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POLYNOMIAL HULLS OF GRAPHS

H. ALEXANDER

We shall consider the polynomially convex hull of the graph of
a continuous complex-valued function on the boundary of the unit
ball. We show first that the hull covers the closed unit ball and then
consider several of its properties. In particular, when is the hull also
a graph; i.e. single sheeted? When the hull is a graph we show, in
some cases, that it contains analytic structure. We also consider the
graph in C? of a real-valued continuous function on the boundary of
a 3-cell which is contained in a real hyperplane in C? and partially
extend some results of Bedford and Klingenberg who studied the case
of smooth functions.

Introduction. We employ standard notation of uniform algebras.
For a compact set X in C”, X will denote the polynomially convex
hull, C(X) the algebra of all continuous complex-valued functions on
X ,and P(X) the closure in C(X) of the polynomials in the uniform
norm. B, will be the open unit ball in C* and bB, its boundary.

THEOREM 1. Let f € C(bBy). Let G(f) be the graph in C o f.

Then G( f ) covers By; i.e., the projection to C? of the set G( f)
B,.

As a consequence, G/(7 ) has real dimension at least 4 and the clo-
sure of G/(7 N\G(f) contains G(f); cf. [1]. As a statement about Ba-
nach algebras the theorem says the following: let % be the closed
subalgebra of C(bB;) generated by f and the polynomials, then
P(bB;) C # and every homomorphism of P(bB,) extends (“lifts”)
to & . The corresponding result for the graph of a function over the
unit circle in C! is false. In fact, by the Wermer maximality theorem
[16], if f is a continuous function on the circle then either f extends
to be analytic on the open disk, in which case the hull of its graph is
the graph of its extension to the closed disk or f does not extend,
in which case the graph of f is polynomially convex. Similarly the
following result does not hold in one variable.

COROLLARY Suppose that f, converges to f uniformly on sz and
that G( 3 ) isa graph over By; ie., G( f ) is one-sheeted. Then G( fn)
converges to G( f ) in the Hausdorff metric.
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——

This raises the question of when G(f) is a graph; if it is the graph

of a function (i.e., G(f) is one-sheeted over B,) then the function
must be continuous on B, as its graph is compact.

THEOREM 2. Let [ € C(bB,) and suppose that there exists F €
C(B;) such that f is the restriction of F to bB, and that either

(a) the real and imaginary parts of F are pluriharmonic on B, or

(b) F =|g| where g € P(B,) and g is nowhere zero on B, .

—

Then G(f) = G(F).

Part (b) is false if g is allowed to have zeros; e.g., if g(4) = 4;,
the hull of G(f) is not a graph. Part (a) applies in particular if f
extends to be holomorphic in B, or is the complex conjugate of such a
function. A local version of this is valid. According to a result of Stout
[14] and Lupacciolu [9] a continuous function on AB, which is weakly
CR on bB)\K, for K compact in bB,, extends to a holomorphic
function on B,\K .

THEOREM 3. Suppose that f € C(bB,) and that f is a (weakly)
CR function on an open subset W of bB,. Let K = bB,\W . Then

G(f) N ((B2\R) x C) = G(f)

where f is the holomorphic extension of f to BZ\I? . In particular,
G(f) is one-sheeted over B,\K .

Graphs which are hulls have been considered in a similar setting
by Bedford and Klingenberg [4]. Let S? be the unit sphere in R3 =
{(z,1): ze C, t € R} andlet f be a smooth real function on S2. Let
G(f)={(z,t, f(z,1): (z,t) € S?}, the graph of f in C? = R3xR.
Bedford and Klingenberg showed that the polynomial hull of G(f) in
C? is the graph of a Lipschitz function F on Ej, the closed unit ball
in R3. Moreover, G(F) is a disjoint union of analytic disks. We can
show that part of this holds for merely continuous functions.

THEOREM 4. Let f € C(S?) be real-valued, then there exists a real-

—

valued F € C(E3) such that G(f) = G(F).

We do not know if G(F) contains analytic disks in the continuous
case, as it must in the smooth case. In fact, in view of the examples of
Stolzenberg [13] and Wermer [17] on hulls without analytic structure,
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it would be interesting to find f € C(S?) such that G/(?” ) contains no
analytic structure.

Returning to graphs in C3, we can exhibit some cases of analytic
structure in hulls. In the statement of Theorem 6, m denotes the
projection of C? (= C2xC) to C2.

THEOREM 5. Let F € C(B,) be as in Theorem 2(a). Then through
every point of G(F) there is a one-dimensional subvariety of B, x C
which contains the point and which is contained in G(F).

The same conclusion is obvious for F of Theorem 2(b); the variety
is just V' x {c} where V' is alevel set {g =a} and c =|q|.

THEOREM 6. Let F be a real continuous function on B, which is
smooth on B, and let [ be the restriction of F to /@2. Suppose that
G(F) is polynomially convex; i.e., that G(F) = G(f). Let Ay € B,
and suppose that F(Aq) is a regular value of F. Then there exists a
connected Riemann surface Ry and an injective holomorphic imbed-
ding into C3 such that the image R of Ry contains (Ay, F(ko)) and
is contained in G(F). Moreover the boundary of R with respect to the
polynomials in C3 lies over bB, in the sense that R is contained in
the polynomial hull of RN n~'(bB,).

After giving the proofs, we shall discuss some examples arlc_l\ open
questions. In particular, we shall see that fibers over A € By: G(f), :=

—~

{w: (A, w) € G(f)}, are not in general convex (as contrasted with
the case of hulls of sets in C? which lie over the unit circle in C,
cf. [2], [11]) and shall give some examples relating to the Corollary to
Theorem 1 and to Theorem 2.

Rather than prove Theorem 1, we shall prove the following direct
generalization to higher dimensions.

THEOREM 7. Let f be a continuous map of bB, to C* for 1 <k <
n—1. Let G(f) be the graph of f in C"tk. Then G(f) covers By;
i.e., the projection G(f) to C" equals B, .

Note that Theorem 7 is not valid for kK = n; e.g., if f(z) =Z, then
G(f) is polynomially convex in C2" .
1.

1.1. As noted, Theorem 1 is a special case of TheoremA7 which
we now prove. Let X = G(f) € C"** and let Q = n(X) where
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n: C"tk — C” is the projection m(A, w) = A. We must show that
n(Q) = B,. We argue by contradiction and suppose that Q is a
proper subset of B, . From the map 7: (X, X) — (Q, bB,) we get
the following commutative diagram with exact rows.

H»Y(X,C) = H" ' (X,C) — Hz"()?,X,C)—»HZ;()?,C)
1 T i

H™YQ, C) — H* ' (bB,, C) - H™(Q, bB», C) — H™(Q, C).

Since 2n—-1>n+k, f{zn“l(/?, C) = 0 by a result of A. Browder
[6]. Since Q is a compact subset of C”, it follows that H2"(Q, C) =
0. We thus have

0 - H™(X,C)
1 =18
H"(Q, C) - H>"~1(bB,, C) 7H2”(Q, bB, , C) — 0.
Since # maps X homeomorphically to bB,, f in the diagram is

an isomorphism. Since foa is the zero map by commutativity, it
follows that « is the zero map. Hence y is an isomorphism. Thus

(1) H*(Q, bB,, C) = H**"1(bB,, C) = C.
Let Z be the cone on bB, . By excision
(2) H*™(Q,bB,,C)=H*"(ZUQ, Z,C).

We have the exact sequence
3) H*Yz,C)-H"ZUuQ,Z,C)—H"(ZUQ,C).

Since Q is assumed to be a proper subset of B,, Z U Q is a proper
subset of Z U B, ~ S?" and therefore H**(Z U Q,C) = 0. Also
Z is a 2n-cell and so H**~1(Z,C) = 0. It follows from (3) that
H*"(ZUQ, Z,C)=0. This contradicts (1) and (2), and proves the
theorem.

1.2. An alternate proof of Theorem 7 which is due to J. P. Rosay is
the following. Suppose, by way of contradiction, that G(f) does not
cover the ball. Then, without loss of generality, we may assume that
the origin is not covered. Hence we can choose a Runge domain D
in C" x Ck such that

G(f) € D C (C"\{0}) x CX.

Approximate f on bB, uniformly by a smooth map g such that
G(g)CD.
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Consider the Bochner-Martinelli form

n —

i Zj - —

w=2(—1)1+‘TZ~l’2—;dzl/\---/\dzj/\---/\dzn/\dzl/\--~/\dz,,.
=1

Then w is a closed form of degree 2n —1 on C"\{0}. Let o be the
pull back of @ to C"\{0} x CK by the projection of C" x CX to C".
Then ¢ is a closed 2n — 1 form on D. By a result of Serre (see [8,
Thm. 2.7.11]), H*-(D,C) = 0, since 2n — 1 > n + k. Therefore
o is exact in D and so, by Stokes,

/ og=0.
G(g)

/ g = w.
G(g) B,

And this last integral by a simple computation equals const x (vol. of
unit ball in C") and in particular is not zero. This is a contradiction.

But

2. Proof of the Corollary to Theorem 1. For X C C3 and & >0 we
define

X:={(A,w)eC*=C?xC: 34, w') € X with |w — w'| <e}.

We need to show that for ¢ > 0, there exists kg such that (a) G/(j\”k) -
G(F)e for k > ky and (b) G(F) C G/(j\"k),B for k > ky. For (a), since
G(F) is polynomially convex, there is a compact polynomially convex
set N C G(F), such that N contains a neighborhood of G(f) in
bB, x C. Hence there exists a ky such that G(f,) C N for k > ky.
Then G/(ﬁ) C N = N C G(F), . This gives (a).

Lgt\ Ao € B, . By Theorem 1 there exists wy; € C such that (4, wy)
€ G(fk). By (a), |lwx — F(do)l < & if k > ko. Thus (4o, F(4o)) €

—

G(fx), for k> ky. Hence G(F) C G(fi), for k > kq.
3.

3.1. Let Q be a Runge domain in C”, K compact in Q and v
plurisubharmonic on €. Then by [8, Theorem 4.3.4],

sup{v(z): z € K} = sup{v(z): z € K}.

We need a version of this fact.



206 H. ALEXANDER

LEMMA. Let v be continuous on B, x C and plurisubharmonic on
B, xC. Let K be compact in B, x C. Then sup{v(z): z € K} =
sup{v(z): z € K}.

Proof. Let r < 1. Set v,(4, w) = v(riA, w). Then v, is push
on the Runge domain {(4, w) € C?> x C: ||A|| < 1}. By the above,
sup{v,(z): z € K} = sup{v,(2): z € K}. Letting r — 1 gives the
lemma.

3.2. Proof of Theorem 2(a). Write F = ¢ + iy where ¢ and y
are continuous on B; and pluriharmonic on B;. Set u(4d, w) =
¢(A) —Rew. Then u =0 on G(f). The lemma implies ¥ < 0 on
G(f)~ . Repeating the argument with —u gives u =0 on G/(? ); 1.e.,
Rew = ¢(4) on G/(?). In the same way we see that Imw = y(4) on
G(f). Hence G(f) = G(F).

3.3. Proof of Theorem 2(b). For (A, w) € G(f), w = |g(4)] > 0.
Since intervals of the real axis are polynomially convex we conclude
that the coordinate function w is invertible in P(G/G’ )). Also g
is invertible in P(B,;). Hence g/w and w/g are in P(G/(7)). A
|g/w|=1 and |w/g| =1 on G(f),wehave |g/w| <1 and |w/g| <
1 on G/(,\f). Hence w = Rew = |w| =|g(4)| on G/(7), ie., G/(7) =
G(F).

4. Proof of Theorem 3. Let Ag € B,\K . Let n: C2xC — C? be the
projection (A, w) = A. We must show that z—!(4g) N G(f) consists
of the one point (g, f(4o)). We argue by contradiction and suppose
that there exists (4g, wg) € G( f ) with wo # f(A) .

As Ao ¢ K there exists a polynomial P(4) such that |P(Ag)| > 1>
|1 Pllg = sup{|P(4)|: 4 € K}. Set E={Ae B,:|P(A)| > 1}. Then f
is continuous on E and holomorphic on EN B, .

Let X = G(f)na~Y(E) and let X; = G(f)Nnn"!(bE). Let &
be the subalgebra of C(X) consisting of all functions # such that
h is locally P(X)-holomorphic at each point of z~! (interior (E)).
By the local maximum modulus principle the Shilov boundary of &/
is contained in X; (cf. [7, Lemma 9.1]). The function w — f(A) is
contained in & .

Let u be a Jensen measure for (4o, wy) for the algebra &/ such
that x4 has support in the Shilov boundary X, ([5], [15]). Then

—00 # log|wg — f(Ao)] < fx log|w — f(A)|du. Since w — f(A) =0
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on X; Nz~ '(W) and so loglw — (A)] = —oo there, it follows that
u(n=Y(W)) = 0. Hence u is concentrated on n~'(bE N B,). Let
dv = n.(du). Then dv is concentrated on bE N B, and repre-
sents evaluation at Ay for polynomials in C?. Since |P(A)| = 1 for
A€bENB,;,weget 1 <|P(Ag)|=|fPdv|< [|P|dv =1. This gives
the desired contradiction.

S.

5.1. For ACC"” and p € C", A+p denotes, as usual, the translate
of A. The following is well-known and easy to prove using Rouché’s
theorem.

LEMMA. Let Vi and V, be analytic curves in C* such that zgy is
an isolated point of Vi N V,. Then ViN (V2 + p) is non-empty for all
p sufficiently small in C2.

5.2. Let f; and f, be smooth real-valued functions on S2 and let
F, and F, be the corresponding Lipschitz functions on E3 given by
the theorem of Bedford and Klingenberg [4].

LEMMA. If fi < f>» on S? then F, < F, on Ej.

Proof. Suppose that G(F,) has a non-empty intersection with
G(F;). Choose ¢t > 0 maximal such that G(F;)+(0, it) meets G(F}).
The intersection contains no points over S? since f; < f>.

Let P be a point in the intersection. By [4] there exists an analytic
disk ¥} in G(F;) containing P and likewise an analytic disk 7, in
G(F,) + (0, it) containing P. Clearly P is isolated in V; N V5. By
choice of ¢, Vi1 N (V> + (0, it')) is empty for ¢ > 0. This contradicts
the Lemma of §5.1.

Thus G(F;) and G(F,) are disjoint. Since F;(4) < F5(4) for A €
E; near S? we conclude that Fi(A) < F(A) forall A€ Ej.

5.3. As before let f; and f, be real continuous smooth functions
on S! with corresponding F; and F,. Clearly, if ¢ € R, F| + ¢
corresonds to f; +c.

COROLLARY. ||F} — Bk, = |Ifi — flls-

Proof. The norms are sup norms. Let g > | fi — f2ll;z. Then
fr < fi+q on S?. Hence F, < F; +q on E;. By symmetry,
|F2 = Fillg, < ¢ Hence ||[F> - Fillg, < /i — f2llse -
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5.4. Proof of Theorem 4. Given f a continuous real-valued func-
tion on $2 choose smooth {f,} converging uniformly to f. By the
previous corollary the F, corresponding to f;, converge uniformly to
some function F on Ej. It remains to show that G(f) = G(F).

The following general fact about hulls is easy to check: if X, — X
and Xn — Y in the Hausdorff metric, then Y C X. Smce fh—f
and F, — F uniformly we get G(fn) — G(f) and G(f,,) G(F,) —
G(F). Hence G(F) C G(f).

To prove the opposite inclusion we argu/e\by contradiction and sup-
pose that there exists a point (p', t) € G(f)\G(F) where p’' € Ej3,
teR.

First we claim that p’ ¢ S%. In fact, if p' € S? there is an entire
function in C2 which peaks on E3 x R on the set {p'} x R it arises
from the tangent plane to S? at p'. Let n: C2 — R3 be the projection
n(g',t) = q'. Then G(f)N=n~'(p') is a peak set and it follows that
G(HNa~'(p") = (G(/)nn~'(p'))~ = the singleton {(p', f(p'))}. As
this point is in G(F), the claim is valid.

As t # F(p') we can assume that ¢ > F(p’). Choose n such
that ||f, — fllg2 < t— Fy(p') and F,(p’) < t. Let V be the analytic
disk in G(F,) through (p’, F,(p')) given by [4] since p’ ¢ S%. V
is a one-dimensional subvariety of Q = Eg’ x R. Since Q is a 4-
cell topologically, the solution of the Cousin II problem [8] gives a
holomorphic function H(z, w) in Q whose zero set is exactly V.
For s real, set Hy(z, w) = H(a, w — is). Then H; is holomorphic
on Q and its zero setis V + (0, is).

Choose ¢ mafi\mal such that V + (0, ity) has a non-empty in-
tersection with G(f). We have #p > ¢ — F,(p') > 0. Say (¢',v) €
G(f)N(V +(0, ity)) for ¢' € R3, v € R. We have seen that ||¢'|| < 1.

Let 0 <r<1. Set S, = {(z u) € R*: |z|> + u?> = r?} and set
X, = GHna'(S). As G(H)nr=l(S;) = G(f), it follows that
Xy — G(f) as r— 1. Also

(V+(0, itg)) NSy = G(fu + to) N(V + (0, ity)) asr— 1.
Since to >t — Fu(p') > ||f — fullg: we have f # f, + 2 on S%. Thus
for r < 1 sufficiently close to 1, X, is disjoint from V + (0, ity). Fix
such an r such that ||¢'| <r. Then H; #0 on X, andso |H;|>d,
for some 6 > 0, on X,. Then |Hs| > on X, for {0 < s < 1}
if ¢, > ty is sufficiently close to f,. Consider {H;: ty) < s < t;}.
Let V; = {(z,w) € Q: H(z,w) = 0} = V + (0, is). Then V;
is disjoint from X, for 7y < s < 1;; V,, contains (', v); V. is
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disjoint from (?/(7r ) and therefore disjoint from )?, - G/(7 ). It follows
from Oka’s characterization of hulls ([10], [12]) that (¢’', v) ¢ X,.
But, as ||¢’|| < r, the local maximum modulus principle implies that
(¢', v) € X,. Contradiction.

6. Proof of Theorem 5. Since ¢, y are pluriharmonic on B, we
have holomorphic functions ® and ¥ on B, such that ¢ = Re®
and y =ImY¥Y. Write ®=¢ +i¢p where ¢ =Im®P. Set A=P-¥
on B,. Fix Ay € B,, let A(Ay) = c =a+ ib with a, b real. Define
V={1€B,: A(A) =c}.

We claim that F =®—ib on V. Infact,on V', 9 = Re¥+a and
p=w+b.Hence F=¢p+iy=¢+ip—ib=P—-ib on V. Either
V' is one-dimensional subvariety of 75 or ¥V equals B, and F =
® — ib. In the latter case F is holomorphic on B, and the theorem
follows. In the former case the image of the map V — G(F) given
by A+— (4, ®(A) — ib) is the desired subvariety through (4p, F(4o)).

7. Proof of Theorem 6. We assume that ¢ = F(4¢) is a regular value
of F. Let Z={A€ By: F(A) =c}. Then X is a smooth 3-manifold.
Let T be the tangent plane to £ at Ay and let m be orthogonal
projection of C? to T ; we identify 7 with R3. In a neighborhood
of Ap X is a graph over 7. So for small J, X is locally a graph
over E={AeT:||A-A] <J}. Set S={xeT:||A-4) -d}.
Let Q =Xnn~!(S), where = is restricted to a neighborhood of Ag.
Then Q is a graph over S of a smooth function and by the Bedford-
Klingenberg theorem [4], Q is a union of analytic disks. Let 7" = {V'}
be this set of analytic disks.

Fix V € 7°. Consider the map V — C3, A — (4, ¢). The image
is a disk W such that bW C G(F) since bV CQ C X andso F =c¢
on bV . Since G(F) is polynomially convex, W C G(F) by the
maximum principle; i.e., (4, ¢) € W implies F(A) =c. Hence A€V
implies (4, c) € W implies F(A1) = ¢ implies A € X. Thus V C X
for Ve7z.

Thus X Nz~ Y(E) 2 (£ n n~1(S))~. Since both sets are graphs
over E (locally) we conclude that they are equal. Hence there exists
Vo € 7 such that g € 1.

Let . be the set of all analytic disks which are contained in X.
Define an equivalence relation on . as follows: if V', V' € ., say
V ~ V' if there exists a chain V =V, V5, ..., V' =V, in & such
that ViV, # fori=1,2,...,n—1. Let Cy be the equivalence
class of the disk }; containing A .
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Define a Riemann surface R, as follows. As a set
Ry=|JV:VeG}cE

Topologize R as follows: by the theorem of Bedford and Klingenberg
[4] if V|, V, € Cy and if 4 € V; NV, then there exists V3 € (
such that A € V53 C Vi NnV,;. This means that C; forms a basis
for a topology on R;. For coordinate charts use the inverses of the
imbeddings f: U — V for V € Cy where U is the unit disk. Then
R, is a (connected) Riemann surface. Moreover the image of R of
Ry under the map A — (4, ¢) contains (49, F(4g)) and is contained
in G(F).

It remains to show that R C (R N n~1(bB,))~. Since w = ¢ on
R, it suffices to show that Ry C (Ro N bB,)~ where we identify the
Riemann surface R, with its image id(Ry) C B, and Ry is the closure
of Ry as a subset of C2.

Note that each equivalence class C of & gives rise to a connected
Riemann surface S and that X is a disjoint union of these Riemann
surfaces (we identify S with id(S) C X).

Let g be a polynomial in C? and let M = sup{|g(4)|: 4 € Ro}.
Then there exist {4,} C Ry such that A, — p € C? and |g(4,)| —
M =|g(p)|. If ||p]| =1 then p € RynbB, and M = sup{|g(A)|: L €
RyN bB,}, as desired.

Suppose that ||p|| < 1. Then p € X. Let Sy be the Riemann
surface in ¥ which contains p and is associated to some equivalence
class of .. We claim that Sy C Ry. In fact p € SoNRy and SyNRy
is a closed non-empty subset of the connected set Sp. It is also an
open subset of Sy. To see this we repeat the local construction at
Ao above, now at the point p. As before we get a neighborhood of
p in X of the form XN z~!(E) which is a union of analytic disks
{V} = . By taking & small we can assume that £ N z~!(S) is
totally real. There exist V,, € 7" such that A, €V, for n=1,2, ...
and V€7 with pe V. Then V, C Ry forall n and V' C Sj. Since
An — p it follows from the construction of [4] (cf. [3]) that V,, — V.
Hence V C Ry, i.e,, SyN Ry is open in Sy. As Sy is connected,
SoN Ry =Sy and S CRy.

Moreover, |g| < M on R, implies |g| < M on Sy. As |g(p)| =M
we conclude that g = g(p) on Sy. It follows that Sy is an analytic
component of {i € B,: g(4) = g(p)}. Therefore So\Sy C So N bB,
and SN bB, is non-empty. Hence, as Sy N bB, C Ry N bB,, we get
sup{|g(4)|: A € RynbB,} > |g(p)| = M . This proves the theorem.
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8.

8.1. Some examples. Let p: bB, — P! be the map p(i;, 4;) =
A1/A> where we identify P! with C = CU {co}. Let A: P! — C be
continuous and set X = h(P!). Define [ € C(bBy) by f=hop.
Recall that G(f), == {w € C: (A, w) € G(f)} for A€ C2.

PROPOSITION. G/(7r )o = X

Proof. Let a € bB,. Set [, = {(Ca, f(a)): || £ 1}. Then bl, C

G(f) smce fa) = f(a) 1f || = 1. By the maximgllm principle,
l, C G(f) Hence f(a) € (ly)o C G(f)o, i.e., X € G(f),. Hence
Xc G(f)O

In the other dlrectlon G( f) € bBy x X implies G( f ) C sz x X =
B, x X. Hence G(f)0 cX.

8.2. Consider the special case ho(¢) = [£]/(1 + [£]?)/? for ¢ e C.
Then f(A;, 42) = |A;| for A € bB, and G(f), = [0, 1] C R since
ho(P') = [0, 1]. In particular G(f) is not a graph. This shows that
the condition g # 0 in Theorem 2(b) cannot be dropped.

8.3. Let Ay be as in the last paragraph. Set 4 = e**% and h, =
eni(1=1/mhy  Then h(P‘) ={{:|{|=1}=y and h,(P)) = {{: { =
€?,0<0<2n(1-1)=y,.Set f=hop and fr=hyo0p.

Then h, — h umformly on | P! and f,, - f umformly on sz
Thus G(f,) — G(f) but G(f,,) - G(f) In fact, G(f)O =9 =
{£:1¢] < 1} and G(f)o = n = 7 and G(f) € By x 7. Hence
G( f,,) - G f ). Thus, in the corollary to Theorem 1, the assumption
that G/(J\’ ) be a graph cannot be dropped.

This also shows that the fibers (ﬁj\’ ), need not be convex, since

G@)O = 7,. Related examples have also been found by J. Wermer
and by Z. Slodkowski; see [18, §6].

9. Open questions. Let f € C(bB,). Special cases would be when
S is real-valued and/or smooth.

(a) What can be said about the rationally convex hull of G(f)? In
some cases the rational hull coincides with the polynomial hull. Is this
always the case? Or, can G(f) be rationally conve)i?\

(b) Are the fibers G(f) connected? If not, can G(f) be n-sheeted
over B;; 2-sheeted?
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(c) To what extent does G(f) contain analytic structure? What if
we assume that @ ) is a graph G(F)? What can be said about F?
Special case: F smooth.

(d) Does there exist a real-valued function S? as in Theorem 4 such
that the hull of its graph in C? contains no analytic structure? By the
work of Bedford and Klingenberg this cannot happen if the function
1s smooth.

(1]
(2]
(3]
(4]
(3]
(6]

(71
(8]

[9]

(10]
(1]
[12]
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