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RICCI CURVATURE AND VOLUME GROWTH

M. STRAKE AND G. WALSCHAP

We give an example of a complete manifold M™ of nonnegative
Ricci curvature for which the volume of distance tubes around a to-
tally geodesic submanifold L' divided by the corresponding volume in
L x R™ goes to infinity. Recall that in the case of nonnegative sec-
tional curvature, this quotient is nonincreasing and bounded by 1.

1. Introduction. One of the fundamental tools in the study of Ricci
curvature is the Bishop-Gromov volume inequality, which states that
in a complete manifold M™ of Ricci curvature > (m — 1)k, the map

. vol B,(p)
vol (D, &)

is monotonically nonincreasing. Here, B,(p) is the ball of radius r
around p € M, and (D,, &) is a ball of same radius in the simply
connected space of constant sectional curvature k. Under somewhat
different assumptions, this inequality still holds when p is replaced by
a compact, totally geodesic submanifold L' of M: The comparison
space now becomes (L x D,, g¢), where for x = (xg, x;) in the
tangent space of L x D, at (p, u), ge(x,x) = c2(|u|) &(xo, x0) +
8x(x1, x1). (Here g is the metric on L induced by the imbedding
L — M, and ¢ is the solution of the equation c + k¢, = 0, with
cc(0) =1, c,(0) =0.) The volume inequality now reads (cf. [4], [3],
[6]):

(*) If the radial sectional curvatures of M are > k, then

gt volB,(L)
) = ST = Dy, 20)

is a nonincreasing function of r, with ¢g;(0) = 1. (A 2-plane
o C M, is said to be radial if it contains the tangent vector of
some minimal geodesic from g to L.)

(#+) If all sectional curvatures of M are > k, then g7 (r') = qr(r)
for some 0 < ' < r only if the normal bundle of L — M
is flat with respect to the induced connection, and B,(L) is
(locally) isometric to (L x D,, g).
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In this note, we show that () no longer holds in general if one only
assumes Ricys > (m — 1)k (see also [1] for a related result): In fact,
the quotient ¢;(r) may go to infinity as » — oo. Moreover, even if
the radial sectional curvatures are > k—so that (x) must hold— (*x)
is no longer true if one replaces Kjr > k¥ by Ricy, > (m— 1)k . More
precisely, we have:

1.1. THEOREM. Let L = CP!, and M = CP2. Then
(a) The normal bundle E of L — M admits a complete metric of
nonnegative Ricci curvature such that
) def Vol B,(L)
vol (L x Dy, &)

goes monotonically to infinity as r — oo.
(b) There is a complete metric on M with the following properties:

(1) L is totally geodesically imbedded in M .

(2) Ricys > 3, and the radial sectional curvatures are > 1.

(3) qr(r) def ﬁ% =1 for r < ¢, provided ¢ is suffi-
ciently small.

qr(r

2. Ricci curvature for connection metrics. Let L = CP! — CP?
with the standard metric of curvature 1 < K <4. As in [5], we iden-
tify a distance tube B,(L) around L with [0, r] x S3/ ~, where all
the Hopf fibers are collapsed to a point at {0} x.S3. Consider the class
da? of metrics on S3 obtained by multiplying the standard metric by
f2(r) in the Hopf fiber direction, and by A2(r) on its orthogonal com-
plement. If f is an odd smooth function with f'(0) = 1, and 4 is
even and positive, then the metric dr?+da? on (0, r]xS3 extends to
B,(L). The standard metric corresponds to f(r) = (1/2)sin2r and
h(r) = cosr. Using the same vector fields X;, 0 < i < 3, as in [5]
(where X is radial, X is tangent to the Hopf fiber, and X,, X3 are
orthogonal to it), we obtain for R;; := Ric(X;/|X;|, X;/|X;|):

1" "
@) Ro=-% 2%,
fll f'h’ f2
(2-2) Rll - f fh + 2h4 )
" f'h' 4/22 _ 2f2 _ h'2h2
(2-3) Ryp=Ry=-4- T 7 ,

(2-4) R;j=0, i#].
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The proof is straightforward and will be omitted.

This class of metrics is actually a special case of the following con-
struction: Let (L!, £) be a Riemannian manifold, and R* - E 5 L
a vector bundle with inner product ( , ) and Riemannian connec-
tion V. Fix 0 < ryp < oo, and consider the disk bundle E" =
{ueE| (u,u) <rg}. If 7 denotes the vertical distribution de-
fined by n, and # the horizontal distribution determined by the

connection, define
g(x, x) =h*(u)) g(mx, max) (x e #NTLE),

where 4 is an even, smooth, positive function on (-ry, ry). The
fibers of E’o are endowed with a metric given in polar coordinates by

dr’ + f*(r)do?,

where do? is the standard metric on the sphere, and f is an odd,
smooth function with f’(0) = 1. We then obtain a metric g on E"
by declaring ## and 7° to be mutually orthogonal. The fibers of
the bundle are totally geodesic submanifolds in this metric, and the
projection 7 restricted to a sphere bundle of radius r becomes a Rie-
mannian submersion with base (L, h%(r) &). One can easily compute
the Ricci curvatures by using O’Neill’s formula for Riemannian sub-
mersions and the Gauss equations (cf. also [2]): If 8, denotes the unit
radial vector field (dual to dr), v a unit vertical vector orthogonal to
Or, and x a unit horizontal vector, then

hII

(2-5) Ric(0,, 0,) = =1 i (k - 1)—f1 ,
(2-6) Ric(0,, x) = Ric(0,, v) =0,
) f" 1— 12 f’h'
Ric(v, v) = —7—+(k—2) 7 -1 7
(2-7) !
+ Z(Axiv ,» Ax V),
i=1
n ” 1 £
Ric(x, x) = ——%—(l— l)h—z—(k— 1)%
(2-8)

l
+ Ricv(ﬂ*x . ﬂ*X) - ZZ<AXXI ) Ax-xi> )
i=1

(2-9) Ric(v, x) = ((64)x, v).
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Here, {x;} is an orthonormal basis of #, A is the O’Neill tensor
of the submersion with divergence 04 = ZLI Dx A(x;, ) (D is the
Levi-Civita connection of (E’, g)), and Ric" is the Ricci tensor of

(L, h*(r)g)-
Moreover, if V is a Yang-Mills connection, then (cf. [2], p. 243):
(2-9) Ric(v, x) =0

In the special case when E is the normal bundle of CP! — CP?,
let V denote the connection on E induced by the Levi-Civita con-
nection of the symmetric space CP2. Then V is Yang-Mills since
the curvature tensor RV is parallel. In particular, (2-9°) holds, and
it is straightforward to check that (2-5)-(2-9) reduce to (2-1)-(2-4).
Notice that the A-tensor can be expressed in terms of RV, cf. [6].

3. Proof.

Proof of 1.1(a). The volume of a distance tube B,(L) with respect
to the class of metrics described in §2 is given by:

vol B(L) = / "volS,(L)dt
0
= C-vol(L)-h"(O)-/Orh’(t)f"‘l(t)dt,

where S;(L) is a distance sphere around L, vol (L) := vol (L, h2(0)g),
and C is the volume of the standard sphere SX~! c R¥ . It thus suf-
fices to find functions f and 4 such that (2-1)-(2-3) yield Ric >0,
and Al(r)f5=Y(r)/rk=1 = B2(r)f(r)/r — o0 as r — 0. Let f(r) :=
r/(1 +r¥)12 and A(r) := (r/f(r))*, where o is any constant in the
interval [1/2, 1]. Notice that gy (r) - o0 as r — o0 if @ > 1/2, and
qr(r)=1 for a=1/2.
A straightforward calculation shows that (2-1)-(2-3) become:

_ -32a-1) 2 P2

(3-1) Roo= 177 T 2 (2 (a+ 1)1_+r5)
1+r2(4 Pa(r)),

where ¢o(r) = (3(2a — 1) + 2a(a + 1)r?) /a(1 4+ r?). Since ¢, is an

increasing function on [0, 00) with lim,_o @o(r) = 2(a+ 1) < 4, we

conclude that Ry ¢ > 0.

2
3-2a f>0

(3-2) Rl,l (1 )2 +2
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_3a a r2
(3-3)R2,2 —R3,3 - (1 +r2)2 + 1+7r2 (1 -‘al +7'2>

f0\™ f\"* o
() - (5P) -at
> (1+7%)7%(4 = (Ya(r) + 0a(r))),

where w,(r) := 2r2/(1 +r?)1*e and 0,(r) := Ba+a?r?)/(1+r?)> =,
One easily checks that the maximum of y, equals

n(a) = 2/a(l + 1/a)'** < 7(1/2) = 4/3V3,

for a > 1/2. Moreover, 6, is a decreasing function if o < 1, with
0,(0) = 3a. Thus:

Ry =Rz 3> (14+r})"4-(3+4/3V3) >0,
thereby completing the proof of 1.1(a).

Proof of 1.1(b). When A = cos, (2-1)-(2-3) become:

1

)  Reo=2-L,

f
. "o _f'sin f?
Ry =-L e
(i) L1 f +2fcos+2cos4’
f'sin  4cos?—2f2 — sin® cos?

(iii) R2,2=R3,3= 1+

fcos cos4

We will choose f so that f(r) = sinr for r < e, f(r) = sinrcosr
for r > n/4,and R; ; > 3. Define k := f/sin. (i) and (ii) transform
into:

. _ . K" _Kk'cos
(') RO’O—3_?—2k—sin-’
. _ . k" k' (cos sin , sin
(ll) Rl’l_3_?—2F(;ﬁ{—ﬁ)+2k W.

If ¢ > 0 is sufficiently small, there exists a function k such that k = 1
on [0, ], k =cos on [n/4, n/2],and k" < 0. Then Ry o, R;,1 >
3. To show that R, ; > 3, observe that, since f < sin,

F % (4c0s? —2f2 — sin? cos?)/ cos

. . def
> (4 cos? —2sin? —sin? cos?)/ cos* € G.
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Now, the minimum value of G = (5/cos?)—(2/cos*)+1 on the inter-
val [0, /4] is G(n/4) = 3. Since Ry —F = 2+(k'sin)/(kcos) > 1,
the result follows.

We now proceed to show that the radial sectional curvatures are
>1: Let x € T,L, and consider a unit-speed geodesic y originating
at p and orthogonal to L. If E denotes the parallel field along y with
E(0) = x, then J := hE is a Jacobi field along y, cf. [3]. Therefore,
R(E, )y = —(h"/h)E, so that (R(E, )y, E) = 1. On the other
hand, if v is orthogonal to both $(0) and T,L, and if F denotes
the parallel field along y with F(0) = v, then R(F, 9)y = —(f"/f)F,
and

(R(F, )7, F)=~f"/f=1-(k"/k) — 2(K'[k)(cos / sin).

This last expression is > 1 and identically 1 on [0, ¢]. The same is
therefore true for all radial curvatures.

Finally, observe that the comparison space in [4] or [3] has the
same volume growth as (L x D,, g). It follows that g;(r) =1 for
our choices of f and 4 when r<e.

4. Remarks.

4.1. In 1.1(a), the maximal growth rate for the volume of B,(L)
obtained by our method is of order r3.

4.2. The maximal distance from L with respect to the metric g
from 1.1(b) is n/(2y/x) = n/2, where x is the infimum of the radial
sectional curvatures and the Ricci curvature. Nevertheless, (M, g) is
not symmetric, cf. the remark on p. 322 in [3].

4.3. As the general formulas of §2 show, one can produce similar ex-
amples on other vector bundles. It is, however, essential to have some
information about the divergence of the A-tensor, cf. (2-9), (2-9°).
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