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POLYNOMIAL HULLS OF GRAPHS

H. ALEXANDER

We shall consider the polynomially convex hull of the graph of
a continuous complex-valued function on the boundary of the unit
ball. We show first that the hull covers the closed unit ball and then
consider several of its properties. In particular, when is the hull also
a graph; i.e. single sheeted? When the hull is a graph we show, in
some cases, that it contains analytic structure. We also consider the
graph in C2 of a real-valued continuous function on the boundary of
a 3-cell which is contained in a real hyperplane in C2 and partially
extend some results of Bedford and Klingenberg who studied the case
of smooth functions.

Introduction. We employ standard notation of uniform algebras.
For a compact set X in Cn, X will denote the polynomially convex
hull, C(X) the algebra of all continuous complex-valued functions on
X, and P(X) the closure in C(X) of the polynomials in the uniform
norm. Bn will be the open unit ball in Cn and bBn its boundary.

THEOREM 1. Let fe C{bB2). Let G{f) be the graph in C3jrf f.
Then G(f) covers B2\ i.e., the projection to C2 of the set G(f) is
B2.

As a consequence, G(f) has real dimension at least 4 and the clo-
sure of G(f)\G(f) contains G(f) cf. [1], As a statement about Ba-
nach algebras the theorem says the following: let SB be the closed
subalgebra of C(bB2) generated by / and the polynomials, then
P(bB2) C 3S and every homomorphism of P(bB2) extends ("lifts")
to &. The corresponding result for the graph of a function over the
unit circle in C1 is false. In fact, by the Wermer maximality theorem
[16], if / is a continuous function on the circle then either / extends
to be analytic on the open disk, in which case the hull of its graph is
the graph of its extension to the closed disk or / does not extend,
in which case the graph of / is polynomially convex. Similarly the
following result does not hold in one variable.

COROLLARY. Suppose that fn converges to f uniformly on bB2 and
that G(f) is a graph over B2\ i.e., G(f) is one-sheeted Then G(fn)
converges to G(f) in the Hausdorjf metric.
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202 H. ALEXANDER

This raises the question of when G(f) is a graph; if it is the graph
of a function (i.e., G{f) is one-sheeted over B2) then the function
must be continuous on B2 as its graph is compact.

THEOREM 2. Let f G C(bB2) and suppose that there exists F G

C(B2) such that f is the restriction of F to bB2 and that either
(a) the real and imaginary parts of F are pluriharmonίc on B2 or

(b) F — \g\ where g G P{B2) and g is nowhere zero on B2.

Then G{f) = G(F).

Part (b) is false if g is allowed to have zeros; e.g., if g(λ) = λ\,
the hull of G(f) is not a graph. Part (a) applies in particular if /
extends to be holomorphic in B2 or is the complex conjugate of such a
function. A local version of this is valid. According to a result of Stout
[14] and Lupacciolu [9] a continuous function on bB2 which is weakly
CR on bB2\K, for K compact in bB2, extends to a holomorphic
function on B2\K.

THEOREM 3. Suppose that f e C(bB2) and that f is a {weakly)
CR function on an open subset W of bB2 . Let K = bB2\W. Then

G(f)n((B2\K)xC) = G(f)

where f is the holomorphic extension of f to B2\K. In particular,

G(f) is one-sheeted over B2\K.

Graphs which are hulls have been considered in a similar setting
by Bedford and Klingenberg [4]. Let S2 be the unit sphere in R3 =
{(z, t): z G C, t G R} and let / be a smooth real function on S2 . Let
G(/) = {(z, f , / (z , t)): (z, t)eS2}, the graph of / i n C2 = R 3 xR.
Bedford and Klingenberg showed that the polynomial hull of G(f) in
C2 is the graph of a Lipschitz function F on E3, the closed unit ball
in R 3 . Moreover, G(F) is a disjoint union of analytic disks. We can
show that part of this holds for merely continuous functions.

THEOREM 4. Let f eC(S2) be real-valued, then there exists a real-

valued F G C(E3) such that G{f) = G(F).

We do not know if G(F) contains analytic disks in the continuous
case, as it must in the smooth case. In fact, in view of the examples of
Stolzenberg [13] and Wermer [17] on hulls without analytic structure,
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it would be interesting to find f e C(S2) such that G(f) contains no
analytic structure.

Returning to graphs in C 3 , we can exhibit some cases of analytic
structure in hulls. In the statement of Theorem 6, π denotes the
projection of C3 (= C2 x C) to C2 .

THEOREM 5. Let F e C(B2) be as in Theorem 2(a). Then through
every point of G(F) there is a one-dimensional subvariety of B2 x C
which contains the point and which is contained in G(F).

The same conclusion is obvious for F of Theorem 2(b); the variety
is just V x {c} where V is a level set {g = a} and c = \a\.

THEOREM 6. Let F be a real continuous function on B2 which is
smooth on B2 and let f be the restriction of F to bB2. Suppose that
G(F) is polynomially convex, i.e., that G(F) = G{f). Let λo e B2

and suppose that F(λo) is a regular value of F. Then there exists a
connected Riemann surface RQ and an injective holomorphic imbed-
ding into C 3 such that the image R of RQ contains (λo, F(λo)) and
is contained in G(F). Moreover the boundary of R with respect to the
polynomials in C 3 lies over bB2 in the sense that R is contained in
the polynomial hull of Rn π~x(bB2).

After giving the proofs, we shall discuss some examples and open
questions. In particular, we shall see that fibers over λ e B2: G(f)λ :=
{w: (λ,w) G G(f)}, are not in general convex (as contrasted with
the case of hulls of sets in C2 which lie over the unit circle in C,
cf. [2], [11]) and shall give some examples relating to the Corollary to
Theorem 1 and to Theorem 2.

Rather than prove Theorem 1, we shall prove the following direct
generalization to higher dimensions.

THEOREM 7. Let f be a continuous map of bBn to C^ for 1 < k <
n - 1. Let G{f) be the graph of f in Cn+k . Then G(f) covers Bn

i.e., the projection G(f) to Cn equals Έn.

Note that Theorem 7 is not valid for k-n\ e.g., if f(z) = z, then
G(f) is polynomially convex in C2n .

1.

1.1. As noted, Theorem 1 is a special case of Theorem 7 which
we now prove. Let X = G(f) c Cn+k and let Q = π(X) where
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π: Cn+k —• Cn is the projection π(λ, w) = λ. We must show that
π(Q) = Έn. We argue by contradiction and suppose that β is a
proper subset of Ίtn . From the map π: (X, X) —• ( β , &Sn) we get
the following commutative diagram with exact rows.

Ά2n'ι{X9 C) -> ^ r2r t-1(Λ r, C) -> H2n(X, X, C) -+ Ά2n(X,C)

ΐ ΐ ΐ ΐ
H2n-\Q, C) -> H2n-\bBn,Q) -> H2n(Q, bBn,C) -» # 2 w ( Q , C).

Since 2/i - 1 > AI 4- A:, Hln~x (X, C) = 0 by a result of A. Browder
[6]. Since Q is a compact subset of Cn , it follows that H2n{Q, C) =
0. We thus have

0 -> ^ 2 w " 1 ( ^ , C )

ΐ M i

T/^-HCC) ^ Hln-\bBn,C) - H2»(Q,bBn, C)-0.

Since π maps X homeomorphically to 6fiw, )ff in the diagram is
an isomorphism. Since β o a is the zero map by commutativity, it
follows that a is the zero map. Hence γ is an isomorphism. Thus

(1) H2n(Q, bBn,C) = H2n-\bBn, C) = C .

Let Z be the cone on bBn . By excision

(2) H2n{Q, bBn,C) = H2«(ZUQ,Z,C).

We have the exact sequence

(3) H2n~\Z, C) -* H2n(Z U Q ? Z , C) - # 2 * ( Z U β , C).

Since Q is assumed to be a proper subset of Bn , Z u β is a proper
subset of Z U 5 Λ » S 2" and therefore ^ 2 n ( Z U β , C) = 0. Also
Z is a 2/ι-cell and so H2n~ι(Z, C) = 0. It follows from (3) that
// 2 "(Z U β , Z , C) = 0. This contradicts (1) and (2), and proves the
theorem.

1.2. An alternate proof of Theorem 7 which is due to J. P. Rosay is
the following. Suppose, by way of contradiction, that G{f) does not
cover the ball. Then, without loss of generality, we may assume that
the origin is not covered. Hence we can choose a Runge domain D
in Cn x C* such that

G(f) c D c (CΛ\{0» x C*.

Approximate / on bBn uniformly by a smooth map g such that
G(g)QD.
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Consider the Bochner-Martinelli form

ω = y ^ ( - l ) J + ι - Γ ~ Γ d Ύ ι Λ Λd~Zj Λ l \ d ~ z n l \ d z \ Λ Λ d z n .

Then ω is a closed form of degree In - 1 on CΛ\{0}. Let a be the
pull back of ω to Cπ\{0} x C^ by the projection of Cn x C^ to Cπ .
Then σ is a closed In - 1 form on D. By a result of Serre (see [8,
Thm. 2.7.11]), H2n~ι(D, C) = 0, since 2n-\>n + k. Therefore
σ is exact in D and so, by Stokes,

L σ = 0.

But
f f

ω.JG(g) JbBn

And this last integral by a simple computation equals const x (vol. of
unit ball in Cn) and in particular is not zero. This is a contradiction.

2. Proof of the Corollary to Theorem 1. For I C C 3 and ε > 0 we
define

Xε = {(λ, w)eC3 = C2 xC: 3(λ, w') e X with \w-w'\ < ε}.

We need to show that for ε > 0, there exists ko such that (a) G(f/C) c
for k > k0 and (b) G(F) c G(Λ) ε for fc > ΛQ . For (a), since

is polynomially convex, there is a compact polynomially convex
set N c G(/7)ε such that iV contains a neighborhood of G(/) in
bB2 x C. Hence there exists a /co such that G(f/C) C N ΐor k > ko.
Then G(Λ) QN = NC G(F)ε. This gives (a).

Let λo e Bn By Theorem 1 there exists wk e C such that (AQ , wk)

eJ{Jk). By (a), | ^ - F ( A 0 ) | <e ifjc>ko. Thus ( A o ? ^ o ) ) e

for k > k0. Hence G(F) c G(Λ)β for k > k0.

3.

3.1. Let Ω be a Runge domain in Cn, K compact in Ω and v
plurisubharmonic on Ω. Then by [8, Theorem 4.3.4],

sup{?;(z): z e K} — sup{^(z): z e K}.

We need a version of this fact.
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LEMMA. Let v be continuous on Ίϊ2 x C and plurisubharmonic on
B2 x C. Let K be compact in 5 2 x C . Then sup{v(z): z e K} =
sup{v(z): z eK}.

Proof. Let r < 1. Set υr(λ, w) = v(rλ9 w). Then vr is push
on the Runge domain {(λ,w)eC2xC: \\λ\\ < 7}. By the above,
suρ{tv(z): z e K} = sup{t;Γ(z): z e K}. Letting r -+ 1 gives the
lemma.

3.2. Proof of Theorem 2(a). Write F = φ + iψ where φ and ψ

are continuous on B2 and pluriharmonic on B2. Set u(λ,w) —

φ{λ) - Rew. Then w = 0 on G(/). The lemma implies u < 0 on

G(f)~. Repeating the argument with -w gives u = 0 on G(/) i.e.,

Rew = (̂Λ) on G(/). In the same way we see that lmw = ^(Λ) on

G(7). Hence G(f) = G{F).

3.3. Proof of Theorem 2(b). F o r (λ,w)e G(f),w = \g(λ)\ > 0 .
Since intervals of the real axis are polynomially convex we conclude
that the coordinate function w is invertible in P(G(f)). Also g
is invertible in P(B2) - Hence g/w and w/g are in P(G(f)). As
\g/w\ = 1 and \w/g\ = 1 on G(f), we have |#/w| < 1 and \w/g\ <
1 on G(/). Hence w = Reto = |tt;| = \g(λ)\ on G(/), i.e., G(f) =

4. Proof of Theorem 3. Let λ0 e B2\K. Let π: C2 x C -> C2 be the

projection π(λ, ^) = A. We must show that π " 1 ^ ) Π G(f) consists

of the one point (λ0, f{h)) We argue by contradiction and suppose

that there exists (λo, WQ) e G(f) with WQ Φ f(λo).
As λo φ. K there exists a polynomial P(λ) such that |-P(Ao)| > 1 >

| | P | | - = sup{\P(λ)\:λ € K}. Set E = {λ e B2: \P(λ)\ > 1}. Then /
is continuous on E and holomorphic on Er\B2.

Let X = G(f) n π-*(£) and let Xx = G(f) Π π-ι(bE). Let J /
be the subalgebra of C(X) consisting of all functions /z such that
h is locally P(X)-holomorphic at each point of π~ι (interior (E)).
By the local maximum modulus principle the Shilov boundary of si
is contained in X\ (cf. [7, Lemma 9.1]). The function w - f(λ) is
contained in si.

Let μ be a Jensen measure for (Λo, WQ) for the algebra si such
that μ has support in the Shilov boundary X\ ([5], [15]). Then
-00 φ l o g K - M ) l < ίx log | ^ - f(λ)\ dμ. Since w - f(λ) = 0
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on X\ Π π~ι(W) and so \og\w - (λ)\ = —oo there, it follows that
μ(π~ι(W)) = 0. Hence μ is concentrated on π~ι(bE Π B2). Let
dv — π*(dμ). Then dv is concentrated on bE Π B2 and repre-
sents evaluation at λo for polynomials in C 2 . Since \P(λ)\ = 1 for
Λ, e bEnB2, we get 1 < \P(λo)\ = \fPdv\<f\P\dv = l. This gives
the desired contradiction.

5.

5.1. For A C Cn and p e Cn , A+p denotes, as usual, the translate
of A. The following is well-known and easy to prove using Rouche's
theorem.

LEMMA. Let V\ and V2 be analytic curves in C2 such that ZQ is
an isolated point of V\ΠV2. Then V\ Π (Vι + p) is non-empty for all
p sufficiently small in C 2 .

5.2. Let f\ and fa be smooth real-valued functions on S2 and let
F\ and F2 be the corresponding Lipschitz functions on E$ given by
the theorem of Bedford and Klingenberg [4].

LEMMA. If f < f2 on S2 then F{ < F2 on E3.

Proof. Suppose that G(F2) has a non-empty intersection with
G{FX). Choose t > 0 maximal such that G(F2) + (0, it) meets G(Fι).
The intersection contains no points over S 2 since f\ < f2.

Let P be a point in the intersection. By [4] there exists an analytic
disk V\ in G(F\) containing P and likewise an analytic disk V2 in
6(^2) + (0, it) containing P. Clearly P is isolated in Vx n V2. By
choice of t, V\ n (V2 + (0, it')) is empty for t' > 0. This contradicts
the Lemma of §5.1.

Thus G(F{) and G(F2) are disjoint. Since F{(λ) < F2(λ) for λ e
ET, near S2 we conclude that F\{λ) < F2(λ) for all λeEi.

5.3. As before let f\ and 2̂ be real continuous smooth functions
on Sι with corresponding F\ and F2. Clearly, if c G R, F\ + c
corresonds to f\ + c.

COROLLARY. | | ^ - F2\\E3 = ll/i - fiW?

The norms are sup norms. Let q > \\f\ - h\\S2. Then

fi < f\ + Q on S2. Hence F 2 < î i + q on £ 3 . By symmetry,

11*2-Fills, < ί Hence | | ^ 2 - ^ i l U 3 < ||/i



208 H. ALEXANDER

5.4. Proof of Theorem 4. Given / a continuous real-valued func-
tion on S2 choose smooth {fn} converging uniformly to / . By the
previous corollary the Fn corresponding to fn converge uniformly to
some function F on £ 3 . It remains to show that G(f) = G(F).

The following general fact about hulls is easy to check: if Xn —> X
and Xn —> Y in the Hausdorff metric, then Y C X. Since fn—>f
and Fn - F uniformlyjve get G(fn) -> <?(/) and (?(/„) = G(Fn) -
G(F). Hence G(F) c G(/) .

To prove the opposite inclusion we argue by contradiction and sup-
pose that there exists a point (pf, t) e G(f)\G(F) where p1 e £ 3 ,
teR.

First we claim that p' φ. S2. In fact, if p' e S2 there is an entire
function in C2 which peaks on £ 3 x R on the set {p1} x R; it arises
from the tangent plane to S2 at pf. Let π: C 2 —> R3 be the projection
π(#', t) = qf. Then (?(/) n n~ι(pf) is a peak set and it follows that

G(f)nπ-ι(p') = (G(f)nπ-ι(p')r = the singleton {(pf, /(/>'))}. As
this point is in ( J ^ F ) , the claim is valid.

As / / F(pf) we can assume that t > F(pf). Choose n such
that \\fn - f\\si < t - Fn(p') and Fn(pf) < t. Let V be the analytic
disk in G(FΛ) through (p#, FΛ(/?')) g i v^n by [4] since p' φ S2. V
is a one-dimensional subvariety of Ω = £3° x R. Since Ω is a 4-
cell topologically, the solution of the Cousin II problem [8] gives a
holomorphic function H(z, w) in Ω whose zero set is exactly V.
For s real, set Hs(z9 w) = H(a, w - is). Then Hs is holomoφhic
on Ω and its zero set is V + (0, is).

Choose *o maximal such that V + (0, /ί0) has a non-empty in-

tersection with G(f). We have ί0 > ί — /^(p') > 0. Say (#', ι;) €
G ( Λ n ( F + (0, ito)) for ? ' € R 3 , ί ; € R . We have seen that | |^| | < 1.

Let 0^< r < 1. Set Sr =J(z, u) e R3: |^|2 + u2 = r2} and set
χ r = G(/) n π " 1 ^ ) . As G(f) nπ-ι(S{) = G(f), it follows that
Xr -• G(/) as r -• 1. Also

(V + (0, ιίo)) ΠS, -^ C7(/Λ + ί0) Π (7+ (0, «70)) as r -^ 1.

Since to>t- Fn{p') > \\f - fny we have / φ fn + t0 on S2. Thus
for r < 1 sufficiently close to 1, Xr is disjoint from V + (0, /ί 0 ) . Fix
such an r such that | |#' | | < r Then //,o / 0 on I r and so |//ij > <ϊ,
for some δ > 0, on X r . Then |i/5 | > J on I r for ίo < 5 < ίi
if t\ > to is sufficiently close to to- Consider {Hs: to < s < t\}.
Let Vs = {(z, w) e Ω: i/5(z, ^ ) = 0} = V + (0, is). Then F5

is disjoint from Xr for 0̂ < 5 < î Vto contains (qf, v); Vtχ is



POLYNOMIAL HULLS OF GRAPHS 209

disjoint from G(f) and therefore disjoint from Xr C G(f). It follows
from Oka's characterization of hulls ([10], [12]) that (<?', v) $ Xr.
But, as ||<?'|| < r, the local maximum modulus principle implies that
(<?', υ) e Xr. Contradiction.

6. Proof of Theorem 5. Since φ, ψ are pluriharmonic on Bι we
have holomorphic functions Φ and Ψ on B2 such that φ = ReΦ
and ψ = I m Ψ . Write Φ = φ + iφ where φ = I m Φ . Set Λ = Φ - Ψ
on B2. Fix λo e B2, let Λ(Ao) = c = a + ib with #, b real. Define

We claim that F - Φ - ib on F . In fact, on V, φ = R e Ψ + α and
φ = ψ + b. Hence F = φ + iψ = φ + iφ-ib = Φ-ib on F . Either
F is one-dimensional subvariety of J^ or F equals B2 and F =
Φ - ib. In the latter case i 7 is holomorphic on B2 and the theorem
follows. In the former case the image of the map F -* G(F) given
by λ H-> (A, Φ(A) - /έ) is the desired subvariety through (Ao, F(λo)).

7 Proof of Theorem 6. We assume that c = F(λo) is a regular value
of F. Let Σ = {A E ^2: ^(A) = c}. Then Σ is a smooth 3-manifold.
Let T be the tangent plane to Σ at λo and let π be orthogonal
projection of C2 to Γ; we identify T with R 3 . In a neighborhood
of λo Σ is a graph over T. So for small δ, Σ is locally a graph
over E = {λ e T: \\λ - λo|| < δ}. Set 5 = {x e T: \\λ - λo\\ - (5}.
Let Q = Σ n π " 1 (5), where π is restricted to a neighborhood of λo.
Then <2 is a graph over S of a smooth function and by the Bedford-
Klingenberg theorem [4], Q is a union of analytic disks. Let T = {F}
be this set of analytic disks.

Fix F G f . Consider the map F -> C 3 , λ •-> (A, c). The image
is a disk PF such that bW C G(F) since 6F C Q c Σ and so F = c
on bV. Since (J(JF) is polynomially convex, PF c G(F) by the
maximum principle; i.e., (λ, c) eW implies F(λ) = c. Hence A e F
implies (λ, c) e W implies F(λ) = c implies A G Σ. Thus F C Σ
for Ve^.

Thus Σ Π π " 1 ^ ) D (Σ Π π~ι(S))~. Since both sets are graphs
over E (locally) we conclude that they are equal. Hence there exists
Fo e ^ such that λoeVo.

Let 5? be the set of all analytic disks which are contained in Σ.
Define an equivalence relation on 5? as follows: if F , V e S?, say
F ~ V if there exists a chain V = Vu V2, ... , V = Vn in ^ such
that ViΠVi+\ Φ 0 for / = 1, 2, . . . , n-1. Let Q be the equivalence
class of the disk VQ containing AQ .
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Define a Riemann surface RQ as follows. As a set

Topologize RQ as follows: by the theorem of Bedford and Klingenberg
[4] if Vι, V2 e Co and if λ e Vx Π V2 then there exists V3 e Co

such that λ e V3 C V\ n V2. This means that Co forms a basis
for a topology on RQ . For coordinate charts use the inverses of the
imbeddings f:U-+V for V e Q where £/ is the unit disk. Then
2?o is a (connected) Riemann surface. Moreover the image of R of
RQ under the map A »-• (Λ, c) contains (ΛQ, i ^ o ) ) and is contained
in G{F). _

It remains to show that R C (R π π~ι(bB2))^. Since w = c on
i?, it suffices to show that RQ C (J?O Π 62*2 )^ where we identify the
Riemann surface RQ with its image id(.Ro) Q B2 and ^0 is the closure
of RQ as a subset of C 2 .

Note that each equivalence class C of S? gives rise to a connected
Riemann surface 5 and that Σ is a disjoint union of these Riemann
surfaces (we identify S with id(S) c Σ) .

Let g be a polynomial in C2 and let M = sup{\g(λ)\: λ e RQ} .
Then there exist {λn} c i?0 such that λn -+ p e C2 and |g(An)| -*
M = | g ( p ) | . If | |p| | = 1 then peR0ΠbB2 and M = sup{|g(λ)|: λ e
i?o Π &B2} , as desired.

Suppose that | |p| | < 1. Then p e Σ. Let SQ be the Riemann
surface in Σ which contains p and is associated to some equivalence
class of S?. We claim that SQ C ΪJ 0 . In fact /? e 5o nΛ 0 and SQΓ)~RQ

is a closed non-empty subset of the connected set 5b It is also an
open subset of So. To see this we repeat the local construction at
XQ above, now at the point p. As before we get a neighborhood of
p in Σ of the form Σ Π π~ι(E) which is a union of analytic disks
{V} = 3r. By taking S small we can assume that Σ n π~~ι(S) is
totally real. There exist Vn e T such that λneVn for n = l,2, ...
and F e r with peV. Then Vn C Ro for all n and V C 5 0 . Since
λn -^ p it follows from the construction of [4] (cf. [3]) that Vn -+ V.
Hence V C ϊ ί 0 , i.e., 5b Π i?o is open in SQ . As 5o is connected,
SonRo = SO and S0CR0.

Moreover, \g\ < M on RQ implies \g\ < M on SQ . As |^(p)| = M
we conclude that g = g{p) on 5Ό. It follows that So is an analytic
component of {λ e B2: g(λ) = g(p)}. Therefore 5 Q \ 5 0 C 5 O Π feff2

and 5o Π &B2 is non-empty. Hence, as SQ n feβ2 ί ^ o Π &B2, we get
sup{|#(λ)|: λeRoΠ bB2} > \g(p)\ = Af. This proves the theorem.
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8.

8.1. Some examples. Let p: bB2 —• P1 be the map p(λ\, λ2) =
λχ/λ2 where we identify P1 with C = C U {00}. Let h: P1 -+ C be
continuous and set X = h(Pι). Define / e C(bB2) by / = h o p.
Recall that G(/)A : E { ^ G C : ( 1 ^ ) E G(/)} for λeC2.

PROPOSITION. G(f)0 = X.

Proo/. Let α G ^ Set la = {(£α, /(α)): |£| < 1}. Then Wα C
(/(/) since /(£α) = /(α) if |£| = 1. By the maximum principle,

Hence /(α) G (/α)0 c G(/) o ; i.e., JΓ c G(/) o . Hence

In the other direction, G(/) CbB2xX implies (?(/) C feβ2 x X =

B2xX. Hence G(f)0 C 1 .

8.2. Consider the special case Λ0(C) = ICJ/O + KI 2 ) 1 / 2 for C G C .
Then /(Ai, λ2) = |Ai| for λ e kfh and G(f)0 = [0, 1] c R since
/ίO(P1) = [0,1] . In particular G(/) is not a graph. This shows that
the condition g φ 0 in Theorem 2(b) cannot be dropped.

8.3. Let h0 be as in the last paragraph. Set h = e2πiho and hn =

e2π/(i-i/ιi)ΛOβ T h e n Λ (pi j = {ζ. |^| = 1} = y and hn(Pι) = {ζ:ζ =
eiθ,0<θ<2π(l-}i)} = γn. Set / = Λ o p and fn = hnop.

Then hn —> h uniformly on P 1 and fn -> f uniformly on bB2.

Thus G(fn) - GQO^but G(fn) * G(f).Jn fac^ G(/) o = j> =

{ζ^\ζ\ < l ^ a n d G(/Λ)o = % = yΛ and G(/Λ) C 5 2 x y w , Hence

GUn) "^ ^ ( / ) Thus, in the corollary to Theorem 1, the assumption

that G(f) be a graph cannot be dropped.

This also shows that the fibers G(f)λ need not be convex, since

G(fn)0 = γn. Related examples have also been found by J. Wermer

and by Z. Slodkowski; see [18, §6].

9. Open questions. Let / € C(bB2). Special cases would be when
/ is real-valued and/or smooth.

(a) What can be said about the rationally convex hull of G{f) ? In
some cases the rational hull coincides with the polynomial hull. Is this
always the case? Or, can G(f) be rationally convex?

(b) Are the fibers G(f) connected? If not, can G(f) be n-sheeted
over B2 2-sheeted?
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(c) To what extent does G(f) contain analytic structure? What if
we assume that G(f) is a graph G(F) ? What can be said about F ?
Special case: F smooth.

(d) Does there exist a real-valued function S2 as in Theorem 4 such
that the hull of its graph in C2 contains no analytic structure? By the
work of Bedford and Klingenberg this cannot happen if the function
is smooth.
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