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SMALL ISOMORPHISMS OF C(X,E) SPACES

KRZYSZTOF JAROSZ

A linear map T between two Banach spaces A and B is called
ε-isometry if (1 - ε) | |/ | | < | |Γ/| | < (1 + β)| |/| |, for any f e A. In
the paper we investigate injective and surjective ε-isometries between
Banach spaces of continuous 2f-valued functions.

We prove that, under some geometrical assumptions on the Banach
space E, any such ε-isometry is induced by a continuous function
between the corresponding compact Hausdorff spaces. We discuss
also the question whether such an ε-isometry has to be just a small
perturbation of an isometry.

1. Introduction. The classical Banach-Stone theorem says that the
Banach spaces C(X) and C{Y) are linearly isometric if and only if X
and Y are homeomorphic. During the last 25 years this theorem has
been directly generalized in four different ways. It was proven that
the Banach-Stone theorem:

1° is stable, this means: if there is an isomorphism T from C(X)
into C(Y) with ||Z^||||T^"11| < 1 + ε and ε < 1 then C(X) and C(Y) are
actually isometric and so X and Y homeomorphic [9].

2° holds for function algebras, this means: if there is a linear
isometry T from a function algebra A onto a function algebra B then
A and B are isomorphic in the category of Banach algebras, and so
Shilov boundaries as well as maximal ideal spaces of A and B are
homeomorphic [25].

3° holds for some spaces of the vector valued functions, this is:
if the Banach spaces C(X,E) and C(Y,E) are isometric, where the
Banach space E satisfies certain geometric conditions, then spaces X
and Y are homeomorphic [2, 5, 21, 23].

4° holds for "into" isometries, this is: if there is an isometry from
C(X) into C(Y) then there is a continuous function from a subset of
Y onto X [15, 16, 18, 19].

Then in the last 10 years a number of common and much more far
reaching generalizations were discovered. It was proven that:

(a) the vector-valued Banach-Stone theorem is stable (with some
ε > 0) [3, 4, 10, 12, 17],

(b) the Banach-Stone theorem for function algebras is stable [19],
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(c) the "into" Banach-Stone theorem is stable [7] and holds for func-
tion algebras, too [18],

(d) the Banach-Stone theorem holds for a fairly large class of non-
function algebras and spaces [13, 20, 21, 26, 27].

The most far reaching result in the direction (a) was that of E.
Behrends and M. Cambern [3, 4]. They proved that the stable Banach-
Stone theorem holds for some sufficiently small ε > 0 for any Banach
space E such that

λB-C(E*) := M{dB-M(llEf): E1 C E\άimE' = 2} > 1,

where l\ is the two-dimensional Z1-space and ^ _ M ( ? ) the Banach-
Mazur distance.

The ideology of the above assumption is that the Banach space E*
is far from having any /^structure, which in turn means that E is far
from having any C(X) structure. A condition like this seems to be the
most natural since for E = C(X) even the non-stable vector-valued
Banach-Stone theorem fails [2].

To address the C(X) structure of a Banach space E more directly
let us define λo by

λo(E) := mf{dB-M(l?,E'): E' C E,dimE' = 2}

where lψ is the two-dimensional /°°-space. It is easy to observe that
for any Banach space we have λo{E) > XB-M{E*) and for any real
Banach space E, λB_c(E) = λB-C(E*) = λo(E) = λo(E*). In the
next section we introduce two more parameters, λ(E) and μ(E), and
discuss simple relations between all four.

In this paper we get a common generalization of the Banach-Stone
theorem which covers (a), (b) and (c), for any Banach space E with
λo(E) > 1. The constant ε > 0 we get is the best one at least in the
metric case; at the last section of the paper we discuss the problems
which arise when spaces X, Y are non-metrizable. We get ε = 1
for the scalars and a = \/2 - 1 for the Hubert space. We also get
some information about the general form of small isomorphisms and
isometries from C(X,E) onto C(Y,F).

Many of the results presented here grew out of the author's discus-
sions with Professor M. Cambern. The author is greatly indebted to
him.

2. Definitions and notation. We use the standard Banach space ter-
minology. For a Banach space E we denote by Eλ the closed unit ball
of E and by E* the dual space. For a locally compact set X we denote
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by Co(X) (CQ(X,E)) the Banach space of all scalar-valued (E-valued)
continuous functions vanishing at infinity provided with the usual sup-
norm. By X* we denote the one-point compactification X U {00} of X
if X is non-compact and just X if X is compact. We often consider
C0(X) (Co(X,E)) to be a subspace of C(X*) (C(X*,£)). By an ex-
tremely regular subspace A of CQ(X) we mean a closed subspace such
that

VJCQ e X Vε > 0 Vt/open 3 xo3f eA\/x £ U \\f\\ = 1 = f(x0)

and I/OOI < e.

A basic example of an extremely regular subspace of Q(X) is a func-
tion algebra (i.e. closed subalgebra of CQ(X) which separates points
of X) such that the Choquet boundary of A is equal to its Shilov
boundary.

We denote by A®E the complete injective tensor product of A
and E and we observe that C${X)®E can be naturally identified with
CQ(X, E). For isomorphic Banach spaces E, F we set

dB-M{E,F) := infίllΓIHIΓ"1!!: T is an isomorphism from E onto F}.

We put

λ(E) :=inf{max{||^ +λe2\\: \λ\ = l}:eue2eE, | h | | = ||<?2|| = 1}

and

μ(E) := sup{inf{|k! +λe2\\: \λ\ = l}:eue2eE, \\eι\\ = ||^2|| = 1}.

The value λ(E) measures how far from (l^i are the two dimensional
sections of the unit ball of E, and μ(E) measures how far from {l\)\
are the two dimensional sections of the unit ball of E. If such sections
are arbitrarily close to {l\)\ then μ(E) = 2; otherwise μ(E) < 2.

Obviously for any Banach space E we have λ(E) < λo(E) and μ(E)
λβ-c(E) > 2, as a matter of fact for most classical Banach spaces we
have even equations above. If the norm on E is more pathological,
then λ(E) may be strictly smaller than XQ(E)\ nevertheless λ(E) > 1
if and only if λo(E) > 1. One can even check that for any non-one
dimensional Banach space E we have:

(i) 2λo(E)/(l +λo(E)) < λ(E) < λo(E).
Similarly μ(E) < 2 if and only if λB-c{E) > 1.

We also have
(ii) λo(E) > 1 if and only if λB-C(E*) > l

There is a great number of Banach spaces with the above property.
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For example:
(iii) if E is uniformly convex or uniformly smooth then λ(E) > 1

(and consequently μ(E*) < 2, λB-C(E*) > 1 and λo(E) > 1).
Let us also mention some other simple properties of these parame-

ters:
(iv) if E is a Hubert space with dim E > 1 then

λ(E) = μ(E) = λo(E) = λB-C{E) = >fϊ.

(v) if dimE = 1 then λ(E) = 2, μ(E) = 1 (in this case it is custom-
ary to assume that λo(E) = ^B-C(E) = oo, since E has no subspace
isomorphic with /f°, nor with l\).

(vi) λ(C(X)) = λo(C(X)) = 1 provided card(X) > 2.

3. The results.

THEOREM 1. Let X be a locally compact metric space, Y a locally
compact Hausdorff space and A, B extremely regular subspaces of
Co(X) and Co(Y), respectively. Let E, F be Banach spaces and let
T: A®E -> B®F be a linear map such that \\f\\ < \\Tf\\ for f e A®E
and \\T\\ < 1 + e < λ(F). Then for any e e E with \\e\\ = 1 there is a
subset Ye of Y and a continuous surjective map φe: Ye —• X such that

(*) \f;{T{f®e){y))-foφe{y)\<e\\f\\ feA,

where Ye 3 y H-> f* is a map from Ye into dF{. D

In the above theorem we have the assumption that ||Γ|| < 1 + ε <
λ(F). Such ε is not the biggest possible for arbitrary Banach space F,
and it seems to be unlikely we could have in general a simple formula
for the best ε. However the constant λ(F)is the best one for a number
of classical Banach spaces, including Hubert space and scalars, even
for surjective isomorphisms.

In the scalar case we have λ(F) = 2 and it was proven by H. B.
Cohen [14] that there are two non-homeomorphic, metric, com-
pact sets X and Y such that there exists a T: C{X) °^° C(Y) with

If F = E = H = infinite dimensional Hubert space, the situation is
even simpler. Let X be a two-point set and Y a one-point set so we
have C(X, H) = H®ooH and C(Y, H) = H. We define T: H®^ H -*
i/by
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It is easy to check that HΓ"1!! = 1, | |Γ| | = y/2 = λ(H). Exactly the
same method works for F = E = lp or LP, 2 < p < oo.

In general we cannot assume above that Ye is closed, even if || Γ|| = 1
and dimF = 1 [18, p. 377]. However if X is compact and | |Γ| | is
assumed to be a little closer to 1, then Ye is closed.

THEOREM 2. Let A, By X, Y, Ey F be as in Theorem 1, and let
T: A®E -+ B®F be a linear map such that \\f\\ < \\Tf\\ for f e A®E
and \\T\\ < 1 + ε< 4/(1 + μ(F*). Then for any e e E, with \\e\\ = 1
there is a subset Ϋe ofY and a continuous map φe from Ϋe onto X such
that (*) holds. Moreover ifX is compact then so is Ϋe. D

Theorems 1 and 2 concern "into" isomorphisms. We can get much
more information if we assume T is "onto".

THEOREM 3. Let Xy Y be locally compact metric spaces, A, B ex-
tremely regular subspaces ofC0(X) and C0(Y), respectively, E, F Ba-
nach spaces and T: A&E —> B®F a surjective isomorphism such that
\\T~X\\ < 1 and \\T\\ < 1 +ε < min(λ(E),λ(F)). Then there is a home-
omorphism φ from Y onto X and for any y EY there exists a surjective
linear isomorphism Ty: E -> F with \\Ty\\ < 1 + e, \\Tyl\\ < 1/(1 — β)
such that

(**) ||Γ/(y)-7>(/o^))||<2β(l+β)||/||, feA®E,yeY

Moreover if E is finite dimensional then we may have \\Ty\\ < 1 + ε,
IIT-11| < 1 so in this case dB-M{A®E, B®F) = dB-M{E,F) and

\\Tf(y) - Ty{foφ{y))\\ < e\\Tf\\ < (1 +β

feA®E, yeY. π

From this theorem it follows immediately that, if λ(F), λ(E) > 1
then any isometry T from A®E onto B®F is canonical, that means,
is of the form

T{f){y) = Ty(f(φ(y)))9 feA®E, yeY,

where φ: Y —> X is a homeomorphism and Y 3 y •-• Ty is automat-
ically a norm continuous map into the set of all isometries from E
onto F.

It is natural to ask whether the same holds for small isomorphisms.
This means whether any small isomorphism T: A®E —• B®F is
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close to
1° a canonical isomorphism

and/or
2° a canonical isometry.

The formula (**) suggests that the answer, at least to the first question,
is positive. The problem is that it is not clear whether we can make
the map Y 3y \-*Ty continuous. It seems to be strongly related with
the topological properties of X, Y, and unknown, in general (this is
for non-paracompact sets), even if A = Cb(X), B = Co(Y), E — F =
scalars.

The next theorem says that the answer is positive if X is metric,
A = CQ(X) and B — C$(Y). The answer to the second question is, of
course, negative in general; even in the simplest situation when both
X and Y are one-point sets. The reason is, that by standard arguments
[6], we can construct for any δ > 0 a separable, reflexive Banach space
such that

(i) /Ud£, \λ\ = 1 are the only isometries of E,

(ii) \fe>0 3T:E°^° E \\T\\, \\T-{\\ < 1 + ε and Vα | | Γ - α I d | | >

2-β,

(iii) dβ-M(E,H) < 1 + <5, H—a separable Hubert space.
The answer is also negative when E — F — scalars. To observe this

put A — B = H°° = algebra of all bounded analytic functions on the
unit disc. The algebra H°° can be considered as an extremely regular
subspace of its Shilov boundary. Exactly as in the proof of Theorem
17.4 of [19], it can be shown, that for any δ > 0 there is a surjective
isomorphism T: H°° -> H°° with | |Γ| | < 1 + δ9 \\T~ι\\ < 1 + δ and
such that for any isometry S: H°° -• H°° we have US' - T\\ > 2 - δ.

The next theorem also gives some information when the answer to
the question 2° is positive.

THEOREM 4. Let X, Y be metric, locally compact spaces, let E be
a Banach (Hilbert) space and let T be a linear isomorphism from
C0(X,E) onto C0(Y,E) such that \\T-[\\ < 1 and \\T\\ < 1 + ε <
min(λ(E), 1.25). Then there is a canonical isomorphism (respectively
isometry) S from C0(X,E) onto C0(Y,E) such that \\S - T\\ < 2ε\\T\\
(respectively \\S - T\\ < 4ε/(l - 4ε)). D

4. Proof of the results. Before proving the results we need some
more notation and auxiliary observations. We usually consider A®E
as a subspace of Co(X,E) and CQ(X,E) as a subspace of Co(X x E\)
or CQ(X ® Eγ)9 where E* is taken with the weak * topology. For an
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/ G CQ(X,E) the obvious element of CQ(X X E\) which corresponds
to / is denoted by the same symbol and so

e*(f(x)) = f(x ® e*) for xeX, e* e El

We also consider X both as the domain, where the functions from A
are defined, and as a subset of A*, where

X(f)=f(x) forfeA,xeX.

To emphasize this we also write δx for x e X.
We say that a net (fγ)γer from A®E (from 4̂) peaks at a point

( x , e ) e X x £ i (a txeX) if

IIΛII -t 1 > IIΛM - *ll - Γ 0 (respectively \fγ(x) - 11 -> θ)

and
IIΛ( )I! "^ ̂  uniformly off any neighbourhood of x.

γeΓ

For F G (A®E)* by μ ~ F we mean that μ is a Borel measure on
X x JEj' which is a norm preserving extension of F to Q(X x E\). We
have the following easy observations.

PROPOSITION 1. Assume μ ~ F e (A®E)*. Then for any x e X
there is an e* G E* such that μ\{x}XE; ~ δx ® e*. π

Evidently the functional

fdμf
J{X

f
{X}XE;

depends only on the value of / at the point x and so is of the form

δx®e\

PROPOSITION 2. Assume F G (A®E)*, μ, ~ F and μi\{x}XE* ~ $χ ®
e*, i = 1,2. Then el = e\. π

The proposition follows from the assumption that A is extremely
regular by considering a suitable net peaking at the point x. By this
proposition it makes sense to write Fx := F\{xyxE* for any F G
(A&E)*. If dim£ = 1 then, to simplify the notation, we just identify
A®E with the space A c CQ(X) though formally, according to the pre-
vious notation, we should consider A®E as a subspace of C${X®E\)
where E\ is now the segment [-1, +1] in the real case or the unit disc
in the complex case. Hence in this case Fx is of the form λδx where
X = μ({x}) and μ is a measure on X such that μ ~ F. We will just
write λ = F({x}).
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PROPOSITION 3. Assume that μ ~ F and that Xo is a Borel subset of
X. Then

Dwhere the norm is taken in (A&E)*.

Put μι = μ\χϋXE; and μ2 = μ\{χ\χ0)xE; We have

bill + WMiW > \\μι+μ2\\ = IMI = var(/ί) = var(//,) + var(μ2)

Hence \\μι\\ =var(μi).

PROPOSITION 4. Let μ be a finite, positive measure defined on a set
Ω and let {An)^=x be a sequence of μ-measurable subsets ofΩ where
μ{Λn) > λ0 for all n € N. Then

D

PROPOSITION 5. Let H be a Hilbert space and let h(H) be the set of
allsurjectiveisomorphismsS: H —• H with \\S\\, \\S~ι\\ < 1+ε. Assume
that ε < \. Then there is a norm continuous retraction Φ: Iε(H) —>
I0(H) such that for all S, S' in Iε(H) we have

(1)

Proof. Let S e Ie(H), ε < \. We define Φ(S) to be just the unitary
part of the polar decomposition of S. This means we put Φ(S) =
So P~\ where P = (S* o S)1/2. The map So P~ι is an isometry and
we check (1) by a direct computation. We have

OO

Σ

Λ = l

\ld-S*oS\\n.
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We have also

|| Id -S* o S\\ < sup ((Id -S* o S)x | (Id -S* o S)x)
l

||
IWI=i

< sup

< sup ( l + ( ( l + β ) 2 - 2 ) | | y | | 2 )
H Ί I ( ) '

Hence

||Φ(5)-5||<
n=\

°° /_i

l - 4 ε '

Now we are ready to prove Theorem 1. To this end we fix e e E
with | |e| | = 1 and denote by Te the map from A into B&F defined by
Te(f) = T(f®e) for f eA. Evidently Te is norm non-decreasing and
II 7̂ 11 < II T\\. In the remaining part of the proof we deal only with the
map Te.

Let M be such that

For any x eX we put

Sx = {ye Y: 3/* e dFf \Te*(Sy ® f*)({x})\ > M}.

For any sequence (Λ)£Li from A which peaks at x we put

^ = {y G 7: 3/* e F2* 3(Λ)^°=1 c ^ peaking at x

withy®/*

LEMMA 1. For any x eX the set Ax is non-empty.
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Proof. Let (fn)%L\ be a sequence peaking at the point x G X. Let
^ ~ (T^Γ1 )*(#*) G (B<g>F)*, where by Γ^"1 we mean a map defined on
the range of the map Te. We have

varz/ < || T~ι \\ < 1,

lim sup || Tefn\\ < \\Te\\ and lim / Tfndv — \\vafn[x) = 1.
n n J n

Hence
Γ 1 - M
limsup ^ ( Λ ) > TΓ77TT]—77 := Ao > 0

n ll^ll-^

and the lemma follows from Proposition 4.

LEMMA 2.

Proof. Let y eAx. Then there is an /* e Ff and a sequence (fn)™=\
in ^ peaking at x such that \Tefn[y®f*)\ > M for infinitely many
/? G N, so without loss of generality we can assume that this equation
holds for all « E N . Let

We have | fχfn dμ\ = |Γ^/Λ(j; ® / * ) | > ΛΓ for n e N. Hence by the
definition of a peaking sequence we get |μ({x})| > M. This proves
that AXCSX.

Let now /* e Ff, μ - T*{y ® /*) be such that |//({x})| > M. We
have

// = λδx + Aμ where |λ| > M and |Δ/z|({x}) = 0.

Hence there is a sequence (fn)%L\ in A, peaking at x and such that

ί
Jx

fndμ > M for n G N.

Observe that in general it may not be possible to find the functions
fn as above such that \\fn\\ = 1 = fn(x). This is the reason that at
the definition of a peaking sequence we required only fn{x) —> 1 and

* 1 as /i -^oo.

L E M M A 3. //'xi Φ x2 G X /̂ẑ n 5 X l Π 5 X 2 = 0 . D

Proof. Assume to the contrary that there are yo^Y and sequences

(fn)™=v (fn)T=ι i n A P e a k i n g a t -̂ 1 a n d χ2, respectively, such that

(2) \\Tefn(y0)\\>M
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We have limM \\fi ±f%\\ = \ for both + and -, so

(3) limsup \\TefHyo) ± Te/*(y0)\\ < \\Te\\ < \\T\\ < 1 + ε.
n

By (2) and (3) we get λ(F) < (1 +e)/M which contradicts the definition
ofM.

LEMMA 4. For any x G X and y eSx there is an f* e F* such that

(4) \Γ(Te(f)(y)) - f(x)\ < ε\\f\\ for f e A. π

Proof. Fix y G Sx and let /* e ΘFf be given by the definition of Sx.
This means

λδx +Aμ e
where μ| > M and \Aμ\({x}) = 0.

Multiplying /* by a suitable scalar of modulus one we can assume
that λ is a real, positive number. For any / € A with ||/|| < 1, by
Proposition 3 and the definition of M we get

<\λf(x)-f(x)\

< ||Γ|| + (1 - 2M) = ||7Ί| - 1 + 2(1 - M) < e.

To end the proof of Theorem 1 we define now a function φe: \JxeX Sx

—• X by φe{y) = x if y G Sx = Ax. By Lemma 3 φe is well-defined, by
Lemmas 1 and 2 φe is surjective and by Lemma 4 φe satisfies (*). It
remains to prove that φe is continuous. Assuming the contrary there
are xn € X, yn G Y and an open neighbourhood V of x0 such that
yn G SXn, yn -^ yo ^ Sχ0

 a n ( i χn G X\V for all n G N. Fix δ > 0.

Since y0 G 5 0̂ = ^ there is an f\ e Ax such that ||/i|| < 1 + δ,
AM = 1, 1/iMI < * for x G X\F and ||3^/l(^o)ll >M-δ. Next
since Γ /̂i is norm continuous and yn —• j>o there is an «0 € N such
that || Γ,/i C ĴH > M - J. Let /2 G ̂  be such that ||/2 | | < 1 + δ,
f2(XnQ) = 1, \f2(x)\ < δ for x G F and ||7;/2(j;Wo)|| > M - δ. We have

o ) l l > A f - J f o r / = 1 , 2

a n d

\\Tefι(yno)± Tef2(yno)\\ < \\Te\\\\fι ±fi\\ < (1 +β)(l +2δ).
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Hence, since δ is an arbitrary positive number we get λ{F) <
(1 + ε)/M, which contradicts the definition of M and so ends the
proof of Theorem 1.

Proof of Theorem 2. We use the same notation as in the proof of
the previous theorem. For any x E l w e let

Sx = {yeY: 3/* e F? MfeA \f*(Te(f)(y)) - f(x)\ < ε\\f\\}

and

γe = n §χ
xex

Observe that by Theorem 1 Sx φ 0, for x e X.

LEMMA. Ifx{ φxi^X then SXι n SX2 = 0. α

Proof. Assume that y G SXχ Π SXl and let /j*, f% G Fj* be such that

\\ft{Te{f){y))-f{χχ)\\< 11/11, /eΛ, /= 1,2.

The above inequality just means that

Since yί is extremely regular \\δX{ + /I^χ2|| = 2, for |λ| = 1, so by the
above inequality we get

2 .
1 + ε

Hence we get μ(F*) > 2(1 - β)/(l + e) which contradicts our assump-
tion that

1

To end the proof of Theorem 2 we define φe: ί̂  -> X by ^(y) = x
if x € Sx. By the lemma 9?̂  is well-defined and since 5^ Φ 0, is
surjective. The continuity of φe and the compactness of Ϋe, if X is
compact, follows by the standard arguments from weak * continuity
of T*, lower semi-continuity of the norm and the fact that ε < 1
(compare the proof of Lemma 2 of [18]). It is easy to observe that
Ye, given by Theorem 1, is a subset of the set Ϋe and the function φe,
given by Theorem 2, is an extension of that given by Theorem 1.
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Proof of Theorem 3. We prove that the set Ye and the function φe,
given by Theorem 1, do not depend on e e E with ||e|| = 1. To this
end it is enough to prove that Ye and φe locally do not depend on e.
Assuming the contrary, since φe is surjective, we get, for any δ > 0,
two elements e\ and e2 of E with norm one and in the distance less
than δ such that there are two distinct points y\ and yι in the domains
respectively of φeι and φe2 with φeχ{y\) = <Pe2{yi) •= *o £ X- Let /j*,
/2* be given by (*), that is such that

\\Te*{(yi®f*)-K\\<ε f o r / = 1 , 2 .

Hence

I Ή O Ί β/Γ) - ilΰi ® Λ*)ll < 2β < 2.

On the other hand

II?;*, - 7?2II = IITλ - Te2\\ < \\eι -e2\\\\T\\ < 2δ,

and, since B is extremely regular

IIJΊ ®fΐ -y2®fi\\{B®Fy > \\δyx -δy2\\B* = 2

so

\\n(yι ®/Γ)- r;2(y2®Λ*)ll > 2-2*.
Setting (J = (1 - β)/4 we get a contradiction which proves, by the
definition of Ye = \Jxex $χ a n c ^ °f $χ ι ^ a t there is a subset 7Q of
Y (equal to Ye, for any e e dE\) and a continuous surjective map
φ: YQ —• X such that

(5) Ve G c ^ Vy G r 0 3/* € Ff \Te*(δy®f*)({x})\ > M.

Observe that we have proven even more, namely putting e\ = eι
we get yx = y2, which means that φ is injective or equivalently that
Sx = Ax are one point sets.

Fix now y eYo and fo e (^(^JE1)!. Let eo = yo(^)? where x = p(y),
let ^ € 5£Ί be such that e0 = | |eo | |^ and let /* 6 JFJ* be given by (5).
By Propositions 1-3 we can write T*(y ® /*) in the form

(6) T*(y

where

(60 ||Δ//|| + | | *1 = \\T*(y®Γ)\\ < \\T\\

and by (5), and the definition of Te

(7) \\e \\>\e*(e)\>M.
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Evaluating (6) at fo we get

and by the definition of e

(8) \\\eo\\e*(e)+Aμ(fo)\<\\T(fo)(y)\\.

Direct computations, (6'), (7), (8) and the definition of M give

H , I, < \\Tfo{y)\\ , l + e - M
INI * — M ~ + M

So we have proven the following

(9) V ^

At the very beginning of our construction we defined M to. be any
number smaller than one and sufficiently close to one. If we take now
M' in between M and 1 we get sets Sχ9 x e X which, directly by the
definition, are contained in the corresponding Sx sets. On the other
hand we have just observed that now all sets SXy and so S'x are one
point sets so S'x = Sx for any Mr such that M < Mf < 1. Consequently
we also get the same function φ for each such M'. Hence from (9) we
get

(10) My e y0 V/o € (A&Eh \\fo(φ(y))\\ < \\Tfo(y)\\ + ε.

By symmetry, for f = || T\\ T~ι in place of T, we get a subset XQ of X
and a continuous bijection ^ : XQ —• 7 such that

(11) V i € l 0 V / 0 6 ^ £ | |Γ/ o(^(x)) | |<| |Γ | | | |/o(x) | | + ε | |Γ/o||.

Let Xo be an arbitrary point of X, yo e 7o be such that φ(yo) = Xo
and X\ 6 Xo be such that ψ{x\) = >̂  By (10) and (11) we have

Hence

(12)

We now consider two possibilities:
(i) max(dim£',dimi7) > 1,

(ii) άimE = dimF = 1.
Assuming (i) we have 1 + ε < min(λ(E), λ(F)) < y/2; hence

(1 +ε)ε+ε < 1 and (12) together with the extreme regularity of A gives
X\ = XQ. By this and the symmetry arguments we have φ o ψ = Idχ
and ψ o φ = Idy, so φ is a surjective homeomorphism.
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Assuming (ii) we have ε < 1 and by (*) of Theorem 1

(13) \e(y)'T(f)(y)-foφ(y)\<ε\\f\\ for feA9

where \ε(y)\ = 1 for y e YQ. By the symmetry arguments we have also

(14) \er(x)\\T\\T-ι(g){x) - g o ψ(χ)\ < ε\\g\\ for geB.

Let xo, yo, x\ be such that φ(y0) - xo and ψ{x\) = y$. By (13) and

(14) we get

(15) |/to) ̂ ε(yo)ε\xι)\\T\\f(xι)\ < β(||/|| + ||Γ/||).

Assuming Xo φ X\, since A is extremely regular, the norm of the func-
tional A 3 f ^ / t o ) - e(yo)εf(xι)\\T\\f(xι) is equal to 1 + ||Γ|| and
by (15) we have

which contradicts the assumption that ε < 1. Hence as at the point
(i) we get that φ is a surjective homeomorphism.

Now, to construct isomorphisms Ty: E —> F, y e Y, we let fy G A
be such that \\fy\\ = 1 = fy(φ(y)) and define Ty: E -> F by

We have ||7>|| < | |Γ| | < 1 + ε and, by (10),

(16) | |Γ^| |>(l-ε)| |^| |, eeE.

By (11), for any / € A&E and y E Y we also have

(17) \\Tf(y)-Ty(foφ(y)\\

<\\T\\\\{f-fy®(foφ{y))){φ{y))\\

+ ε\\T{f-fy®{foφ{y)))\\

<2ε\\T\\ 11/11,

which proves (**). It remains to show that Ty are surjective. We
prove this under the additional assumption that dim/7 > 1 which
gives 1 +ε < λ(F) < \fl. These Ty are surjective also when dimE = 1
but this case is covered by the next step, where we get an even better
result.

By (16) Ty(E) is a closed subspace of F, so assuming Ty is not
surjective we get ko e F\ such that for any e e E we have ||&o -
Ty(e)\\ > 1. Let ̂ o ̂  (B®F)ι be such that go(y) = k0 and put
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fo = T-ι(go). By (17) we have

- W o o 9(y))\\ = \\τfo(y) - τy(f0 o φ(y))\\
\\T(fy®(f0oφ{y)))\\)

ε(2 + β) < (Λ/2 - 1)(Λ/2 + 1) = 1.

The contradiction proves surjectivity of Ty.
To end the proof we now assume that F is finite dimensional. By

what we have proven E is isomorphic with a subspace of F (as a
matter of fact with F) so E is also finite dimensional. For y e Y we
let (/Jf )£L, be a sequence in A peaking at y and such that

(18) \fy

n(x) - max(0,Re/;(x))| -> 0

uniformly off any neighbourhood of φ(y) ([18] Lemma 1). We define
Γ;: E -> F by

and we let 7^: £ —>• f be such that there is a subsequence of (TJf)
convergent to T® in the norm topology.

Observe that by (18) for any / e A®E we have

Hence, by (17)

\\Tf(y)-T^foφ(y))\\<ε\\Tf\\, feA®E.

By the definition of 7j we evidently have | |7j | | < ||Γ|| < 1 + ε. Let
e edEu fe (A®E)ι be such that f{φ{y)) = e and /* e Ff be given
by (5). By the definition of Γy° we have

| A 7 » ) I = \T*(y®Γ){fy

n ®e)\ = \e*{e)\

where e* is given by (6) and (7). Hence

\P{Tϋ

y{e))\>M\\f{φ{y))\\=M\\e\\.

Thus, since M was arbitrary number sufficiently close to one and ||/*||
< 1 we have ||7j(e)|| > \\e\\, eeE.

Proof of Theorem 4. Theorem 4 is an easy consequence of Theorem
3 and Proposition 5. The only problem is to define the map 7 9 } Ή
Ty in such a way that the functions F B J Ή Ty(f O φ(y)) e E are
continuous for any f EA.

To this end we define Φ: X -> 2C°W by

|/(*) | = 1}.
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The map Φ is a norm lower-semicontinuous, convex, complete selec-
tion so by the Michael Selection Theorem [8] there is a norm contin-
uous map χ: X —• (CQ(X))* such that χ{x)(x) = 1 for x e X. We
define Ty: E -> E by

Ty(e) = T(χ(φ(y))®e)(y).

The map Y 3 y ι—• Ty we get is norm continuous so the operator

CQ(X)®E 3 / £ Ty(foφ(y)) e C0(Y)®E

is well defined and exactly as in the proof of Theorem 3 we have

Assume finally that E is a Hubert space and let Φ be as at Proposi-
tion 5. We define an isometry

S: C0{X)®E -*• CQ{Y)®E by

S(f)iy) = Φ(Ty)(e), feC0(X)®E, yeY.

By Proposition 5 we have

\\S-τ\\<\\S-s\\ + \\s-τ\\

5. Non-metrizable case. Up to now in all the results we discuss
here we have the metrizability assumption. All but one step of the
proofs of Theorems 1, 2 and 3 works in the exactly same way also
without this assumption. The only change we would have to adopt is
simply put the nets in place of the sequences. However this one spot
where we do need the metrizability is very essential. This is Lemma
1. The author does not know whether Ax = Sx has to be non-empty
in general, certainly the simple method we used to prove this lemma
does not work without the assumption that any point of X is a G$
set. So as a matter of fact Theorems 1, 2 and 3 work for any compact
set such that any of its points is a G$ set. We did not put them this
way because such an assumption is only very slightly weaker than the
metrizability.

There is one more point where we used the metrizability, namely
Theorem 4, where in the proof we applied the Michael Selection The-
orem. The Michael Theorem does not work for any locally compact
set but does for any paracompact space. So if one could prove Lemma
1 in general we would get Theorem 4 for any paracompact set.
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Hence it is still an open problem whether we can omit the metriz-
ability assumption in our theorems. However we show that using what
we already know and some "general nonsense" we can easily get some
information about the non-metrizable case, too. We get almost the
same results, as in metric case only with worse ε, which is probably
no longer the best possible.

THEOREM 5. Let X, Y be locally compact spaces, E, F Banach
spaces and T: C0{X,E) -• Co(Y,F) a linear map such that \\f\\ <
\\Tf\\forfeC0(X9E)and\\T\\<l+e<4/(2 + μ(F*)). Thenforany
e G E, with \\e\\ — 1 there is a subset Ϋe ofY and a continuous map φe

from Ϋe onto X such that

\fy*(T(f®e)(y))-foφe(y)\<ε\\f\U feA,

where Ye 3 y ι-> f* is a map from Ye into F£.
Moreover ifX is compact so is Ϋe. α

Proof. Let Sx, Ϋe and φe be defined exactly as in the proof of The-
orem 2. Observe that in that proof, in particular in the lemma there,
we do not use directly the metrizability assumption, so φe is now still
well-defined and by the same standard arguments continuous, as well
as Ϋe is compact if X is so. The only point we use the metrizability
assumption in the proof of Theorem 2 is when we claim that "by The-
orem 1, Sx Φ 0 for all x e X". Now we can no longer use Theorem 1
directly, but we use it indirectly to prove that Sx is still non-empty.

To this end fix x e X and let A' be a separable subset of A such
that there is an / e A1 with f(x) φ 0. Let [A1] be the C*-subalgebra
of CQ(X) generated by A1. [A1] is separable and as a commutative
C*-function algebra is of the form Co(XΛ>) for some locally compact
metric set X#. It is easy to observe that X& is a quotient space of
X* = I u { o o } by the relation ~ defined as X\ ~ x2 if and only if

We denote by TA, the restriction of Te to A1 and set

a(x,A') = {(yj*) G r* x FX*: \\T*A,{y®P) - δx\\ < e).

By Theorem 1 or 2 the set Ω(x,A') is not empty. By the weak * conti-
nuity of ΓJ, and by the lower semi-continuity of the norm this is also
a closed subset of the compact set Y* x Ff. Let now A1,..., An be sep-
arable subspaces of A with the property that for any j = 1 , . . . , # there
is an fj e Aj with f/(x) φ 0. Let [A1,..., An\ be the C*-subalgebra of
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Co(X). This subalgebra is still separable so we have

7=1

Hence by standard compactness arguments

where the intersection is over the set of all separable subspaces of

C0(X).
Let (yo9fζ) £ Ω(x,A). Since ε < 1 we have y$ ψ oc and so y§ e Sx

and we are done.
Now, since Theorems 3 and 4 are only corollaries of Theorem 1, by

exactly the same arguments, using just Theorem 5 in place of Theorem
1, we get a few more results in the non-metric case.

THEOREM 6. Let X, Y be locally compact spaces, E, F Banach
spaces and T: Co(X,E) —• CQ(Y,F) be a surjective isomorphism with
\\T~l\\< 1 and

Then
(i) there is a homeomorphism φ from Y onto X and for any yeY

there exists a surjective linear isomorphism Ty: E —• F with \\Ty\\ <
1 + ε, \\T-χ\\ < 1/(1 - ε ) such that

\\Tf(y) - Ty(foφ(y))\\ < 2ε(l + ε) | |/ | | , feC0(X,E), yeY;

(ii) ifE is finite dimensional then we have \\Ty\\ < 1+ε and \\T~X\\ <
1 so in this case dB-M(C0(X,E), C0(Y,F)) = dB-M(F,F) and

\\Tf(y) - Ty(foφ(y))\\ < ε\\Tf\\ < (1 +ε)ε

feC0(X,E), yeY;

(iii) // Y is paracompact and E = F then there is a canonical iso-
morphism S: CQ{X,E) -> C0(Y,E) with \\S- T\\ < 2ε\\T\\,

(iv) if Y is paracompact and E = F = H = Hilbert space then
there is a canonical isometryS: C0(X, H) -> C0(Y, Ή) with \\S - T\\ <
4ε/(l-4ε) (for ε<\).
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