diagonal A(R, s) is of the form
X(P), P eφ. In particular, each σ-weakly closed maximal triangular
subalgebra of M{R, s) with diagonal A(R, s) is a maximal subdiagonal
subalgebra of M(R, s) with respect to the faithful normal expectation
E from M(R,s) onto A(R,s).

3. Nest subalgebras, analytic subalgebras, and partial orders. In this
section we provide criteria for deciding when one of the algebras Z(P)
is an analytic subalgebra or a nest subalgebra of M(R, s). Henceforth,
we will write simply M for M(R, s) and A for A(R, s).

We begin by recalling some basic facts from [LM] where the theory
of analytic subalgebras of von Neumann algebras was first introduced
and studied systematically.

Suppose that 9t is a von Neumann algebra and that a = {at}te^
is a σ-weakly continuous representation of the real line R as a group
of *-automorphisms of 91 We will call such an a a flow on 9ί. For
x e 9t, we let spα(x) denote the Arveson spectrum of x with respect to
a (see [A2]). The analytic subalgebra of 9ί with respect to α, H°°(a)9

defined in the introduction coincides with {x e 9t|sρα(x) c [0,oo)}.
(It requires a little proof to see that in fact H°°(a) is an algebra.) In
Theorem 3.15 of [LM] it is shown that whenever there exists a faithful
normal expectation Φ from £K onto 9ΐ* := {x e ίH|sρα(x) c {0}}, the
fixed point algebra of α, such that Φoα r = Φ for all ί G R , then H°°(a)
is a maximal subdiagonal algebra in 9t with respect to Φ. When a is
an inner flow, i.e., when at = Kάut for a strongly continuous unitary
group {ut}teR in 9ί, then H°°(a) is a nest subalgebra of 9Ί in the sense
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that there is a nest 9ΐ of projections in 9\ such that H°°(a) = {x e
9ί|(l — p)xp = 0, for all p e £K}. In fact, given α, = Adz^ with
ut = J ^ e*' rf£(yl), one may take 91 = {E([t, oo))|ί G R}. Conversely,
if H°°{a) is a nest subalgebra, then α is inner. Indeed, the projections
in the nest can be used to build a spectral measure on R whose Fourier-
Stieltjes transform implements α. For the details of this, the reader
should consult §4.2 of [LM].

We continue with the notation of §2; we let ty(a) denote the col-
lection of P e φ such that Z(P) is an analytic subalgebra of M (with
respect to some flow) and we let %$(n) denote the collection of P e φ
such that Z(P) is a nest subalgebra of M. By the preceding discussion,
we have φ(n) c φ(a) c φ. As we shall see presently, each P e φ(α) is
determined by a 1-cocycle for R with values in R. It will turn out that
such a P belongs to φ(n) if and only if the cocycle is a coboundary.
In addition, we shall see in §4 that ty(a) may be properly contained
in φ. Nevertheless, as we shall see presently, for every P e φ , Ϊ ( P ) is
contained in a direct integral of nest algebras.

We will require some of the cohomology theory of [FM1]. Let G be a
separable locally compact abelian group with operation written multi-
plicatively. (When G = Z or R, we will write the operation additively.)
We denote by Zι(R, G) the collection of all measurable functions c on
R with values in G such that there is a conull Borel set XQ C X (de-
pending on c) so that for all (x, y), (y, z) e RΠ (X$ x XQ) we have
c(χ, z) = c(x, y)c(y, z). Such a function is called a cocycle. If there
is a function b: X —• G such that c(x, y) = b(x)b(y)~ι a.e. (i/), then
c is called a coboundary and we write c eBι(R,G). If one views i? as
a groupoid, then a cocycle simply is a homomorphism from i? into G
and so, under pointwise multiplication, the cocycles form a group with
the coboundaries forming a subgroup. Theorem 2 of [FM2] implies
that Zι(R,Ύ) is isomorphic to the subgroup of Aut(M) consisting
of those automorphisms that fix A elementwise. For c e Zι(R,Ύ),
the corresponding automorphism γ is implemented by the unitary
operator U given by the equation (Uξ)(x,y) = c(x,y)ξ(x,y),ξ €
L2(R, u). It follows that if a is a left finite function on R, then γ(La) =
ULaU~ι = Lc.0 where (c a)(x, y) = c(x, y)α(x, y). Moreover, there
is a bijective correspondence between the flows a on M with the prop-
erty that A C M α , where F = { Γ G M|α,(Γ) = T for all ί e R}
and Zι(R,R). The flow a that corresponds to βf e Zι(R,R) is im-
p l e m e n t e d b y { U t } t e R w h e r e ( C / ^ ) ( x , y ) = exp(itd(x, y))ξ(x, y ) , ξ e
L2(R,v). So, for a left finite function α on R, at(La) = LΛί where
at(x, y) = exp(itd(xf y))a(x, y). (See Theorem 5 of [FM2].)



COORDINATES 345

For d e Zι{R,R) we write P(d) = {(x, y) e R\d(x, y) > 0}. If one
views d G Zι(R,R) as an R-valued homomoφhism on the groupoid
R, then since P(d) is the inverse image under d of the semigroup
{t\t > 0}, one should expect that P(d) is a subsemigroupoid of i?,
i.e., a partial order. The following proposition affirms this, modulo
null sets of course. It is proved as Lemma 3.7 and Proposition 3.8 of
[MSS].

PROPOSITION 3.1. For d e Zι(R,R),P(d) satisfies (P2),(P3), and
the equation v(Δ\P(d)) = 0. Thus P(d) e φ. Conversely, suppose
P e φ7, suppose d e Zι(R,R), and let a be the corresponding flow.
Then τ(P) = H°°(a) if and only ifP = P{d) a.e. v.

COROLLARY 3.2. A set P in φ lies in φ(α) if and only if there is a d
in Zι(R, R) with Δ = d~ι(0) such that P = P(d).

The following lemma is known, but we include a proof for com-
pleteness.

LEMMA 3.3. Let a be a flow on M corresponding to a cocycle d e
Z 1 (R, R). Then a is inner if and only ifd eBι(R, R); i.e., if and only
if there is a Borel function g: X —• R such that d(x, y) = g(y) - g(x)
a.e. v.

Proof. Suppose g is a real-valued Borel function on X and let Vt =
LCXp(-itg), t € R. Then each Vt lies in M and for La € M and ξ e
L2(R, v) we see that

{VtLaVϊξ){x, y) = e'u^ Σa(x, z)eit^ξ(zf y)s(x9 z, y)

= (Latξ)(x,y),

where at(x,y) = eWsWsWaix.y). Hence, if d e Bι(R,R), a is
inner implemented by {Vt}te^. On the other hand, if a is an inner
flow associated with d e Zι(R, R), then since A C Ma and A' Π M =
A, a is implemented by a unitary group {£eχp(-/#)}ίeR where g is a
real-valued Borel function on X. The above calculation shows that
d(x, y) = g(y) - £(x) a.e.

COROLLARY 3.4. A set P e φ belongs toty(n) if and only if there is
a real-valued Borel function g on X such that P = {(x, y) e R\g{y) >
g(x)} a.e. v. In this event, g is essentially one-to-one; i.e., ̂ ({(x, y) €
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Evidently, Ί(P) is always contained in a nest algebra in a trivial
fashion. Indeed, %{P) = MΠ21, where 21 is the nest algebra on L2{R, v)
associated with the nest whose elements are zero, the identity, and
the projection onto L2(P, u), and this representation is, in an obvious
sense, trivial. We want a representation that carries more information.
To this end, observe that since JAJ is a masa in M', the von Neumann
algebra [M, JAJ] generated by M and JAJ coincides with {JAJ)1, a
type I von Neumann algebra of infinite multiplicity. We will show
that the weakly closed algebra on L2{R,v) generated by T(P) and
JAJ, which we denote by [Z(P),JAJ], is a nest subalgebra of {JAJ)1

and %{P) = M Π [%{P),JAJ]. We express our results in terms of
automorphism groups, exploiting the relation between automorphism
groups and nest algebras outlined at the beginning of this section.

We begin by noting that if d is an arbitrary real-valued Borel func-
tion on R, then d determines a unitary representation of R, {Uf }teR,
on L2{R,v) by the formula (Ufξ)(x,y) = exτ>{itd{x,y))ξ{x,y),ξ e
L2{R,ι>). Evidently, {Uf }teR lies in the masa <£ generated by A and
JAJ; and conversely, every one parameter unitary group that lies in £
is of the form {Uf }teR for a suitable function d. (Recall that € may
be identified with L°°{R,v) acting on L2{R,v) via pointwise multi-
plication.) Given d, set ad = Ad{U?) acting on all of £?{L2{R,v)).
Then as was noted at the beginning of this section, H°°{ad) is the
nest algebra determined by the spectral projections {Ed[s, OO)}SGR for
{Uf}teR- These, in turn, lie in € and therefore are given by multipli-
cation operators; viz., Ed[s, oo) is multiplication by the characteristic
function of {(x, y)\d{x, y) > s}. On the other hand, a nest algebra
determined by a nest in € must be of the form H°°{ad) for some
function d. It should be noted that different if s may give rise to the
same nest algebra. Also, we note that given d,M Π H°°{ad) = %{P)
where

(3.1) P = {{x, y) e R\d{x, z) > d{y, z) for all z - x - y}.

This is easy to see by writing out the matrix for a^{T)fT e M,
and noting that the resulting matrix is pointwise analytic in ί, i.e.,
a{ad{T)){x, y) lies in H°°{a) as a function of / for each (JC, y) e R,
if and only if a{T) is supported on P. Note that if d is a cocycle,
then P = {(x,y) € R\d{x,y) > 0}. In general, given d, P, defined
by equation (3.1), is a partial order, but it seems difficult to say much
about its properties; in particular, we are unable to decide in terms of
d when P satisfies (P2).
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THEOREM 3.5. For P e φ', there is a real-valued Borel function d
on R such that [%(P),JAJ] is the nest subalgebra of(JAJ)', (JAJ)' n
H°°(ad), and %{P) = M Π H°°(ad).

Proof. We may assume that Δ C P and that P satisfies (Q2) and
(Q3). We write L2(R, v) as a direct integral as in §2 of [MSS], but
here we disintegrate v via nr. We regard the direct integral

r I2{π;\y))dμ{y)

as consisting of fields {ξy}yex of functions given by the formula

; ί γ . u fξ(χ.y). z = y>
Wx'z>-\θ, zφy,

where ξ € L2(R, u) and we define W from L2(R, v) to the

JΦl2(π-ι(y))dμ(y)

by the formula

(ξ(χ'yϊ y = z>

This W is a Hilbert space isomorphism with inverse given by the equa-
tion (W-ιξ)(x,y) = ξy(x,y),ξ = {ξy}y€X e !®l2{π-\y))dμ{y). It
is easy to see that W(JAJ)W~ι is the algebra of diagonal operators
/® I2(π~ι(y)) dμ(y), so that every T € M is decomposable. In fact,
for T e M we have

f Yja{T){x,u)s{x,u,y)ξ{u,y), y = z,
{WTW-χ)yξy{x,z) = { u

(θ, yφz,

For x € X, we write (-00,x] = {y\(y, x) € P} by definition. For
y e X and x e R(y), set

?>(x;y) = {ξy G /2(π-1(y))|supp^ c (-oo.x]}

and let £?{y) be the complete nest generated by {fi(x; y)}xeR(yy (Note
that for each y,f){x\\y) c Sj(x2;y) if and only if (x\,X2) € P, so by
(Q2)Λfi(x;y)}χeR(y) is a nest. Note, too, that Γ\xeR(y)?>(x>y) = (°>
while \JxeR{y)?>(x y) is dense in I2{π-\y)). Thus {0} and I2{π~\y))
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are contained in &{y).) Choose a sequence {Tn}™=ι that is σ-weakly
dense in *£(P) such that the matrices a(Tn) separate the points of P.
For each y G X, set %y equal to the weakly closed algebra generated
by {{WTnW-χ)y}™=ι. Then it is easy to see that %y = alg(^(y)) =
alglat(Xy) for all y. The key ingredient of the proof is this assertion:
T eM lies in Z(P) if and only \i(WTW~x)y e Alg(£f(y)) a.e. Indeed,
if T belongs to Z(P), if y e X, and if ζy e #(JC; y), then

> vMu> v> yMv> y)

If (x, u) G P\(P ΓΊ Θ(P)), u G R(y)9 then since the sum runs over those
v such that (u,v) e P, and since ξ(v,y) = 0 for each such v, the
sum vanishes; i.e., (WTW-χ)yξy e $(x\y). Thus if (WTW~x)y e
Alg(Jΐ?(y)) a.e. //, then for each fixed y outside of an exceptional null
set, the operator on I2(π~ι(y)) represented by the matrix a(T) leaves
each J3(JC; y) invariant. This means that for x, z e R(y), a(T){x, z) =
0 when (z,x) e P\(P Π Θ(P)). In other words, except for a null set
of y,

suppα(Γ) ΓΊ (R(y) x R(y)) CPn (R(y) x R(y)),

and so T G Ϊ ( P ) , completing the proof of the assertion.
Thus, in the notation and terminology of [AFG] and [GL],

WZ(P)W~ι ~ fθ %y dμ{y) and if ^ is the lattice of the algebra gen-
erated by Ϊ (P) and JAJ, then WS?W~X = / θ & ( y ) dμ(y). Since each
%y is reflexive, Proposition 5.6 of [AFG] implies that [Z(P),JAJ] is
reflexive. So, since [iΣ(P),JAJ] contains the masa € in Jΐ?(L2(R, v))
generated by A and JAJ, we conclude from Theorem 4.1 of [GL] and
from the fact that W[(l{P),JAJ]W-{ is the direct integral of nest al-
gebras that [Z(P),JAJ] is a nest subalgebra of JAJ1. The projections
in this nest all commute with €, and therefore they lie in <£. By the dis-
cussion preceding the statement of this theorem, there is a real-valued
function d on R such that [Z(P),JAJ] = (JAJ)' n H°°(ad). Since
T(P) = M Π [T(P), /A/], as we just showed, and since M c (JU/)', it
follows that <Σ(P) = MnH°°(ad).

When M = «^(^), a Cartan subalgebra .4 is the subalgebra of
operators with diagonal matrices with respect to some orthonormal
basis. In this case, Theorem 3.2.1 in [KS] asserts that given a maximal
triangular algebra X with diagonal A, there is a total ordering on the
basis such that X consists of all the operators in M whose matrices
with respect to the basis are upper triangular; i.e., % is a special kind
of nest algebra in M. The following theorem should be viewed as a
direct generalization of this result.
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THEOREM 3.6. Suppose that M is type I. Then φ = φ(α) = φ(n).
Hence when M is type I, every maximal subdiagonal algebra in My

with respect to E, is a nest subalgebra ofM.

Proof. Fix P e ty\ we need only show P eφ(n). For this, it suffices,
by Corollary 3.4, to produce a Borel function g: X —> R such that
p = {(x, y) G R\g(y) > g(x)} Since i? is type I, its fundamental class
is trivial by Proposition 7.3 of [FM1]. Consequently, the functions
φk in Lemma 2.1(1) can be chosen so that φk{x) = <Pk(y) f°Γ almost
all (x, y) E R. We proceed to define maps fk: \Jn>JcXn —• Q with
the property that (q>k(x)> ^ (x)) € P if and only if fk(x) < //(•*)> a n d
/fc(x) = fj(χ) only when 7 = k. (Recall ΛΓΠ = {JΓ||Λ(JC)| = n}.) The
following definition is based on Theorem 2.5 of [R]. First enumerate
Q\Z as {r/}^!. Set /1 = 0, and suppose that f\9f2, .-,fn-\ have been
defined. For each x eX one and only one of the following assertions
holds:

(1) (φj(x),φn(x))eP for *Άj<n;

(2) (φn(x), φj(x)) e P for all j < n\ and

(3) There is a j < n such that (ψj(x), φn{x)) ^ P and there is an
i < n such that (φn(x), <Pi{x)) € P.

If (1) holds, set fn(x) = n, while if'(2) holds, set fn(x) = -n. If
(3) holds, define fn(x) to be the first r, that is in the same relation to
/i(x),. . . ,/ π _i(x) as φn(x) is to ^ i(x) , . . . , φn-\(x), where the order
among the <Pj(xYs is the order induced by P. It is easy to see that the
fn satisfy the desired properties.

For each x € X, let n(x) be the integer n such that φn(x) = x and
set £(x) = fnix)(x). Let 5 r t = {(x,y) e R\φn{x) = φn{y)}>n > 1,
and observe that Bn is Borel and conull. By definition of the /„, it is
evident that for (x,y) e B := Γ\Bn,fn(x) = fn(y) for all n > 1. So
for (x,y)ePHB,φn(x){y) = φn{x){x) = x, and φn(y){y) = y. Hence
(Pπ(jc)(y)^Λ(y)(y)) lies in P. This implies that g(x) = / n ( j c ) (*) =
fn(x)(y) < fn(y)(y) = ί (y) Therefore, g(y) > g(x) for ι/-almost all
(x, j;) E P. Equality holds, on P Π 2?, if and only if n(jc) = fl(y), and
this can occur only if x = y.

All that remains to complete the proof is to show that g is a Borel
map into Q. Since g = / o n where / : Z + x X —• Q is given by the
formula /(m, x) = /m(x) and n: X —> Z + x X is given by the formula
ft(χ) = (fl(jc),x), it suffices to prove that / and n are Borel. But for
m > 0, {x e X\n{x) = m} = {x e X\φm(x) = x}. Thus n is Borel. To
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prove that / is Borel, fix r G Q and note that

f-\r) = {(m,x)\fm(x) = r} = \J{(rn,x)\fm(x) = r}.
m

So, it suffices to show that the set c(m,r) := {x G X\fm(x) = r} is
a Borel set for all m > l,r G Q. From the definition of fm, one
sees that c(m,r) is the intersection of finitely many sets of the form
{x G X\(q>i(x),(pj(x)) G P}. Since each of these sets is Borel by
Lemma 2.4(2), it follows that c(m,r) is Borel. This completes the
proof.

Theorem 6 of [FM1] asserts that if d G Zι(R,R) is essentially
bounded, then d is a coboundary. The following is a strengthened ver-
sion of this fact. It follows from general principles of the cohomology
theory of groupoids. However, we give an elementary, self-contained
proof here.

PROPOSITION 3.7. Suppose d G Zι(R,R) and that there is a conull
setBCX with the properties that R(B) is conull and that the restriction
of d to Rπ(B x B) is bounded. Then d is a coboundary.

Proof. Fix a countable group G acting on X, so that R — RG (see
[FM1, Theorem 1]), and write gx for the translate o f x e l b y ^ e G .
Then R = RG = {(x, g x)\g e G, x G X}. For g e G and neZ, set

c(g> n) = {(•*> S ' x)\\d(x, g-x)\< n}. Evidently, c(g, ή) is the graph

of a partial Borel isomorphism. Let Λ* be the set of all partial Borel
isomorphisms obtained in this manner. Then JV is countable and
\J{φ{B)\φ G yy} = R(B)—a conull set. Also, we have φ~ι G J^ for
all φ G JV, and for each φ G Jf, suρ{a?(.x, y)\{x, y) G Γ(^)} is finite.
Denote this supremum byr(φ). Writing Bo = B, let {Bj} be a maximal
family of pairwise disjoint Borel subsets of X, each having positive
measure, such that for each j \ there is a ψj eJ^ satisfying ψ~ι(Bj) c
B. (Such a family exists by Zorn's Lemma.) Since \J{φ{B)\φ e JV} is
conull, so is IJ^o Bj S e t cn = Ό%o Bj,n> 0, and set C^ = \JJί0 Bj.

We show that d\R Π (Cn x Cn) is essentially bounded for each n. By
Theorem 6 of [FM1], then, each of these restrictions is a coboundary.
We show, too, that the bounding functions for each of these cobound-
aries may be chosen in a consistent way yielding a global function that
shows that d is a coboundary. Let M be a bound for d\RΠ (B x B), fix
π, choose I J E CΛ, and choose /,7 < n and z,w e B with x =
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and y = ψj(w). Then

< \d(ψi(z), z)\ + \d(z, w)\ + \d(w, Ψj(w))\

< r(ψrι) + M + r(ψj) < oo.

This shows that d is bounded on R n (Cn x Cn). By Theorem 6 of
[FM1], applied to R Π (Cn x CΛ), we may find functions g'n: Cn -• R
such that

-siW. {x,y)eRn(Cnχ Cn).

Observe that for x,y e Bo c Cn,n> 0,g'n(y) - ^ ( x ) = rf(x,y) =

SoOO~~ £o(*) H e n c e > ί f w e s e t fn = go(y) ~ gΌ(x), we see that fn

is invariant; i.e., fn(x) = //i(y) for all (x, y) € R Π ( 5 0 x ^o) Next,
we define functions /^, n > 0, on Cw by setting fή(x) = fn(y) fo r any
y G i?(x) Π 5 0 . Since Cn C i?(5o) and since the fn are invariant, it
follows that the /„' are well defined and invariant. It is easy to check
that they are Borel functions. On Cn, n > 1, define gn to be g'n - f'n.
T h e n b y t h e i n v a r i a n c e o f / ^ ^ C j ; ) - ^ ^ ) = gf

n(y)-g'n(x) = d(x,y).
Now fix m > n, and let hm>n be defined on Cn by the formula

hm,n = gm\Cn - gn

The argument just presented shows that hm>n is invariant and that
hm>n vanishes on BQ. Since the saturation of B$ is almost all of X, it
follows that hm>n = 0 a.e.; i.e., gm\Cn = gn a.e. Thus, there is an almost
everywhere, well-defined function g on X such that g agrees with gn

on Cn and g(y) - g(x) = d(x, y) a.e. This shows that d e Bι(R,R)
as required.

Let P e φ'; i.e., assume that P satisfies (P2) and (P3) of §3 and
the equation i/(Δ\P) = 0. If F c X is a Borel set, we write P(F) =
{x e X\ there is y e F such that (y,x) G P}, and we say that F is
P-increasing, or increasing relative to P, or simply increasing if P is
understood, in case μ(P(F)\F) = 0. For an example of an increasing
set, let P = P(rf), where d e Bι(R,R), choose # so that d = δg and
let r G R. Then the set {x G X\g{x) > r} is increasing. The following
lemma shows a partial converse. In a sense it is an analogue of the
decomposition of a Markov process into recurrent and transient parts.

LEMMA 3.8. Suppose that d e Zι(R,R), that P = P{d), and that
F C X is increasing. Let F^ = {x G X\R(x) n F is empty}, let
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F_oo = {x G X\R(x) c F}, and let Fo = X\(Foo u F_oo). Γλe/i
Foo, F-oo, tfftd FQ are a// invariant Borel sets and the function

g(x) := sup{d(y, x)\y G F, (x, y) e R}

is an almost everywhere defined (with respect to μ) function on FQ sat-
isfying

d(χ,y) = g(y) - g(χ), (x,y)eRn(Fox Fo).

In particular, ifιs(X\R(F)) = u(X\R(X\F)) = 0, then d G Bι(R,R).

Proof. Evidently, the sets Foo, F_oo, and F o are invariant. The fact
that they are Borel is most easily seen if one writes R = RQ for a
suitable countable group of transformations. Then F ^ is f)teG *'(X\F)
while F-oo is f]teG

t'F L e t xo b e t h e c ° n u 1 1 set X\R(P(F)\F). Then
for each x G Xo n F o, the set i?(x) Π F is nonempty. Also, since
x £ F-oo, there is a w G i?(x) that is not in F. Moreover, for any such
w and any z = F n R(x), we see that (z, tw) ^ P. For, if (z, tt;) G P,
then w G P(F) nXo £ F. Assuming, as we may, that P satisfies (Q2),
we conclude that for all w G R(x)\F and all z G i?(x) Π F, we have
(w, z) G P. Hence, for each x such that R(x) nF Φ 0, and for any
fixed w eR(x)\F, there results the inequality

d(z, x) — d(z, w) + d(w, x) < d(w, x) < 00

which is valid for all z G R(x) Π F. This shows that for x e XoΠ
Fo,g(x) is well-defined and finite. To see that g is Borel, let {φk}
be the sequence of functions defined in Lemma 2.1 and for n =
1,2, 3,..., 00, let Xn = {x G X\\R(x)\ = n}. Then for t G R,

^"1(-oo,ί]= P| {xeFonXn\d(y,x) <t, for every y e FnR(x)}
l<n<oo

= P | pi {X G FQ Π ΛfΛ|rf(pfc(•*)>•*) < ί whenever φk(x) G F}
1<«<OO 1<A:<«

= pi pi {X eFonXnI either φk(x) φF or d(φk(x),x) <t}
\<n<oo \<k<n

. = Π Π {xeF0nΛrn|(^(x),x)€[(ΛΓ\^)χ^]
l<«<oo1<Λ<«

\Jd-ι(-oo,t]}.

Since the terms in this intersection are all Borel, it follows that g is
a Borel function. To see that d = δg on R n ((Xo n F ) x (Xo n i7)),
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fix (x,y) in this set and observe that for all z,w e F n R(x) =

F Π R(y), d(z, y) < d{w, y) if and only if d(z, x) < d(w, x) because
d(z, x) = d(z, y) + d(y, x) and d(w, x) = d{w, y) + d(y, x). Thus

g(y) - g(x) = sup{d(z,y)\z eFnR(y)}

- sup{d(z, x)\z e F nR(x)}

= sup{d(z,JC) -d(z,x)\zeFnR(y)} = d(x,y).

This completes the proof.

While the correspondence between cocycles and P's giving rise to
analytic algebras is not one to one, the following proposition shows,
in a sense, that "the P's are separated by cohomology". It is a key
ingredient in the proof of Theorem 4.9, below.

PROPOSITION 3.9. Ifdx e Bι(R,R), ifd2 e Zι{R,R), andifP{dx) =
P(d2) a.e. vy then d2 e Bι(R,R).

Proof. Suppose h is a real-valued Borel function on X that satisfies
d\ = δh, a.e. v. Let {π}^ be an enumeration of Q and let Ft = {x e
X\h(x) > r/}. Then Fj is an increasing subset of X with respect to
P{d\). Since P{d\) = P(d2) a.e. v, each F\ is increasing with respect
to P(d2). Using d2 we may apply Lemma 3.8 to each Ft to find a Borel
function gh defined a.e. v on Ft := {x e X|i?(x)ΓuF/, i?(jc)n(X\F/) ^
0}, such that

for i/-almost all (x, y) in i? Π (#/ x #/). Since Q is dense in R, we
have (J£i ^/ = x- Set K{ = FϊfK2 = F2Π (X\Fχ)9 etc. to arrive at
a sequence of pairwise disjoint invariant sets with U ^ 2 K[ — X. If
we define g to be g, on A",-, we obtain a well defined function g on X
such that d2 = <J# a.e. i/.

4. Periodic flows. A special subclass of the class of analytic algebras
are those for which the flow is periodic. Such analytic algebras are the
most tractable, and the next proposition identifies the P's in φ that
correspond to them. If a is periodic, we shall write H°°(a, T) instead
of H°°(a). This is because a periodic flow may be viewed as a σ-
weakly continuous representation of the unit circle T as a group of
automorphisms on M. We will see in this section how periodic flows
can be used to construct algebras of the form %{P) with P £ φ(α) and
how they relate to the general problem of deciding when
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THEOREM 4.1. For P eφ, the following assertions are equivalent:
(1) %{P) = H°°(a, T) for some periodic flow a.
(2) For v-almost all (x, y) G P, the set {z e X\(x, z) e P\A, (z, y) e

P} is finite; i.e., the interval (x, y] is finite.
(3) If(P\A)n denotes the n-fold composition (P\Δ) o o (P\Δ), then

(4) There is a partial Borel isomorphism φ such that Γ(φ) c P\A
and P\A = (JSli Γ(φn) a.e. v.

Proof. (1) implies (3). Since a is an action of T, there is a d G
Zι(R,Z) such that P = P(d)a.e.v. Hence P\A = {(x,y)\d(x,y) > 1}
and (P\A)n c {(x, y)|ύf(x, y) > n}. This proves (3).

(3) implies (4). Let 5 = (P\Δ)\(P\Δ)2. Then both πr\B and
%ι\B are one-to-one. (Recall %ι{x,y) = x, πr(x, y) = y.) Indeed,
if (x, y), (x, z) e B, then either (y, z) e P\Δ, (z, y) G P\Δ, or y = z.
(We're assuming P satisfies (Q2), as we may by Lemma 3.1 of [MSS].)
If (y, z) e P\A, then (χ9 z) e (P\A)2 and if (z, y) e P\Δ, then
(JC, y) G (P\Δ)2. Hence the only way for (x, y) and (x, z) to be
in 5 is for y to equal z; i.e., π/ is injective. The injectivity of
πr is proved similarly. Thus B is the graph of a partial Borel iso-
morphism. For n > 1, we have Γ ( ^ ) = (P\A)n\(P\A)n+ι and so
P\Δ = (UΛ>i W 1 ) ) U (ΠΛ^I^VΔ) 1 1 ). This shows that (4) follows
from (3).

(4) implies (2). Let φ be a partial Borel isomorphism satisfying
the equation P\Δ = \J%LX T(φn) a.e. z/. Certainly (x,x] is finite. So
it suffices to prove that (x, y] is finite for all (x,y) G U^iΠί 9 ")-
But for (x,y) G Γ(^rt), the interval (x,y] is the finite ordered set

{φ(x),φ2(x)- 9n(x)}

(2) implies (1). Simply set

Then d(x, y) is the number of elements in (JC, y], if (x, y) G P, and it
is -|(y,Jc]|, if (y, JC) G P. It is evident that d is a cocycle and P(rf)
differs from P by a null set.

REMARK 4.2. Let P and φ be as in the previous theorem and let
d be the cocycle defined in the last part of the proof. Then, except
possibly for a z/-null set, R = U L̂-00 Γ(ί^), where φ° is the identity.
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So for all x in a μ-conull set, R{x) = {i?w(x)|« £ Z and φn(x) is
defined}. Moreover, we see that d\T{φn) = n. This is evident from the
proof. It follows that the operator Lp(φΛ) lies in the spectral subspace
Ma(n) = {T e M\at(T) = eintT, for all t £ R}. (Recall that for
TeM, a(at{(T))(x, y) = eitd(χ^a(T))(x, y).) In fact,

Ma(n) = {T £ M\a(T) is supported on d~ι(n)}

= {Teλf\sapp(a(T))CΓ(φn)}.

A simple calculation shows that T = E{TLF^φ-n))LF^φn) for all Γ £
Ma(>z). Hence Ma(«) = ALF(r) = Λ(Z,F(,))Π for all n > 0. Since
the σ-weakly closed linear span of U^lo Ma{ή) is Ί(P), it follows that
%{P) is the σ-weakly closed algebra generated by A and LF(φy

It follows from [FM2] that M is a hyperfinite II i factor if and only if
R is the orbit equivalence relation determined by a single invertible,
ergodic, measure preserving transformation, say, τ. In this case we
may choose s = 1.

Theorem 4.1, then, yields an easily checked sufficient condition for
deciding when ad e Z 1 (R, R), having the property that P(d) £ % sat-
isfies %(P(d)) = H°°(αtΎ) for a periodic flow α. It turns out, because
of Corollaries 11.2 and 11.3 of [Sc], that the following dichotomy
holds: either lim^i^oo \d(x, τn{x))\ = oo a.e. μ or lim|n|^oo|ί/(jc, τn(x))\
= 0. In the first case d is called transient; in the second, d is called
recurrent These terms are usually defined differently, but thanks to
the indicated corollaries, we can define them as we did.

COROLLARY 4.3. Let R be the orbit equivalence relation determined
by an ergodic measure preserving transformation τ and letd £ Z 1 (i?, R)
be such that P(d) £ Vβ. Then %{P{d)) is of the form i/°°(α,T) for a
periodic flow a if and only ifd is transient Moreover, ifc(x) is defined
to be d(x,τ(x)) and ifc is integrable, then this happens if and only if
fc(x)dμ(x)ΪO.

Proof. If d is transient, then it is easily checked that

lim d(x, τn(x)) = oo or — oo a.e. μ.
n—*oo

Without loss of generality, we assume that this limit is oo. Then
limΛ__oo d(x, τn(x)) = -oo a.e. μ. Fix (x, y) £ P(d) with the property
that limn-too d(x, τn(x)) = oo. Then we can find an N such that for
n > N, d(x, τnx) > d(x, y) and for n < -N, d(x, τnx) < 0. It follows
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that for all n with \n\ > N, τn(x) <£ (x, y]. For, if τn(x) e (x, y], then
(x, τn(x)) e P, implying that n > -N, and then

d(x, y) = d(x, τn(x)) + d(τn(x), y) > d(x, τn(x)),

implying that n < N. Thus (x, y] is finite. Now apply Theorem 4.1.
If d is not transient, it is recurrent; i.e., !ini|rt|_>00|*/(.x, τn(x))\ = 0 a.e.
μ. Hence, for almost all (x, y) in P\A, we can find a sequence of pos-
itive integers {n^}^ (depending on x) such that d{x, τHk{x)) > 0 for
each k and ΣkL\ d(x> τnk(x)) < d(x, y). It follows that {τnk(x)}f=ι c
(x, y]\ i.e., for almost all (x, y) in P\Δ, the interval (x, y] is infinite.
Now apply Theorem 4.1. For the last assertion, simply appeal to The-
orem 11.4 of [Sc].

COROLLARY 4.4. Suppose that P e φ and that statements (l)-(4) of
Theorem 4.1 are satisfied. Then M — M{R,s) is hyper finite, so that
we may assume that s = 1, and we may write X as the disjoint union
of two invariant Borel sets Y and Z satisfying the following conditions.
{Of course either Y or Z may be empty.)

(1) M(RΓ\(Y x Y)) is ίsomorphic to the crossed product L°°(Y) xφZ,
where φ is the restriction of the partial Borel isomorphism in Theorem
4.1(4) to Y, and %{P Π (Y x Y)) is isomorphic to the analytic crossed
product L°°(Y) x\φ Z+, which is, by definition, H°°(φ) where φ is the
dual action ofφ on L°°(Y) xφ Z.

(2) The algebra ^(PniZxZ)) is anestsubalgebraofM{Rn(ZxZ)).

Proof. Since, by hypothesis, the fixed point algebra Ma of the peri-
odic flow a is A, a hyperfinite von Neumann algebra, M is hyperfinite
(see [SI, last remark]). Define Z to be {x e X\ there is an n e Z
such that x φ d(φn)}. Then it is easy to see that Z is invariant and
Borel, and that Z = {x e X\ either [x, oo) or (-oo, x] is finite}, where
[x, oo) = {y e X\(x, y) e P} w h i l e ( - o o , χ] = {ye X\(y9 x ) e P}. Set
Y = X\Z. Since Γ(φ) = (P\A)\(P\A)2, φ is defined on all of Y and
maps Y onto all of Y. Thus φ\Y is a Borel isomorphism on Y and
R Π (Y x Y) is just the orbit equivalence relation determined by φ\Y.
Moreover, by definition, φ is freely acting on Y. Hence M(Rπ(YxY))
may be identified with L°°(Y) xφZ. Also, since

PΠ(YxY) = {(x, φn{x))\x eY, n>0}

= {(x,y)eRn(YxY)\d(x,y)>0},

where d is the cocycle in Theorem 4.1 (4). Restricting d to Rn(YxY)
yields a cocycle and automorphism group β such that

βt{LF{φn)) = {eitn)LF[r), neZ,teR.
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It is thus evident that β = φ and %{P n {Y x Γ)) = J/°°0»).
It remains to show that %{P n (Z x Z)) is a nest algebra. Write

Zi = {x e X\ for some n > 0, x ^ d(φn)}. Then Zi is an invariant
Borel set and Zj = {x e ΛΓ|[x,oo) is finite}. Set Z 2 = Z\Zλ. Then
Z2 C {x e X\(—oo,x] is finite}. Define the real-valued function g on
Z by the formula

\(-oo,x]\, xeZ2.

It is straightforward to check that for (JC, y) in R n (Z x Z) = (i? n
(Zi xZ0)U(Λn (Z2 x Z2)), d(x, y) = £(y) - #(*), where d(x, y) =
|(x, y]| - |(y,x]|5 the cocycle that appears in Theorem 4.1(4). Now
apply Corollary 3.4.

REMARK 4.5. Theorem 4.1 says that for P e Φ,*Σ(P) = H°°(a,Ύ)
for a periodic flow α if and only if almost every equivalence class R(x)
is order isomorphic to a subset of Z. Suppose next that X(-P), P G φ ,
is contained in an algebra of the form H°°(a, T) and let d eZι (R, Z)
be a cocycle that implements α. Then Δ c d~ι(0) and X(P) is prop-
erly contained in /ί°°(α,T) if and only if Δ is properly contained in
d~ι(0). If we restrict d to R(x) x i?(x), the values that d takes on
there may be used to partition R(x) into "blocks": y,z e. R(x) belong
to the same block if and only if d{y, z) = 0. To say the same thing
differently, y,z e R(x) belong to the same block if and only if for all
u e R(x),d(u,y) = d{u,z). For z e R(x), we write R0{z) for the
block it determines; i.e., R0(z) = {y e R(x) = R(z)\d(z, y) = 0}. Of
course d induces an ordering on the set of blocks in R(x) and this
ordering is order isomorphic to a subset of Z. That is, Ro(u) < Ro(v)
if and only if d{u, v) > 0. The orderings that P induces inside each
block may, a priori, be quite arbitrary. However, as we shall see in our
next proposition, if P e φ(a) and if the number of blocks in R(x) is
greater than one for almost all x e X, then the order within the blocks
is such that %(P) ΓΊ Ma is a nest subalgebra of Ma; i.e., the triangular
subalgebra %(P n d~l(0)) is a nest subalgebra of Ma = %(d-l(0)).

PROPOSITION 4.6. Suppose that P e φ and that

for some periodic flow a. Suppose also that there is no nonzero projec-
tion Le eA such that MLe = MaLe. Then P lies in φ(a) if and only
if%Γ\Ma is a nest subalgebra ofMa.
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Proof. Let d be the cocycle implementing α, let Le be a projection
in A, and let Xo be the subset of X determined by Le\ i.e., e = lχ0.
Then MLe = {T e M\suppa(T) C Rn(X x Xo)} while MaLe =
{T e M\ supρα(Γ) C d~ι(0) Π{Xx Xo)}. Our hypothesis on d, then,
asserts that there is no subset Xo Q X with μ(Xo) φ 0 and μ(X\Xo) Φ 0
such that d\(X xX0)Γ)R = 0.

Suppose first that P e φ(a) and write P = P(d0) for a suitable
d0 e Zι(R, R). Set Xx = {x e X\ there exists ay eX with (JC, y) e P
such that d(x,y) > 0} and set X2 = {x £ X\ there exists y e X
with Cy,x) G P, and d(y,x) > 0}. In the notation of Remark 4.5,
X\ consists of those x e X such that the block RQ(X) in R(x) is not
the largest among the blocks in R(x); likewise, X2 consists of those
x e X such that the block Ro(x) in R(x) is not the smallest. If
χ0 = X\(XX u X2)9 then it is clear that d vanishes on (X x Xo) n R.
Hence, by the preceding paragraph, μ(Xo) = 0. We assume, without
loss of generality, that X = X\ U X2. Define g by the formula

g[X) I wf{do(y,x)\d{y,x)>O}, xeX2\Xχ.

To see that g is Borel, note that for t e R, (g~ι (-oo, ί])ΠAΊ = {x € Xi |
for all y e R{x), either d(x, y) < 0 or έ/0(y,x) < ί} = Π^=i{^ e X{\
either d(x,φn(x)) < 0 or ^o(^«(^)^) < t}, where the pπ 's are as
in Lemma 2.1. Thus the restriction g\χι is Borel. A similar argu-
ment shows that g\χ2\χι is Borel. Write RQ = d~ι(0). Then Ro is an
equivalence relation contained in R and Mα may be identified with
M(RQ,S). (Actually, we have been a little cavalier with null sets; we
might have to modify RQ slightly to get an equivalence relation, but
that is o.k. by Lemma 3.1 of [MSS].) Set Po = P Π Ro = P(d0) Π Ro.
Then %ΠMα = <Σ(P0). We claim that Po = {(x, y) e Ro\g{x) < g(y)}
By Corollary 3.4, this will show that ZnMa is a nest algebra in Ma.
Observe that since d vanishes on RQ, each of the sets X\ and X2 are
invariant under i?0 So

n (Xi x XO) u (Ro n

We therefore prove that for (x9y)eRoΠ(X\ xX\),(x,y)eP if and
only if g(y) > g(x)\ the argument for Ro Π ((X2\X\) x (^2\^0) is
similar and will be omitted. So let (JC, y) G i?o n (Xi x Xi) and note
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that since d(x, y) = 0,

g(y) = sup{rfo(z, y)\d(y, z) > 0}

= suρ{do(^ x) + do(x, y)\d{y, x) + d(x, z) > 0}

= do(x, y) + s\xp{do(z,x)\d(x, z) > 0}

= do(x,y) + g(x)

Thus for (x,y)eRon(XιxXχ),g(y)> g(x) if and only if do(x, y) >
0; i.e., if and only if (x, y) e P(d0) = P.

For the converse implication, suppose that % n Ma is a nest subal-
gebra of Ma. Then there is a real-valued Borel function g on X such
that for (x, y) in Ro = d~ι(0), g(x) < g(y) if and only if (x, y) e P.
By replacing g with (1/π) arctan(g), we may assume that \g\ < \. Set
do(x, y) = d{χy y)+g(y)-g(x). Then since d e Zι(R, Z) c Zι(R, R),
we see that d0 e Zι(R,R). To see that P = P(do)9 suppose that
(x,y) e P. Then d(xfy) > 0, since %(P) C H°°(a,Ύ) = %{P{d)). If
d(x, y) = 0, then (x, y) e RonP and so do(x, y) = 0+g(y)-g(x) > 0;
i.e., (x, y) G P(do). If d(x, y) > 0, then since d is Z-valued, d(x, y) >
1, and do(x, y)>l + g(y) - g(x) > 0, since \g\ < \. Thus P c />(rf0).
To show the reverse inclusion, it suffices to show that P(do) G φ.
But if (x,y) G />(</o) n θ(P(do)),do(x,y) = 0. So rf(x,j;) = 0; i.e.,
(x, y) G i?o? a n d the equation ô(-̂ ^ 7) = 0 implies g(y) = g(x). Thus
x = y.

Suppose Le is a projection in 4̂ different from 0 and /, and let Y
be the corresponding set in X. For P e φ and X = Ϊ(-P), we write

and

?y = ( P n ( 7 χ Y))u(Pn((Jr\r) x (JΓ\r)))u(Rn(r x

where L^ = I -Le. It is clear that Xe = ̂ (Pr),Pr Gφ, and so X̂  is a
maximal subdiagonal subalgebra of M with respect to £.

LEMMA 4.7. Suppose that P, Le, and Y are as above and assume
that R(Y) = X = R(X\Y) a.e. v. Then the following assertions are
equivalent

(l)PYeV(a).
(2) L/ZLe + L^%Lj is a nest subalgebra ofLeMLe

(3) L/ZLe and Lj-ZLj are nest subalgebras of LeMLe

respectively.

Proof. (1) and (2) are equivalent. Clearly %e is contained in M n
alg{0, Le,I}. By Theorem 4.2.3 of [LM], this second algebra is of the
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form H°°(a,Ί) for a periodic flow a on M. Since Ma = LeMLe +
L^ML^ and % Π Ma = Le%Le + L±CXL^ it suffices, by Proposi-
tion 4.6, to show that for no projection Lf G A, different from 0, is
the equation MLf = MQLf satisfied. However, if MLf = MaLf,
then LeMLeLf = LeMLf and L^ML^Lf = LjrMLf. The assump-
tion that R(Y) = X implies that LeMLp φ 0 for every nonzero
projection Lp G A. But the equation LeMLeLf = LeMLf implies
that LeM(Lf - LfLe) = 0. Hence Lf < Le, and it follows that
LjMLf = LJMLjLf = 0. Using the fact that R(X\Y) = X, we see
that Lf<LJ. Thus Lf = 0.

(2) and (3) are equivalent. Suppose Le%Le + Lj-ZLj- is a nest sub-
algebra of LeMLe + LjrMLjr, say the former is the intersection of the
latter with alg{L^} for a totally ordered family of projections {LQt}
contained in the latter. Then, since A c LeMLe + LjrMLjr, it fol-
lows that each LQt G A, and so Le%Le = LeMLe n sΛg{LgtLe} while
L^riLj- = Lj MLjr Π alg{L^L^-}; i.e., (3) is satisfied. Conversely,
if Le%Le = LeMLe Π alg{LA} and LJΊLJ = L^ML^ n alg{L^}
where the Lp/s are projections in LeMLe and the L^'s are projec-
tions in L^rMLjr, then the LPt and L φ are subprojections of Le and
L -̂, respectively, all belonging to A, and Le%Le+LjrZLjr = (LeMLe +
L^ML^)Πdlg{Lrt} where {Ln} = {LP l}u{L e + L^) is ordered in the
obvious way.

We come now to an example that shows that φ(a) need not equal
φ. It is followed by Theorem 4.9 that shows among other things that
if φ = φ(a) and if M is hyperfinite, then M is type I. This is the main
result of the section.

EXAMPLE 4.8. Let X be the interval [0,1], let μ be Lebesgue mea-
sure, let τ be an irrational translation, let R be the orbit equivalence
relation determined by τ, and let P = {(x, y) e R\y = τn(x), n > 0}.
Then P G φ(a); in fact P = P{d) where d(x,τn(x)) = n. We let
M = M(i?, 1). Let Y c jr be such that μ(Γ) ^ 0 ^ /ι(^Γ\r), and let
Le be the corresponding projection in A. Since τ is ergodic, Y and L^
satisfy the hypotheses of Lemma 4.7. Also, the transformation τγ on
Y induced by τ is an ergodic measure preserving transformation on Y,
and we have Rn(YxY) = {(x, τ$(x))\n eZ,xe Y}. We shall write
Ro for RΠ(Yx Y) and Po for RonP. We then have LeMLe = M(R0,1)
and Le%Le = Ί(Po) Since τy is ergodic and (x,τ^(x)) G Po f°Γ all
x G Y and « > 0, there are no P0-increasing subsets of Y. Hence Z(PQ)
is not a nest subalgebra of LeMLe. By Lemma 4.7, then, /
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THEOREM 4.9. Suppose that M is a factor, so, equivalently, R is
ergodic. Consider the following assertions:

(3) M is type I.
Then (1) and (2) are equivalent, (3) implies (2), and ifM is hyperfinite,
then (3) is equivalent to (1) and (2).

Proof. It is trivial that (2) implies (1) and the fact that (3) implies
(2) was proved in Theorem 3.6.

(1) implies (2). Fix P e φ and assume that P = P(d) for some d G
Zι(R, R). Let Yo c X be any Borel set with μ(Y0) φθφ μ(X\Yo) and
let Le be the corresponding projection in A. By Lemma 4.7, Le%Le

and L^riLj- are nest subalgebras of LeMLe and L^ML^r, respectively,
where X = X(P). Writing 7i = X\Yo, we may find real-valued Borel
functions g, on y,-, / = 0,1, such that

d(χ,y) = gt(y) - nix), (x,y)eRn {Yt x Yi)\Ni

where JV/ is a z/-null set of i? n (Γ, x F,-). We will find a constant c
such that if g is defined by the formula

( 4 " * W

then ύf(x, y) = g(y) - g(x) a.e. v. We begin by paring away some null
sets. Let N = NO\JNX and Y\ = Yi\πr(N). (Note that μ(πr(N)) = 0.)
Also, let 5 = π/(i? n (Yo x F{)). Then B is a subset of Yo and is
invariant under Rn (YQ x YQ). Since i? Π (Γo x ^o) is ergodic, by
Proposition 3.5 of [FM1], we conclude that B is a conull subset of Y$.
Therefore, so is Yβ := F^Π5. For y e Y%, there is an x e Y[ such that
x~y. For such a pair (x, y), let /(x, y) = rf(x, y) + g\ (x) - aίy)- I f

z is another element in Y[ n

/(z, y) = rf(z, y) + gx{z) - go(y)

= d(zf x) + d(x, y) + gλ (z) - go(y)

= g\ (x) - g\ (z) + d(x, y) + gι (z) - go(y) = f{x, y).

Thus / is independent of the choice of x G Y[ Π R(y) and we may
write f(y) for f(x, y). Evidently, / is a Borel function on Y£'. Now
choose y, w G Yβ, y ~ w, and choose x G Y[Π R(y) = Y[ Π
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Then

f{y) = f{x> y) = d{x, y) + gι (x) - go(y)

= d{x, w) + d{w, y) + g{(x) - gQ(y)

= d(x, w) + go(y) - go(w) + g{(x) - go(y) = f(x, w) = f(w).

Thus / is invariant, and by ergodicity, there is a c e R and a conull
set y c y j c Yo such that / ΞΞ C on Y. With this c, define g on X by
equation (4.1). By construction, d[x, y) = g(y) - g(x) for almost all
(x, y) e R Π (Yo x Γo) and for almost all ( c, y) G i? Π (Γi x 1^). So to
prove that d(x,y) = g(y) — g(x) a.e. on all of i?, it suffices to check
that d{x, y) = g(y) - g(x) a.e. on R n (Γi x Γo) (This is because
RΓ\{Yox Yι) = Θ(R Π (Yx x 70)) ) Since Y[ and Γ are conull sets of
Y\ and Fo? respectively, it suffices to assume that (x, y) G F{ x Y. But
then, c = f(x, y) = ί/(x, y) + ^i(x) - go(y), so rf(*, y) = c + go(y) -
gι{x) = g(y) - g{x) by definition. Thus d(x, y) = ^(y) - g(x) a.e. i/.

(2) implies (3) (assuming M is hyperfinite). Since Af is hyperfinite,
there is a transformation τ on X such that i? = {(x, τn(x))\n e Z}. By
ergodicity, we may assume \R(x)\ is constant. If this constant is finite,
R is type I. So we may assume |-R(JC)| = oc a.e. μ. As a consequence,
we see that τ is freely acting. Let P = {(x, τn(x))\n > 0}. So P = P(d)
where d(x, τn(x)) = n. By hypothesis (2) and Corollary 3.4, P = P(do)
where d0 e Bι(R,R). By Proposition 3.9, d e Bι(R,R). Thus there
is a real-valued Borel function g on X such that n — d(x,τn(x)) =
g(τn(x))- g(x) a.e.; equivalently, g(τn(x)) = g(x) + n. Consequently
each of the sets g~~ι(r,oo),r e R, is invariant under τ. It follows
that unless i?, and therefore, M, is type I, each of these sets will be
invariant under τ " 1 , too. In this event each g~ι(r, oc) is null or conull.
Since this is absurd, we conclude that M is type I.

We believe that if φ = 9β(a), then M is type I without the a pri-
ori assumption that M is hyperfinite. The best we are able to prove,
however, is the assertion that if φ = ^β(a), then Hι(R,R) — 0 where
HX{R,R) = Zι(R,R)/Bι(R,R). Of course, if φ - φ(a), then Theo-
rem 4.9 coupled with Proposition 3.9 implies that a d e Z 1 (R, R) such
that d~ι(0) = Δ must be a coboundary. The problem of handling the
general cocycle is solved by the following theorem which is of inde-
pendent interest. In Proposition 7.4 of [FM1], Feldman and Moore
show that R is type I if and only if H1 (R, G) — 0 for all abelian polo-
nais groups G. It apparently is unknown if the vanishing of Hλ (R, R)
implies that R is type I.
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The following theorem can be dug out of [LS] and [S2], but we
give a self-contained proof fashioned on the theory we are developing.
Larson and the third author show in [LS] that whenever 21 is a nest
subalgebra of a σ-finite von Neumann algebra M and 95 is a σ-weakly
closed subalgebra of M that contains 21, then 95 is a nest subalgebra
of M. On the other hand, the third author shows in Theorem 2.19 of
[S2] that under the same circumstances, if 21 is an analytic subalgebra
of M, then so is 05.

THEOREM 4.10. Let P e φ and let Q be a transitive relation with
P CQ. Then

(1) IfΣ(P) is an analytic subalgebra of My so is
(2) If ZiP) is a nest algebra, so is ΐ(Q).

Proof. Suppose that P = P(d) for some d e Zι(R, R). We need to
find a d0 e Zι(R,R) so that Q = P(d0). Define a Borel function g
on X as follows. Set g(x) = sup{d(z, y)\(x, z), (x, y) eQn Θ(Q) and
(z, y) e P} provided the supremum is finite; otherwise, set g(x) = 1.
For (x,y) e P, let dx(x,y) = inf(d(z,w)\(z,x),(y,w) e Qnθ(Q)}
and let

j(Y vλ_fdi(χ,y) + $(g(χ) + g(y)), if (χ,y) t Qnθ(Q),
αO[x,y)-yo if(x,y)eQnθ(Q).

Finally, define do on R by letting do = do on P and letting do =
-do o θ on Θ(P). Note that since do\A = 0, do is well defined on i?. To
show that do is a cocycle, it suffices to show that for (x, y) and (y, z)
inP,

(4.2) do(χ, z) = do(χ, y) + do(y, z).

So fix (x, y) and (y, z) in P. If (x, y) eQn Θ(Q)9 then by definition,
do(x,y) — 0,d\(x,z) = d\(y,z), and g(x) = g(y). Hence, in this
case, do(x, z) = do(y, z), verifying (4.2). A similar argument verifies
(4.2) when (y, z) e QΓ\Θ(Q). Thus we may assume that neither (JC, y)
nor (y, z) lies in Q Π Θ(Q). But then (x, z) £Qn Θ(Q) and we have

do(x, z) = dx{x, z) + \{g(x) + g(z))

and
do(x, y) + do{y, z) = dx (x, y) + dx (yf z)

So, we need only prove that

(4.3) dx (x, z) = dx {x, y) + dx (y, z) + g{y).
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If suρ{d(wι, w2)\(y,wι), (y, w2) G Qnθ(Q) and (wϊfw2) e P} is
infinite, then either there is a w2 £ R(y) such that d(y, w2) > d(y, z)
(> 0) and (y,w2) e Q Π 0(β) or there is a w\ e R{y) such that
d{w\,y) > d(x,y) (> 0). In the first instance, (y,z) = (y,t^2)°(^2»^)
lies in [0(β) o Θ(Q)] ΠP c Θ(Q) ί l P C 0(β) n Q, while in the second,
we see by a similar calculation that (x, y) e Q n 0(β). Since we have
already handled both of these cases before, they may be excluded and
we may assume that the supremum is finite. So, by definition, we have

g{y) = sup{d{wι, w2)\(y, wx), (y, w2)eQn Θ{Q), {wλ, w2) e P}.

Now fix ε > 0 and w\, w2 G X such that (x, W\) and {w2, z) lie in
βn0(β). We may then find yx, y2 e X with (y{, y), (y2, y) e Qnθ(Q)
and g(y) < d{y\, y2) + ε. We then also have

< d{wx,y\) + d(y2f w2) + d{yx, y2) + ε =

Since the choices of ε > 0 and W\,w2 were arbitrary, subject only to
the condition that (x,wχ), (w2, z) G β Π 0(β), we conclude that

rfi (x, y) + rfi (y, z) + g(y) < dx (x, z).

For the reverse inequality, fix e > 0. Then there are X\,y\,y29 and
z2 in X such that (x,*i), (y, y\), (y, y2), and {z,z2) are all in Q n
^ ( β ) ^ ! ^ ^ ) > d(xχ,y{)-ε9dι(y,z) > d(y2,z2)-ε, and g(y) >
d(y,y2). Hence

dχ(x, y) + dι{y, z) + g(y) > d(xuyι) + d(y2, z2) + (ji, y2) - 2ε

= d(x, z2) -2e> d{x, z) - 2ε.

Since ε > 0 is arbitrary, equation (4.3) is satisfied and do lies in
Zι{R,R).

To complete the proof of (1), we need to show that Q = {(x, y) G
Λ|rfo(^y) > 0}. Observe that since (β Π 0(β)) o (β\0(β)) o ( β n
0(β)) £ Q\θ(Q)>d\ must be nonnegative on β\0(β), and, since g >
O,ύfo

 m u s t b e nonnegative on β\0(β) = P\(β Π 0(β)). Since rf0

 i s

skew symmetric, do < 0 on 0(P)\(βn0(β)), and by definition, do
vanishes on Q n 0(β). Recalling that Q = ? u ( Q n θ ( β ) ) , because

QQn Θ(P) c 0(Q) n Q, we see that β is contained in {( c,y) G
^ y) > 0} which, in turn, is contained in {(x, y) G i?|rfo(^ y) =

0} U (β\0(β)). Thus, to finish, all we need to show is that B :=
{(x>y)\do(x>y) = 0}\(β Π 0(β)) is empty. But if (x,y) e 5, then
^(x, y) = g(x) = g(y) = 0 and using the definition of g, we see that
{ z \ ( z , x ) e Q n Θ(Q)} = { x } w h i l e { w \ ( w , y ) e Q n 0 ( β ) } = { y } .
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Consequently, d\(x, y) = d(x, y) = 0. Since this implies that fiCΔC
Qy we see that B is empty and that the proof of (1) is complete.

For (2), note that if P e φ(n), then we may assume that P = P(d)
where \d(x, y)\ < 1 a.e. v. Then by the definition of do, we see that
\do(x> y)\ < 2. Hence by Theorem 6 of [FM2], do is a coboundary and

is a nest subalgebra of M.

We note in passing that one can give a direct proof of part (2) of the
preceding theorem along the following lines. Suppose that g is a real-
valued Borel function on X such that P = {{x,y) e R\g(y) > g(x)}
and assume, as we may, that \g\ < 1. If for each x E l w e set G(x) =
{g(y)\(x> y ) e β n Θ(Q)} and if we set gQ(x) = supG(x) + inf G{x),

then it is not difficult to see that Q = {(x, y) G R\go(x) < go(y)}.

COROLLARY 4.11. Ifφ = φ(α), then H\R, R) = 0.

Proof. As remarked after Theorem 4.9, Theorem 4.9 coupled with
Proposition 3.9 show that each d e Z 1 (R, R) with d~ι (0) = Δ must be
a coboundary. So let d e Z 1 (i?, R) be arbitrary and recall that since X
is standard, there is a Borel isomorphism / from X onto a subset of
R. UXdo(x,y) = f(y)-f(x). Then d0 e Zι(R}R) and A = d^ι(0).
Let P = {(JC, y)| either </0(*. y) > ° and rf(x, j;) > 0 or do(x, y) < 0
and rf(x, y) > 0}. Then it is easy to check that P e φ and P c P{d).
Since P G φ = φ(n) (by Theorem 4.9), Theorem 4.10 implies that
P(d) e 9β(n). By Proposition 3.9, d is a coboundary.

5. The order induced by P. Throughout this section, P will denote
a fixed element of φ. As we have pointed out before, P induces a
total ordering on each equivalence class. If (y,x) £ R, we shall often
write x > y if (y,x) G P and we shall write x > y if (y,x) G P\Δ.
In [MSS] we randomized the analysis of total orders made in [R] in
an effort to understand what possibilities there are for the order types
of the equivalence classes R(x), x G X. Our objective here is to show
that if P G φ(a), then the order type of each R(x) must be quite
limited. We must recall a certain amount of technical information
from [MSS]. We present only the definitions and a little discussion;
the reader should consult [MSS] for details.

Let Λ denote the collection of all ordinals with the usual order, and
let ΛQ be the set of all countable ordinals. For each j?eΛ,we define a
function Cβ from R to Z u {±00} by transfinite induction. For β = 0
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we set

{ 0, ifx = y,

oo, if(x,y)eP\A,
- oo, i f (x, y ) $ R

If Cβ has been defined and if x e X, set Cβ{x) = {y e X\(x, y) e
R> \Cβ(x, y)\ < oo}. Then define Cβ+χ by the formula

Cfi+dx, y) = \{CP(z)\x <z<y, C*(z) φ C*{y)}\

-\{C0(z)\y<z<x,where for a set A, \A\ denotes its cardinality. Note that because P e %
one of the terms in the definition of Cβ+\ must be zero. Thus the
possibility that Cβ+\(x, y) is of the indeterminate form oo - oo never
arises, and Cβ+\ is well defined. Finally, if γ is a limit ordinal and if
Cβ has been defined for all β < γ, then Cγ is defined by the formula

{ oo, if Cβ(x, y) = oo for all β < γ,

- oo, if Cβ(x, y) = -oo for all β<γ,

0, otherwise.

Each of the maps Cγ is Borel by Lemma 5.1 of [MSS]. Note that
C°(x) = {x} for every xeX, so Cχ{x,y) = \{z\x < z<y}\-\{z\y <
z < x}\. As a result, Cι(x) = {y\[x, y] is finite, if y > x} u {y|[y,^c]
is finite, if y < x}. It is clear that C 1 determines a condensation on
each equivalence class of X, in the sense of [R] and that the C^'s,
β G Λ, also determine condensations on the equivalence classes of
X—the β-fold iterates of the condensations determined by C 1 in the
sense of [R, Definition 5.6]. Roughly speaking, a condensation is a
homomorphism of a totally ordered set obtained by collapsing order
intervals to points. The condensation C 1 collapses each finite order
interval in each R(x) to a point. Thus if the iterates of C 1 stabilize
after a certain point, the image is either a single point or a densely
ordered set. We define an analogue of the F-rank of a totally ordered
set as follows. For Xo € ^> let Γ(JCO) be the ordinal of the set {a e
Λ|Cα+1(.x) Φ Ca(x) for some x ~ x0}. Equivalently, r(x0) is the
minimal ordinal β satisfying Cy{x) = Cβ{x) for all γ > β and all x e
R(xo). Observe that if β is an ordinal such that C^+ 1(x) is different
from C^(JC) for some x e R(XQ)9 then there is a y e R(XQ) with
Cβ{x,y) = oo and Cβ+\(x,y) finite. It results, therefore, that there
is an injective map from {a\Ca(x) Φ Cα+1(jc) for some x € R(xo)}
into R(XQ) x R(XQ). Hence r(x) e ΛQ for every x e X. Each of the
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sets r~ι(β) is an invariant Borel set in X by Lemma 5.2 of [MSS].
We say that P is of type Da, a G ΛQ, if r{x) = a for almost every x.
If there is an ordinal a G Λo such that r(x) < a for almost all x G X,
then X is the countable union of the disjoint, invariant, Borel subsets,
r~ι{β)>β < α It follows that if R is ergodic and if there is some
a G Λo that majorizes r{x) for almost all x e X, then P is of type Dβ
for some β G Λo. We suspect, but are unable to prove, that given P,
with R ergodic, there is a β G ΛQ that majorizes r(x) for all x in X.
However, this point will not confront us here.

Our objective is the proof of the following theorem which shows
that if P G φ(fl), and if R is hyperfinite, then P is of type Do or D\.
The example we gave in §4, Example 4.8, is easily seen to be of type
Z>2 In any case, it will follow that it is quite easy to construct P's in
φ that are not given by cocycles; i.e, φ(a) Φ φ.

THEOREM 5.1. Suppose that R is finite and hyperfinite and let P G φ
be given by an R-valued cocycle d onR; i.e., suppose that P = {{x, y) G
R\d(x, y) > 0}. Then P is of type Do or Dx.

Proof. Without loss of generality, we may assume that R is given by
an ergodic measure preserving transformation, say τ: R = {(x, τnx)\
n G Z, x G X}. If d is a transient cocycle, then for almost all (x, y) G
R,\C\(x,y)\ < oo by Corollary 11.3 of [Sc]. Hence, in this case,
P is in D\. On the other hand, if d is recurrent then, for almost
all x G X,Cι(x) has either one or two elements (i.e., almost every
R(x) is densely ordered or densely ordered "with some gaps"). To
see this, suppose not and choose two points (x, y) and (y, z) e P
with Cι(x,y) = Cx{y,z) = 1. Set ε = min(d(x,y),d(y9z)) (> 0),
set x — τn(y), z = τk(y), and set N = max(|n|, |fc|). Then for each
integer / with |/| > TV, we have \d(x, τι(x))\ > ε, which contradicts the
recurrence of d by Corollary 11.2 of [Sc]. Hence IC^x)! < 2, a.e. so
that P is of type DQ or Dγ.

COROLLARY 5.2. If γ is a countable ordinal greater than oney if
G = Zγ, with the lexicographic order, acts freely and ergodically on
the standard Borel space X, leaving invariant a probability measure,
and ifP = {(x, g x)\x eX,g> 0}, then P $ φ(a).

Proof. Since RQ is finite and hyperfinite, and since P is of type Dy,
by Lemma 5.4 of [MSS], the result is immediate from Theorem 5.1.
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REMARK 5.3. One might think, on the basis of Theorem 1 of
[FM1], that given R and P, it ought to be possible to find a to-
tally ordered group G with positive semigroup Σ such that R = RG

and P = {{x, g x) G Rg\g £ Σ}. However, a moment's reflec-
tion reveals that this is not possible. Simply consider the usual or-
dering on the finite set {1,2,...,«}. On the other hand, there is a
cocycle c on R with values in a totally ordered group, namely R,
such that this P is {(x,y)\c(x,y) > 0}. It is natural to ask, there-
fore, whether a given P is of this form; i.e. when does there exist a
group G with positive semigroup Σ and a cocycle c: R-> G such that
p = {(x, y) G R\c(x, y) G Σ}? We suspect, on the basis of our analysis
in [MSS], that if P is of type Da, then it is possible to realize P as
{(x, y) e R\c{x, y) e Σ} where G is either Z α or ZαR and these groups
are given the lexicographical ordering. We intend to investigate this
in the future.
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