DEFORMING VARIETIES OF k-PLANES OF PROJECTIVE COMPLETE INTERSECTIONS

Ciprian Borcea

Abstract

We consider the variety F of k-dimensional linear projective subspaces lying on a generic projective complete intersection S. Under general assumptions involving k, the multidegree and the dimension of S, we prove that F is connected, smooth, and its local deformations come from deformations of S.

Introduction. Linear varieties lying on a projective variety have been considered in several contexts.

A classical instance, going back to Cayley [6], is that of a smooth cubic surface. There are twenty-seven lines on such a surface, and, as observed later, the incidence preserving permutations of this set of lines form a group isomorphic to the Weyl group of a root system of type E_{6}. It is also the monodromy group of the global family of smooth cubics and the Galois group of the corresponding enumerative problem (see [12]).

Similar results (involving the root system $D_{2 k+3}$) hold for the k planes contained in a smooth $2 k$-dimensional intersection of two quadrics ($[14,16]$).

Beyond the enumerative level, and besides homogeneous-rational varieties such as Grassmannians or linear spaces lying on a smooth quadric, a first example should be the Fano surface of lines contained in a cubic threefold ([11]). The Abel-Jacobi map induces an isomorphism from the Albanese variety of the Fano surface to the intermediate Jacobian of the cubic threefold and one has a global Torelli theorem ([7, 19]).

With planes instead of lines, but generically this time, the analogous statements hold true for cubic fivefolds ($[\mathbf{8}, \mathbf{1 0}]$).

Nor should cubic fourfolds be neglected here: their varieties of lines are irreducible symplectic projective fourfolds ([3]) which play an important role in the proof of the global Torelli theorem ([20]).

We also mention the variety of k-planes contained in a smooth $(2 k+1)$-dimensional intersection of two quadrics: it is an Abelian variety isomorphic with the intermediate Jacobian of the given intersection of quadrics ($[9,16]$).

All these varieties may be realized as zero loci of sections of certain homogeneous vector bundles over Grassmannians ([1, 18]). This circumstance makes the Schubert calculus relevant, for instance, in computing Chern numbers; it also reduces questions about connectivity, regularity, etc., as well as deformations to questions about the cohomology of homogeneous vector bundles.

Our main concern will be to set up a general framework for a calculus with weights, such that the theorem of Bott [5] become expressive in this context-a perspective we initially used in [4].

Specific computations enabled Wehler to deal with small deformations of Fano surfaces: he showed, namely, that all of them are induced by deformations of the corresponding cubic threefolds ([21]). This result is here extended to a large class (Theorem 5.3). Similarly (Theorem 4.1), we extend (and give an alternative proof for) the connectedness result of Barth and Van de Ven concerning lines on hypersurfaces ([2]).

1. Varieties of k-planes. We shall consider projective k-planes contained in a complete intersection $S=S_{n}(d)$ of dimension n and multidegree $d=\left(d_{1}, \ldots, d_{r}\right)$ in the projective space $P=P_{n+r}$ over the complex field C.

Let $\mathscr{O}_{P}(m)$ denote the m th tensor power of the hyperplane line bundle on P and let S be given as the variety of zeros $Z(s)=S$ of a section $s \in H^{0}(P, E)$, where $E=\bigoplus_{t=1}^{r} \mathscr{O}_{P}\left(d_{t}\right)$.

Denote by $G=G(k+1, n+r+1)$ the Grassmann variety of projective k-planes in P, i.e. $(k+1)$-planes in C^{n+r+1}, and let $\Gamma \subset P \times G$ be the subvariety defined by the incidence relation $\Gamma=\{(x, \pi) \mid x \in \pi\}$, with canonical projections:

p represents Γ as a $G(k, n+r)$-bundle over P and q represents Γ as a P_{k}-bundle over G. Accordingly, we have isomorphisms: $H^{0}(P, E)$ $\stackrel{\sim}{\rightarrow} H^{0}\left(\Gamma, p^{*} E\right) \xrightarrow{\sim} H^{0}\left(G, q_{*} p^{*} E\right)$.
If $0 \rightarrow \tau=\tau_{k+1} \rightarrow G \times C^{n+r+1} \rightarrow Q=Q_{n+r-k} \rightarrow 0$ denotes the canonical exact sequence of vector bundles over the Grassmannian G, we have a natural identification: $q_{*} p^{*} \mathscr{O}_{P}(m)=S^{m}\left(\tau^{*}\right)=$ the m th symmetric tensor power of the dual tautological bundle.

Put $\mathscr{E}=q_{*} p^{*} E$.
Let Φ be the isomorphism indicated above:

$$
\Phi: H^{0}(P, E) \xrightarrow{\sim} H^{0}(G, \mathscr{E})=\bigoplus_{t=1}^{r} H^{0}\left(G, S^{d_{l}}\left(\tau^{*}\right)\right) .
$$

To $s \in H^{0}(P, E)$, defining the variety $Z(s)=S$, we thus associate $\Phi(s) \in H^{0}(G, \mathscr{E})$, defining the variety of zeros $Z(\Phi(s))=F_{k}(S)=F$, which consists of all k-planes contained in $S \subset P$.

Remark 1.1. The rank of \mathscr{E} is $\sum_{t=1}^{r}\binom{d_{i}+k}{k}$, and we expect F to be non-empty for $\operatorname{dim} G-\mathrm{rk} \mathscr{E} \geq 0$, i.e. for

$$
\begin{equation*}
(k+1)(n+r-k)-\sum_{t=1}^{r}\binom{d_{t}+k}{k} \geq 0 . \tag{0}
\end{equation*}
$$

This will presently be seen to be true, provided S is not a quadric, in which case the assumption $n \geq 2 k$ is needed. Note that, if S is neither a quadric, nor a linear space, condition (A_{0}) already implies $n>2 k$.
2. Dimension and smoothness in the generic case. Let $V=H^{0}(P, E)$ and consider the subvariety $I \subset G \times V$ defined by: $I=\left\{(s, \pi)|s|_{\pi}=\right.$ $0\}$, with projections:

α represents I as a sub-vector-bundle of $G \times V \rightarrow G$, which shows that I is smooth, while β is proper and the fibre over $s \in V$ is precisely $Z(\Phi(s))$.

Confirming our Remark 1.1, we have:
Proposition 2.1. If $\operatorname{dim} G-\mathrm{rk} \mathscr{E} \geq 0, \beta$ is onto, provided $n \geq 2 k$ in the case of quadrics.

Proof. If we find a k-plane π in S, with S smooth along π, and such that the normal bundle $N_{\pi / S}$ has $H^{1}\left(\pi, N_{\pi / S}\right)=0$, the proposition will follow from Kodaira's criterion for stability of compact submanifolds [15].

We consider the exact sequence:

$$
\begin{equation*}
\left.0 \rightarrow N_{\pi / S} \rightarrow N_{\pi / P} \rightarrow N_{S / P}\right|_{\pi} \rightarrow 0 . \tag{1}
\end{equation*}
$$

We have:

$$
N_{\pi / P}=\bigoplus^{n+r-k} \mathscr{O}_{\pi}(1) \quad \text { and }\left.\quad N_{S / P}\right|_{\pi}=\bigoplus_{t=1}^{r} \mathscr{O}_{\pi}\left(d_{t}\right)
$$

Let π be given by $x_{k+1}=\cdots=x_{n+r}=0$, for homogeneous coordinates $\left(x_{0}: \cdots: x_{n+r}\right)$, so that $s \in H^{0}(P, E),\left.s\right|_{\pi}=0$ will be given by r homogeneous polynomials $\left(s_{1}, \ldots, s_{r}\right)$ of the form

$$
\begin{equation*}
s_{t}=\sum_{i=k+1}^{n+r} x_{i} \cdot p_{t}^{(i)}+r_{t} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
p_{t}^{(i)} & =\sum_{\mu} c_{t \mu}^{(i)} \cdot x^{\mu}, \tag{3}\\
\mu=\left(\mu_{0}, \ldots, \mu_{k}\right), x^{\mu} & =x_{0}^{\mu} \cdots x_{k}^{\mu_{k}},|\mu|=\mu_{0}+\cdots+\mu_{k}=d_{t}-1
\end{align*}
$$

and every monomial in r_{t} contains a product $x_{i} x_{j}$ with $i \geq j>k$.
Since we may suppose $n \geq 2 k$, the condition that S be smooth along π is satisfied for generic s. (For example, the following matrix of partial derivatives

$$
\left(\frac{\partial s_{t}}{\partial x_{i}}(x)\right)_{i \geq k+1}, \quad x \in \pi
$$

may be produced:

We represent a global section of $N_{\pi / P}$ by a matrix

$$
a=\left(a_{i j}\right)_{0 \leq j \leq k<i \leq n+r},
$$

so that the map $H^{0}\left(N_{\pi / P}\right) \xrightarrow{\sigma} H^{0}\left(N_{S / P} \mid \pi\right)$ induced from (1) is described by

$$
\begin{equation*}
A \rightarrow\left(\sum_{j \leq k<i} a_{i j} \cdot p_{t}^{(i)} \cdot x_{j}\right)_{1 \leq t \leq r} \in H^{0}\left(\bigoplus_{t=1}^{r} \mathscr{O}_{\pi}\left(d_{t}\right)\right) \tag{4}
\end{equation*}
$$

Looking at monomial coefficients in (4) and using (3), one obtains that σ is a surjection if and only if the linear system (with indeterminates $a_{i j}$)

$$
\begin{align*}
& \sum_{j \leq k<i} a_{i j} \cdot c_{t, \nu(j)}^{(i)}=0, \tag{5}\\
& \quad t=1, \ldots, r, \nu=\left(\nu_{0}, \ldots, \nu_{k}\right),|\nu|=d_{t}
\end{align*}
$$

where
$\nu(j)=\nu-(0, \ldots, 1,0, \ldots, 0)$ and $c_{t, \nu(j)}^{(i)}=0$ for $\nu(j)$ improper has maximal rank, namely $\sum_{t=1}^{r}\binom{d_{1}+k}{k}=\mathrm{rk} \mathscr{E}=R$.

For generic s, this is actually the case. To see it, consider the lexicographic order on the set of column-indices $\{(i, j) \mid 0 \leq j \leq k<i \leq$ $n+r\}$ and look at the $R \times R$ matrix given by the first R columns. Its determinant is a polynomial in $c_{t, \mu}^{(i)}$, with $|\mu|=d_{t}-1$. It is not difficult to check that this polynomial is different from zero. Consider, for example, the lexicographic order on the set of indices (i, t, μ) affecting the coefficients $c_{t, \mu}^{(i)}$. Now order the monomials in the expression of the above determinant according to the rule: $m_{1}>m_{2}$ if the smallest index (i, t, μ) for which $c_{t, \mu}^{(i)}$ occurs in m_{1} with exponent p_{1} and in m_{2} with exponent $p_{2} \neq p_{1}$, we have $p_{1}>p_{2}$. The greatest monomial in this ordering will have perforce coefficient 1 or -1 , since in each row, the choice of $c_{t, \mu}^{(i)}$ entering this monomial is prescribed.

Thus, for generic s, S is smooth along π and $H^{1}\left(\pi, N_{\pi / S}\right)=0$.
Corollary 2.2. The projective k-planes contained in a generic complete intersection $S_{n}(d)$ of dimension n and multidegree $d=$ $\left(d_{1}, \ldots, d_{r}\right)$ in P_{n+r} define a smooth subvariety $F_{k}\left(S_{n}(d)\right)$ of $G(k+1, n+r+1)$ of codimension $\sum_{t=1}^{r}\binom{d_{1}+k}{k}$, provided that $(k+1)(n+r-k) \geq \sum_{t=1}^{r}\binom{d_{+}+k}{k}$ and $S_{n}(d)$ is not quadric, in which last case $n \geq 2 k$ is required.

Remark 2.3. The variety of lines $F_{1}\left(S_{n}(3)\right)$ of a cubic hypersurface $S_{n}(3) \subset P_{n+1}$ is smooth if the cubic is smooth, but in general, the smoothness of $S_{n}(d)$ does not imply that of $F_{k}\left(S_{n}(d)\right)$ (cf. [12], [18]).
3. Weights. In what follows, we take $\operatorname{dim} G \geq \mathrm{rk} \mathscr{E}$ (and $n \geq 2 k$ for quadrics), and assume the complete intersection $S=S_{n}(d)$ to be
such that the codimension of $F=F_{k}(S)$ in $G=G(k+1, n+r+1)$ be precisely $\mathrm{rk} \mathscr{E}$. Generically, this is the case (Corollary 2.2).

Let J_{F} denote the sheaf of ideals defining F on G.
The Koszul complex of (the section of $\mathscr{E}=q_{*} p^{*} E$ defining) J_{F} gives, for any holomorphic vector bundle M on G, spectral sequences:

$$
\begin{align*}
& H^{p}\left(G, M \otimes \bigwedge^{q} \mathscr{E}^{*}\right) \Rightarrow H^{p-q}\left(F,\left.M\right|_{F}\right) \tag{6}\\
& H^{p}\left(G, M \otimes \bigwedge^{q+1} \mathscr{E}^{*}\right) \Rightarrow H^{p-q}\left(G, M \otimes J_{F}\right), \quad q \geq 0
\end{align*}
$$

If M is a homogeneous vector bundle, we may use the theorem of Bott [5, Th. IV'] for dealing with the groups on the left. To this purpose, we use the following description of the Grassmann manifold $G(k+1, n+r+1)$:
$\mathrm{SL}(n+r+1, C)$, which is the universal cover of $\operatorname{Aut}\left(P_{n+r}\right)=$ $\operatorname{PGL}(n+r+1, C)$, has Lie algebra $\operatorname{sl}(n+r+1, C)=\left\{A=\left(a_{i j}\right) \mid \operatorname{tr} A=\right.$ $0\}$. Take as Cartan subalgebra $h=\left\{A \mid a_{i j}=0\right.$ for $\left.i \neq j\right\}$. This gives root spaces $L_{i j}=C \cdot E_{i j}(i \neq j)$ where $E_{i j}$ has zeros everywhere except the (i, j) entry.

The Killing form identifies the corresponding roots $\alpha_{i j}$ with $E_{i i}-$ $E_{j j} \quad(i \neq j)$ so that the root system A_{n+r} may be viewed as embedded in a euclidean space with orthonormal basis $e_{i}=E_{i i}, i=1, \ldots$, $n+r+1$, the roots being represented by vectors α orthogonal to $e_{1}+\cdots+e_{n+r+1}$ and of square-norm $(\alpha, \alpha)=2$ (cf. [36, p. 64]).

Put $\alpha_{s}=\alpha_{s+1, s}=e_{s+1}-e_{s} .\left\{\alpha_{s} \mid s=1, \ldots, n+r\right\}$ gives a basis of the root system A_{n+r}.

If U_{k+1} denotes the subgroup of $\mathrm{SL}(n+r+1, C)$ consisting of the transformations which preserve the linear space $\left\{x_{k+2}=\cdots=\right.$ $\left.x_{n+r+1}=0\right\} \subset C^{n+r+1}$ with coordinates $\left(x_{1}, \ldots, x_{n+r+1}\right)$, the Lie algebra u_{k+1} of U_{k+1} will contain h, all the negative roots $\left(\alpha_{i j}, i<\right.$ j) and all positive roots not involving α_{k+1} when expressed in terms of the given basis.

We have $G(k+1, n+r+1)=\operatorname{SL}(n+r+1, C) / U_{k+1}$, which is the description we shall use.

Let us now investigate the weights associated to various homogeneous vector bundles over $G=G(k+1, n+r+1)$.

Such a bundle is defined by a holomorphic representation $\rho: U_{k+1}$ $\rightarrow \mathrm{GL}(N, C)$ and the weights are taken with respect to h.
(a) Consider first the tautological bundle τ over G. It corresponds
to the natural representation of U_{k+1} on the invariant subspace $\left\{x_{k+2}\right.$ $\left.=\cdots=x_{n+r+1}=0\right\}$.

Let β_{s} denote the weight characterized by

$$
\left(\beta_{s}, \alpha_{t}\right)=0 \text { for } t \neq s \quad \text { and } \quad\left(\beta_{s}, \alpha_{s}\right)=\frac{1}{2}\left(\alpha_{s}, \alpha_{s}\right)=1 .
$$

An elementary computation then gives the weights of

$$
\tau_{k+1}: t_{1}=-\beta_{1}, t_{2}=\beta_{1}-\beta_{2}, \ldots, t_{k+1}=\beta_{k}-\beta_{k+1} .
$$

(b) The line bundle $\operatorname{det}\left(\tau_{k+1}^{*}\right)$, which gives the Plücker embedding of $G(k+1, n+r+1)$, has therefore associated weight: β_{k+1}.
(c) The tangent bundle of $G: \theta_{G}$ is given by the adjoint representation of U_{k+1} on $\operatorname{sl}(n+r+1, C) / u_{k+1}$. Consequently, its weights are precisely the positive roots involving α_{k+1} in their expression, namely $\alpha_{i j}, i>k+1 \geq j$.
(d) $\mathscr{E}^{*}=\bigoplus_{m=1}^{r} S^{d_{m}}\left(\tau_{k+1}^{*}\right)^{*}$ and (a) immediately gives that its weights are of the form:

$$
\sum_{i=1}^{k+1} a_{i} t_{i}=\left(a_{2}-a_{1}\right) \beta_{1}+\left(a_{3}-a_{2}\right) \beta_{2}+\cdots+\left(a_{k+1}-a_{k}\right) \beta_{k}-a_{k+1} \beta_{k+1}
$$

with $a_{i} \in N, \sum_{i=1}^{k+1} a_{i}=d_{m}$ for some $m \leq r$.
We now draw up a table of scalar products of positive roots and various weights, which will be relevant in estimating indices of weights.
δ is half the sum of all positive roots.
$\omega=\sum_{i=1}^{k+1} a_{i} t_{i}, a_{i} \in Z$ (motivated by (d) above and the spectral sequences (6)).
$1 \leq m \leq k$.
We anticipate here the type of reasoning to be used in the sequel. Given a homogeneous vector bundle over G, defined by a representation $U_{k+1} \rightarrow \mathrm{GL}(N, C)$, we first produce a filtration with consecutive quotients corresponding to irreducible representations of U_{k+1}. Such an irreducible representation determines a highest weight, say ρ. This ρ has to be one of the weights of the original representation and further satisfy $\left(\rho, \alpha_{s}\right) \geq 0$ for all $s \neq k+1$.

In our computations ρ will be either of type ω or $\omega+\alpha_{n+r+1, m}$ ($m \leq k+1$).

In order to obtain the vanishing of $H^{s}(G, \rho)$, it will suffice either to ascertain the singularity of the weight $\rho+\delta$ or to prove: $s<$ index $(\rho+\delta)$.

In this context, the main feature of our table of products is that $\left(\alpha_{t, m}, \rho+\delta\right)$ increases by 1 when t increases by 1 , except the last step for $\rho=\omega+\alpha_{n+r+1, m}(m \leq k+1)$.

Table 1

	Conditions	δ	ω	$\alpha_{n+r+1, m}$	$\alpha_{n+r+1, k+1}$
α_{p}	$p \neq m-1, m$ $p \leq k$	1	$a_{p+1}-a_{p}$	0	$p<k$

Note also that for $1 \leq p \leq k+1,\left(\alpha_{k+2, p}, \rho+\delta\right)<\left(\alpha_{k+2, p-1}, \rho+\delta\right)$ since $\left(\alpha_{p-1}, \rho\right) \geq 0$.
4. Connectedness. Suppose
$\left(\mathrm{A}_{1}\right)$
$\operatorname{dim} F=\operatorname{dim} G-\mathrm{rk} \mathscr{E} \geq 1$.
F is connected if and only if $H^{0}\left(\mathscr{O}_{F}\right)=C$.
We have $H^{s}\left(G, \bigwedge^{s} \mathscr{E}^{*}\right) \Rightarrow H^{0}\left(\mathscr{O}_{F}\right)$; therefore the vanishing of $H^{s}\left(G, \bigwedge^{s} \mathscr{E}^{*}\right)$ for $s>0$ will imply the connectedness of F.

According to our method, described at the end of $\S 3$, we examine $H^{s}(G, \rho)$, with ρ an irreducible representation of U_{k+1} with highest weight (again denoted ρ) among the weights of $\Lambda^{s} \mathscr{E}^{*}$. Thus $\rho=$ $\omega=\sum_{i=1}^{k+1} a_{i} t_{i}$ and we know (see Table 1):
(1) $a_{k+1} \geq a_{k} \geq \cdots \geq a_{q} \geq 0$;
(2) $\rho+\delta$ is either singular or of index $u(n+r-k), 1 \leq u \leq k$ $(u=k+1$ is excluded because rk $\mathscr{E}<\operatorname{dim} G)$.

Suppose therefore $s=u(n+r-k)$.
For $\rho+\delta$ to have index s, we must have $\left(\alpha_{t, p}, \rho+\delta\right)>0$ for $p=1, \ldots, k+1-u$; in particular: $a_{k+1-u} \leq u$.

Now remember that ρ is a weight of $\Lambda^{s} \mathscr{E}^{*}$, thus a sum of s weights of \mathscr{E}^{*}, each weight counted at most as many times as the
dimension of its eigenspace. There are (multiplicities included) $\sum_{m=1}^{r}\binom{d_{m}+u-1}{u-1}$ weights involving only $t_{i}, i>k+1-u$. Adding any other weight increases some $a_{j}, j \leq k+1-u$; thus we must not add more than $u(k+1-u)$ such weights. This will be clearly impossible if n satisfies the following conditions:

$$
\begin{equation*}
\sum_{m=1}^{r}\binom{d_{m}+u-1}{u-1}+u(k+1-u)<u(n+r-k)=s \tag{u}
\end{equation*}
$$

with u running from 1 to k.
Now, use (repeatedly) the formula:

$$
\begin{equation*}
\frac{1}{q+1}\binom{d_{m}+q}{q}-\frac{1}{q}\binom{d_{m}+q-1}{q-1}=\frac{d_{m}-1}{q(q+1)}\binom{d_{m}+q-1}{q-1} \tag{7}
\end{equation*}
$$

to show that if some $d_{m} \geq 3$, or at least two degrees in d are ≥ 2, then $\left(\mathrm{C}_{u}\right), 1 \leq u \leq k$, is a consequence of our assumption $\left(\mathrm{A}_{1}\right)$. Note that (C_{1}) reads: $n>2 k$.

We have therefore:
Theorem 4.1. Let $S=S_{n}\left(d_{1}, \ldots, d_{r}\right)$ be a complete intersection in P_{n+r} and $F=F_{k}(S)$ its variety of projective k-planes. Suppose

$$
\operatorname{dim} F=(k+1)(n+r-k)-\sum_{m=1}^{r}\binom{d_{m}+k}{k} \geq 1,
$$

or, in case S is a quadric, suppose $n>2 k$.
Then F is connected.
Remark 4.2. For a smooth quadric $S=S_{2 k}(2), F_{k}(S)$ consists of two isomorphic (hermitian symmetric) connected components.

This should rather be viewed as the exception which confirms the rule: $S_{2 k}(2)$ is a homogeneous (hermitian symmetric) space (of rank one) in its own right, and the generating k-planes of the two families in $F_{k}(S)$ correspond to Schubert cycles which are not homologically equivalent.

Remark 4.3. There is a simple formula for the canonical bundle of $F=F_{k}\left(S_{n}(d)\right)$, when smooth.

Let $\mathscr{O}_{G}(1)$ denote the positive generator of $\operatorname{Pic}(G)$, restricting to $\mathscr{O}_{F}(1)$ on F.

Set

$$
K=\sum_{m=1}^{r}\binom{d_{m}+k}{k+1}-(n+r+1) .
$$

Then $K_{F}=\mathscr{O}_{F}(K)$.
5. Deformations. In this section we assume that $F=F_{k}\left(S_{n}(d)\right)$ has the "right" codimension and dimension at least two:

$$
\begin{equation*}
\operatorname{dim} F=\operatorname{dim} G-\mathrm{rk} \mathscr{E} \geq 2 \tag{2}
\end{equation*}
$$

Our purpose is to produce conditions on (n, d, k) which ensure the completeness of the natural deformation of F, parametrized by a neighborhood of the section $\Phi(s) \in H^{0}(G, \mathscr{E})$ defining F. Notice that the family of complete intersections to which $S_{n}(d)$ belongs (parametrized by a neighbourhood of $s \in H^{0}(P, E) \cong H^{0}(G, \mathscr{E})$, i.e. the "same" base) is itself complete (see [4], [17], [21]).

A sufficient condition for completeness is the vanishing of $H^{1}\left(G, \mathscr{E} \otimes J_{F}\right)$ and $H^{1}\left(F,\left.\theta_{G}\right|_{F}\right)$. This is a general result for varieties defined by sections in a vector bundle (see [21]).

We look therefore at the spectral sequences (6) abutting to the above two groups.
(5.1) Take first $H^{s}\left(G, \mathscr{E} \otimes \bigwedge^{s} \mathscr{E}^{*}\right), s \geq 1$.

We obtain vanishing conditions for these groups as we did for $H^{s}\left(G, \bigwedge^{s} \mathscr{E}^{*}\right)$ in $\S 4$.

Let $D=\max _{1 \leq m \leq r}\left(d_{m}\right)$. Filtering and taking highest weights will produce as above weights $\rho=\omega=\sum_{i=1}^{k+1} a_{i} t_{i}$, with $\left(\alpha_{p}, \rho\right) \geq 0$ for $p \leq k$.

Since ρ is the sum of a weight ω^{\prime} of \mathscr{E} and a weight $\omega^{\prime \prime}$ of $\Lambda^{s} \mathscr{E}^{*}$, adding ω^{\prime} to $\omega^{\prime \prime}=\sum_{i=1}^{k+1} a_{i}^{\prime \prime} t_{i}$ decreases some of its coefficients $a_{i}^{\prime \prime}$, diminishing their sum by at most D.

This means that our sufficient conditions $\left(\mathrm{C}_{u}\right), 1 \leq u \leq k$, for the vanishing of $H^{s}\left(G, \bigwedge^{s} \mathscr{E}^{*}\right), s \geq 1$, become, by the same type of reasoning, sufficient conditions $\left(\mathrm{C}_{u}^{D}\right), 1 \leq u \leq k$, for the vanishing of $H^{s}\left(G, \mathscr{E} \otimes \bigwedge^{s} \mathscr{E}^{*}\right)$, once we add D to the left hand side of each inequality:

$$
\left(\mathrm{C}_{u}^{D}\right) \quad \sum_{m=1}^{r}\binom{d_{m}+u-1}{u-1}+u(k+1-u)+D<u(n+r-k)
$$

(5.2) Consider now $H^{s+1}\left(G, \theta_{G} \otimes \bigwedge^{s} \mathscr{E}^{*}\right), s \geq 0$. For $s=0$, we have $H^{1}\left(G, \theta_{G}\right)=0$, because G is rigid [5]. Suppose $s \geq 1$.

Again, using a filtration (actually, the representations we are dealing with are all completely reducible) and successive quotients corresponding to irreducible representations of U_{k+1}, we find that the highest weight ρ associated to such a representation is necessarily of the form $\rho=\omega+\alpha_{t, m}$, with $\omega=\sum_{i=1}^{k+1} a_{i} t_{i}$ a weight of $\Lambda^{s} \mathscr{E}^{*}$,
$t>k+1 \geq m$ (cf. $\S 3$ (c)), and further conditions: $\left(\rho, \alpha_{q}\right) \geq 0$ for all $q \neq k+1$, which imply in particular $t=n+r+1$.

Take therefore $\rho=\omega+\alpha_{n+r+1, m}(m \leq k+1)$ and consider the series of integers: $\left(\rho+\delta, \alpha_{t, p}\right)$ with $p \leq k+1$ fixed and t increasing from $k+2$ to $n+r+1$. If $\rho+\delta$ is non-singular, this series of nonzero integers will keep the same sign, except possibly at the last step $t=n+r+1$, when it might "jump" precisely over zero (see Table 1).

Now let p decrease from $k+1$ to 1 and notice the relations of the starting values in each series:

$$
\left(\rho+\delta, \alpha_{k+2, k+1}\right)<\left(\rho+\delta, \alpha_{k+2, k}\right)<\cdots<\left(\rho+\delta, \alpha_{k+2,1}\right) .
$$

This means that we might encounter non-vanishing cohomology $H^{s+1}(G, \rho)$ at most for $s+1$ or s a multiple of $n+r-k$, say $u(n+r-k)(u<k+1$ by our assumption $\mathrm{rk} \mathscr{E} \leq \operatorname{dim} G-2)$.

For the coefficients a_{i} in $\omega=\sum_{i=1}^{k+1} a_{i} t_{i}$, we have either:
(1) $a_{k+1}>a_{k} \geq \cdots \geq a_{1}$ for $m=k+1$, or
(2) $a_{k+1} \geq \cdots \geq a_{m+1} ; a_{m+1}+1 \geq a_{m}>a_{m-1} \geq \cdots \geq a_{1}$ for $m \leq k$.

Since ω is a weight of $\Lambda^{s} \mathscr{E}^{*}$, it appears that $\left(\mathrm{C}_{u}^{2}\right)$ above is a sufficient condition for the vanishing of $H^{s+1}(G, \rho)$.

Now, one may verify that the combination of $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{C}_{1}^{D}\right)$ above implies $\left(\mathrm{C}_{u}^{D}\right)$ for $1 \leq u \leq k$.

First, suppose $d_{m} \geq 2$, which is no restriction of generality. Making use of the identity (7) in $\S 4$ and the fact that the right hand side in (7) clearly increases with q, the following implications obtain:
(i) If $k \geq 2,\left(\mathrm{~A}_{2}\right) \Rightarrow\left(\mathrm{C}_{k}^{D}\right)$ as soon as $\sum_{m=1}^{r}\left(d_{m}^{2}-1\right)>3 D+2$, i.e. $d \neq(2),(2,2),(3),(2,3)$; and for $n>6$ also for $d=(2,3)$.
(ii) If $u>1,\left(\mathrm{C}_{u+1}^{D}\right) \Rightarrow\left(\mathrm{C}_{u}^{D}\right)$ for $\sum_{m=1}^{r}\left(d_{m}^{2}-1\right) \geq D+6$, i.e. $d \neq(2),(2,2),(3)$.

Finally, for $d=(2),(2,2),(3)$ or $(2,3)$, a direct check shows that $\left(\mathrm{A}_{2}\right) \&\left(\mathrm{C}_{1}^{D}\right) \Rightarrow\left(\mathrm{C}_{u}^{D}\right)$.

Summing-up, we obtain:
Theorem 5.3. Let $S=S_{n}\left(d_{1}, \ldots, d_{r}\right)$ be a complete intersection in P_{n+r} and suppose that its variety of k-planes $F=F_{k}(S)$ satisfies

$$
\begin{equation*}
\operatorname{dim} F=(k+1)(n+r-k)-\sum_{m=1}^{r}\binom{d_{m}+k}{k} \geq 2 . \tag{2}
\end{equation*}
$$

If $n>2 k+D$, where $D=\max _{1 \leq m \leq r}\left(d_{m}\right)$, then every small deformation of F is induced by a (small) deformation of S.

References

[1] A. B. Altman and S. Kleiman, Foundations of the theory of Fano schemes, Compositio Math., 34 (1977), 3-47.
[2] W. Barth and A. Van de Ven, Fano varieties of lines on hypersurfaces, Archiv der Math., 31 (1978), 96-104.
[3] A. Beauville and R. Donagi, The variety of lines of a cubic fourfold, C. R. Acad. Sci. Paris, Ser. 1, 301 (1985), 703-706.
[4] C. Borcea, Smooth global complete intersections in certain compact homogeneous complex manifolds, J. reine u. angewandte Math., 344 (1983), 65-70.
[5] R. Bott, Homogeneous vector bundles, Ann. of Math., 66 (1957), 203-248.
[6] A. Cayley, A memoir on cubic surfaces, Phil. Trans. Royal Soc. London, CLIX (1869), 231-326.
[7] H. Clemens and Ph. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math., 95 (1972), 281-356.
[8] A. Collino, The Abel-Jacobi isomorphism for cubic fivefolds, Pacific J. Math., 122 (1986), 43-56.
[9] R. Donagi, Group law on the intersection of two quadrics, Annali Sc. N. Sup. Pisa, 7 (1980), 217-239.
[10] , Generic Torelli for projective hypersurfaces, Compositio Math., 50 (1983), 325-353.
[11] G. Fano, Sul sistema ∞^{2} di rette contenuto in una varietà cubica generale dello spazio a quattro dimensioni, Atti Reale Accad. Sci. Torino, 39 (1904), 778-792.
[12] J. Harris, Galois groups of enumerative problems, Duke Math. J., 46 (1979), 685-724.
[13] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1972.
[14] H. Knörer, Isolierte Singularitäten von Durchschnitten zweier Quadriken, Bonner Math. Schriften, 117 (1980).
[15] K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math., 85 (1963), 79-94.
[16] M. Reid, Cambridge Thesis, June 1972.
[17] E. Sernesi, Small deformations of global complete intersections, Boll. Un. Mat. Ital. (4), 12 (1975), 138-146.
[18] B. R. Tennison, On the quartic threefold, Proc. London Math. Soc., 29 (1974), 714-734.
[19] A. N. Tjurin, The geometry of the Fano surface of a non-singular cubic $F \subset P_{4}$ and Torelli theorems for Fano surfaces and cubics, Izv. Akad. Nauk SSSR. Ser. Mat., 35 (1971), 458-529 = Math. USSR Izv., 5 (1971), 517-546.
[20] C. Voisin, Théorème de Torelli pour les cubiques de P_{5}, Invent. Math., 86 (1986), 577-601.
[21] J. Wehler, Deformation of varieties defined by sections of homogeneous vector bundles, Math. Ann., 268 (1984), 519-532.

Received July 12, 1988.
National Institute for Scientific and Technical Creation
Bd. Păcil 220, 79622 Bucharest, Romania

