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INVARIANTS FOR 3-MANΪFOLDS
FROM THE COMBINATORICS
OF THE JONES POLYNOMIAL

W. B. R. LICKORISH

The bracket polynomial of Kauffman first gave an exceedingly sim-
ple definition of the Jones polynomial for links. Here it is used to give
a short direct proof of the existence of a few of Witten's 3-manifold
invariants.

The techniques of quantum field theory have been used by Witten
[9] in the production of an array of invariants for 3-manifolds and
for links in 3-manifolds. When the 3-manifold is the 3-sphere, these
link invariants become the Jones polynomial (or one of its generali-
sations) evaluated at various complex roots of unity. A proof of the
existence of such invariants has been given by Reshetikhin and Turaev
[8] using deep results from the theory of quantum groups. An alter-
native approach, based on only the general outline of their method,
is given here. This proof of the invariants' existence uses nothing but
simple combinatorics and the well known theory of 3-manifolds be-
ing created by surgery on the 3-sphere. The result actually obtained
here estiblishes only a very small selection of the new invariants, but
the method has scope for extension (see however Appendix 2). The
nature of the invariants is described in a fairly simple way, and those
invariants that are here established are the only ones for which cal-
culation seems to be at all feasible. Some of these calculations have
been performed and discussed by Kirby and Melvin [4].

The basic tool that will be used is the bracket polynomial invariant
of Kauffman [2], [7]. The bracket is a function

( ): {Diagrams in R2 U oo of unoriented links} -> Z f ^ 1 ] that is
defined by three properties:

(i) (0) = 1;
(ii) (D u U) = δ(D), where U is a component with no crossing at

all and δ = -A'1 - A1

(iii) (X) = A(x) + A~1(DC) , where this refers to three diagrams
identical except where shown.

(Note that the normalisation of (i) is not entirely standard.) It is
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FIGURE 1 FIGURE 2

very easy to show (see [2] or [7]) that (D) is unchanged by both the
second and third type of Reidemeister move (that is, it is a regular
isotopy invariant). Its response to the first type of move is given by
(>o) = -A3(D) . A further consequence of the definition is that, if D\
and £>2 are disjoint diagrams, {D\ UD2) = (D\){D2). Now let w(D)
be the sum of the signs of all the crossings in D where any component
crosses itself, that is well defined without choosing any orientation on
the components of D. If L is a link in S3 represented by D, define

This is easily seen to be invariant under all three types of Reidemeister
move and so is an invariant of the unoriented link. For reference, if
L is given an orientation and if Λ denotes the sum of the linking
numbers between all pairs of components of L, then the standard
Jones polynomial VL(t) is δ-ιA'6AV(L), where / = A"4. Thus
V(L) is a disoriented Jones polynomial.

Various planar diagrams of links and parts of links will appear in
what follows. A non-negative integer i beside a component will sig-
nify the presence of i copies of that component, all parallel in the
plane. That is illustrated in Figure 1.

Figure 2 shows a pair of diagrams (of the Hopf link of / + j com-
ponents) which are regularly isotopic and so have the same bracket
polynomial; let 7/+</ denote the bracket polynomial of either of these
diagrams. The bracket takes values in the Laurent polynomial ring
Z[^4±1], but in what follows it will be evaluated when A is a specific
root of unity, so that the bracket may be thought of as having complex
number values.

It is well known [5] that any closed oriented 3-manifold M3 can
be obtained from the 3-sphere *S3 by surgery on a framed (unori-
ented) link (L, / ) . Thus, to each component Ls of L is assigned a
"framing" which is an integer f(s). M3 can be constructed by the
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FIGURE 3

following process. Remove a small open solid torus neighbourhood
of each Ls. On each resulting toral boundary component consider
the simple closed curve that represents f(s) meridians and one lon-
gitude of Ls attach new solid tori so that each of these (framing)
curves now bounds a disc. A theorem of Kirby [3], refined by Fenn
and Rourke [1], asserts that framed links (L, f) and (I/, /') give
the same 3-manifold if they are related by ambient isotopy and by the
equivalence relation generated by moves of two kinds. In the first,
depicted in Figure 3, (LJ, /') is obtained from (L , /) by inserting
an extra unknotted component L'n+l with f'(n + 1) = 1, adding a
full positive twist in the strands linked by this component and defining
f(s) = f(s) + (Λy)2, where As is the linking number of L's with the
new component.

In the second kind of move, (1/, /') is (L, /) together with an ex-
tra component, of framing - 1 , that is unknotted and unlinked from
L. (The moves of [1] include a "negative" version of the first move;
a proof of the above simplification, due to Turaev, is shown in an ap-
pendix.) Employing this result, a 3-manifold invariant comes at once
from any quantity associated to framed links in S3 that is invariant
under ambient isotopy and under the two types of move described
above.

It is convenient to explain some notation before stating the theorem.
If (L, /) is a framed link with components L\, L2, ... , Ln , and c is
a function, c: {1, 2, ... , n} -• Z+, let cJ-L be the link in which each
component Ls of L has been replaced by c(s) components all lying in
the torus boundary of a small regular neighbourhood of Ls, all parallel
to the framing curve. Usually c will be restricted to C(n,r), the set
of all functions c: {1, 2, ... , rt}->{0, 1, ... , r - 2 } . If the framed
link (L, /) is given an orientation, the linking numbers of the pairs
of its components form a symmetric matrix in which f(s) is taken to
be the linking number of Ls with itself. The signature and nullity of
this matrix are independent of the choice of orientations. The nullity
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of the matrix is, in fact, the first Betti number of the 3-manifold
obtained by surgery along (L, f). Recall that Ti+J is the bracket of
the diagram shown twice in Figure 2, and that δ = -A~2 - A2.

The following theorem is, then, a version of part of the results of
Witten [9] as interpreted by Reshetikhin and Turaev. For an integer r
it produces an invariant of 3-manifolds in the complex numbers. The
proof given here is very elementary. That is intended to be its virtue;
its drawback is that it only works with ease for r < 6. Solution of an
entirely combinatorial conjecture would extend the proof to all higher
integers.

THEOREM. Let r e {3, 4, 5, 6} and let A = eπil2r. Let λ0, λu . . . ,
λr-2 be a solution in the complex numbers to the linear equations

r-l

Σ*iTi+j = δJ, 7 = 0, l , . . . , r - 2 .
ι=0

Let K = Σ'IQ λ{Γι. Suppose that M3 is obtained from S3 by surgery
on an n-component framed link (L, / ) , for which σ and v are the
signature and nullity of the linking matrix. Then the expression

κ(a+v-n)/2 £ λc{ι)λc{2y.-λc{n){-AγΣlAW°)V(c*fL)
ceC(n,r)

is an invariant Ir(M3) of the 3-manifold, a complex number indepen-
dent of the choice of (L, / ) .

Notice that, in calculating Ir(M3) as described in this theorem, it
is necessary to calculate V(c */L). If r = 6 and L is just the 3-
crossing knot, a diagram of four parallel copies of the knot has at
least 48 crossings; naive calculation of the bracket polynomial (direct
from its definition) would then involve 2 4 8 operations.

The theorem's proof will use a simple version of linear skein theory
(see [6]) that will now be described. Consider a square in R2Uoo with
j specified points on its top edge and j such points on its bottom
edge. Consider all tangle diagrams in the square (i.e. link diagrams in
which components may be arcs) with the specified points as boundary.
Figure 4 shows an example when 7 = 3.

Let Vjn be the module over Z ^ 1 ] freely generated by all such
diagrams quotiented by relations of the form

(i)
(ii)
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FIGURE 4

As before, in (i) U is a closed component of the diagram that contains
no crossing (one such is in Figure 4), and in (ii) the diagrams in paren-
theses are the same except where shown. Of course, equalities in this
module are thought of as partial calculations of bracket polynomials,
and, if a complex number is substituted for A, Vjn becomes a vector
space. Let V?nX be defined in exactly the same way using diagrams
outside the square. The operation, of placing one diagram inside the
square, another outside the square, and taking the bracket polynomial
of the resulting link diagram, extends to a well-defined bilinear form

( , ): Vj>ut x Vj*-> Z[A±ι].

Now, Vjn is freely generated by a base of all diagrams in the square
with no crossing and no closed component. Thus the dimension of
Vjn is the Catalan number -Aη ifj). Figure 5 shows the base of F 3

m ,
the analogous base of V£ut and the resulting (symmetric) matrix for

the above bilinear form. Let Uj,

and V?ut shown in Figure 6.

j , and be the elements of Vjn

o

I Λ l IΛ ΐ

δ δ

δ 2 δ 2 δ 2

δ 2 δ 2 δ 2

δ δ δ 2 δ 2

FIGURE 5
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u.=
j

j

F I G U R E 6

L E M M A 1. Let ψj = Σ / ^ o ^ * , . / G VjpuX where λ 0 ? λ i ,
are as in the statement of the theorem. Then {ψj, ) and (ε

linear maps of K/n for j = Q,l9...,r — 2.
) are

Proof. The definition of {λ/} means that

(?7, uj) = ̂  = (εj,Uj), for7 = 0, 1, ... , r - 2 .

Suppose that e is any base element of Vjn other than w7. Consider
the annulus, shown in Figure 7, containing a square with j parallel
arcs joining the top and bottom of the square as shown.

FIGURE 7

Inserting e into this square would produce a configuration of dis-
joint simple closed curves. These may be isotoped in the annulus to
x, say, standard mutually parallel curves encircling the annulus and y
small nul-homotopic curves (which may be nested). Note that x < j .
Then

This is because the isotopy in the above annulus induces a regular
isotopy of the diagram consisting of e in the square of βij. The
end of the regular isotopy is ux in μ ί ) X, together with y components
with no crossing. Then
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However, (βj, e) = δx+y, so the result now follows since (<pj , ) and
(βj, ) agree on a base of Vjn.

Now, for r e { 2 , 3 , 4 , 5 , 6 } inspection shows that when A =
eπι/2r thg bi i i n e a r form

is degenerate, and that ( , «r_i) can be expressed as a linear com-
bination of the ( , gk) where the gk are the base elements of V™t

other than ur-\. For example, consider the case when r = 4. Then
4̂ = eπ*/8 a n c ι § — -y/2. The matrix of Figure 5 is singular, and

(1, 1, 1, \/2, \/2) is an eigenvector with zero eigenvalue. If j > r-1
it will then also be true that ( , uj) = Σk( , α ^ ) for some α ^ e C ,
where the ek are the base elements of Vjn other than Uj. This is be-
cause the j arcs of Uj can be considered as r — 1 arcs beside j — r +1
arcs; if ( , MΓ-I> = E^( , Λ«k> then ( , w7) = Σk( > βkg£) w h e r e

ĝ " is the diagram gk with j - r + 1 extra vertical arcs.

LEMMA 2. Suppose that ( , wr_i) can be expressed as a linear com-
bination of the ( , gk) where the gk are the base elements of V™x

other than ur-\. Then (φj, ) = (βj, ) for all j = 0, 1, 2,

Proof. Suppose inductively that the lemma has been proved for all
integers less than j Lemma 1 starts this induction. If j > r -1, then

><*k*k)>
k

as explained above, the ek being base elements of Vjn other than Uj.
As before, ek when inserted into the diagram of Figure 7 produces
x{k) essential curves, x(k) < j , and y(k) inessential curves. Then

Pj, ek) = Σakδ
m(φx(k), ux(k))

k k

= Σ <*kδy{k)(*x(k) > uX(k)) (by the induction)
k

Thus (φk, uk) = (εk, uk) for A: = 0, 1, ... , j and so the proof of
Lemma 1 implies that (ψj, ) = (ε ;, ).
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Proof of the Theorem. Suppose that (L, /) and (1/, /') are framed
links with diagrams related as in Figure 3, L having n components,
where f(n + 1) = 1, and f'(s) = f(s) + (As)

2 foτs<n (As being
the linking number between L's and L'n+ι). If c € C(n, r), let c\ e
C(n + 1, r) be defined by c (s ) = c{s) for s < n, and c\{n + 1) = / .
Let D and D\ be diagrams of c *f L and c *f L1 that are the same
inside the squares of Figure 3 and outside consist of curves parallel
in the plane to those shown. Then t&(DJ) = w(D) + i + £"= 1 φ)Λ^.
From Lemma 2

ι=0

But V(c *f L) = (-^)~3ώ(2))(Z)> a similar expression holding for
cj *f V. Thus

r-2

1=0

Multiplying this by λ^λ^) -λC(n)(-A)3ΣcWfW and adding gives

Σ

Thus, if X(L, /) denotes the expression on the right of this equation,

It remains to consider the other basic move on framed link dia-
grams, namely when (L, /) is changed to (L", / " ) , a new framed
link that is equal to (L, /) except for the insertion of an extra un-
knotted component, unlinked from the original components, and with
framing - 1 . However, if links L\ and Li are separated by a 2-sphere
in R3, then V(LX UL2) = V{LX)V{L2). Hence

r-2

X(L", f") = X(L, ΛΣλK-Λ)-3'^/*--! V)

where i*-\U is / parallel copies of the unknot using the -1 framings
When A is a root of unity and 5 is the reflection of a link diagram
D, then (D) is the complex conjugate of (D). Hence V{i *__i C7) =
(-A)3ίΎi and X{L\ f") = κX(L9 f). But the n x n linking matrix
of L has signature σ and nullity i/,so \{n- σ -v) is the number
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of negative entries in a diagonalisation of the matrix. That number
is unchanged when (L, /) is changed (as in the first move above) to
(Lr, /') and increases by one if the change is to (L", / " ) . Hence
κr(σ+I/-π)/2X(L, /) is invariant under both types of move, and also,
of course, under ambient isotopy of L.

The above ideas generalise at once to give invariants of framed links
in the 3-manifold M3: Suppose that AT is a framed m-component
link in M3 where, as before, M3 is obtained by surgery on the framed
link (L, /) in S3. Then K can be regarded as a link with framing
g in S3 -L. If d: {1, 2, ... , m}->Z+, an invariant of (K,g,d)
is given by the expression

κiσ+V-n)/2

c€C{nyr)

xV((cud)*fUg(LuK)).

Of course, if d has all values 1 and M3 is S3, this reduces to V{K)
evaluated at A = eiπl2r.

It is disappointing that this proof can, at present, claim the theorem
only for r < 6. In the circumstances it seems reasonable to make
the conjecture (but see Appendix 2) that, in the matrix representing
( , ) with respect to the standard bases of V™x and V™{ the column
corresponding to ur-\ is a linear combination of the other columns
when A = eiπllr. This is a combinatorial problem, the matrix entries
being of the form (-A~2 - A2)N where N is the number of simple
closed curves that arise when one basic diagram is placed inside the
square and the other on the outside (see Figure 5). When r = 6
the matrix has 422 entries but there is enough symmetry available to
make manual calculation possible. For r = 7 there are 1322 entries.
Whenever the conjecture is correct, the above method shows Ir{M3)
to be an invariant. Note that the matrix does, of course, have zero
determinant for some value of A.

An explicit calculation of the λ\ appears in [4], where an exploration
is made of the possibility of interpreting Ir{M3) in terms of other,
more classical, 3-manifold invariants. Such an interpretation is to be
expected when r = 3, 4 or 6, because there are interpretations, in
terms of classical link invariants, of the Jones polynomial evaluated
at a third, fourth or sixth root of unity. No such interpretation is
available when r = 5.
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Appendix 1. The sequence of diagrams of Figure ~8 shows that the
two moves described above on framed links do indeed generate the
negative version of the first type of move. Here the numbers denote
framings.

Appendix 2. Subsequent to the writing of this paper, the conjecture
that follows the proof of the theorem, concerning the degeneracy of
( , ) on Vr°?l x V™χ when A = eπil2r, has been proved correct by
K. H. Ko and L. Smolinsky. Their Louisiana State University preprint
"A combinatorial matrix in 3-manifold theory" is to be published in
this Journal. The proof consists of a carefully controlled argument
concerning elementary row and column operations on the matrix rep-
resenting the form. When r < 6 the existence of λo, λ\, . . . , λr-2
solving the linear equations mentioned in the statement of the the-
orem can be verified by checking the non-singularity of, at worst, a
specific 5 x 5 matrix. For all values of r this non-singularity can be
proved using the additional information provided by Ko and Smolin-
sky that ( , ) is tftfft-degenerate on Vf^xVf1 for j < (r-2). Details
will appear elsewhere. Taken together, these papers become the ba-
sis of an elementary proof of the existence of a 3-manifold invariant,
associated to the Jones polynomial, for every root of unity. It tran-
spires that the solution to the above mentioned conjecture is inherent
(though not explicitly stated) in the paper "Index of subfactors" by
V. F. R. Jones (Invent. Math. 72 (1983), 1-25).
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