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ON INVARIANT SUBSPACES
OF SEVERAL VARIABLE BERGMAN SPACES

MlHAI PUTINAR

By using a natural localization method, one describes the finite
codimensional invariant subspaces of the Bergman //-tuple of opera-
tors associated to some bounded pseudoconvex domains in C" , with
a sufficiently nice boundary.

0. Introduction. Some recent investigations have been concerned
with the structure and classification of the invariant subspaces of the
Bergman n-tuple of operators, cf. Agrawal-Salinas [2], Axler-Bourdon
[4], Bercovici [5], Douglas [7], Douglas-Paulsen [8]. Due to the rich-
ness of this lattice of invariant subspaces, the additional assumption
on finite codimension was naturally adopted by the above mentioned
authors as a first step towards a better understanding of its properties.

The present note arose from the observation that, when the L2-
bounded evaluation points of a pseudoconvex domain lie in the Fred-
holm resolvent set of the associated Bergman rc-tuple, then the de-
scription of finite codimensional invariant subspaces is, at least con-
ceptually, a fairly simple algebraic matter. This simplification requires
only the basic properties of the sheaf model for systems of commuting
operators introduced in [11].

The main result below is also available by some other recent meth-
ods. First is the quite similar technique of localizing Hubert modules
over function algebras, due to Douglas [7] and Douglas and Paulsen
[8], and secondly is the study of the so-called canonical subspaces of
some Hubert spaces with reproducing kernels, developed by Agrawal
and Salinas [2]. Both points of view will be discussed in §2 of this
note.

In fact the Bergman space of a pseudoconvex domain is only an
example within a class of abstract Banach ^(C^-modules, whose finite
codimensional submodules turn out to have a similar structure. The
precise formulation of this remark ends the note.

We would like to thank the referee, whose observations pointed out
some bibliographical omissions in a first version of the manuscript.

1. Pseudoconvex domains. Let Ω be a bounded pseudoconvex do-
main in Cn , n > 1, and let L%(Q) denote the corresponding Bergman
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space, i.e. the Hubert space of all holomorphic and square summable
functions defined on Ω. The ft-tuple MQ = (z\, . . . , zn) of multipli-
cation operators on L%(Ω) by the corresponding coordinate functions
is referred to as the Bergman fl-tuple of Ω.

In this section we isolate a class of pseudoconvex domains which
will be convenient for our techniques. A similar and deeper analysis
is carried out in [4], in the case of one complex variable.

In the sequel & denote the sheaf of complex analytic functions on

LEMMA 1. Let Ω be abounded pseudoconvex domain in Cn and let
λ e dΩ. Assume that Ω is a Stein compact and that &(Ω) is dense
in Lfl(Ω). Then the following assertions are equivalent:

(i) The subspace Σ%\(zj - λj)Ll{Ω) is dense in L2

a{Ω).

(ii) There is no positive constant C, such that

(1) I/WI < C||/| |2,Ω

for every function f e

It is quite obvious that conditions (i) and (ii) are also equivalent to
the spectral property λ φ CP(MQ) , where σp denotes the joint point
spectrum.

Proof, (i) =>• (ii). Assume that there exists a constant C > 0, so
that the estimate (1) holds. Then lim/w_>00./Jw(A) =: f(λ) exists for
every convergent sequence fm -> / , fm £ ^f(Ω), feL%(Ω).

If assertion (i) would be true, then /(A) = 0 for every element
/ e L%(Ω), which is evidently a contradiction.

(ii) => (i). Assume that there exists a function g e L%(Ω), g Φ 0,
which is orthogonal to the subspace YJJ=\(ZJ - λj)Ll(Ω). Let gm e
<f(Ω) be a sequence which approximates g in the norm of Ll(Ω). In
view of the hypothesis on Ω to possess a fundamental system of open
pseudoconvex neighbourhoods, every function gm can be decomposed
as follows:

7=1

where gJ

m e ^f(Ω), 1 < j <n, 1 <m. This is possible by a standard
application of Cartan's Theorem B. Accordingly

{gm, g) = gm(λ)(l, g),

whence we infer by passing to the limit m —• oo, that (1, g) Φ 0.
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Let / E <f(Ω). By arguing as above we obtain

\f(λ)(Ug)\ = \(f,g)\< 11/11

which proves that assertion (ii) is not true.

The above lemma was intended to bring forward the following
classes of examples.

EXAMPLE 1. A boundary point of a strictly pseudoconvex domain
with smooth boundary satisfies condition (ii) above.

Indeed, let Ω be a strictly pseudoconvex domain with smooth
boundary and let λ e <9Ω be fixed. Assume by way of contradic-
tion that there exists a constant C > 0, such that the estimate (1)
holds for λ. Then repeating an argument given in the previous proof,

f(λ)=\imQfm(λ)

exists whenever fm -> / in I^(Ω) and fm e ^ ( Ω ) . Moreover,
in this case relation (1) holds for / . By Theorem 3.4.9 of [10],
the algebra ^(Ω) is dense in Z^(Ω). In particular any element of
j/°°(Ω) = <9{Ω) ΓΊ g?°°(Ω)_is approximable in the L2(Ω)-norm by
functions belonging to ^f(Ω).

Since λ is a peak point for the algebra s/°°(Ω) , see for instance [6],
there exists h e J / ° ° ( Ω ) with the properties h{λ) = 1 and \h(z)\ < 1
for z e Ω\{λ} . Then

for every natural m, and limm_+oo ||^m||2,Ω = 0. This contradicts our
assumption and thus condition (ii) is verified.

EXAMPLE 2. Let Ω = Ωi x x Ωn be a poly domain whose factors
Ωj satisfy the following requirement: no connected component of
dΩj is reduced to a point, 1 < j < n. Then every point λ e dΩ
verifies condition (ii).

In order to prove this fact we need the identification Ll(Ω) =
Ll(Ω\)(§)•• ®Ll(Ωn), where " <8)" denotes the hilbertian tensor prod-
uct.

By virtue of Theorem 5 of [4], the subspace (zj - λj)Ll(Ωj) is
dense in L^{Ωj) for every λj in
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Fix a point λ e <9Ω. Since at least one of its entries λj belongs to
, we get

D ®L2

a(Ωn)]' = L2

a(Ω).

By an inspection of the proof of the previous lemma it follows
that the implication (i) => (ii) remains valid without any additional
assumption on Ω. Therefore condition (ii) is verified for the point
λedΩ.

EXAMPLE 3. Any bounded pseudoconvex Reinhardt domain of Cn

satisfies (i) and (ii).
Let Ω c C " be a bounded pseudoconvex Reinhardt domain with

the associated Bergman kernel K. It is easy to remark that each of
the conditions (i) or (ii) is in that case equivalent to K(λ, λ) = oc.

DEFINITION 1. Let Ψ denote the class of those bounded pseudo-
convex domains Ω in Cn , which fulfill the following condition: for
every point λ in <9Ω there is no constant C > 0 with the property:

The preceding examples provide elements of ^ . Also it is worth
mentioning that the class ^ is closed under cartesian products and
analytic isomorphisms which extend to the boundary.

2. The main result. In complete analogy with the first part of [4]
we can state the next.

THEOREM 1. Let Ω be a domain belonging to the class g\ Any
Mςi-invariant subspace S of finite codimension in L2{ζϊ) has the form

where Pj are polynomials having a finite number of common zeros, all
contained in Ω.

Actually we are in the position to discuss at least two different ways
of proving Theorem 1. Some terminology and facts needed in the first
proof below will be recalled in §3, in connection with a generalization
of Theorem 1.
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Proof I. Consider an invariant subspace S as in the statement and
denote Q — Ll(Ω)/S. Instead of working with n-tuples of com-
muting operators, we adopt the equivalent point of view of tf(Cn)-
modules.

It was proved in [11], as a byproduct of Hόrmander's ZΛestimates
for the d-operator, that L j(Ω) is a module with property (/?). Rough-
ly speaking, that means that L%(Ω) is suitable for localization in the
category of Frechet ^(C")-modules, see §3 below for details.

Since d i m β < oo, the module Q also has property (β). From the
exact sequence

one deduces that S has the same property, too. Let us denote by 5?,
«̂ *, & the corresponding Frechet quasi-coherent ^-modules, see §3.
They are related by a similar exact sequence

Recall that & was called in [11] the sheaf model of the system of
operators MQ.

Among other things, it was proved in §IV of [11] that there exists
an exact sequence of Frechet ^-modules, derived from the Dolbeault
complex:

with jtJ\n = r ( ° 'Λ | Ω , where gWΛ stands for the sheaf of smooth
differential forms of bidegree (0, j), 0 < j < n. Consequently,

The last isomorphism can equally be obtained by a direct compu-
tation on the Koszul complex of MQ .

Let λ G Suρρ(^f) and denote by m^ the sheaf of ideals of <9,
consisting of those analytic functions which vanish at λ. Because
&/mχ is a quotient module of @, at the level of global sections there
exists a continuous ^(C^-linear map:

eλ:Ll(O)-+C9

with the property eχ(f) = f(λ) for every function / e @(Ω). By tak-
ing into account the hypothesis Ω e ? one gets λ G Ω. In conclusion
we have proved the inclusion Supρ(<^) c Ω.

As a finite length module, S is even a module over the algebra of
polynomials. Hence by Hubert's Syzygies Theorem it admits a finite
resolution of the form:

(2) 0 -> ffr -+ >0k {Pi9""Pk\ ff-+β->Q9



360 MIHAI PUTINAR

where Pj are polynomials. Moreover, Px{λ) = = Pk{λ) = 0 if and
only if λ e Supp(^).

Since the sheaf & is isomorphic to (9 in a neighbourhood of
Supp(^), one finds β^P = & and Ύo^p{β, &) = 0 for p > 0. Ac-
cordingly, the sequence (2) remains exact after tensor multiplication
with ST:

(3) 0 - * Fr -+ >&k ( / ? 1 ? ' " ' J P A ) > & -+ & -> 0.

But the sheaf ^ is acyclic on Cn, so that by passing to global
sections one finally obtains the exact sequence:

0 - [L2

a(Ω)Y - ... - [LJftΩ)]* ( p — * » ) £2(Ω) - β - 0.

This completes the first proof of Theorem 1.

Proof 2. Let us assume for simplicity that the algebra ^f(Ω) is dense
in Lβ(Ω). Let S c ^ ( Ω ) be a finite codimensional Af^-invariant
subspace. Then the natural restriction and projection map:

is onto because ^(Ω) is dense in I^(Ω) and dimZ^(Ω)/S < oc.
If one denotes / = Ker/?, then / is a finite codimension ideal of

^f(Ω), with the property that its L2(Ω)-closure /~ is contained in S.
Let L be a linear complement of / in O(Ω). Since

we infer that dim(Z^(Ω)//-) = dim(^(Ω)/7), whence S = Γ . This
argument was adapted after Ahern and Clark [3].

In view of the assumption on Ω to belong to the class g7, the
quotient module ^f(Ω)// is supported by a finite subset of Ω. Hence,
by repeating for instance the argument given in Proof 1,

where P\, . . . , i\ are polynomials. Therefore

At this moment the fact that the submodule Σ y = 1 PyL^(Ω) is ac-
tually closed can be proved at least in two different ways.
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First, this assertion follows as in Proof 1 by means of a localiza-
tion procedure, this time in the category of Hubert 0(Ω)-modules, cf.
Douglas and Paulsen [8].

Or secondly, one may apply Agrawal and Salinas' analysis of the an-
alytic subspaces of the Bergman space [2]. Quite specifically, it turns
out that P\Ll(Q) + + P^L^(Ω) is a finite dimensional perturba-
tion of a "canonical subspace", see [2] Theorems 2.8 and 3.11, and
consequently it is closed.

REMARKS, (a) Theorem 1 establishes a one-to-one correspondence
between the M^-invariant subspaces S of finite codimension in L%(Ω)
and the ideals / c C[z\, . . . , zn], with the property that the natural
restriction map:

C[zl9...9zn]/I-+Ll(Ω)/S

is an isomorphism.
Moreover, the last part of Proof 1 shows that

= ( I L2

a{Ω)) ® , ( c Ί N = ( I d?(Ω)) ® , ( Ω ) N = I N ,

whenever TV is a finite codimensional ^(C^-module supported by
Ω. As Douglas and Paulsen recently discovered, the existence of such
isomorphisms insures two finite codimensional ^f(C")-submodules of
L%(Ω) to be quasi-similar if and only if they are equal, see [8, Chapter

6].
Thus the classification of the submodules of the Bergman space

described in Theorem 1 turns out to be a purely algebraic problem.
(b) By comparing the exact sequences (2) and (3) one finds that

the only relations between the generators Pi, . . . , i\ of the finite
codimensional subspaces S c Z^(Ω) are the algebraic ones, and so
on for the iterated relations.

(c) It was pointed out in [4], and the same conclusion remains valid
for any n > 1, that there exist domains Ω c C " not belonging to the
class ^ , for which the conclusion of Theorem 1 fails to be true.

3. Extension to an abstract setting. The essential property of the
Bergman space needed in the Proof 1 of Theorem 1 was the existence
of a 9-resolution with Hubert spaces of differential forms. It is exactly
this property which characterizes the Frechet ^(C^-modules which
are well fitted for localization. To be more precise we first need some
terminology.



362 MIHAI PUTINAR

Let X and Y be Frechet modules over the algebra of entire func-

tions <?(Cn). One denotes after J. Taylor [13]:

Y = Coker δ,

where δ: X®@{Cn)®Y -> X®Y, <5(JC ® /®y) = xf®y - x®fy,
where X G I J E F , / e <?(CΛ) and " ® " is a complete topolog-
ical tensor product, as for instance the projective one. Under some
natural nuclearity or splitting conditions (fulfilled in our case), the
above relative tensor product admits derived functors, denoted Tor,
see [13].

Let I b e a Banach ^(C)-module. The following assertions are
equivalent:

(a) There exists a Frechet ^-module & defined on Cn , such that
X = y ( c Λ ) , gr is acyclic on Stein open subsets of Cn and & admits
locally resolutions to the left with topologically free ^-modules (i.e.
of the form @®E with a Frechet space E);

(b) For every polydisk Δ c C " , the locally convex space

is separated and Tor p (X, <f(Δ)) = 0 for any p>\\

(c) There exists a finite resolution to the right with Banach

modules:

0 -> X -+ &°(Cn) -+ ^ &N(Cn) -+ 0,

where 2j are Frechet soft ^-modules, 0 < j < N. For a proof see
[11] and [12].

When referring to the associated n-tuple T = {T\, . . . , Tn) of com-
muting operators (Tjx = ZjX, x e X, 1 < j < n), condition (b) is
known as Bishop's property (β), and has a long history.

The Frechet ^-modules appearing in condition (a) were called quasi-
coherent by the French school of modern geometry. They are a pow-
erful tool in the study of singular analytic spaces; see [11] for further
references.

The equivalence (a) «=> (b) characterizes the ^-tuples of commuting
operators with property (/?) as those ^-tuples which admit a Frechet
quasi-coherent sheaf model. On the other hand, the equivalence (b) <&
(c) is the characterization of property (β) by the existence of an
abstract d -resolution.

To give only a class of examples, close to the spirit of the present
note, let Ω be a bounded domain of C" , with smooth strictly pseu-
doconvex boundary. Let also fix a number p e [1, oo]. The U-
estimates for the d -operator on Ω, see for instance [9], yield
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similarly to the Bergman space case an exact sequence of Banach
^(C^-modules:

0 -> Lp

a (Ω) -> D° -> > 2)" -+ 0,

where Lg(Ω) = Z/(Ω) n ^ ( Ω ) and ZV are some Banach ^°°(CW)-
modules of differential forms.

Thus, according to the equivalence (b) & (c), the ^(Cw)-module
Lβ(Ω) has property (/?). Its sheaf model & has also a simple de-
scription, [12]:

^(17) = { / e ^ ( t / n Ω ) ; | | / | | p > J C < oo for K CC £/}

where J7 is an open subset of Cn .
Other examples of ^(C")-modules with property (β) are the finite

dimensional modules or the global sections of Frechet soft ^-modules,
[11].

The same lines of the Proof 1 above can be used in order to obtain
the following generalization of Theorem 1.

PROPOSITION 1. Let T be a commutative n-tuple of operators with
property (β) acting on the Banach space X. Assume that for every
λeσ(T), either

7=1

is dense in X, or

= 1 .

Then every T-invariant subspace S of finite codimension in X has
the form

k

where Pj are polynomials having only a finite number of zeros, all lying
in σ(T)\σTess(T).

The spaces Z^(Ω), 1 < p < oc, described above verify the hypoth-
esis of Proposition 1 hence the same conclusion holds for all of them,
similarly to the Bergman space case.
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Of course Proposition 1 does not exhaust the possible examples of
Banach ^(C^-modules possessing a similar lattice of finite codimen-
sional submodules.
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