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ON TWO POLYNOMIAL SPACES
ASSOCIATED WITH A BOX SPLINE

CARL DE BOOR, NIRA DYN, AND AMOS RON

The polynomial space ^ spanned by the integer translates of
a box spline M admits a well-known characterization as the joint
kernel of a set of homogeneous differential operators with constant
coefficients. The dual space βί** has a convenient representation
by a polynomial space 3D , explicitly known, which plays an impor-
tant role in box spline theory as well as in multivariate polynomial
interpolation.

In this paper we characterize the dual space 2? as the joint ker-
nel of simple differential operators, each one a power of a directional
derivative. Various applications of this result to multivariate polyno-
mial interpolation, multivariate splines and duality between polyno-
mial and exponential spaces are discussed.

1. Introduction. The space H(φ) of all exponentials in the linear
span S(φ) of the integer translates of a compactly supported distribu-
tion φ is of basic importance in multivariate spline theory since, in
principle, it allows the construction of good approximation maps to
S(φ) from spaces containing S(φ). Generically, H(φ) is Z>-invariant
(i.e., closed under differentiation), hence is the joint kernel for a set
{p(D): p e IH{Φ)} of differential operators with constant coefficients,
with IH(Φ) a polynomial ideal of finite codimension (in the space Π
of all multivariate polynomials, i.e., an ideal of transcendental dimen-
sion 0, hence with finite variety). An understanding of the interplay
between the space H(φ) and its associated ideal IH{Φ) *S useful in the
determination of the basic properties of H(φ) such as its spectrum,
its dimension, and its local approximation order.

For the important special case when φ is a polynomial box spline
(and %? := H(φ) is thus a polynomial space), an explicit set of gen-
erators for the ideal 1# is known [BH1], but nevertheless, the con-
struction of their joint kernel was found to be very difficult. At the
same time, a polynomial space &> (of very simple structure) is known
which serves as a natural dual for %? and is of substantial use in
the analysis of %?. Specifically, the duality between %? and & has
been used in [DRl] in the investigation of the local approximation
order of some exponential spaces, in [DRl,2] in the solution of an

249



250 CARL DE BOOR, NIRA DYN, AND AMOS RON

interpolation problem induced by %f, in [J] in the construction of
linear projectors onto a box spline space, and in [DR1] in the com-
putation of the homogeneous degrees of ^ (which is equivalent to
computing the Hubert function of 1^). See also [DM3, §3].

It is the purpose of this paper to establish the surprising result that
3?, too, is the joint kernel of a rather simple set of constant coefficient
differential operators, each being just a power of a directional deriva-
tive. This allows us to characterize 3? in terms of the degrees of its
polynomials when restricted to certain linear manifolds. Various ap-
plications of this result to multivariate polynomial interpolation, box
spline theory, and duality between polynomial and exponential spaces
are discussed as well.

In §2, after defining the space & and its associated differential op-
erators, we prove that & is indeed the joint kernel of these operators.
In §3, we identify & as a space of least degree among all polyno-
mial spaces that interpolate correctly on certain subsets of the integer
lattice. As a matter of fact, the discussion in that section may have
an independent value: this discussion illustrates how the interpolating
space of least degree from [BR1] may be computed using the tech-
nique from [BR2] of "perturbing the generators of a homogeneous
ideal", hence in a computationally painless way.

Section 4 is devoted to the more general discussion of duality be-
tween finite-dimensional polynomial and exponential spaces, a dis-
cussion which improves proofs and results from [DM2] and [DR1].
Finally, we discuss in §5 the construction of piecewise polynomials on
the support of a box spline and improve thereby an observation in
[R].

2. The main result. Let X be a multiset of vectors in R5\0. We
will at times think of X, equivalently, as a real matrix, of size
{sx#X). Let U(X) denote the collection of all hyperplanes (i.e., linear
subspaces of codimension 1) which are spanned by some columns of
X. We associate with each h € M(X) a nontrivial linear polynomial
which vanishes on h, and write this polynomial

(hx, •>,

thus using h1 to stand for any particular nonzero vector normal tg
h . We are interested in the ideal Ix generated by all polynomials of
the form

(2.1) Ph:=PhiX:=(h^,.)*(χ\h\ AGI(I),

where X\h := {x e X \ x £ h}.
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We assume that X spans all of Rs. Then the only point common
to all h G M(X) is 0, and consequently, the variety of Ix (i.e., the set
of common zeros of all the polynomials in Ix) consists of 0 alone:

Tj, = {0}.

This implies that the codimension of Ix in the space Π of all polyno-
mials in s variables (i.e., the dimension of the quotient space Π// x )
is finite, and that its kernel Ix± is a finite-dimensional polynomial
space, whose dimension equals the codimension of Ix. Moreover,
Ix± is stratified, i.e., spanned by its homogeneous elements, since
Ix is generated by homogeneous polynomials. [BR2] is a ready refer-
ence for these known facts.

Here, to recall the definition, the kernel I± of an ideal / is the set

(2.2) {/ e &'{RS): p(D)f = 0, \fp e 1}

of all distributions annihilated by the set of differential operators in-
duced by / . In particular, since Ix is generated by

Ix± consists of the solutions / of the system of linear differential
equations

(2.3) (Dh± fίχ\h)f = 0, VΛ e M(X).

This section is devoted to a proof of the fact that Ix± equals the
polynomial space

(2.4) &>(X) := span{/?κ :V cX, span(X\F) = Rs},

with

Pv :=Y[(v,').
υev

In the proof, the multiset

(2.5) B(X) :={BcX:B invertible}

of all bases contained in X plays an important role. We use the
abbreviation

(2.6) b{X) := #B(X).

(2.7) THEOREM. The kernel Ix± of Ix coincides with &>{X), and

(2.8) dimIx± =

The theorem follows from the following three lemmata.
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(2.9) L E M M A .

(2.10) LEMMA.

Clx±.

(2.11) LEMMA.

dimIx±<b{X).

Proof [DR1] of (2.9) Lemma. Every polynomial

with B E B(X) and (λx) arbitrary constants, is in &>(X), as follows
readily by multiplying out. For each B E B(X), there is a unique
common zero of the s linear factors (x, •} — λx , x E B, which do
not occur in the associated qB call that point θβ . Choose now, as
we may, the constants (λx) in such a way that θβ Φ ΘB> whenever
B Φ B'. (In fact, almost every choice of the λx would satisfy this
condition.) It then follows that

proving the linear independence of the collection {QB)B&{X) i n

Proof of (2.10) Lemma. We have to prove that, for each h E M(X),
ph(D) = (Dh±)*(χ\h) annihilates &>(X), i.e., that ph(D)pv = 0 for
every V c X for which X\V contains a basis. For this, we note that

= 0 hence

ph{D)pv = (Pvnh)Ph(D)pV\h.

On the other hand, since X\V contains a basis, V\h cannot co-
incide with X\h, hence d e g p ^ < #X\h = degph and therefore
Ph(D)pV\h - 0 . D

Proof of "(2.11) Lemma. We prove the lemma by induction on #X.
For the case #X = 5 we observe that Ix is generated by s linearly in-
dependent linear homogeneous polynomials, consequently Ix L con-
tains only constants, and so dim/z_L = 1 = b(X). Assume now that
#X > s. We follow the argument used in the proof of [DM3; Thm.
3.1], decompose X as
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with span Xf = Rs, and consider the map

X X Ph: q ι-> (ph(D)q)hem(r),

where p^ := p^ ̂  = (/z1, -)^x'\h^ are the generators of 7X and

Ph:=ph(D){Ix±). Then

dimlx±<dimlx'±+

since
ker T = (lx'±) Π (IX-L) C

Consequently, by induction,

dim(/*±) < ft(ΛΓ') + Σ
hem(X')

This proves that

dimIx±<b(X),

provided we can prove that

Σ dimPh<#{BeB(X):xeB}.
heu(X')

In particular, it is sufficient to prove that, for all h G U(X'),

with

I Λ : = ( I n / / ) U x .

For, (2.12) implies that

dim/^ <dim/^JL<fe(^Λ),

(the last inequality by induction), while

= #{B G B(X) :xeB}.

heu(X')

The claim (2.12) is trivial in case x e h, since then X'\h = X\h,

and therefore p^9χ' = Ph,x a n ( i s o Ph — {0} *n ̂ a t case.
We now prove (2.12) for the contrary case, i.e., the case when x £

h . We have to show that for every k £

(2.13) pk9
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with

If x $ k9 then k = h and (since Xh\h = {x}) Pk,x is a linear
polynomial, and there is nothing to prove since then Pk,xPh,x' =

Ph,x> while p^x annihilates Ix± by definition of Ix±. For the
contrary case that x £ k, we need to prove that

(2.14) D"±D*Γm(Ix±) = 09

with

m := #{Xh\k), A-m:= #{X'\h).

For this, it is sufficient to show that

(2.15) κmHA-m W

with / running over all hyperplanes spanned by elements of X and
containing knh, and with

a(l):=#(X\l).

For, (2.14) follows from (2.15) since each generator Lα ( / ) of the ideal
in (2.15) appears also in the defining set (2.1) of generators of Ix,
hence annihilates Ix±.

We prove (2.15) by writing each polynomial L as a linear com-
bination of the linear polynomials K and H, thereby obtaining the
general homogeneous element of degree A of the ideal in (2.15) in
the form

I

with Y[ a homogeneous polynomial of degree

μ{l) := A - a(I),

all /. We then show that the resulting linear system (for the coeffi-
cients of the various η) has a solution by showing that its coefficient
matrix is the transpose of the matrix which occurs in (univariate poly-
nomial) Hermite interpolation.

Here are the details.
Since each / contains k n h, lL can be written uniquely as a linear

combination of kL and h1. We find it convenient in the sequel to
have the weights in this linear combination sum to 1, i.e., to have
I1 in the affine hull of kL and hL. This we can achieve by first
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choosing the (signed) magnitudes of the nonzero vectors kL and hL

so that their difference is not perpendicular to any of the finitely many
/. Then, for each /, we choose the nonzero vector I1 to lie on the
line through k1 and h1, i.e., so that

for some β = β{. Then L = (1 - β)K + βH hence

with

the polynomials appearing in the Bernstein form. Since DBj =

r(Bj~ι - BjZ\) > we have more generally

((a + i)\/a\){H - K)lLa = J2 ^H^^^B^iβ).
j

This means that we have available in our ideal an expression of the
form

μ(D μ(i)

I ι=0 j I 1=0

to match the monomial KmHA~m . Such a match is possible provided
the linear system of conditions imposed thereby on the coefficients
c(l, /) is solvable.

We begin the proof that this linear system is indeed solvable by
showing that its coefficient matrix is square. With the abbreviation
k! := hπk, we compute

m = #(Xh\k) = #((X n h)\k') = #((X' n h)\k'),

and therefore

(2.16) A = #{{X' n h)\k9) + #{X'\h) = #(X'\k').

Also,

μ(l) = A- a{l) = #(X'\k') - #(X\l) = -1 + #(X\kf) - #(X\l)

= #((X Π l)\kf) - I.

Therefore, the number of unknowns is

n
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i.e., equal to the number of equations. Here, the sums are over all
/ E H(ΛΓ) which contain k!, which implies that X\k' is the disjoint
union of the sets (X Π l)\k' and so justifies the second equality.

Now organize the unknowns by / and, within /, by / = 0, . . . , //(/) ,
and order the equations by j — 0, . . . , A. Then the matrix consists,
more precisely, of one block of columns for each /, with the z'th col-
umn (in the block for /) containing the value at β = βι of the zth
derivative of all the polynomials Bf , j = 0, . . . , A, / = 0, . . . , μ(l).
Hence our matrix is the transpose of the matrix which occurs in the
linear system for the determination of the Bernstein form of the poly^
nomial in Π^ which agrees with some function (//(/) + l)-fold at
β = βι 9 all /. Since such univariate Hermite interpolation is correct
(since /?/ φ β{> for / Φ / '), the invertibility of our matrix follows. D

We note that (2.7) Theorem now allows us to conclude that all
inequalities appearing in its proof must be equalities. This implies,
e.g., that

jx' c I x w h e n e v e r x' cX,

and that phx>(D)(Ix±) = IhUx±. Another immediate consequence
is the following

(2.17) COROLLARY [DM3], [DR1].

Furthermore,

(2.18) d{X) := min{#{X\h): h e m(X)}

is the least degree of the generators of Ix hence, since Ix± = 3°{X),
we have the following.

(2.19) COROLLARY [DR1]. With d(X) as in (2.18),

n
but

By its definition, Ix± is the set of all polynomials p e Π th#t
satisfy the following condition:

(2.20) Condition. For every h e M(X) and v e M5, p\υ+h± c
)-i (with h± the subspace orthogonal to h).
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On the other hand, every p e &\X) satisfies an apparently stronger
condition (cf. [DR2; Prop.l]):

(2.21) Condition. For every subspace M of Rs which is spanned
by elements from X, and for every v e R5,

P\υ+M± Ξ

Hence we conclude the following from (2.7) Theorem:

(2.22) COROLLARY. The space 2?{X) is characterized either by
(2.20) Condition or by (2.21) Condition. In particular, these two con-
ditions are equivalent on Π.

(2.22) Corollary verifies the claim made in [DR2; Remark 2] that
(2.21) Condition characterizes &>(X). In case X consists of N rep-
etitions of s + 1 vectors Γ c l s in general position, the characteri-
zation of 3?{X) by (2.21) Condition has been proved in [G] by other
methods.

3. An associated polynomial interpolation problem. Here we identify
certain exponential spaces H whose corresponding "limit at the ori-
gin" Hi coincides with &>(X) (for an appropriate choice of X), and
use this identification in the solution of an associated interpolation
problem. The map

(3.1) H»Hi9

which associates with every finite-dimensional space of entire func-
tions a homogeneous space of polynomials of the same dimension,
has been introduced and studied in [BR1] in the context of a multi-
variate polynomial interpolation problem, and has been discussed as
well in [BR2] in the context of kernels of polynomial ideals. To begin
with, we recall the definition of H± and review some of the results of
[BR1, 2] needed here. Then we discuss a certain interpolation problem
and its relation to &>(X).

Given a function / φ 0 analytic at the origin, we write its power
series expansion at the origin in the form

where, for each j , /} is a homogeneous polynomial of degree j , and
define f[ := fa with k = min{7": fj Φ 0}; i.e., f[ is the first non-
trivial homogeneous polynomial in the power expansion of / . Using
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this notion of the least term f± of / , we then define

(3.2) tfi^spanί/i : f e H} ,

and have [BR1]

(3.3) dim//! = dim//.

We say that a pointset θ c t f is correct for the polynomial space P
if the restriction map P —> C θ : p »-»/?|e is invertible. Equivalently, θ
is correct for P if, for every data (do)βes, there is exactly one p e P
for which p(θ) = dθ for all θ e θ . In other words, interpolation
from P at the points of θ is correct.

RESULT [BR1]. θ is correct for (expθ)|. Moreover, among all poly-
nomial spaces P for which Θ is correct, (exρΘ)j is uof least degree"
in the sense that

(3.4) d i m ^ n Π/) < dim((expΘ)i n Π,), V7 .

Here,

(3.5) expθ := span{^} 0 e θ >

where eθ: x *-• e(θ>χ} is the exponential function (with frequency θ).
In view of this result, it is useful to be able to identify the "least"

space (expe)i for given θ . This we now do for certain pointsets
θ = vx associated with the box splines Mχ . Our tool is the following
result

(3.6) RESULT [BR2].

i*i = (/7fτ)-L>
which obtains Hi as the kernel of the ideal generated by the leading
terms of the annihilator of H. Precisely, [BR2; (4.3) Theorem (b)]
provides the statement that, for any polynomial ideal I of finite codί-
mension,

and (3.6) Result is obtained by applying this to

(3.7) I = IH:={pen:p(D)H = O}9

which is an ideal since H is closed under differentiation. In fact, with
H = expe, /// consists of all polynomials which vanish at θ ; hence
IH has finite codimension and
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(cf [BR2, §3]). From IH , we obtain its homogeneous counterpart IH]
as

(3.8) Im := span{pτ : p e IH},

where p^ is the leading term of the polynomial p, namely the homo-
geneous polynomial satisfying

<deg/?.

The result (3.6) is of interest here since it is easy to identify el-
ements of /// in case H = expθ: If (Pj) are linear homogeneous
polynomials for which the union of the corresponding hyperplanes
{x e Rs : Pj(x) = Cj} (for suitable choices of the constants Cj)
contains Θ, then p := Π/(P/ - cf) e IH\ hence HjPj e (IH)] If
we obtain enough of these p to generate all of ///j, then we know
by (3.6) Result that H± is the joint kernel of all the corresponding
differential operators p(D). In fact, since we know from (3.3) that
dim Hi = dim H, we can already reach this conclusion when we only
know that the p so constructed generate an ideal / of codimension
< dim//.

(3.9) RESULT [BR2]. If the ideal J generated from the leading terms
of some polynomials in IH has codimension < dim H, then J = IH\ \
therefore

In our case, we have identified (in (2.7) Theorem) &>(X) as the joint
kernel of the differential operators (Dh)^χ\h^ (with h running over
M(X)), hence are entitled to conclude that (expΘ)| = &{X) whenever
we can find, for each such h, constants cy ^ so that

#(X\h)

Π «ΛV>-<7->Λ)
7=1

vanishes on Θ, and know additionally that #θ > d im^(Z).
Just such a pointset is, under certain assumptions on X, provided

by

(3.10) vx := vx{z) := I a e Ίl : z - a = ^ txx, 0 < tx < 1, Vx I ,
I xex J

with z G ^5\U/2GH(X)(^ + ^5) The set ~vχ comprises the integer
points in the support of the shifted box spline Mx(- + z) (cf. [DM2]).
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Assume now that X is unimodular, i.e., the columns of X are from
Z5\0 and every B e B(X) has determinant ± 1 . For such unimodu-
lar X, the observations made in [R; §4] (especially before the proof
of Theorem 4.1 and in the proof of Corollary 4.2) confirm the exis-
tence, for each h e H(X), of consecutive integers c^j so that vx is
contained in the union of the hyperplanes

(h±, ) = chj9 j=l,...9#X\h.

Indeed, fixing h e M(X) and taking the normal hL to be a relatively
prime integer vector implies that {(h1, x)\ = 1 for every x e X\h
since X is unimodular. By choosing the signs of the columns of X
appropriately (which amounts to a shift in Mx), we can achieve that
(h1, x) > 0 for all x e X\h hence

ch:= £ (h±,x)=#X\h.
xex\h

Consequently, with z chosen so as to satisfy c^ - 1 < (h1, z) <
vχ{z) must lie in the union of the hyperplanes

Moreover, #vx — d i m ^ ( X ) , because of (2.17) Corollary and the
following.

(3.11) RESULT [DM2]. If X is unimodular, then

This establishes the following theorem.

(3.12) THEOREM. If X is unimodular, then (exp^)j = &>{X). In
particular, vx is correct for 3? {X), and 3? (X) is of least degree among
all polynomial spaces for which vx is correct

Note that only the inequality #vx > b(X) was needed in the proof
of (3.12) Theorem. As a matter of fact, the converse inequality is a
consequence of the theorem.

4. The duality between &(X) and &(X). The ideal Ix and its
kernel 3d (X) are intimately related to another ideal Ix and its kernel
%?{X), which play a fundamental role in the theory of box splines. In
the following, we review some of the basics about Ix and βf(X) and
draw several connections between the two settings.
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Let Iχ be the ideal generated by all polynomials of the form pγ =

Yίυev(v > ') w i t h V cX and span(X\F) φ Rs. This means that

(4.1) Ix:=id™i{pX\h:he

Let ^(X) denote the kernel of Iχ, i.e.,

It is known [BH1], [DM1] that &{X) is a finite-dimensional polyno-
mial space and [DM2] that

(4.2) dimJ^(X) = b(X).

The spaces &(X) and &(X) are dual to each other in the following
sense. Each p eΠ gives rise to a linear functional p* on Π (and
even on a larger space of smooth functions), viz. the linear functional

This allows us to consider, for any two finite-dimensional linear poly-
nomial spaces Q and R, the map

If M is invertible, we say that Q is dual to R (in the sense that we
can then use the elements of Q in this fashion to represent uniquely
the dual of R). Note that the dual to M carries R** = R in the same
way to Q* hence Q is dual to R iff R is dual to Q.

A necessary and sufficient condition for such duality is that M be
1-1 and dimi? < dimQ (since then M is necessarily onto). In par-
ticular, if dimQ = dimi?, then such duality is assured as soon as we
know that, for every q e Q\0, there is an r eR for which q*(r) Φ 0.
By the duality already mentioned, this is equivalent to having, for
every r e R\0, a q e Q for which q*(r) Φ 0.

For q G Q, the linear functional q* cannot tell the difference be-
tween / and Tkf := fo + '- + fk-\ •"= the power expansion of /
up to order k, if k is sufficiently large. This allows us to extend this
notion of duality to pairs Q, R in which R is a finite-dimensional
space of smooth functions.

We will eventually make use of the following observation:

(4.3) THEOREM. Let P be an n-dimensional homogeneous polyno-
mial space. Let H bean n-dimensional space of entire functions. If
P is dual to Hi, then P is dual to H.

Proof. For any / e H\0, / | G //|\0 hence, by assumption, p*(/|)
Φ 0 for some p e P. Further, since P is spanned by homogeneous
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polynomials, we may assume that this p is homogeneous. But then
p*(f) = p*(fι) φ 0, showing that the linear map H -• P*: f *-+
(p *-> P*(D)f(0)) is 1-1; hence P —> H*: p »-* p*\π is onto. Since
dim H = dim / / j , and dim H{ = dim P by assumption, the theorem
follows. D

We note that the converse of (4.3) Theorem does not hold, in gen-
eral. For, it is easy to make up a nonhomogeneous polynomial space
H together with a homogeneous P dual to it, for which the condi-
tions dim(Π/ n P) = dim(Π ; n H{), all j , fail to hold, while these
conditions are necessary for P and //j to be dual, according to the
following proposition of use later.

(4.4) PROPOSITION. If the homogeneous polynomial spaces Q and
R are dual to each other, then

(4.5) dim(Πy n β) = dim(Π7 n R)

for all j .

Proof. Indeed, if (4.5) is violated for some (minimal) j and, say,
dim(Π/ Π Q) > dim(Πj OR), then there exists a homogeneous polyno-
mial q e Q of degree j for which q* vanishes on all homogeneous
polynomials in R of degree j , and hence vanishes on all of R, in
contradiction to the duality between Q and R. D

With this, the meaning of the following result is clear.

(4.6) RESULT [DM3]1, [DR1]. The polynomial spaces &>{X) and
are dual to each other.

In (3.12) Theorem, the space 9°{X) has been identified as the least
space for certain interpolation problems. In [BR2] the space &{X)
has been identified as the least space for other interpolation prob-
lems. We now make use of the duality between &>(X) and •F(X)
to connect βf(X) with the interpolation problems associated with
&(X) and vice versa. As a preparation, we procure a class of spaces
whose corresponding least space is 2?{X) in much the same way in
which we obtained suitable exponential spaces exp^ whose least is

We perturb the linear factors of the set of generators for the

*The authors in [DM3] attribute the result to Hakopian.
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ideal (viz. Ix) whose kernel is βf(X). Specifically, given any map
Γ: X —• C: x *-+ Tx, we consider the ideal

(4.7) / Γ : = ideal{^ :heM(X)},

with

«*:= Π «*> }-Γ*).
χex\h

Then X(Γ) := Iγ± is an exponential space (i.e., a space which is
spanned by certain products of exponentials with polynomials), and
[BR2]

(4.8)

The diagram below illustrates for a unimodular X the various con-
nections established so far between the ideals Ix, Ix, their kernels
and the associated exponential spaces.

dual

1

Our first corollary improves [DM2; Thm. 4.1]:

(4.9) COROLLARY. Let X be unimodular. Then vx is correct for
β?(X), and βf(X) is of least degree among all polynomial spaces for
which ι/χ is correct

Proof. We apply (4.3) Theorem with H = exp^ and P =
By (3.12) Theorem, Hi = &(X), while by (4.6) Result, &>(X) is
dual to %*{X). Since also &(X) is homogeneous (as the kernel of
a homogeneous ideal), (4.3) Theorem implies that βf(X) is dual to

, which is equivalent (cf. [BR1; §4]) to the correctness of vx for
Moreover, since &>(X) and β?(X) are both homogeneous

and, by (4.6) Result, dual to each other, we must have

(4.10) dim(Π; n / ( I ) ) = dim(Π7

for every j , by (4.4) Proposition. Since we already know by (3.12)
Theorem that &>(X) is of least degree among all polynomial spaces
for which vx is correct, it follows from (4.10) that βf(X) has the
same property. D
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(4.11) COROLLARY [DR1]. The spaces 3?{X) and P(Γ) are dual to
each other.

Proof. Take P = &>{X) and H = r(Γ) in (4.3) Theorem. Since,
by (4.8), X ( Γ ) | = &{X), and , by (4.6) Result, ^ ( X ) is dual to

, (4.3) Theorem provides the desired result. D

We refer to [DR1; §7] for a discussion of the interpolation condi-
tions induced by

5. Application to box splines. In this section we point out some
connections between the results of the previous sections and the the-
ory of multivariate splines. In the discussion here the (polynomial)
box spline Mx associated with a set of directions X plays a central
role. For our purposes, it is sufficient to note that \fχ is a piecewise-
polynomial function supported on

Ωx:={Xt:te[0,l]*x}

and satisfies

U(Mχ) =

where, for a general compactly supported φ, the notation Tl(φ) stands
for the space of polynomials spanned by the integer translates of φ.

We make use of the following result, which is a special case of [R;
Thm.1.1]:

(5.1) RESULT. Let P be a translation-invariant space of polynomi-
als, and Ω a compact subset of Rs with boundary <9Ω. Then the
following conditions are equivalent:

(a) There exists a function φ supported in Ω and satisfying Tl(φ) =

P, Φ(O)ΪO.
(b) For every z e Rs\ \JaEZs a + dΩ, the set

vςi := ^Ω(^) •= {α € Ίl : z - a £ Ω}

is total for P, i.e., no element of P\0 vanishes on this set.

Note that when we take Ω to be Ω^ = supp Mχ, the sets UQ are
identical with the sets vx from (3.10). Thus, by appealing to (3.12)
Theorem, we deduce from the implication (b)=»(a) of (5.1) Result
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the following

(5.2) COROLLARY. Let X be a unimodular set of vectors. Then there
exists a function (actually many) ψ = ψχ which is supported in Ωx
and satisfies

The above corollary provides no information about the smoothness
of the compactly supported ψ. Yet, it is known [BH2] that, at least
for the special case of the three-direction mesh with equal multiplic-
ities, no piecewise-^(X) function supported on Ωx can match the
smoothness of the corresponding box spline Mχ.

The box spline Mx is a smooth function supported on Ω^ . Hence,
one may hope that there exist functions φ supported on Ωx which
are less smooth than λfχ9 yet their corresponding Π(^) is "better"
in the sense that it contains some of the polynomials of lower degrees
which were missing in Yl(Mx) = β?(X). [R; Cor. 4.2] gives a partial
negative answer to that hope by showing that for a unimodular X and
a function φ supported in Ω^ , if φ(0) Φ 0 and Π, c Π(</>) for some
j , then Uj c W(X) = U(MX). The following result improves that
corollary.

(5.3) COROLLARY. Let X be a unimodular set of directionsf

the corresponding box spline. Let φ be a compactly supported function
satisfying

supp φ c supp Mx,

and

Then, for each j ,

dim(Π7 ΓΊ Π(φ)) < dim(Uj Π U(MX)).

Proof. Let v be one of the sets vχ{z) associated with X. By
(3.12) Theorem, (expJi = &>(X). Now we may apply (5.1) Result to
conclude that v is total for 11(0), and hence U(φ) can be extended
to a space Q for which v is correct. Since &>(X) is the least space
of expj,, it satisfies the least degree property (3.4), thus we conclude
that for every j

(5.4) dim(Π7 n U{φ)) < dim(Π ; nQ)< dim(Π/
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On the other hand, by (4.4) and (4.6),

dim(Π, n &>{X)) = dim(Πy n &{X)), V/,

and (5.3) now follows from the fact that Π(MX) = &(X). D

We note that the result is no longer valid if we drop the unimodu-
larity assumption (cf. [R; Ex. 4.1]).

6. A remark on (2.11) Lemma. A careful examination of the proof
of (2.11) Lemma shows that the details of the connection between the
ideal Ix and its kernel Ix± enter into the argument in only a minor
way. The only facts used are: (i) the map Π —• L(Π): p »-> p(D) is a
ring homomorphism; and (ii) for any basis B in X, dimIB± = 1.

This suggests the following result.

(6.1) PROPOSITION. Let M:Yl —• L(V) be a ring-homomorphism
into the ring of linear maps on the linear space V. For a given multiset
X of directionsf define

Then

BEM(X)

The proof of the proposition follows entirely that of (2.11) Lemma,
with the obvious modifications whenever the induction hypothesis is
applied.

It would be nice to identify other settings rather than the one utilized
in this paper, where the above proposition is of use.
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