
PACIFIC JOURNAL OF MATHEMATICS
Vol. 149, No. 2, 1991

TORUS ORBITS IN G/P

HERMANN FLASCHKA AND LUC HAINE

Let G be a complex semisimple Lie group of rank /, with fixed
Borel subgroup B and maximal torus H. Let P be a standard
parabolic subgroup. The torus H acts on G/P by gP ι-> hgP.
The closure X in G/P of an orbit {hgP\h e H} is called a torus
orbit if it is /-dimensional and satisfies a certain genericity condition;
it is a rational algebraic variety whose structure is intimately related
to Lie theory, symplectic geometry, and the theory of convex bodies.
This paper presents: (1) an abstract description of the torus orbit X
by means of a rational polyhedral fan; (2) a description of the torus-
invariant divisor whose linear system provides a natural embedding
(the Plucker embedding) of X into a projective space; (3) a discus-
sion of the correspondence between this divisor and the momentum
mapping associated to the action on X of the compact torus T c H

(4) a list of generators of the ideal defining the Plucker embedding;
(5) a formula for the intersection multiplicity of certain important
torus invariant divisors on X.

We have encountered torus orbits in several problems, and the cal-
culations just mentioned have proved useful in those other studies. In
work with N. Ercolani, we find torus orbits as compactified (complex)
level varieties in a certain integrable Hamiltonian system, the so-called
Toda lattice. A. Bloch, T. Ratiu, and Flaschka use torus orbits in the
compact setting, K/T rather than G/B, to prove a convexity theo-
rem for a "Hermitian" Toda lattice (Duke Math. J., to appear). In
collaboration with R. Cushman, we study Grδbner bases for projec-
tive embeddings of torus orbits; these are simpler than, but in some
model cases dual to, the standard monomials on G/P itself. Finally,
the theory of integrable systems suggests that a detailed understanding
of torus orbits in loop groups might be useful and interesting.

Because the summary of necessary definitions from the theory of
toric varieties takes several pages (cf. §2), we devote this Introduction
mostly to a description of results that can be stated without much
specialized apparatus. Just a few words about items (1), (2), and (3)
above. In §3, we establish some properties of the image of the mo-
mentum map referred to in point (3); it is a convex polytope with
vertices in the weight lattice. The fan Δ defining X as toric variety is
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then constructed in Theorem 1, §4. A "Plϋcker" embedding is defined
and studied in §5. As one knows from Borel-Weil-Bott theory, G/P
can be embedded in a projective space by the sections of a certain
line bundle Lω, where ω (a sum of fundamental weights) charac-
terizes the parabolic subgroup P. The pullback L* of this bundle
to X c G/P embeds X in a (generally different) projective space.
The corresponding divisor on X is computed in Theorem 2, and the
dimension of the projective space in Theorem 3: it is equal to the
number of distinct weights in the representation of G with highest
weight ω.

Some of this material appears, in one form or other, in the literature,
e.g. [1], [3], [9]. We have not, however, seen the complete picture
spelled out in a way that makes it possible to do computations using
the extensive theory of toric varieties. The results provide a simple
and elegant illustration of toric varieties, and should be better known.

We now summarize the content of §§6 and 7. As mentioned already,
one may associate a weight ω = cot H h ωz , to the parabolic P.
Correspondingly, there is a representation (with highest weight ω) of
G on a vector space Vω with highest weight vector υω. The stabilizer
of vω is precisely P. Furthermore, the projectivization P(^ ω ) of the
orbit of G through vω is isomorphic to G/P. Let sf be the set of
all weights, listed with multiplicity if necessary, and choose a weight
vector vi* for each μ e srf . Then one may write υ eVω as

v = Σ πμυμ-

The πμ are called Plϋcker coordinates. Kostant found a set of qua-
dratic equations in the πμ which generates the ideal of P(^fω) in
P(Vω). In §6, we rewrite his equations, and extract an ideal for the
Plϋcker embedding of the torus orbit X.

THEOREM. The variety ¥{@ω) is defined by equations of the form

The generic torus orbit is defined by

πμπμ> =

Some of the equations (*) may degenerate to linear equations. Re-
member that weights with multiplicity > 1 are listed repeatedly; if
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μ1, v1 both label the weight β, then μ + μ' = μ + /? = μ + iΛ and the
factor πμ cancels from

πμπμ> = kπμπu>,

leaving πμ> = kπv>. In this way, the dimension of the projective space
in which X is naturally embedded can often be decreased; Theorem
4 gives the precise statement.

As already mentioned, this result is used elsewhere in a study of
Grobner bases of the ideals defining projective embeddings of torus
orbits.

Our final Theorem, in §7, is important for the analysis of the com-
plex Toda lattice. Let X be a torus orbit in G/B. Let Dj be the
torus invariant divisor defining the line bundle Lω .

THEOREM. The intersection number (D\ D{) is given by

(**) (Z>! ••/)/) = I » Ί / d e t C ,

where \W\ is the order of the Weyl group of G and C is the Cartan
matrix of G.

There is a similar formula for the intersection (Z), Z>; V{τ)),
where V(τ) is a suitable slice transverse to the intersection of the D; .
This computation uses all the formulas derived in the preparatory §§3,
4, and 5.

In the nonperiodic Toda lattice, the interest is in the cohomological
and set-theoretic intersection multiplicity of divisors linearly equiva-
lent to the Dj. These are the so-called "balances" of Painleve anal-
ysis. Empirical formulas were found by one of us (H.F.) in 1986,
and stimulated much of our subsequent work. Formulas like (**)
were announced by M. Adler and P. van Moerbeke at a conference
at MSRI in June 1989; in their setting, X is an additive torus orbit,
i.e., abelian variety, in a loop group, and the Dj are translates of
the theta-divisor; this is relevant to the periodic Toda lattice. It is not
clear at present why results about (C*/-invariant divisors should carry
over to a quite different situation with barely any change; a generaliza-
tion of the present paper to loop groups may provide some interesting
answers.

Acknowledgments. We thank Doug Pickrell for many helpful expla-
nations of Lie theory. H.F. was supported in part by the NSF and by
the AFOSR (through the Arizona Center for Mathematical Sciences).
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He was a member of the MSRI in Berkeley during the spring of 1989,
when portions of this work were done. L. H. is a Research Associate
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2. Notation and basic facts. In this section, we set down some Lie
theory notation and certain facts about torus orbits in homogeneous
spaces. The material will be used routinely in later sections, so the
reader might want to skim this part in order to become acquainted
with our conventions.

2.1. Lie theory. G is a simply connected complex semisimple Lie
group of rank /. Fix a Borel subgroup B and its torus H. The Lie
algebras are &, 38, and %?. The Weyl group is

W = Normalizer(i/)/#.

We denote its elements by w, and we do not distinguish between the
class w and a representative of that class unless, of course, the choice
of representative makes a difference.

The positive simple roots are a\, . . . , α/. The root system is R,
and the set of positive (resp. negative) roots is i?+ (resp. - i ? + ) . The
root lattice will be denoted by M , and the Euclidean space spanned
by M is called M R (this notation conforms to [8]). There is a natural
inner product ( , •) on M R . The Weyl group W acts on M R , pre-
serving the inner product. The reflection in a root β will be denoted
by Sβ . For a e R, we fix a root vector ea in the root space S?a \ thus
[ζ > e<χ] = ot{ξ)ea 9 ζ e JF. The homomorphism H —• C* induced by
a is denoted by exponent a:

The fundamental weights are called ω\, . . . , ω/. The coweights are
defined by

the Z-lattice generated by the ώj is called N, and the corresponding
Euclidean space is iVR. M and iV are dual; we denote the pairing by
( , •), so that {ώi, aj) = <Jy. The Weyl group W also acts on TVR .

Abstractly, one may identify iVR with the real part ^ R of the Lie
algebra of //, and M R with its dual ( ^ R ) * . The pairing ( , •) is
given by the Killing form.

A subgroup P of G containing B is called parabolic. Every para-
bolic P is associated with certain data. There is a subset S c {1,...,/}
determined by P; let S be the complement of S. Let -R+(S) be
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the set of negative roots in the root subsystem of R generated by
ak, k e S, and let -R+(S) = -i?+\ - R+(S). The Lie algebra & of
P has the direct sum decomposition

a€R+ ae-R+(S)

Set

this is a nilpotent Lie algebra, and & = Λ£ Θ ^ . Let iVp be the Lie
group NP = expΛ/>.

Let ωp, or ω for short, be the weight Σjes ωj This weight is
stabilized by the subgroup Ws of W generated by the reflections sak,

k eS. There is an irreducible representation pω of G, with highest
weight ω call the representation space Vω and the highest weight
vector vω. We use the same notation for the infinitesimal representa-
tion of 9. P is the subgroup of G that stabilizes the one-dimensional
complex vector space spanned by υω. The projectivization of the or-
bit @ω of G through vω can be identified with G/P:

P ( O = P({pω(g)vω\g e G}) = G/P.

This identification amounts to an embedding of the abstract algebraic
variety G/P into the projective space P(Kω).

Let Πω be the set of weights of the representation pω (weights that
have multiplicity are thought of as being listed several times). For each
μ e Π ω , choose a weight vector vμ. Every x e P(^fω) = G/P can be
written as

x = c Σ nλx)vμ-
μenω

the (nonzero) scalar c is arbitrary, since we are dealing with the pro-
jectivized orbit. The homogeneous coordinates [π^] on P(F ω ) are
called Plύcker coordinates. It is possible to introduce a Hermitian in-
ner product in Vω so that the weight vectors form an orthonormal
basis; moreover, the operators pω(ea) and pω(e-a) are adjoints of
each other, and elements of the compact real form of G are repre-
sented by unitary operators. The orbit P(^ ω ) is defined by a set of
equations in the [π^] we explain those later. For a (projectivized)
weight vector vμ to lie on P(0ω), it is necessary and sufficient that
μ G W ω = the orbit of the Weyl group through ω. Actually, since
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W$ stabilizes ω, the w 's range only over coset representatives from
W/Ws\ we write w e W/W$ for short.

Both the description of P in terms of the root subsystem -R+(S)
and as stabilizer of vω will be useful later.

EXAMPLE 1. Let G = SL(3, C). Take S = {2} c {1, 2}. The set
- J R + ( S ) is {—αi}, and -R+(S) = {-c*2, —αi - #2} . The subgroups
P and Np consist of matrices of the form

I 0 (Γ
= I * I

The weight ωp is the fundamental weight ω-i. The corresponding
representation pω2 acts on /\2 C 3 by g: v Λ w *-+ gv A gw . Evi-
dently, the parabolic P stabilizes the line through the highest weight
vector V\ Λ vι, or—equivalently—the plane spanned by v\ and V2
(iv\> 2̂> ^3} is the standard basis of C 3 ) . The orbit @ωi can be
identified with the set of all 2-planes in C 3 this is the dual projective
plane (CP 2)*. The Plϋcker coordinates are the standard homogeneous
coordinates \z\ \z\\zQ. D

2.2. Torus orbits. The complex torus H c G acts on G/P in the
obvious way:

H 3 h: gP H+ hgP = hgh~ιP.

The orbits of this action have dimension d, 0 < d < I. We are
interested primarily in /-dimensional orbits that are generic in a sense
we now define.

DEFINITION 1. For w e W/Ws, let Pw be the group wPw~{,
and let JVJ? = wNPw~ι. Let Z™ be the big cell of G/Pw, i.e. the
set of cosets gPw for which g has a factorization g = n^/?^ , with
nw e N™ and pw ePw .

One knows that Z™ is a Zariski open subset of G/Pw . It can also
be identified with a Zariski open subset of G/P.

LEMMA 1. There is a natural isomorphism G/Pw = G/P.

Proof Send gPw to # w P . This is bijective:

gPw = gipw ^ g-\gι e wPw-\ ^ w~
ιg~ιgfw e P

One should note that the argument does not depend on a choice of
representative for w . D
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LEMMA 2. The Zw cover G/P.

Proof. This follows from the Bruhat decomposition [2]. D

Terminology. A set Y = {hgP\h e H} is called an open torus orbit
(through gP). "Open" refers to the fact that Y is open in its closure;
it is almost never open in G/P. If dim Y = dim H = / = rank G, we
say that Y is maximal. We say that an open torus orbit Y is generic
if it is maximal and

Yc f) Zw.
wew)ws

The closure X of a generic open torus orbit it called a torus orbit.
The closure of an open torus orbit of dimension d < I will be called
a torus orbit, and there will be some qualifier like "codimension k "
or "lower-dimensional".

REMARK 1. (i) Since we are interested primarily in the closures of
generic open torus orbits, it seems reasonable to minimize the number
of adjectives in that case.

(ii) Suppose an open torus orbit Y meets Zw in one point

nwPw τ h e n a l l p O i n t s o f the form hnwh~ιPw are in the big cell of
G/Pw , so that Y c Zw . Thus, as soon as an open torus orbit meets

(iii) A point x e G/P belongs to Zw if and only if the Plucker
coordinate πw.ω(x) is nonzero. Therefore, an open torus orbit is
generic if and only if all Plucker coordinates πw.x(x), w e W/Ws,
are nonzero. This is the type of definition of "generic" used in [3].

(iv) One can prove that generic open torus orbits must have the
maximal dimension / see below.

Fix a torus orbit X in G/P. We now list certain properties of X.
The first result is proved in [3].

Fact 1. X contains the points wP, w e W/Ws they are invariant
under the action of H.

When G/P is realized as the projective variety @ω, the torus orbit
X C G/P also becomes a projective variety and so acquires a Kahler
form whose imaginary part, Ω, is symplectic. Let K be the compact
real form of G, and let T c K be the (compact) maximal torus whose
complexification is H. The action of T on G/P is Hamiltonian
with respect to Ω, and has a momentum mapping / : G/P —• ̂ * .
Here ^"* is the dual of the Lie algebra y of T (which is naturally
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identified with MR .) We are concerned only with the restriction of /
to a torus orbit X it will again be denoted by / .

Fact 2. The image J(X) of X under J is a closed convex polytope
in MR with vertices w ω, w e W/Ws. Furthermore, J(wP) = wω.

The proof is in [1] and [3]. It is important to note that Ω, J and
J(X) depend on a choice of projective embedding (into P(Vω), in the
present case); furthermore, the momentum map / is determined only
up to translation in MR . The normalization in Fact 2 is the customary
one; we return to this matter later. A fairly explicit description of
J(X) in terms of roots and weights is worked out in §3.

Fact 3. The set of regular values of the momentum map / : X —•
MR is the interior of J(X). The singular values of / lie on the
boundary of J(X). Each lower-dimensional torus orbit in X maps
onto a closed, lower-dimensional face of J{X), and each face is the
image of exactly one lower-dimensional torus orbit.

REMARK 2. Since dim J(X) = / for a generic torus orbit, it follows
from Fact 3 that dimX = /. A generic torus orbit is necessarily of
maximal dimension. α

The final result is a special case of Theorem 5.5 in [7].

Fact 4. Let τ be a codimension 1 face of J{X), and let Yτ be
the open torus orbit, of codimension 1 in X, whose image under /
is the relative interior of τ . Let μ e MR be normal to τ, and let
μ e NR = β?k be the element that is dual to μ via the Killing form.
Then:

(i) the torus exp tμ fixes the points of Yτ

(ii) the Weyl group stabilizer Wμ of μ permutes the vertices of τ
(iii) μ may be taken to be a Weyl group conjugate of one of the

fundamental weights ω\, ... , ω/.

We indicate briefly how this follows from Lerman's theorem. Ler-
man works with the compact group K and realizes G/P as a coadjoint
orbit, but this is a minor point. He is interested in singular values of
the momentum map from all of G/P to ^ * . He shows that the
irreducible components of the set of singular values have the form

convex hull of Wμ η,

where η is a vertex of J(X) and μ is Weyl group conjugate to some
a)j. In general, such a set intersects the interior of J(X). Atiyah's
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-ω,

FIGURE 1

result, Fact 3, guarantees that the singular values of / on X lie on
the faces of J(X). If now η is a vertex of τ , then by Fact 2 the set
W η consists of all vertices of J(X). To get exactly the vertices of
τ , one must cut down to a subgroup of W that leaves τ invariant.
According to Lerman, this subgroup is Wμ for some μ. It is generated
by reflections in roots orthogonal to μ, and since the face τ has
codimension 1, μ must be orthogonal to it.

EXAMPLE 1, CONTINUED. The torus diag(/*i, hi, h?) (with hihih
= 1) acts according to:

The fixed points are [1 : 0 : 0], etc. One checks that [ 0 : 0 : 1]
represents the plane v\ Λ v2, which is the coset idP [ 0 : 1 : 0 ] is the
plane v\ Av^= the coset

and so on. There are three one-dimensional open torus orbits: [* :
* : 0], [* :. 0 : * ] , and [0 : * : *] (" * " means a nonzero entry.) The
generic open torus orbit Y is [ * : * : * ] . In particular, Y = (CP2)*,
so that there is only one torus orbit, G/P itself.

One can find the Kahler form of G/P in [10], for example; the
polytope J(X) has vertices at the weights

W2, 0)2 ~ Oil = O)\ — 0)2 , 0)2 ~ Oί\ — Oί2 = —O)\

of the representation pωi, see Figure 1. The weight vectors are v\t\
V2 > vi Λ v3, and V2 Λ ̂ 3, which correspond to the fixed points, as just
explained. D
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2.3. Toric varieties. We collect some basic properties of toric vari-
eties. Our notation follows [8].

The theory of toric varieties deals with abstract manifolds equipped
with a torus action. The torus is isomporphic to (C*)z, just like H
in the preceding subsection, but it is not given quite so explicitly: one
starts with dual lattices N and M, and thinks of the torus as a group
of characters,

TV = Hom z (M, C*) = 7V®zC*.

Thus, an element of 7V is a function t: M —• C* satisfying
t(m + m1) = t(m)t(mf), ί(0) = 1. Points of the lattice N give rise to
algebraic one-parameter subgroups of TN according to

ί c(.) = c<*' >, C G C * .

In Lie group notation, one would set s = logc and write the one-
parameter subgroup as expsn. The corresponding character is deter-
mined by the values of the roots on the subgroup: t(m) = (expsn)m .

DEFINITION. A subset σ of NR is a strongly convex rational poly-
hedral cone if there exist rt\, ... ,nreN such that

σ = {a\nι H + arnr\ai > 0, V/}

and σ n (-σ) = {0}.

DEFINITION. A fan in NR is a finite collection Δ of strongly convex
rational polyhedral cones satisfying the following conditions: (i) Every
face of any σ e A is in Δ (ii) for all σ, & G Δ, the intersection σΠσ'
again belongs to Δ (iii) \JσeA σ = NR.

REMARK. Oda calls this a finite complete fan, but since we consider
no other kind we drop the adjectives. See Figure 2 below for a picture
of a fan. D

To a fan Δ, one associates an abstract variety with torus action.
We review the steps.

Let σ G Δ. The dual cone is the set

Set S?a = M Π σ. 5% is an additive semigroup. A character of S?G is
a function u: S?σ H-> C satisfying

M(0) = 1, u(m + m') = u(m)u(mf), m,mfe^σ.

Note that u is allowed to be zero. Let Uσ be the set of all characters
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PROPOSITION [8, Prop. 1.2, abbreviated]. Let m\, . . . , mp e S?G be
elements such that

S?a = Z>omi + + Z>omp.

Define e(m)(w) = w(m). TΆe map

is one-to-one, and if Uσ is identified with its image, it becomes an
irreducible normal ajfine variety.

The Uσ, σ e A, are patched together as follows. Let τ = σ n σ'.
Its dual τ contains both σ and σ'. There exist [8, Proposition 1.3]
moE^j and m'o e ^ such that

(ra0, τ) = (m(), τ) = 0

and
τ = * Θ R>o(-mo) = σ' Θ R>0(-m()).

Note that if w is a character on τ , it must satisfy

u(mo)u(-mo) = w(m0 + (-m 0)) = M(0) = 1,

so that tt(mo) ^ 0. Likewise, w(mό) ^ 0. This characterizes the
intersection Uσ Π Uσ>. If w € C/σ, extend it to ϊ n M and restrict it
to Uσ* that defines the transition functions.

PROPOSITION [8, Theorem 1.4, abbreviated]. The Uσ, σ e Δ, g/we
together to define a complete (but not necessarily projective) algebraic
variety denoted by 7V emb(Δ). Such a variety is called a tone variety.

EXAMPLE 2. Because we will use this example to illustrate certain
points later on, we go against our conventions this one time and let
N be the coroot lattice and M the weight lattice of the Lie algebra
A2 = sl(3, C). The computations that follow are related to Example
1, but that won't be clear until the end of this section.

Consider the fan Δ and the dual cones depicted in Figure 2.
Look at the dual cone β\. The lattice semigroup S& = ά\ Π M is

generated over Z>o by three elements, ω\ + ω2, 2ω\ - ω2, and ω\.
Call them m\,m2 and m$. Since

(co\ + ω2) + (2co\ - ω2) = 3ωi,

a character u must satisfy

u(co\ + ω2)u(2ω\ - ω2) = u(ω\)3.
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ω;-2ω2

Therefore we have, identically on Uσχ,

e(m1)e(m2) = e

Set e(rrii) = Xi. Uσχ is identified with its image in C 3 under (e(mi),
e(m 2), e(m3)): it is the affine variety X\X2 = x\.

Likewise, for the cones σ2 and σ?>, we set

2ω2), e(-2ω{ + ω2), e(ω2 - = (^i, y2,

and

(e(ωi - 2ω 2 ) , e(-ωi - ω2), e(-ω 2 )) = (*i, z 2 , z 3).

The equations defining the affine varieties are the same:

= ^ 3 * 1 * 2 = *3

We show how to find the transition functions. Consider σ\Πσ2.
This is the one-dimensional cone τ through άi + 2ά2, with dual τ =
the upper half plane in M R . The annihilators of τ are

The intersection C/̂  n C/̂  is defined by x2 Φ 0, y2 Φ 0. To get the
transition functions, compute as follows:

ω2)u(-2ωi + ω2) = u{-ω\ + 2ω2),

which implies
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In this way, one finds

Z2=l/X\, Z3=

These three affine varieties, together with the transition functions, de-
fine the variety Tjvemb(Δ). It is easy to check that T/vemb(Δ) can be
defined by a single equation in homogeneous coordinates [w0 : w\ :
w2 : W3] in C P 3 ,

WQW\W2 = W3.

The surface has three singularities of type A2, and is birational to
C P 2 . It contains the torus 7V as open dense subset: indeed, Uσχ Π
Uσ2 Π C/σ3 is the set of all nonzero characters, which is identified with
TN.

 3 D

We now explain what polytopes in ΛΓR have to do with fans in JVR .
Γ^emb(Δ) is an abstract algebraic variety. One tries to embed

it in a projective space. To this end, one needs an ample divisor.
By [8, Corollary 2.5], it is enough to look for ample torus-invariant
divisors. Such divisors are unions of codimension 1 torus suborbits
in TN emb(Δ), which can be described in terms of the fan Δ.

For each edge p (= one-dimensional face in Δ), the characters u
on Mπp1 define a codimension 1 toric subvariety V(p) of Tn emb(Δ)
[8, Proposition 1.6], and all such subvarieties are obtained in this way.
A torus-invariant divisor (and hence every divisor, up to linear equiva-
lence) is determined by assigning an integer (the multiplicity) to each
edge in Δ. The multiplicities are encoded in a function h which
carries additional information about the divisor.

DEFINITION. Let h: JVR —> R be a continuous function which as-
sumes integer values on N and is linear on each a e Δ. Such a
function is called a bAinear support function; we write h e SF(iV, Δ).
If h(x + x1) >h(x) + h(xf) for all x, x' e JVR , we say that h is upper
convex, and if the inequality is strict when x, x1 belong to different
cones a, σ1 of Δ, h is said to be strictly upper convex.

THEOREM [8, Proposition 2.1, Corollaries 2.14, 2.15]. If p is an edge
in Δ, let n(p) e N be the minimal lattice generator. Let h e SF(JV, Δ)
be strictly upper convex. Then the divisor
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is ample {and very ample if TN emb(Δ) is nonsingular). On each cone
σ e Δ , h is defined by

h{x) = (lσ,x)

for a certain lσ e M. The convex hull of the lσ is a polytope Πh in
MR. The dimension of H°(X, <fχ(Dh)) equals the number of lattice
points on and inside D^ .

REMARK. AS is pointed out in [8], the sign convention is pecu-
liar. To get positive multiplicities, one must assign negative values to
h(n{p)). π

This beautiful theorem opens the door to the detailed study of toric
varieties. As explained in [8, Chapter 2], there is a 1-1 correspondence
between torus-invariant divisors and Δ-linear support functions. Fur-
thermore, every divisor is linearly equivalent to a torus-invariant one.
For each h, there is a (possibly empty) polytope D^, whose definition
is different from the one in the theorem when h is not upper convex.
The number of lattice points in D^ always gives dimH°(X, <fχ{Dh)).

One of our goals is to find the D^ corresponding to the Vω em-
bedding of a torus orbit in G/P, and to relate it to the momentum
polytope J(X).

EXAMPLE 2, CONTINUED. Thus far, an abstract toric variety
7Vemb(Δ) was realized as WQW\W2 = w% in C P 3 . We compute
the hyperplane divisor and the corresponding function h.

Take the edge p through άi + 2ά2 (see Figure 2). In the cone
ά\, p1 is the line through 2ω\ - o)2. A character on M n ρL is one
that vanishes on the other two generators of άiΠM. Under the map
e( ), this corresponds to X\ = χ 3 = 0. Similarly, one sees that the
edge through άi - hi corresponds to xι = 0 and the edge through
- 2 ά i - QL2 to yι = 0 .

Now, a hyperplane section of the embedding into CP 3 is W3 = 0.
Its divisor on WQW\W2 = W% is torus invariant. It has three irreducible
components: Wi = 0 , W2 = 0, and WQ = 0, which correspond,
respectively, to x\ = 0, X2 = 0, and y2 = 0. Thus, the divisor can
be written

V(&ι + 2ά2) + V(άχ - ά2) + K(-2άi - ά 2 ).

These multiplicities are provided by the function h defined by

(-ωi , •) on σ\, (ωi - ω 2 , •) on σ2, (ω2, •) on σ3.

The polytope D^ is just the triangle in Figure 1. D
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We can now explain the point of this example.
(1) Associated to a projective embedding of a toric variety

TN emb(Δ), there is a polytope D^ with vertices in M (the root lat-
tice, in our setting);

(2) associated to a projective embedding of a torus orbit X in G/P,
there is the momentum polytope J{X) with vertices in the weight
lattice (Fact 2).

[8, Theorem 2.22] also describes an inverse to the construction 1):
(3) Given a convex polytope D with vertices in M, there is a fan

Δ(D) and an h = hΏ e SF(N, Δ(D)) such that • = ΠA .
In Example 1, we computed J{X) for the torus orbit X = (CP2)*.

The fan in Example 2 corresponds to this polytope under the inverse
construction 3); this emerges at the end of the example, when it is seen
that Πh = J(X). Obviously, the singular variety TN emb(Δ) found in
Example 2 is not the original X. Thus, the sequence of constructions

X -> J(X) - A(J(X)) -> TNemb(A(J(X)))

does not return to the starting point. In the next two sections, we
compute the correct fans and polytopes that describe torus orbits and
their projective embeddings.

3. The momentum polytope According to Fact 2, §2, the image
J(X) of X under the momentum map of the action of the compact
torus is the convex hull of the Weyl group orbit W ω. We shall need
quite a bit of information about this polytope. Some of the results are
probably known, but since there seems to be no convenient reference,
we supply the (short) proofs.

DEFINITION 2. The convex polyhedral cone, with vertex at ω, gen-
erated by the edges of J(X) emanating from ω, is denoted by ω+B.

First we describe the edges that generate the cone ω + B. The
geometry is fairly clear. The weight ω lies in the intersection of
/ - \S\ walls of the positive Weyl chamber, and in the closure of \WS\
many Weyl group translates of that chamber. To get the edges leaving
ω, one must reflect ω in the \S\ "opposite" walls of each chamber
containing ω. In general, not all of the images will be distinct.

LEMMA 3. ω + B = ω + Σjes,wews R>o^(-«;)

Proof. Let K be the cone defined by the sum on the right. Since
the generators of ω + K are wsa ω (j e S, w e Ws), which are
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vertices of J(X), it is clear that ω + B contains ω + K. We must
show the other inclusion.

The proof goes by induction on the level of weights in the orbit

W - ω. If μ = ω - Σ ^ = 1 rijctj is a weight, its level L(μ) is defined to

be Σ y = 1 Πj. We make the induction hypothesis:

when L(w ώ) < r, then w - ωeω + K.

This is clearly true for r = 0 (the only weight being ω itself) and
for r = 1, where the weights are sa (ω) = ω - a}?, j e S. Suppose
it true up to level r. We must show that if μ e W - ω is a weight
with L(μ) < r (assumed to lie in ω + K) and sa is a reflection in
a simple root, then μf = sa(μ) e ω + K. Of course, we need only
consider α, for which μ' has level r + 1. If / ^ S, then ,sα e W^
this reflection stabilizes both ω and ^Γ, and so μf e ω + K. If
i eS, then 5α (//) = μ - na\ (for an integer ri), and this is clearly in
ω + K. ι Ώ

COROLLARY 1. Let X be a torus orbit in G/B. The weight ω
is δ = ω\ + - - + ω\. There are precisely I edges emanating from
each vertex w δ of J{X): they connect w δ to w δ + w(-o>j),
7 = 1 , . . . , / .

Proof. At the vertex δ, this follows from the Lemma, since W$ =
{id}. Apply w e W to get the conclusion for the other vertices. D

COROLLARY 2. If μ and μ' are two vertices of J{X) connected by
an edge, then μ- μ1 is a root.

REMARK. This result improves on the characterization of " ((?, P)-
hypersimplex" in [3, §7], at least for generic torus orbits. There, it
is shown that every edge μ - μf of J(X) (for possibly nongeneric
X) is a real multiple of a root. (The argument is not quite correct.)
Compare also Lemma 4 in [6]. D

Proof. For edges issuing from ω, this is just the definition of K._
Apply the Weyl group to get the result at the other vertices. D

DEFINITION 3. Let C~ be the cone in Λ/R spanned by -a\, . . . ,
—α/. The dual cone C~ is spanned by the negatives of the funda-
mental coweights. It might be called the "negative co-Weyl chamber."
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LEMMA 4. B = I L^Us w C " .

Proof. If w e Ws , then w α,, j € S, always contains α/, so it
is a positive root. Thus, for 1 < i < /, j e S, and w, w' G WS , we
have

{w(-ώi), tu ;(-α/)) = (ώ/, t/;" 1 ^' αy )
= (ώ/, positive root) > 0,

which, by Lemma 3, shows that w C~ c B, for all w e M^.
To establish the other inclusion, we need only show that

(*) if x G NR , there exists some w G Ws such that

(x, w(-aj)) > 0 for all j φ S.

Indeed, if x G B, then for this choice of w G W^, we see from
Lemma 3 that

{x9w(-aj))>0 for all je S,

which shows that x ew - C~ .
Let us prove (*). Introduce the Lie algebra %? generated by the α 7 ,

j' £ S. Let N be the coweight lattice of 9, considered as sublattice
of N. Every x € NR has a decomposition

ieS

Since Ws is the Weyl group of 9, there exists some w e W$ such
that io-1 y belongs to the "negative co-Weyl chamber" of &, i.e.

{y,w(-aj))>0 for all; £ S.
Because w stabilizes ώ, , / G S, we have

( / ώ / , t ι ; (-α;)\ = ( J^λίώ,-, - α Λ = 0 for all j φ S.
\ies I \ieS I

Hence

(x, w(-aj)) > 0 for all j $ S

as desired. α

COROLLARY 3. B =

. This follows from a simple property of duality: for any finite
collection J / of closed convex cones,

(
\σ€s/

if Uσe^σ is convex.
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DEFINITION 4. Let σ id be the cone in Λ/R generated by the roots
in -R+(S).

LEMMA 5. σ^ = B.

Proof If w e Ws and e S, then w{-aj) e -R+(S). Thus, by
Lemma 3, B c did By Corollary 3, the other inclusion is established
if we show that

-i?+(S) c

wews

This, however, is obvious. If a e -R+(S), it has a simple root -aj
as a summand, for some j eS. Then for w eW$, wa still contains
—α/, so it is a negative root and w α e C~ . D

LEMMA 6. Π ω c 7 ( I ) .

REMARK. In [3], this is attributed to [1], but we could not find the
result in Atiyah's paper. It is probably standard. D

Proof. Let μ e Uω. It has the form

7=1

or μ = ω + a with a € C" . For all w eW, one has w - μ < ω [4].
If lί; G W^, then w - ω = ω, and ω>-tί; /ι = ω + iί; Q: implies that
tϋ α € C" . It follows that

a e p| W - C~ ,

whence by Corollary 3,

Πωcω + B.

Now choose another point w - ω in the orbit W ω. Declare the.
Weyl chamber containing this weight to be positive, and repeat the*
argument above with the corresponding new set of simple roots. It
follows that Π ω is contained in the intersection of all the cones with
vertices in Wω and generated by the edges of J(X) at those vertices,
and that set is precisely J(X). •
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LEMMA 7. If ae -B+(S), then ω + a e Π ω .

Proof Let a e -R+(S). Write

A: £ S

Since ω = Σ/ G s ωJ> w e ^ a v e

(ω, a) < 0.

Because ω - a is not a weight, it follows that ω + a is a weight. D

4. The fan of a torus orbit. We will show that a torus orbit in G/P
is a toric variety 7# emb(Δ) according to our conventions, the fan Δ
will lie in the space NR generated by the coweight lattice, while the
dual cones lie in MR , the Euclidean space containing the root lattice.

Let X be a fixed torus orbit. Set Zw = Zw nX. The Zw cover
X by Lemma 2, and because X is generic, the Zw are nonempty.
They will be shown to correspond to the affine varieties Uσ for the
maximal-dimensional cones σ of a certain fan Δ.

LEMMA 8. Fix an ordering of the roots in ~i?+(5 r). Every n e Np
has a unique factorization

aβ-R+(S)

where ξa € % , and the product is taken in the chosen ordering of
the α.

This is standard; see, for example, [2, Ch. 14]. We write ξa = caea,
and refer to the ca e C as *Ae coordinates of neNP.

REMARK. A similar factorization holds for elements of Nfi . D
REMARK 3. Let Xo be the generic open torus orbit in X (so

that X = Xo). B y definition, Xo C f]wew/w z w O n t h e o t h e r

hand, if Λ: G f| Z™ , then by Remark 2, the open torus orbit through
x is generic, so it has dimension /. But X contains only one /-
dimensional open torus orbit, so that

χ o = Π zw π

wew)ws

When XQ is thought of as subset of Zw , we will call it Z<f . The
goal now is to define a cone S^w of lattice points in M, and to iden-
tify Zff with a certain set of characters on S<JW . Then, the lower-
dimensional open torus orbits in Zw are identified with characters
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supported on the lower-dimensional faces of <9p

(Jw. In this way, we
build the dual cones σw and piece together the afϊine varieties Uσ.
It will suffice to do the construction for w = id the results for Zw

follow upon conjugation by w . For simplicity, write Z and ZQ for
Z i d and Zf.

Once and for all, pick a reference point

n°PeX0 = Π Zw,
wew)ws

and write its coordinates with respect to G/P as c®. The torus H
acts on n°P as follows:

(1)
ae-R+(S) a€-R+(S)

DEFINITION 5. Let x = hn°h~ιP e Z o . Define the character ux

on ^r.d = σiά Π ΛfR by

(2) ux(a) = h°9 ae-R+(S)

(for σid see Definition 4). Extend ux to all of 5?σ. by the rules
id

KJC(O) = 1, Wχ(m + m') = ux(m)ux(m').

Let t/£ be the set of characters obtained in this way.
REMARK. Note that by definition, ux is never zero on ̂ . d . There-

fore, U® is a proper subset of the set Uσ. of all characters. α
id l d

We now associate a character of c5̂ .d to the remaining points of Z .
The argument is carried out in detail only for characters corresponding
to the points of (nongeneric) codimension 1 open torus orbits in Z .
It will be clear that the extension to smaller nongeneric open torus
orbits in Z requires more complicated notation but no new ideas.

Let Y be a codimension 1 open torus orbit in X. By Facts 3 and 4,
§2, the one-dimensional stabilizer torus exp tμ of Y is generated by
a / /€ MR that is normal to a codimension 1 face of the momentum
polytope J{X). Assume first that this face contains the vertex ω of
J(X). Then by Lemma 5, μ is normal to a codimension 1 face τ of
σid. In the expression

(3)
aβ-R+(S)

there are factors with a(μ) = 0 (when a e τ) and factors with a(μ) Φ
0. Change the sign of μ, if necessary, to make a(μ) < 0 for all
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a € -R+(S). This is possible because the whole cone σid lies on one
side of τ. As t -• oo, the factors with a(μ) < 0 tend to the identity
element, and the limit is

The point n°{τ)P still belongs to the big cell of G/P (it has an NPP
factorization); hence it lies in Z . The (/ - l)-dimensional torus gen-
erated by the annihilator of μ in ^ = iVR acts in the usual way:

(4)
aβτ

It follows from (4) that the whole orbit Y lies in Z . Now define a
character on points of the form (4) by setting

ha, i f α e τ ,

05 i f α ^ τ .

Extend it to σ^ n MR according to the usual rule.
The codimension 1 open torus orbits associated to faces of ofa are

in fact the only ones that meet Z . Take any codimension 1 open
torus orbit Y. Let

(5) n(Y)P=
aE-R+(S)

be a point in F n Z , Since Uω c J(X), there exists a ξ e NR = ^
such that ω(ί) > //(ί) for all μ e Π ω , μ Φ ω. In particular, since
(by Lemma 7) ω + α € Πω for all α 6 -R+(S),

(6) ω({)>(ω + α)({)<*α({)<0 for all α € -

and therefore

(7) lim etin{Y)Pe'tξ = lim TT exp(eία(^cjeα) = id P.
t—+oo t—+oo •*• -*•

ae-R+(S)

This shows that idP e Ύ9 and since J(idP) = ω (see Fact 2 in
§2), the face of J(X) associated to Ύ contains ω.

Entirely similar arguments establish a correspondence between codi-
mension k open torus orbits in Z and the relative interiors of codi-
mension k faces of σ^. The only difference is that the stabilizers are
now generated by k elements μ\, ... , μ^ in JYR, all of which are
normal to a codimension k face of σ^.
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FIGURE 3

We have now associated a character ux on ^ . d to each point x e
Z . There are, in fact no other characters: if u is a character, define
xeZ by

x= Yl exp(u(a)c°ea).
a€-R+(S)

It is easy to see that this definition is consistent.
To complete the identification of the torus orbit X with an abstract

toric variety 7V emb(Δ), one must construct the fan Δ in NR and
verify that the patches Uσ glue together as described in 2.3.

σiά= (J
THEOREM 1. Set

The fan A of X consists of the cones w
their faces.

, for w e W/Ws, and all

Proof. It follows from Lemmas 4 and 5 that the cones σ^ and σ^
are dual. The verification of the patching conditions is tedious but
straightforward, and is omitted. D

EXAMPLE 1, CONTINUED. Consider again the torus orbit X = (CP2)*
= G/P. The fan described in Theorem 1 is drawn in Figure 3.

In the next section, we show how to compute the polytope D^
that determines the embedding of this toric variety into P(F ω 2). I t
is related to, but not quite the same as, the momentum polytope
J(X). D

5 The Plucker embedding of a torus orbit. The Plϋcker embedding
of G/P into P(Vω) can be described in terms of a certain very ample
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line bundle Lω on G/P. The weight ω defines a character χω on
the parabolic subgroup P,

and Lω is the quotient of G x C by the equivalence relation

with g eG, c eC, and p e P. The space H°(G/P, Lω) of global
sections of Lω may be identified with the set of holomorphic func-
tions s: G -• C satisfying

One possible basis for this space is provided by the Plϋcker coordinates

In this section, we compute the puUback L* (necessarily very ample
on X) of Lω to a generic torus orbit X c G/P. The projective
embedding defined by L* will be called the Plύcker embedding of the
torus orbit.

Let h € SF(iV, Δ). It defines a torus-invariant divisor D^ and an
equivariant line bundle L^ (an invertible sheaf, if the torus orbit X
is singular). We compute its transition functions. Each me M deter-
mines a holomorphic function e(m) on the torus 7V. This function
extends to a rational function, still called e(m), on X = Γjvemb(Δ).
The divisor of e(m) is a principal torus invariant divisor on X. One
has div(e(-m)) = Dh with h = (m, •) on each cone σ e Δ [8, Propo-
sition 2.1]. Furthermore, a codimension one toric subvariety V(p) of
X meets an affine set Uσ only when p is an edge of σ [8, Propo-
sition 1.6]. Now Dh, by its very definition, coincides on Uσ with
div(e(-/σ)). It then follows that the transition functions are given by

φσ'σ(u) = <lσ-iσ>){u) ont/σnt/σ ' .

Notice that since lσ = lσ> on σ n σ', one has

whence both functions t{lσ-lσ») and e(/σ'-/σ) are holomorphic and
nonzero on ί7σ Π ί/σ/.

THEOREM 2. Lei X be a torus orbit in G/P. 77*e puUback L% of
the line bundle Lω from G/P to X can be defined by

h = (w - ω - ω, •) on w σ id, w e W/Ws.

The proof is based on a sequence of simple lemmas.
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LEMMA 9. The image Zw of the big cell of G/Pw under the iso-
morphism G/Pw = G/P in Lemma 1 can be identified as

Zw = {gP\w~ιgP e big cell of G/P}.

Proof. Remembering that the isomorphism in question sends gPw

to gwP, we have

gP eZw & gP = wnP for some neNP

& WιgP = nP& w~ιgP e big cell of G/P. π

LEMMA 10. The line bundle Lω can be trivialized over the covering
Zw of G/P. For fixed choices of the coset representatives of the Weyl
group elements, the transition functions

Ψw.w:z»nzw'-*σ
of Lω are given by

where p,pf eP are defined by

g = wnp = wfnfpf, n, nf e Np.

Proof Let [(g, c)] e Lω with gP e Zw. By Lemma 9, we can
factor

w~ιg = np, neNp,ρeP,

and then
(g,c) = (wnp, c) - (wn, χω{p)c).

Define a trivialization ψw on Zw by

The rest is clear. If a different coset representative for w is chosen,
then ψw is multiplied by a nonzero constant of the form χω(h),
h eH, and the corresponding cocycles differ by a coboundary. D

LEMMA 11. Let β e -R+(S) and assume that there is an edge of
J(X) from ω to ω + β. Let

exρ(caea) e NP.
ae-R+(S)

Then

with kβ a nonzero constant independent of n.
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Proof. If there is an edge of J(X) from ω to ω + jί, ω + jί is
a vertex of J(X) and so lies in the orbit W ω. It is a weight of
multiplicity 1. Hence pω(eβ)vω = kβυ

ω+P with kβ φθ. One easily
computes that

= ί;" + kβCβV
ω+P + Σ kaCaVω+a +

The " " represent terms involving weight vectors υμ for weights μ
of the following form:

Πj e Z>0, jj e -R+(S), and rij>2ifs= 1.

7=1

If s = 1, then μ Φ ω + β since «y is not a root when « > 2. If
s > 2, then ]CJ=1 π777 is a sum of at least two lattice points in &&,
and there can be no edge from ω to μ in ω + σiά D J(X). It follows
that the coefficient of vω+β in pω(n)vω is precisely kβCβ, as was to
be shown. D

REMARK. Lemma 11 does not deal specifically with torus orbits.
If nP lies on a torus orbit through some generic reference point
n°P, then the conclusion remains true even if there is no edge from
ω to ω + β. (Remember that, by Lemma 7, ω + β e Πω when
β e -JR+(S)). The argument, however, seems to require the Plucker
equations for the torus orbit (cf. §6). D

Proof of Theorem 2. First we need to show that h is integral and
continuous. Integrality is clear: w ω is a weight, so wω-ω is a root
and belongs to the lattice M. To prove continuity, it suffices to show
that if p = R>QΠP , np e N, is an edge common to w σid and wf σ^,
then ((w - wf) ω, np) = 0. The edge p defines a codimension one
torus suborbit V(p) of X [8, Proposition 1.6]. According to Fact 4,
§2, the corresponding codimension 1 face τ of J(X) annihilates np.
Furthermore, since p is common to w σiά and wf σiά, V(p) meets
Uw.σ.d and L^'.σ . As we saw in §4 (cf. computation of transition
functions between the Uσ), τ contains both w ω and tu; ω, which
gives ((w -wr) ω, np) = 0 as desired.

Let us denote by ψw*w (respectively, φw»w) the cocycles defining
L* (respectively Lh) over the covering Zw = Zw Γ\X of X. The
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rest of the argument consists in showing that

(8) Ψw'w = <Pw'w-jr>

with cw some nonzero constant. The cocycles ψ and φ therefore
differ by a coboundary, and the line bundles are isomorphic.

We first observe that it suffices to establish (8) for adjacent cones
w σjd, w' σ|d (i.e., the cones intersect in a codimension one face).
Indeed, since UCΓGΔ 0" = NΈL > a nY tw<> cones w σ i d, w' <τid can be
connected by a sequence

w σiά = W! σ i d, w2 crid, . . . , wn σ id = li;' σ id

with Wj σiά a n ( i w/+r0ίd adjacent. If now (8) is proved for adjacent
cones, then by the cocycle condition we have

ψwxw^ = ψwιw2ψw2w%

 = 9wlw29w2w3—
L—" = 9wtw3—

L

2 3 3

on Zwι Π Z^2 n Z^3. Because this intersection contains the unique
open dense torus orbit, we have

__ Cw\ yw n yw

by continuity, and then (8) follows by induction.
To prove (8) for adjacent cones, we may assume that w' = id. For

neNp, Lemma 10 gives

Ψidw(*P) = Xωl(P)>

with p uniquely determined by w~ιn = n'p, n1 e iVp, p e P. From
this we obtain (omitting the symbol /?ω for ease of notation)

(9) Ψidw(nP) = (pvω, vω)

= (w-ιnvω,vω)

= aw(nvω,vw'ω), aw^0.

In the last two steps, we used properties of ( , •) mentioned in §2.1.
Recall that Z i d and Uσ. are identified by

ae-R+(S)

and that the cocyle defining L^ is

(10) <Pidw(u) = e(lw - /id)(w) = e(w ω - ω)(κ) = u(w ω-ω).
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An argument similar to that used to prove continuity of h shows that
the cones σiά and w σiά are adjacent if and only if ω and w-ω are
connected by an edge in J(X). By Lemma 3, then, w ω = ω + β
with β e -R+{S), and by Lemma 11,

Note that c^ Φ 0 because the reference point n° was chosen to be
generic. Combining (9) and (10), we get

= cwφiάw ,

where c^ is normalized to be 1. This concludes the proof. D

EXAMPLE 1, CONTINUED. For the fan in Figure 3, we define h to
be 0 on <τid, ( - α 2 , •) on s2 <τid, and (-αi - α 2 , •) on ΛΊ^2 σ i d;
here 5Ί , s*2 are the fundamental reflections in a\, α 2 . The divisor is
DΛ = K(ώ 2 ). This is the hyperplane divisor on (CP2)*, which gives
the standard embedding into C P 2 . D

Notice in this example that D^ = / ( X ) - ω 2 : thepolytope D^ from
toric variety theory is a translate of the momentum polytope. This is
true in general.

COROLLARY 4. In the setting of Theorem 2, Πh = J(X) - ω.

Proof. Because L* is very ample, [8, Theorem 2.13] says that Dh is
the convex hull of the lσ for σ running over the maximal dimensional
cones in Δ. Thus, D^ is the convex hull of the points wco-ω, w e
W/Ws. Ώ

We now compute the dimension of H°(X, L%), which, according
to [8, Corollary 2.9], is #(Ώh Π M), the number of points of the root
lattice on and inside D^ .

THEOREM 3. Let X be a torus orbit. Then dimH°(X, L%) = the
number of distinct weights in the weight system Π ω of the representa-
tion pω.

Proof. From Lemma 6, the number of distinct weights in Π ω is
the number of weight lattice points congruent to ω (modulo the root
lattice) in the convex hull of W ω. By Corollary 4, that is precisely
the number of points of the root lattice M on and inside Ώh . D

EXAMPLE 3. Let G = G2, and take a\ to be a long root. Let
S = {1}. Then ω = ω\ = 2αi + 3α 2 , and the representation pω\ is
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the adjoint representation, which is 14-dimensionaL The flag variety
G/P\ is embedded (by Lω) into C P 1 3 . Since 0 is a weight of multi-
plicity 2, and all other weights ( = roots) have multiplicity 1, a torus
orbit X is embedded (by L*) into C P 1 2 . It is easy to check that
the polygon D^ from Theorem 2 is the hexagon with vertices at

0 , - α i , -3a\ - 3c*2 , —4αi - 6α2 , -3a\ - 60:2, -OL\ - 3c*2 >

and that it contains 13 points of the root lattice.
The polygon Ώh contains a lot of information. For example, there

is the following criterion for nonsingularity of a toric variety:

THEOREM [8, Theorem 2.22, abbreviated]. Let X = TVemb(Δ) be
a toric variety, let h define a very ample divisor Dh, and let D^ be the
corresponding poly tope in M R . Then X is nonsingular if and only if
the edges emanating from each vertex of Ώh are generated by a Z-basis
of the lattice M.

Now, the edges from the vertex 0 in our example go to —a\ and
- α i - 3α2, and these are certainly not a Z-basis of the root lattice M.
Hence, a torus orbit in G/P\ is singular. (This provides a counter-
example to Proposition 3.3.1 in [3].) D

REMARK 4. Example 1 and Corollary 4 show that the polytopes D^
and J(X) generally lie in different lattices, and can define different
toric varieties when the construction in [8] is used.

We have already mentioned that usually (e.g. in [1], [3]) the momen-
tum mapping on G/P is normalized so that the vertices of the image
lie in the weight lattice. The weight lattice is the character group of
the maximal torus H in the simply connected group G. Its center Z
acts trivially on G/P but (in general) nontrivially on Lω.

Other tori can act on G/P as well. A μ in the weight lattice defines
a character χμ of H. Let Z o = {ζ e Z\χμ(ζ) = 1}. The character
lattice of H/ZQ is a subgroup of the weight lattice. When μ = ω,
it becomes the root lattice M. Since the momentum map of the
Γ-action is defined only up to translation by a constant element of
^* = ΛfR, it is natural, when considering the action of H/ZQ , to
perform a translation J H-> / - μ. For the adjoint torus action of
interest to us, this agrees with Corollary 4.

We should also note that a torus 7V always acts effectively on
Γ/v emb(Δ). (Indeed, a t e TV is a homomorphism from M to
C*, and it acts on u e S?a by (tu)(m) = t(m)u(m). Thus, t acts
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as the identity only if t = 1.) It is impossible, therefore, to have a
non-effective action of TN on G/P and an effective action on a line
bundle over G/P (as is the case for if). D

EXAMPLE 4. The results obtained so far allow us to decide which
torus orbits in G/P are nonsingular, when G = SL(/ + 1, C). This
is somewhat tangential to the main concerns of the paper, so we only
give a brief summary.

PROPOSITION. Let G = SL(/ + 1, C). A torus orbit in G/P is non-
singular if and only if the weight ωp is either ω\ or ω/, or if it has
the form

for some i, j satisfying I < i < j <l.

The varieties G/P associated to ω\ and ω/ are CFι and (CPZ)*
they are themselves torus orbits (see Example 1), and are obviously
nonsingular. In the general case, we use the criterion mentioned in
Example 3.

Consider first a maximal parabolic Pk. Then S = {k}, and -R+(S)
consists of roots of the form

with i <k < j . None of these is a positive linear combination of the
others, so they all represent edges of the cone σ^. When 2 < k < / - 1 ,
we see via Lemma 5 that there are more than / edges at the vertex
id ω - ω = 0 of D/j, and such a torus orbit must be singular.

Warning. Remember that "torus orbit" means "generic". There are
nonsingular maximal orbits in G/Pk, but they are not generic. For
example, the generic torus orbit in G(2, 4) is singular, but there are
non-generic ones isomorphic to CP 2 .

Now let £ = {11,..., is}, so that ω = ωiχ + + ωis. For each
maximal parabolic Pt , abbreviate -R+({ij}) = -R+. One has

If
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then
= -(α; + ... + o f + ... + α , + + α, )

= - ( O j + + α / y) -(α/.+i + + aim + • • • + otj),

Since /? is a sum of two lattice points in σ^, it is not the generator of
an edge of σiά. If we remove all the sets -R+ n -R+ from -R+(S),

we are left with the edges of σ^. This is a property of SL(/ + 1, C),
and fails even for other classical groups.

It is not hard to see that -R+(S) is generated (over Z) by blocks
Qi > J Qi of roots; here Qi contains all roots of the form

(Π) ~Σak>

with the convention /0 = 0 5 is+\ = / + 1. An illustration is given
in Figure 4, for the weight ωι + ω^ of As. The blocks Q2 and Q4
are marked by o and o, while the remaining roots in -R+(S) are
indicated by . The roots of the parabolic are marked with *.

The roots in

(12)

f*
*
0

0

•

V

* *
* *
0 *

0 *

• o
• o

*

*

*

*

o

o

FIGURE
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u
k=l

*
*

*

*
*

*

4

*>
*
*
*
*

represent edges of D^ at the vertex 0. One sees from (11) that there
are / edges precisely when i\9 ... , is are consecutive integers. In
that case, it is easy to verify that the / edges in (12) are a Z-basis
for M. Π-

6. Plucker equations. We saw in Theorem 3 that a torus orbit X in
G/P naturally embeds into a projective space whose dimension is the
number of weights in the weight system Πωp (minus 1). This embed-
ding, which we called the Plucker embedding of X, is the restriction
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to X of the familiar Plucker embedding of G/P. In this section, we
derive the "Plucker equations" for this torus orbit embedding.

First, a short review of the Plucker equations for G/P realized as
V{(fω) is useful. Those equations are due to Kostant; his proof was
apparently first published in [6]. We use the form given in [5] and in
unpublished lecture notes by Dale Peterson:

THEOREM. Let G/P be realized as projectile highest weight orbit
Ϋ(&ω) in P(Kω). Pick a basis {ut} of & which is orthonormal with
respect to the Killing form. Let \ω\2 denote the squared length of ω
in the usual metric on the weight lattice. The quadratic equations

(PI) \ω\2x

generate the ideal of V(@ω) in F(Vω).

Every x eVω is a linear combination of weight vectors vμ, where
the μ run over the set sf of all weights, counted with multiplicity:

(13)

The coordinate-free relations (PI) produce many equations for the
Plucker coordinates nμ(x). These provide some perspective on our
result, so we give a brief summary.

Substitute (13) into (PI). The left side is

M 2

For each pair (μ, v) e srf x sf, we get an equation

(14) \ω\2πμ{x)πu{x)=
σ ,

The coefficients in the right side of (14) are complicated: one must
expand each pω{Ui)x in the basis {^}, collect terms, and so forth.
We cannot, and do not need to, describe them explicitly. It is possible,
however, to restrict the range of the summation on the right side of
(14).

If ξ e MT and x e Yψω), then exp(φ x € ?(<?ω) also. Insert
this into (13): we get
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and it follows that

If the same substitution is made in (14), one finds

σ ,

It is now easy, by letting ξ range over the subspace of NR annihi-
lated by μ + v, to extract a set of more restricted Plϋcker equations:

LEMMA 12. The ideal of F(0ω) is generated by equations of the
form

(15) \ω\2πμ{x)πv(x)= Σ cσ

μlπσ{x)πτ(x),
σ+τ=μ+v

where μ, v, σ, τ range over the set s/ of weights.

We will show that the Plϋcker equations of a torus orbit X are
closely related to (15). Basically, each equation in (15) is replaced by
a set of equations

nμπv = cπσπτ = c'πσ>πτ' = •••, μ + z/ = cr + τ = σ' + τ' .

Some of these equations, however, may amount to 0 = 0, and others
become linear, so we cut down the dimension of the ambient projective
space, from

ppdim Vω-\ | 0 Pp# °f distinct weights in Πω-1

Let XQ e X be a generic point, with Plϋcker coordinates π® . Recall
that "generic" means: π° . ω Φ 0 for w e W/Ws. The following
convention is useful: if a weight μ has multiplicity > 1, the Plϋcker
coordinates associated to μ are denoted by πμ, π'μ, π"μ, ... .

LEMMA 13. For each distinct weight μ, there is at least one Plύcker
coordinate amongst the π®, π'μ°, ... that does not vanish (at the point
xo). Pick one, and let πμ( ) be the coresponding coordinate function
on X. Then: the set of these πμ*s, one for each distinct weight, is a
basis ofΉ0(X,L*).

Proof. Since L* is the pullback of Lω from G/P to X, the set

{πμ,π'μ,...\μeΠω}
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generates H°(X9 L$). If μ e W ω, then π° φ 0 by definition of
"generic". Suppose now that μ £ W ω. Because

it follows that either

-r _ *r' — IT" — _ Π if τrθ — TΓ' 0 — — Π
π μ "~ π μ ~ πμ — " ' — U \Πlμ — Tlμ = — U,

π' ° π' / 0

7iμ — Q~πμ ? /̂z "" ό" r 9 * '" ' u "// r υ

ftμ Ttμ

Thus, if π|2 = nf

μ° = = 0 for some μ ^ W ω, we would have

dim/ίo(X5 L z)ω) < # of distinct weights of pω,

contradicting Theorem 3. α

REMARK. From the theory of toric varieties, one knows that the
space L{Ph) of functions with at most a simple pole along D^ has
the basis

{e(m)\meMnΏh}.

Since the map m*-+ ω + m is an isomorphism between M n D^ and
the weight system I P (Corollary 4 to Theorem 2), one finds that

e(m) = e(m)(xo) fω

ω

for any one of the possible bases {πμ} of H°(X, L^) described in
Lemma 13. In particular, this shows that

Dh = div(πωU),

for h as in Theorem 2. α

The next theorem describes the ideal for the Plucker embedding of
a torus orbit X in G/P.

THEOREM 4. Let {πμ} be a basis of H°(X, L$) as in Lemma 13.
The set of quadratic equations

(16) ψ^ = ψi, μ + v = σ + τ
τiμTiv 7iσπτ

generates the ideal of the Plύcker embedding of X,
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Proof. Let y denote the zero locus of (16), and let X$ be the
(unique) open dense torus orbit {h XQ} in X.

One inclusion is clear: if x = h - XQ , then πμ(x) = hμπμ, and the
equations (16) are satisfied. Conversely, we want to show: if y e CP 5 ,
with coordinates [πμ], belongs to

T n {πμ φ 0 for all μ},

there exists an h e H such that

here C G C * is a nonzero constant allowed when one compares pro-
jective coordinates.

The argument goes by (repeated) induction on the weights in the
weight system Πω. When μ e Uω, and

(17) > 0

recall that L(μ) = Σι

j=i Πj(μ) is the level of the weight μ. We will
define the desired h e H by prescribing the values /Λ of the fun-
damental roots on h. For each j , there is a first level at which α ;

appears in a weight (17), or else α ; never appears in a weight (this
can happen, for instance, when G is semisimple but not simple). In
the latter case, haj remains arbitrary, and its value does not affect the
subsequent argument. We therefore disregard such roots.

Suppose now that α7 does appear in (17); at the first level involving
oij , there is at least one weight of the form μ = v — a} \ we pick one
of these weights and define

We now claim that for all μ e Π ω ,

(18) 3f =
71 μ

This is evidently true at level 0, for the weight ω, and at level 1,
where the weights have the form ω - α^. Suppose that (18) has been
established up to level L(μ) - 1, and consider a weight μ at level
L(μ). There are three cases.

Case 1. The weight μ is used to define a value /Λ in this case,
(18) follows by definition and (for the compatibility with earlier steps)
by induction hypothesis.
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Case 2. A root α7 first appeared at level L(μ)9 the weight μ in-
volves Qij 5 but another weight μf was used to specify the value haj.
So, we have

μ = i/ - aJ9 μ' = v'-aj9 L{y) = L(i/')

The consistency condition (18) follows from

the induction hypothesis, and Case 1.

Case 3. The weight μ could not have been used to define any of
the numbers haj. There is then an index j such that μ = */ - α , , and
haJ was defined by a weight μ1 = v1 - α,, with L(μ') < L(μ) - 1. As
in Case 2, we argue that (18) holds. D

REMARK. It is clear from the proof that one can use ratios like
frωβω-a o n i y t 0 determine the value ha of roots on h. This again
confirms that the root lattice, rather than the weight lattice, is relevant
for the description of torus orbits. D

7. Intersection theory. Introduce the line bundles Lj = Lω over
G/B, defined (as in §5) by the characters

Xj(b) = (pωJ(b)υω>9v
ωή-ι

9 beB.

They are not ample; the space H°(G/B, Lj) maps G/B to the highest
weight orbit P(^ ω ; ) in P ( F ω ; ) , which is isomorphic to G/Pj where
Pj is the maximal parabolic subgroup corresponding to S = {j}. Put
differently, the natural projection π 7 : G/B -> G/Pj is followed by the
embedding of G/Pj provided by the line bundle Lj -> G/Pj. Let X
be a torus orbit in G/B. Then πj(X) is a torus orbit in G/Pj, which

has a Plϋcker embedding by the sections of Lj J as described in §5.
The corresponding torus invariant divisor D^ on τtj(X) pulls back
to a torus invariant divisor Dj on X. Since these divisors correspond
in a natural way to the fundamental weights, we call them (for lack
of a better term) the fundamental torus invariant divisors on X. We
want to study their intersection theory.

To begin, we note that each Dj is defined by the same support func-
tion hj. Indeed, the fan Δ7 of τtj{X) has as maximal dimensional
cones certain unions of the co-Weyl chamber C~ in JVR , as described
by Theorem 1. The support function hj is defined on the maximal
dimensional cones of Δ/ by the formula in Corollary 4. The fan Δ of
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FIGURE 5

X has for its maximal dimensional cones all the images wC~ of C~
under the Weyl group (since the parabolic subgroup B corresponds
to the choice S = {1, . . . ,/} , so that Ws = {id}). Thus, each hj
is a function on JVR which is not only linear on the cones of Δ7 but
also on the cones of Δ. In fact, it is linear across several cones, so
it is upper convex but no longer strictly upper convex, which by [8,
Corollary 2.14] means that the divisor Dj is not ample. (0χ(Dj)
is, however, generated by global sections [8, Theorem 2.7].) Further-
more, the polytope D^ is the one described, for G/Pj, in Theorem
2. Figure 5 has an illustration for the case G = SL(3, C) the fans Δ
and Δi are pictured.

THEOREM 5. The intersection number (D\ . . . A ) w

\W\/άetC9

where \W\ is the order of the Weyl group of G and C is the Carian
matrix.

REMARK. The intersection number in the theorem is the usual inter-
section number of cycles whenever X is nonsingular. This happens
in our setting: a torus orbit X c G/B is always nonsingular. The
proof uses the nonsingularity criterion ([8, Theorem 2.22]) stated in
Example 3, and Corollary 1 to Lemma 3. D

Proof of Theorem 5. We use [8, Proposition 2.10], according to
which the desired intersection number is the mixed volume of the
polytopes Πh , . . . , Ώh . Normalize volume in Λ/R SO that the basic
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parallelopiped

J=1

has volume 1. One knows that the volume

(19) ^ |

is a homogeneous polynomial in the variables Πj. The mixed volume
is, by definition, the coefficient of Πi Hj * n this polynomial (we ignore
a factor 1//!, which cancels out of the final equation).

Some simplifications are in order. It suffices, in the definition of
mixed volume, to let the Πj be positive integers. We may translate
each polytope in (19) so that its vertices lie in the weight lattice. The
volume of the sum in (19) will change, but the mixed volume remains
the same. This follows from the linearity of mixed volume in each of
the arguments, see [8, Appendix]. The sum

then has a simple description: it is the convex hull of the Weyl group
orbit through

λ = n\Cύι H h n/O)/.

Call this polytope Ώn . We need its volume, i.e. the number of root
lattice points in Ώn, as function of the Πj. It is easier to count weight
lattice points, so in the end we will divide by det C, which is the index
of the root lattice in the weight lattice. Furthermore, it is enough to
count the number of points in the positive Weyl chamber C + , and
to multiply the result by \W\. The structure of the formula in the
Theorem should now be clear. (Note also that we write C + rather
than C+ the notation is simpler if we forget for the moment that the
root lattice is dual to our basic lattice N.)

The intersection Ώn Π C+ is bounded by the walls of C +

{ x \ ( x , άj) = 0 } , 7 = 1 , . . . , / ,

(the άj are the simple coroots) and by the hyperplanes through λ and
orthogonal to the fundamental weights ω 7,

{ x \ ( x , ωj) = (λ9 ω j ) } , ; = 1 , . . . , / .

Introduce the parallelopiped Π bounded by the walls of C + and by
the hyperplanes through λ and parallel to the walls:

{ x \ ( x , aj) = n j } 9 j = 1 , . . . , / .
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(xyωP)=(λωP)

J{2}

(*A)=/7/

ω, (*A) = 0

FIGURE 6

(See Figure 6 for an SL(3, C) example.) The number of weight lattice

points on and inside Π is Πi( n j + 1) > a n d so the volume of Π is

We show that the difference

(Dwnc+)\π

consists of polyhedra whose volumes, as function of n\, . . . , Π[, are
independent of at least one rtj . Suppose this has been proved. Then
the volume of Ώn n C + is

(det C)~ιΠ\ - - - ri[ + other monomials,

whence the mixed volume of all of Πn is | W\j det C, as desired.
First we prove that

π c Ώn n C+.

Let x e Π, x = Xiωi + + X\ω\. Of course, x e C + . Since
0 < (x, άy ) < Πj for all 7 , we have 0 < Xj < Πj . Then

k=\ k=\

since (ω^, ω7) > 0, and so

V7.

This shows that x eΠn.
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A similar argument also shows that if (x, α, ) > Πj for all j , then
(x, ωj) > (λ, o)j) for all j , which contradicts x e Ώn. Therefore,
for each x e (Dn n C+)\Π there is a subset θ c {1,...,/} such that

0< (x9άj) <Πj for; $ θ

and
nk<(x, ak), (x? ωfc) < (A, ω*) for fceθ.

y = x -

Let D θ be the set of such x the D θ are disjoint up to sets of measure
zero. Now if x e DΘ , then

satisfies:

and

forkeΘ.

Let D θ be the set of such y. Clearly, D θ and D θ differ only by
a translation. Hence, they have the same volume. Since Vol(Dθ) is
independent of nk, k e θ , this volume as function of the Πj cannot
involve the factor Πi nj The theorem is proved. α

Finally, we generalize Theorem 5 to find the intersection multiplic-
ity of arbitrary intersections of the Dj. Choose

and let V be an S-dimensional closed subvariety of X. The inter-
section number

is defined to be the coefficient of v\ i/5 in the polynomial

χ(X, @γ®&χ@χ{y\Diχ + •- + vsDis)),

where χ is the Euler characteristic.
Let ^ θ be the Lie algebra generated by α ; , j eθ, let Ge and Bθ

be the corresponding Lie group and its Borel subgroup, and let We

and C θ be the Weyl group and Cartan matrix of
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THEOREM 6. Let τ e Δ be the cone spanned by ώk, k $ θ . Then

Proof. We need some notation. As in [8, Corollary 1.7], introduce

N(τ) = N/Z(τ Π N), ΪV(τ)R = iVR/Rr,

and

Δ(τ) = {σ = image of σ in N(τ)χ\τ < σ e Δ}.

As abstract toric variety,

v(τ) = TΆτ)εmb(A(τ)).

Let h e SF(N, Δ) be the support function defining the divisor
Σ/eθ UJDJ on X . By [8, Lemma 2.11], there is an Έ e SF(ΪV(τ), Δ(τ))
such that

(20) 0χ{Dh) ®#χ 0V(τ) = @V{r)(Dj).

The argument now consists of two steps.

Step 1. V(τ) can be identified with a generic torus orbit in Ge/Be.

Step 2. Since by Step 1, V(τ) is a torus orbit, we can speak about
the fundamental torus invariant divisors. Call them Df, . . . , Df.
Then: Έ defines the divisor v\Df H h vsDf on V(τ).

Let us show how the theorem follows from Steps 1 and 2.

(Diχ - - - Dis V{τ)) = f coeff of vx vs

in χ(X, @χ{vxDi{ + + vsDis) ®<?χ d?v(τ))

b y L 2 0 ) coeff of vx us in χ(V(τ),

Step 2 rr i-

= coeff of v\ us

in *(K(τ),
d^f (Df. .Df)

the last equality following from Step 1, which allows Theorem 5 to be
applied to the torus orbit V(τ) in GΘ/BΘ.

Proof of Step 1. We need to show that the fan Δ(τ) defining
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can be identified with the fan of a torus orbit in Ge/Be as described
in Theorem 1.

Since the sets {ώj, j e θ } and {ώ^, k φ θ } span complementary
sublattices of N and complementary subspaces of JVR , it is clear that
we can identify N(τ) with the coweight lattice Ne of &θ and N(T)R
with Njjf. The cones σ e Δ for which τ < σ are of the form

σ = τ + w > R>o^/ ,
Veθ' J

where θ ' c θ , and w e Wθ = subgroup of W generated by sa.9

j E θ . The projections onto N(T)R of these cones are identified with

w

which by Theorem 1 are the cones of the fan Δ θ of a torus orbit in
Gθ/Be.

Proof of Step 2. We know that the divisor vxDiχ H + vsDis is

defined by the function

h = (w -λ-λ, •) on wC~,

with A = vχωiχ H h vsω^. Since A|τ = 0, [8, Lemma 2.11] says

that we may take h = h.
We compute the divisor determined by h. Let Mθ be the root

lattice of «^θ (spanned by α,, 7 e θ ) it is a sublattice of M and
Mjf is a subspace of Λ/R . The fundamental weights ωj of ^ θ are
not always identified with fundamental weights of 9, since the latter
may not lie in M^. Rather, we have (for ip e θ)

ωf = ω, mod ω^, k £ θ .

Hence

Now, h — {wλ — λ, -) on w C~ for ^ e PΓΘ, but since w stabilizes
cύb, A: ^ θ , this is the same as (wλθ - Aθ, •), which in turn gives
the values of h on the cones of Δ θ . It then follows from Theorem 2
that h determines the divisor v\Df H h z/5Df on V{τ). Step 2 is
proved. D
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