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ISOMETRIES OF TRIDIAGONAL ALGEBRAS

YOUNG SOO JO

Let AlgoS? be a tridiagonal algebra which was introduced by F.
Gilfeather and D. Larson. In this paper it is proved that if
φ: AlgoS? —• Alg J?f is a linear surjective isometry, then there exist
unitary operators W and V such that φ(A) = WAV for all A E
Alg-2".

Introduction. The study of reflexive, but not necessarily self-adjoint,
algebras of Hubert space operators has become one of the fastest-
growing specialties in operator theory. In this paper we study the lin-
ear surjective isometries of a certain class of reflexive algebras, which
were introduced by F. Gilfeather, A. Hopenwasser and D. Larson [5].
These algebras have been found to be useful counterexamples to a
number of plausible conjectures. In particular, these algebras have
non-trivial cohomology [5], and they admit automorphisms which are
not spatially implemented [2].

First we introduce the notation which is used in this paper. Let
{e\, eι,... ,ein) and {e\, eι,...} be fixed bases of 2/2-dimensional com-
plex Hubert space and separable infinite dimensional Hubert space,
respectively. If Xi,X2> ••>•** a r e vectors in some Hubert space, we
denote by \x\,xi,... ,Jfy] th e closed subspace spanned by the vectors

Let x and y be two vectors in some Hubert space. Then (x,y)
means the inner product of the vectors x and y.

Let Hin be 2«-dimensional Hubert space. We denote by
subspace lattice generated by the subspaces [e\], [e$], [^5],...,

By AlgJS^ = <Ϊ>2W we mean the algebra of bounded operators which
leave invariant all of the subspaces in -S^. It is easy to see that all
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such operators have the matrix form

* *
*
* * *

*
*

where all non-starred entries are zero. Note that all diagonal operators
and the identity operator / lie in Alg^n-

Let HQO represent infinite-dimensional separable Hubert space,
and let -SSo be the lattice of subspaces generated by [e\], [e$], [^5],...,

Let be the algebra of bounded operators leaving every
subspace of SΌo invariant. Matricially, such operators have the form

* *
*
* * *

*
*

where all non-starred entries are zero.
By an isometry of an operator algebra Φ we mean a linear map

φ: Φ -+Φ such that ||p(Λl)|| = \\A\\ for every A in Φ. We do not assume
any algebraic properties for isometries, although the main theorem will
imply that such properties may exist.

Let / and j be two non-zero natural numbers. Then Ey is the matrix
whose (/,y)-component is 1 and all other entries are zero.

In this paper we will prove the following theorem.

THEOREM. Let φ: Alg-S|w —> Alg-S^ be a surjective isometry and
let φ{I) = U. Then U and U* are in Alg^ Λ , and U is unitary. Let
ψι: Algo^w —• AlgJϊ?2n be the surjective isometry defined by ψ\{A) =
U*φ(A) for all A in Alg-2^. Then either φι(*%2n) = &in o r Ψii&ίn) =
<2f2ii- If φι(^2n) = ^2n> ^ e n there exists a unitary operator W such
thatφι(A) = WAW* for all A in A\%&ln. Ifφι(<2p

2n)=^ι> thenthere
exist a conjugation J and a unitary operator W such that φ\{A) =
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JWA* W*J for all A in Alg-S^ Let φ: A l g ^ -> Alg-2^ be a surjec-
tive isometry and let φ(I) = U; then U and U* are in Alg-S^o and U is
unitary. Let ψ\: Alg-S^o —> Alg-SSo be the surjective isometry defined
by φx{A) = U*φ(A)for all A in A l g ^ . Then φx{I) = I, φι(Ea) = En
for all i (/ = 1,2,...), ψ\{^o) = S?oo> and there are diagonal unitary
operators W and V such that φ{(A) = WAV for all A in Alg-g^c

1. Examples of isometries.

EXAMPLE 1. Let the Hubert space be separable with an orthonormal
basis {e^: k = 1,2,...} and let U be a diagonal unitary operator whose
(/, /)-component is uu such that \uu\ = 1 for all /. Define φ: Alg-2^ ->
Alg<^o by φ(A) = U*AU for all A in Alg-S^. Then φ is a surjective
isometry such that φ(I) = /, the (/, /)-component of φ(A) is the same
as the (/, /)-component of A and if A = (a^-) is in Alg«5So, then the
(2/ + 1,2/ + l)-component of φ(A) is W2/+is2/+î 2/+i,2/̂ 2/,2/ and the
(2/ + 1,2/ + 2)-component of φ(A) is W2/+i,2/+î 2/+i,2/+2̂ 2/+2,2/+2.

In Examples 2 and 3, the Hubert space is 2/2-dimensional with an
orthonormal basis {e\,eι,...,^2«}

EXAMPLE 2. Let Dn be the n x n matrix with 1 the ( / , « - / + 1)-
component (/ = 1,2,...,/?) and 0 elsewhere. Let C/2/+1 = £>2/+i ®
D2n-2i-\. Define p : A l g ^ -> A l g ^ π by p(^) = C/2ί+i^t/2*.+1 for
every 4̂ in Alg^^. It is straightforward to show that L^+i^t^Vi
and U^i+xAUu+x are in A l g i ^ for every A in Alg-S^. So ^ is a
surjective isometry such that φ(I) = /, φ(En) = £21+1,21+1 > ^(£22) =

φ(E2i+2,2i+2) = E2n,2n> ^(£2/+3,2ι+3) = E2n-\92n-U ? ψ(E2n,2n) =
E2i+2,2i+2 Moreover, it is easy to check that φ(J?2n) =

EXAMPLE 3. We denote the identity on ^-dimensional Hubert space
by /„. Let

0 hi

hn-2i (

Then ^2/+1 is a unitary operator. Define φ: Alg-S^ —• AlgoS^^ by
φ[A) = V2i+\AV2M for every 4̂ in Alg«52W. It is straightforward
to show that ^ z + i ^ ^ + i a n c * V2i+\AVΊM a r e ^n A 1 S ^ « f o r every
4̂ in Alg^w So φ is a surjective isometry such that φ(I) = /,

φ(E\\) = J?2/+l,2ι+
^(^2/1-21+1,2/1-21+1-) =

2̂/,2/ Moreover, it is easy to check that φ(£%n) =
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EXAMPLE 4. Let φ: A\g£f4 -• Algi% be defined by φ{A) = Af for
every A in Algi^, where if

A =

'an

0

0
. 0

Define / : C4

#12
a12

a32
0

—y

0
0

0

C4 by

fll4"

0

α 4 4 .

7(x

then ^4y =

' α 4 4

0

0
L 0

α34
α 3 3

Λ32
0

~Xϊ,X2,

0
0

α 2 2

0

α ! 4 '
0

α 1 2

an.

for every

Then / is a conjugation; that is,
(1) J is bijective.
(2) J(x + y) = Jx + Jy for JC, y in C4.
(3) /(αx) = ά/x for every a in C and every x in C4.
(4) /2 = /.

(5) (/x,y) = (/y,x) for x, y in C4.
It is easy to check that φ(A) = JA*J; φ is a surjective isometry by

(5) and φ{I) = /. This isometry is not implemented by any unitary
operator. The algebra Alg-g^ admits this kind of isometry for other
values of n. Note that in this example, if E is in S^m then φ{E)L is

2. General theorems. We want to show that every surjective isom-
etry on Alg.22,2 or Alg-S^ is a composition of the types mentioned in
the examples. Our first task is to show that the image of the identity
under a surjective isometry of Alg-g^ (or Alg-Ŝ o) must be a unitary
operator.

Let x and y be two non-zero vectors in a Hubert space H. Then
x* ®y is a rank one operator defined by x* ®y(h) = (h,x)y for every
hinH.

LEMMA 1 {Longstaff[9]). Let 3* be a commutative lattice and let x
and y be two vectors. Then x* ®y is in Alg J? if and only if there exists
E in S? such that y is in E and x is in E± {E± means (E-)1), where
E- = V{F: F is in & and F 2 E}.

The following lemma appears in an unpublished paper. We include
the proof for the convenience of the reader.

LEMMA 2 {Moore and Trent [10]). Let φ: Alg^f2n -» Alg-S^ be a
linear surjective isometry. If A = φ(I) and ifx*®x is in b\%S*2n, then
\\Ax\\ = ||x||.
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Proof. Without loss of generality, we may assume that ||JC|| = 1.
Since x* ® Ax = A(x* ® c), the operator x* ® ̂ 4x lies in AlgJ^, and
there is an operator i? in AlgJ^n for which ^(i?) = x* ® ̂ 4x. For any
complex α,

a{x* ® ΛJΓ))(Λ* + &{(Ax)* ® x))\\

= \\AA* + ( 2 R e α + | α 2

By choosing α = — if purely imaginary, and by letting R = H+iK and
<Je<τ(iq, we find that |1+/<5|2< H-ί2||^4jc||2, or (||^4jc||2-<y2)ί2-2ί/ >
0 for all real t, and it is easy to see that this condition implies that δ =
0. Thus, σ(K) = {0}, K = 09 and R is Hermitian. Now let τ e σ(i?)
and let a = ί be real and deduce that 11 + ίτ | 2 < 1 + p.x | | 2 |2 ί + ί2|, or
2tτ + t2τ2 < p x | | 2 | 2 ί + ί2|. Choose t = -2 to get τ 2 < τ, which means
that τ > 0 (and hence R is a positive operator). Finally, let t —> 0+ and
conclude that τ < ||Ax||2, and, consequently, that ||i?|| < | | ^JC | | 2 . But

IIΛII = llrt*)ll = l l ^ β ^ l l = ll̂ ll ll^ll = ll^ll Thus, \\AX\\ < \\Ax\f
and it follows that | |^x| | > 1. On the other hand, \\A\\ = 1, so ||Ax|| = 1
and we are done.

In particular, since e\®e\ is in Alg^ w , | | ^ / | | = ||^/|| = 1 by Lemma
2 for every 1 < / < In.

THEOREM 3.1fφ: Alg^n —̂  Alg-S^ is a surjective isometry, then
φ(I) is a unitary operator in

Proof. Let φ(I) — A = (fl/y). Then |α z / | = 1 by the above statement
for all odd numbers i; 1 < i < In. But ||^4|| = ||/|| = 1, so a\ι = a\^n =
0, a32 = #34 = 0, #54 = #56 = 0, . . . , a2n-l,2n-2 = #2«-l,2« = 0. Thus,
φ(I) = A is a diagonal matrix whose components have absolute value
1 and hence A = φ{I) is a unitary operator in Alg-25Λ.

Similarly, we can get the following theorem.

THEOREM 4. If φ: Algo^o -* Alg-2^ is a surjective isometryy then
φ{I) is a unitary operator in

Let φ(I) = U. Then UA and U*A are in Alg^ r t (resp.
if A is in Alg-S^ (resp. Alg-2So). Define φ: Alg-δ^ —• Alg^^ by
φ(A) = U*φ{A) for every A in Alg«S^ or φ: Alg-S^ -> Alg»2So by
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φ(A) = U*φ(A) for every A in Alg^o. Then φ is a surjective isometry
such that 0(7) = /.

Let Ω = {A: A is a diagonal matrix in Algo22« (or Alg.5^)}. Then it
is easy to check that Ω is the smallest von Neumann algebra containing
&in (or^oc) and Ω = A l g ^ n ( A l g ^ ) * (or Ω = Alg^n(Alg .%>)*).

We will require the following facts, first proved by Kadison.

LEMMA 5 {Kadison [8]). A linear map φ of one C*-algebra into an-
other which carries the identity into the identity and is isometric on
normal elements preserves adjoints, i.e., φ(A*) = (φ(A))*.

DEFINITION 6. Let Φi and Φ2 be C*-algebras. A Jordan isomor-
phism or C*-isomorphism φ: Φ\ —» Φ2 is a bijective linear map such
that if A is self-adjoint in Φu then φ{A) is also self-adjoint in Φ 2 and
φ{A») = (φ(A)y.

LEMMA 7 {Kadison [8]). (a) A linear bijection φ of one C*-algebra
Φ\ onto another Φ2 which is isometric is a C*-isomorphism followed
by left multiplication by a fixed unitary operator, viz, <p(I).

(b) A C*-isomorphism φ of a C*-algebra Φ\ onto a C*-algebra Φ2
is isometric and preserves commutativity.

LEMMA 8. φ(Ω) = Ω, (where φ and Ω are defined above).

Proof. Since φ\Ω preserves adjoints by Lemma 5, φ(Ω) is contained
in Ω. Similarly, φ~ι(Ω) is contained in Ω. Hence φ(Ω) = Ω.

Since φ: A\g5?2n -• Alg-2^ (or Alg-2^ -> Alg-2^) is a surjective
isometry, just like φ, and since the main theorem would be true of φ
if it were true of φ, we now work exclusively with φ and drop the " Λ "
symbol. Equivalently we assume that φ(I) = /.

Then we can get the following corollary.

COROLLARY 9. Ifφ: A\g£?2n -• Alg-S^ (or A l g ^ -+ Alg-SSo) is a

surjective isometry such that φ(I) = /, then φ(Ω) = Ω.

LEMMA 10. Let φ: Alg^ M -> A\g£?2n (or Alg.2^ -^ Alg^>) be a
surjective isometry such that φ(I) = /. Then E is a projection in Ω if
and only ifφ(E) is a projection in Ω.

Proof. First, suppose that E is a projection in Ω. Since φ\Ω is a
Jordan isomorphism, φ(E) = φ(E*) = φ{E)* and φ(E) = φ(E2) =
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φ{E)2. So φ(E) is a projection in Ω because φ(Ω) = Ω. Suppose that
φ(E) is a projection in Ω. Then since φ~ι |Ω is a Jordan isomorphism,
by the above argument φ~xφ(E) = E is a projection in Ω.

LEMMA 11 (Kadison [8]). If φ is a Jordan isomorphism from a C*
algebra Φ{ onto a C*-algebra Φ2, then φ(BAB) = φ(B)φ(A)φ(B) with
A and B in Φ{.

THEOREM 12. Let φ: Alg-S^ —• Alg.2^ be a surjective isometry such
that φ(I) = I. Let {eι: / = 1,2,...} be the orthonormal basis for which
the generators of the lattice are [eιl[e3l...,[e2n-ι],...,[e\,e2,e3l
[e39e4,es],..., [e2n-3,e2n-2,e2n-i], Then φ([et]) is rank-one for
each i\ i = 1,2,

Proof. Let Ek — φ~ι([ek]) for each k\ k = 1,2,..., that is, φ(Ek) =
[ek]. Then Ek is a projection in Ω by Lemma 10. If Ek is not a rank
1 projection, then Ek = E + F with E, F on Alg-Sξo, both non-zero
projections. But then [ek] = φ~ι(E) + φ~x{F) expresses [ek] as a sum
of 2 non-zero projections.

With the same proof as Theorem 12, we can get the following the-
orem.

THEOREM 13. Let φ: Alg^f2n —• Alg-S^ be a surjective isometry
such that φ(I) = I. Then φ([ei\) is rank-one in Ω for each i\ i =
1,2,. . .,2π.

LEMMA 14. Let R be an operator and suppose that there is a non-
negative number M and a positive number N such that, for all complex
numbers a with \a\ > N, we have \\R + al\\2 < M2 + \a\2. Then R = 0.

Proof. Choose x in the Hubert space H, with \\x\\ = 1. We have
\\Rx + αx| | 2 < M2 + |α | 2 , or \\Rx\\2 + \a\2 + 2 Reά{Rx,x) < M2 + |α | 2 ,
or 2Reά(i?x,x) < M2 - ||i?x||2. Choosing a = t(Rx,x) for positive
U we get 2t\(Rx,x)\2 < M2 - \\Rx\\2 for all t > N. This is impossible
unless (Rx,x) = 0. The fact that this equation holds for all x means
that R = 0.

LEMMA 15 (Moore and Trent [10]). Let φ: Alg<2^ -» Alg^« (or
—> Alg-2^) be a surjective isometry such that φ(I) = /. Let P be



104 YOUNG SOO JO

a projection in Ω and let T be in Alg^f2n (or Alg-SSo) with T = PTP1.
Then we have φ(T) = φ(P)φ(T)φ{P)± + φ{P)Lφ(T)φ(P).

Proof. We begin by writing φ(T) as 2 x 2 matrix, using the decom-
position / = P + P1:

Moo
where P = φ(P). Then, for all complex α,

On the other hand, T, written using "/ = /* + Px", is the matrix
T- \os] So
1 ~ LOOJ δ O

2
|2 _ a S

0 0
0 0
0 |α| 2 +

a Sλ \a S
0 0 0 0

+

since SS* is a positive operator. Thus, ||JRi + a\\2 < \a\2 + \\S\\2, and
Lemma 14 tells us that R\ = 0. Similarly, by considering ||ί + α-P11|,
we can show that R4 = 0. So φ{T) = PφiT)?1- + PLφ{T)P.

THEOREM 16. Let φ: Alg^o —• Alg-2^ be a surjective isometrysuch
that φ{I) = /. Let φ{E2i-\,2i-\) = EJJ and let φ(E2Uli) = Ekk. Then

Proof. Since

E2i,2iE2i-1,2iE2i,2i = E2i-1,2/

Lemma 15 tells us that

and

Then

+ φ(E2i,2i)φ(E2i-ι,2i)φ(E2i,2i)x =

E£kφ(E2i-lt2i)Ekk
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and

j f j j j = φ(E2i-ι,2i).

So we can get the following from the second equation of (*);
(1) If j is 1, then φ{E2i-\^i) is a matrix all of whose entries are zero

except for the (l,2)-component and the (l,2n)-component.
(2) If j is an odd number and j Φ 1, then p(2s2ι-i,2ι) is a matrix all

of whose entries are zero except for the (j\j - 1)-component and the
(j,j + l)-component.

(3) If j is 2, then φ{E2i^\^2i) is a matrix all of whose entries are zero
except for the (l,2)-component and the (3,2)-component.

(4) If j is an even number and j Φ 2, then φ(E2i-\,2i) is a matrix
all of whose entries are zero except for the (j - l9j)-component and
the (j + l,y)-component

(α) From the first equation of (*) we know the following: If k is 1,
then φ(E2i-\92i) is a matrix all of whose entries are zero except for the
(l,2)-component.

(/?) If k is an odd number and k Φ 1, then ^(£21-1,2/) is a matrix
all of whose entries are zero except for the (k, k - l)-component and
the (k,k+ l)-comρonent.

(τ) If k is 2, then φ{E2i_lj2/) is a matrix all of whose entries are
zero except for the (1,2)-component and the (3,2)-component.

(δ) If k is an even number and k Φ 2, then ^(£21-1,2/) is a matrix
all of whose entries are zero except for the (k - l,/:)-component and
the (k + l,fc)-component.

Then the following cannot happen at the same time;
(1) and (a) because j Φ k.
(1) and (/?) because j = 1 and k > 3.
(1) and (δ) because k > 2.
(2) and (a) because j φ I.
(2) and (β) because j Φ k.
(3) and (τ) because j Φ k.
(3) and (δ) because k > 2.
(4) and (a) because j > 2.
(4) and (τ) because j > 2.
(4) and (δ) because j ψ k.
Then the following can happen at the same time;
(l)and(τ)if \k-j\ = 1.
(2) and (τ) if j = 3 and so \j-k\ = l.
(2) and (δ) if \j - k\ = 1.
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(3) and (α) if \j-k\ = 1.
(3) and (β) if fc = 3 and so \j-k\=l.
( 4 ) a n d ( τ ) if \j - k\ = 1.
So we can get the result of the theorem.

Note that in all cases, 9>(ii2/-i,2/) is a scalar multiple of E^j or
From this theorem, we can get the following corollary.

COROLLARY 17. Let φ: Alg^So —»• Algi^, &£ ̂  surjective isometry
such that φ(I) = /. ΓΛeπ (1) ^(£,7) = £ ; 7 /or all i; i = 1,2, 3,... am/

Proof. Suppose that φ(En) = En for / Φ 1. Then ψ{Eγi) — J£/_i9/_i
or ψ{Eγi) = Ei+ij+ι by Theorem 16. If φ(Ei2) — ^/-i,/-i? then

= Ei-2,i-2> a n d by continuing we get φ{Eu) — E\\. Let

; i ) = £ ^ . Then since k > i + I, k — 1 ^ 1 , contradicting
Theorem 16. If φ{Eχι) = JF/^i^+i, then by Theorem 16 φ(E^) =
£/+2,/+2? , ̂ (J?^) = ^/+/t-i,/+ik-i, (*). But since p is a surjective
isometry, φ(Ejj) = £Ή for some 7. But φ(Ejj) = £/+/_!?/ +/_i by (*).
Then / + 7 — 1 = 1. So 7 = 2 - /, which is impossible because / > 2.
Thus φ{Eχχ) = £Ή and hence φ{Ea) = £// for all / by Theorem 16.

LEMMA 18. Let φ: Alg Jj?2n -+ ̂ %^Ίn be a surjective isometry such
that φ(I) — I. Let φ{En) = En and let φ(E22) = Ekk. If I < i < 2n,
then \i-k\ = 1.

Proof. Since £r

11.E12£'ϊL

1 = £12 and E£2E\2E22 = ^i2> E f i

Ejιφ{Eχ2)Eii = φ(Eι2) and E^kφ{El2)Ekk + Ekkφ(Eι2)E^k = φ{En).
(1) If / is an odd number, then φ{Eχ2) is a 2π x 2n matrix whose

entries are zero except for the (/, / - l)-component and the (/, / + 1)-
component.

(2) If / is an even number, then φ(Eχ2) is a In x In matrix whose
entries are zero except for the (/ - 1, /)-component and the (/ + 1, /)-
component.

(a) If k is an odd number, the φ(Eχ2) is a In x In matrix whose
entries are zero except for the (k,k— 1)-component and the (k9k+l)-
component.

(β) If k is an even number, then φ{Eχ2) is a 2n x In matrix whose
entries are zero except for the (k — 1, k)-component and the (k + 1, k)-
component.

Then the following combinations are impossible;
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(1) and (a) because / Φ k.
(2) and (β) because / Φ k.
The following combinations are possible;
(1) and (£) if \i-k\ = L
(2)and(α) if | ι - fc | = 1.
By an argument similar to Lemma 18, we can get the following

lemma.

AlgJ?2n be a surjective isometry such
) = EJJ and let φ(E2U2i) = Ekh. If

LEMMA 19. Let <p:

that φ(I) = I. Let
1 < j < 2n, then \j - k\ = 1.

From Lemma 18 and Lemma 19, we can get the following corollary.

COROLLARY 20. Let φ: Alg-2^ -> Alg^n (or Alg«5So -
be a surjective isometry such that φ(I) = I, φ(E2i-\92i-ι) = Ejj and
φ(E2ii2i) = Ekk. If I <j< In, then φ(E2i-\^i-i) and φ(E2i-U2i) have
the form

0 *
0

0

or
0
* 0

0

In particular, if φ(Ea) = En for each / (/ = 1,2,..., 2n), then there
exists a complex number α/7 such that

(o r Eij in
= α/yis;7 for each E\j in

In the following, we will investigate φ{^2n) case by case.

LEMMA 21. If φ: Alg^^ —• Algo22« is a surjective isometry such

that φ{I) = I and ifφ{En) = En, then φ(&2n) = ^in-

Proof Since EnEϊ2E^ = Eϊ2, Enφ(Ei2)E^ + E^φ(Eι2)En =

φ(E\2). So φ{E\2) is a In x In matrix whose entries are zero except for

the (l,2)-component and the (l,2«)-component. Set φ{E22) = Ekk.

Since E£2E{2E22 = El2, E£kφ(Eι2)Ekk + Ekkφ(Eι2)E£k = φ(Eι2). So

the only possibility is k = 2 or k = In. Assume that k = 2. Then

φ(En) = En for all / by Lemma 19; / = 1,2,...,2«. In this case,

^in- Assume that k = 2n. Since E22E^2E22 = E$2 and

= E32, E£n2nφ(E32)E2nan + E2nanφ(E32)E^n2n = φ(E32)
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and Efjφ(En)Ejj + E^(E32)Efj = φ(E32), where En = φ(E33). We
know that j φ 1 and j Φ2n. By the first equation, φ(E^2) is a 2n x 2π
matrix whose entries are zero except for the (l,2«)-component and
the (2/2 - l,2/z)-component. If 7 is an odd number, then ^(£32) is
a 2« x In matrix whose entries are zero except for the (7,7 - 1)-
component and the (7, j + 1 )-component. If j is an even number,
then <p(Ei2) is a 2n x 2« matrix whose entries are zero except for
the (7 - 1, j')-component and the (7 + 1,7)-component. So the only
possibility is j = 2n - 1, that is, φ{E^) = 2s2n-i,2n-i- By Lemma 19,
^(£44) = E2n-2,2n-2,---,(p{E2nan) = ̂ 22- In this case, if φ{Ekk) =
Ejj9 then k and 7 have the same parity and it is straightforward to see
ihat

COROLLARY 22. If φ: AlgJ^n —> Alg^^ is a surjective isometry
such that φ{I) = I and φ{E\\) = Eln^n^ then φ(J%,n) =

Proof. Let ψ\: Aλg^n —• Alg^^ be the surjective isometry in Ex-
ample 4. Then φ{ o φ: AlgJ^n -* Alg^f2n is a surjective isometry
such that ψ\ o φ(I) = I and ψ\ o φ{En) — φ\[E2n^2n) = En. So
φ\ oφ(^2n) = ̂ 2n by Lemma 21. Since φχ{&n) = &£, φ{S?2n) =

LEMMA 23. Let φ: Alg^f2n —• Alg<S|w Z?̂  α surjective isometry such
that φ(I) = I and φ(J?2n) = Sfa. Then φ{&±) = J?2n.

Proof φ{&£) = φ(&2n)± = (^)-L = 3>2n.

COROLLARY 24. Let φ: Alg^^ —> Algo22« be a surjective isometry
such that φ(I) = I. Let φ(En) = En; i Φ 1 and i φ In. If i is
an odd number, then φi^n) = ^f2n- If i is an even number, then

Proof. First, let / = 2k - 1, for some k. Let ψ\ be the surjective
isometry in Example 2; that is, ψ\{E\\) = E2k_x2k_χ. Then φ\ o
^(£11) = ^1(^-1,2^-1) = ̂ 11. By Lemma 21, φx o φ(&2n) = &ln.
So ^(^5Π) = φ\\&ln). Since ^ i ( ^ ) = ̂ 2«5 φ&m) = f Γ ^ ^ ) =
<52Λ. Let / = 2A: for some k. Let us consider ^2^-2^+1 in Example
3 and let φ2: Alg^ r t —• Alg-g^ be a surjective isometry in Example
3. Then φ2 o φ: K\g^f2n —> Alg^^ is a surjective isometry such that
Ψ2 o φ(I) = I and φ2 o φ(En) = φi{Elk:2k) = ^ 2 Λ,2/I- By Corollary
22, P2 o ̂ ( ^ ) = ̂ . So p(^5π) = Ψ2\^n\ Since
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If we summarize lemmas and corollaries, then we can get the fol-
lowing theorem.

THEOREM 25. Let φ: Alg-Sξ,, —> Alg-S^ be a surjective isometry
such that φ{I) = /. Let φ(E\\) = En. If i is an odd number, then
φ(Jϊ?2n) = -2Li Ifi is an even number, then φ(3%n) =

Let φ: Alg-Sξ,, —• AlgJfyn be a surjective isometry such that φ(I) — I
and φiβin) = -S^ .̂ If / is the bijective conjugation which is defined
below, then for all x, y in C2n and all a in C

(1) J(x + y) = Jx + Jy,
(2) J(μx) = aJx,

(4) (Jx,y) = (Jy9x) and
(5) / 2 = /.

Define

for every {x\,X2,...,X2ny in C2n.
If v4 is in AlgJz^, then the map A -> JA*J is linear and "flips" A

across the northeast-southwest diagonal (see Example 4).
Define ψ\\ Alg-S^ —• Ps\.%32n by ψ\{A) = JA*J for every A in

Alg-S^. Then ψ\ is well-defined by the above statement, linear, φx

is a surjective isometry, and φι{2^n) = <^^. If
define φ = φ{oφ: Alg-2^ -• AlgJ2|Λ. Then $(J2
^ j ( ^ ) = ̂ π by Lemma 23.

Since (JAJ)* = JA*J, φ\x = ^ and we can get the following
theorem.

THEOREM 26. Let φ: Alg^n —• Alg^^ Z?̂  α surjective isometry
such that φ(I) = / <z«d ̂ (<52«) = -S^^ Then, there exist unitary opera-
tors U and V such that φ(A) = UAV if and only ifφ(A) = JV*A*U*J
for every A in

Let φ: Alg-S^ —• Alĝ Ŝ o be a surjective isometry such that φ(I) =
/, φ(Eu) = En for each i\ i = 1,2,... and φ{3Όo) = ^o- Then by
Corollary 20, there exists α, 7 in C such that φ(Eij) = α//!?// for all
£/7 in Algo2^o(|/ - 7'| = 1). Then we claim that there exists a diagonal
unitary U such that φ(Eij) = UEtjU* for all Eijia Alg-2So(|/-y| = 1).
Let ί/ be a diagonal matrix whose (7,7*)-component is eιθj for all j
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Then the equation φ(E(j) = UEijU* holds for all Ey in
provided the following system can be solved

ei(θ3-θ4) =

The equation can be solved recursively (θ\ may be set equal to 0).
From these facts, we can get the following theorem.

THEOREM 27. Ifφ: Alg<5So —> Alg-2^ is a surjective isometry such
that φ{I) = /, φ(Eu) = £ / 7 /or α// / (i = 1,2,...) α/u/ φ{^) = &„,
then there exists a diagonal unitary operator U whose (j\ j)-component
is eiθj for all j (j = 1,2,...) such that φ(A) = UAU* for every A in

For the rest we will consider a surjective isometry such that
= ^2n- As a special case, we first consider n = 1.

THEOREM 28. Let φ: Alg^f2 —• A l g ^ be a surjective isometry such
that φ(I) = I and φ{Ea) = Ea\ i = 1,2. Then there exists a unitary
operator U such that φ(A) = UAU* for every A in

Proof. Let
eiθι

[ 0
Let

\ ) \a}}) and φ{A)=

Then there exists a complex number a such that #12 = ab\2. This α
depends only on φ (by linearity), not on the matrix entries. Note that
\a\ = 1 because φ is an isometry. If we fix eiθχ and if we determine
eiθ* such that ew^e~w^ = α, then φ{A) = UAU* for every A in

LEMMA 29. 2>ί U be a unitary operator. Then \\I + U\\ = 2
on/y ί/1 w m σ(ί7).

PROPOSITION 30. Lei A be an n x n matrix (n > 2) with 1 on the
diagonal and just below it, 1 the (l,n)-component and 0 elsewhere.
Then \\A\\ = 2.

Proof. Let ί/ be an « x w matrix with 1 just below the diagonal,

1 the (1,/ί)-component and 0 elsewhere. Since ί/(.xi,.X2> ••>•**)* =
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(xn9 X\,..., xn-1Y for every vector (x{ ,JC2, . . . , xny in C \ U is a unitary
operator. Then A = / + t / . Let X be a vector in C" all of whose entries
are 1. Then since UX = X, 1 is in σ{U). So \\A\\ = 2 by Lemma 29.

PROPOSITION 31. Let U be an n x n matrix with tj the (/ + 1,/)-
component and tn the (lyn)-component (i = 1,2,...,« - 1). If I is
in σ(U) and |ί/| = 1 ybr every i\ i = 1,2,...,«, then U is a unitary
operator and Π/Li U = 1.

. Since C/(xi,x2,.. . , * „ ) ' = ( ί « x « , h x u h x i , . . . , ^ - i ^ - i ) ' for
every vector {x\, %2? > •̂ «)/ in C 2, £/ is a unitary operator. Since 1 is
in σ(U)9 there exists a non zero vector (xχ9x2,...,xny such that

) =

SO ίπXΛ = XU t\X\ = X2, h*2 = X3,-..,tn-lXn-l = *n If Xi = 0 for
some / (1 < i < n), then χ{ = χ2 = - - = xn = 0. So X/ ^ 0 for every /

(i = 1,2,..., ή). Then (Uli U) Π?=i ^/ = Π?=i *- Hence, Π?=i U = 1-

P R O P O S I T I O N 32 . L e i A be an nxn matrix with at the (/, /)-compo-

nent (i = 1,2,...,«), 5 7 the (j+\J)-component (j = 1,2, . . . ,«-1), ^

ίΛe (1, n)-component and 0 elsewhere. If\aι\ = |5/| = 1 (z = 1,2,..., ή)

and \\A\\ = 2, then nil cii = ϊlli Si-

Proof. Let U be an « x n diagonal matrix whose (/, /)-component

is a~x for all i (i = 1,2,..., ή). Then UA is the n x n matrix with 1

on the diagonal, aJ^{Si the (/ + 1,/)-component (/ = 1,2,...,«- 1),

a[ιsn the (1, ή)-component and 0 elsewhere. Let V be an n x n matrix

with aJ+xSi the (/+ 1, l)-component (/ = 1,2,...,«- 1), a^xsn the

(l,π)-component and 0 elsewhere. Then V is a unitary operator and

ίZ4 = 7 + F . Since U is a unitary operator, \\UA\\ = \\A\\ = | | /+K| | = 2.

By Lemma 29, 1 is in σ(V). Since

by Proposition 31,

Hence
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LEMMA 33. Let φ: AlgJ^n —> Alg-S^ be a surjective isometry such
that φ(Eu) = En for each /; i = 1,2,..., In and n > 2. Let φ(Eij) =
ctijEij for all Ey in Alg-2^, where | α / ; | = 1 for all i, j . Then

Proof. Let A be a In x 2n matrix with 1 the (2/ - 1,2/)-comρonent
(i = 1,2,..., n) and the (2j + 1,2i/)-component (j = 1,2,...,«- 1)
and the (l,2n)-component, and 0 elsewhere. Then, by hypothesis,
φ(A) = (αy). Let 5 be the « x « matrix with 1 on the diagonal and just
below it, 1 the (1, Az)-component and 0 elsewhere. Note that the n x n
matrix B and the 2n x 2n matrix A have the same norm. Let D be the
n x n matrix with c*2/-i,2/ the (/, /)-comρonent (/ = 1,2,..., n), a^2n
the (l,n)-component, α2y+i,ij th e U + l,./)-component (j = 1,2,...,
n - 1) and 0 elsewhere. Then \\D\\ = ||^(y4)||. Since φ preserves norm,
\\A\\ = \\φ(A)\\. So | | 5 | | = \\D\\. By Proposition 30 \\B\\ = 2 and hence
\\D\\ = 2. Since |«2/-i,2il = 1̂ 21-1,21-2! = 1 f o r e a c h i\ / = 1,2,...,«.

by Proposition 32.

THEOREM 34. Let φ: AlgJz^ -• Alg-S^ be a surjective isometry
such that φ(Eu) = En for each i; i = l,2,...,2/ι and n > 2. Then
there exists a unitary operator V such that φ(A) = VAV* for every A
in

Proof. Let A = (α/7) be in Alg-S^ and let φ(Eij) = a^Eij for all
Ejj in Alg-S^, where |α//| = 1 for all α / 7.

Let F be a 2n x 2« diagonal matrix whose (y, y)-comρonent is
e/β> for all j (j = l,2,...,2/i). Then F ^ F * is the 2/i x 2w matrix
with α r r the (r,r)-component (r = 1,2,...,2rc), eiθpaPiP+ιe~θp+ι the
(p,/? + l)-component (/? = l,3,.. .,2n - 1), e ^ ^ ^ i Γ ^ - 1 the
(Q, Q- l)-component (? = 3,5,..., 2n -1), eiθιah2ne~iθ2n-1 the (1,2n)-
component and 0 elsewhere.

So the theorem will be proved if we can determine eιθι, eιθl,..., eιθin

satisfying the following relations;

eiθιe-iθ2 =

eiθ2n.le-iθ2n =

eiθχe-iθ2n =
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Let aij = eiθ for all /, j such that Ey is in Alg-S^. Then #12,#32,
»34,...,02/i-i,2ιi and θu2n are known by aι29a329a34,...,a2n-U2n

and a\92n respectively. It will suffice to solve the linear system;

(*)••• >θ\ - Θ2 = #12, Θ3 - Θ2 = #32, , 0 2 « - l - θin = 02n-l,2/i

a n d 0 ! - 0 2 * = 0i,2/i-

Let A be the matrix of coefficients of (*) and let Aι,A2

9...,A
2n

be the column vectors of A. Let B = (012,032,034,..., #2«-i,2«, θi,2nY
Then the system (*) has solutions if and only if rank A =

It is easy to check that the left hand side is n - 1. Thus, the rank
of the right hand side must be n - 1 and the ranks will be equal if

012 -032 + 034 h 02/i-l,2/ι ~ #1,2/1 = 0

But the last equation is the same as α 12^320:340:54 * «2/i-1,2/1̂ 1,2/1 = 1?
which we know to be true by Lemma 33. So (*) has solutions. Hence
φ(A) = VAV* for every A in Alg&2n.

THEOREM 35. If φ: AlgJz^ —• Alg-g^ is a surjective isometry

such that φ{I) = I, φ(En) = £2i+i,2i+b ^(^22) = 2̂/,2/> ^(^33) =
E2i-\,2i-\,--->φ{E2i-\,2i-\) = #22* φ(E2ij2i) = E\χ, (̂̂ 2/+1,2/4-1) =
E2n,2n> »^(^2«,2«) = 2̂/4-2,2/+2 7%e/ί ίΛβre x̂/5^5 α unitary operator
W such that φ(A) = WAW* for all A in

Proof Let C/2i+i = ^2/+i ΘZ)2«-2/-i.
Define ^ i : Alg£f2n -• A l g ^ by $?i(̂ 4) = C/2/+i^^2Vi f o r e v e r y

4̂ in AlgoS^. where U2i+\ = t^z+p Then ψ\ is a surjective isometry
because 2̂/4-1̂ 2̂14-1 is i n AlgoS^^ for every 4̂ in Algog^ See Example
2. Define φ = ψ\ o φ. Then φ(Eu) = ψ\ o φ(Ea) = En for each
z, / = 1,2,3, ,2/ι. So there exists a unitary operator F such that
0(4) = K4F* for every A in Alg«52Π by Theorem 34. Since φ(A) =
φ{ o φ(A) = U2Mφ{A)UiM = VAV* for every A in Alg-2^, p μ ) =
C/2*/+1 VAV*U2M. Set C/2*/+1 F = PF. Then p(Λ) = PF4PF* for every A
in

THEOREM 36. Ifφ: Alg«5|w —• Alg«52W is a surjective isometry such
that φ(I) = /, φ(En) = E2i+U2i+{,

ψ{E22) = E2i+2,2i+2, , <P(E2n-2i,2n-2i)
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then there exists a unitary operator W such that φ(A) = WAW* for
every A in A\gJϊ?2n.

Proof. Let

0 hn-

Define φx: Alg^|Λ -> A l g ^ by φx(A) = V2n.2i+xAV*n_2i+x for every
A in Alg-2^. Then since V2n_2MAV*n_2i^

 a n d ^2«-2/+i^F2«-2/+i
are in AlgoS^ for every A in A l g i ^ , 9̂1 is a surjective isometry.
See Example 3. Define φ = φx o φ. Then φ(Eu) = is^ for each /,
/ = 1,2,..., 2/7. So there exists a unitary operator U such that 0(^4) =
UAU* for every 4̂ in Alg-S^ by Theorem 34. Since φ(A) = φx o
φ(A) = V2n-2i+iφ(A)V;n_2i+ι = CMC/* for every Λ in Alg^i,, ^(^) =
Vin-iMUΛU*v2n-2i+\ for every ^ in Alg^2w. Set Vfn_2i+ιU = W.
Then ^(.ί) = W^ίΓ* for every Λ in

THEOREM 37. Ifφ: AlgJ*f2n -^ AlgJ?2n is a surjective isometry such
thatφ(I) = I, φ(En) = En, φ(E22) = E2nan, φ(E33) = E2n_ιan_u...,

there exists a unitary operator W such that φ(A) = WAW* for every A
in

Proof. Let U = Dx e />2«-i Define φx: Alg^f2n -> A l g ^ by
φι(A) = UAU* for every A in Alg-2^, where U = U*. Then φx

is a surjective isometry because UAU is in Algo22« for every A in
Alg^fl. Define φ = φx o φ. Then φ(Ea) = φx o φ{Ea) = £,-/ for
each /, / = 1,2,..., 2ΛZ. SO there exists a unitary operator V such
that φ(A) = K4F* for every A in Alg^w by Theorem 34. Since
ψ(A) = 9?i o^(^) = Uφ(A)U* = F^F* for every ^ in Alg-2^, ^(^) =
C/*F4F*C7. Set U*V = W. Then ^ μ ) = WAW* for every ^ in

The last three theorems exhaust all possible cases where φ(Exx) =
Ekk and k is an odd number. Then the last three theorems show that
there exists a diagonal unitary operator U such that φ(A) = UAU* for
every A in AlgJi^. If k is an even number, then Theorem 26 and the
last three theorems show that there exists a unitary operator W and
a conjugation / such that φ{A) = JWA*W*J for each A in Alg-S^.
If φ(j) = JJ φ j9 then the reduction following Lemma 8 shows that
there exists a unitary U so that the isometry φ(A) = U*φ(A) has one
of the above two forms. Thus the main theorem has been proved.
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