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TORUS ORBITS IN G/P

HERMANN FLAsSCHKA AND Luc HAINE

Let G be a complex semisimple Lie group of rank /, with fixed
Borel subgroup B and maximal torus H. Let P be a standard
parabolic subgroup. The torus H acts on G/P by gP — hgP.
The closure X in G/P of an orbit {hgP|h € H} is called a torus
orbit if it is /-dimensional and satisfies a certain genericity condition;
it is a rational algebraic variety whose structure is intimately related
to Lie theory, symplectic geometry, and the theory of convex bodies.
This paper presents: (1) an abstract description of the torus orbit X
by means of a rational polyhedral fan; (2) a description of the torus-
invariant divisor whose linear system provides a natural embedding
(the Pliicker embedding) of X into a projective space; (3) a discus-
sion of the correspondence between this divisor and the momentum
mapping associated to the action on X of the compact torus T C H ;
(4) a list of generators of the ideal defining the Pliicker embedding;
(5) a formula for the intersection multiplicity of certain important
torus invariant divisors on X .

We have encountered torus orbits in several problems, and the cal-
culations just mentioned have proved useful in those other studies. In
work with N. Ercolani, we find torus orbits as compactified (complex)
level varieties in a certain integrable Hamiltonian system, the so-called
Toda lattice. A. Bloch, T. Ratiu, and Flaschka use torus orbits in the
compact setting, K/T rather than G/B, to prove a convexity theo-
rem for a “Hermitian” Toda lattice (Duke Math. J., to appear). In
collaboration with R. Cushman, we study Grobner bases for projec-
tive embeddings of torus orbits; these are simpler than, but in some
model cases dual to, the standard monomials on G/P itself. Finally,
the theory of integrable systems suggests that a detailed understanding
of torus orbits in loop groups might be useful and interesting.

Because the summary of necessary definitions from the theory of
toric varieties takes several pages (cf. §2), we devote this Introduction
mostly to a description of results that can be stated without much
specialized apparatus. Just a few words about items (1), (2), and (3)
above. In §3, we establish some properties of the image of the mo-
mentum map referred to in point (3); it is a convex polytope with
vertices in the weight lattice. The fan A defining X as toric variety is
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then constructed in Theorem 1, §4. A “Pliicker” embedding is defined
and studied in §5. As one knows from Borel-Weil-Bott theory, G/P
can be embedded in a projective space by the sections of a certain
line bundle L., where w (a sum of fundamental weights) charac-
terizes the parabolic subgroup P. The pullback LY of this bundle
to X C G/P embeds X in a (generally different) projective space.
The corresponding divisor on X is computed in Theorem 2, and the
dimension of the projective space in Theorem 3: it is equal to the
number of distinct weights in the representation of G with highest
weight .

Some of this material appears, in one form or other, in the literature,
e.g. [1], [3], [9]. We have not, however, seen the complete picture
spelled out in a way that makes it possible to do computations using
the extensive theory of toric varieties. The results provide a simple
and elegant illustration of toric varieties, and should be better known.

We now summarize the content of §§6 and 7. As mentioned already,
one may associate a weight w = w; + -+ + w; , to the parabolic P.
Correspondingly, there is a representation (with highest weight w ) of
G on a vector space V'“ with highest weight vector v . The stabilizer
of v® is precisely P. Furthermore, the projectivization P(#®) of the
orbit of G through v? is isomorphic to G/P. Let & be the set of
all weights, listed with multiplicity if necessary, and choose a weight
vector v# for each u € & . Then one may write v € V% as

= Iz
v = Z mu vt
ness

The =, are called Pliicker coordinates. Kostant found a set of qua-
dratic equations in the m, which generates the ideal of P(#?) in
P(V?). In §6, we rewrite his equations, and extract an ideal for the
Pliicker embedding of the torus orbit X .

THEOREM. The variety P(@?) is defined by equations of the form

_ vy’
Mum, = Z ot T Ty
v+v' =p+p'
The generic torus orbit is defined by
_ v ' '
(%) Muly =K My, v+v =u+u.

Some of the equations (x) may degenerate to linear equations. Re-
member that weights with multiplicity > 1 are listed repeatedly; if
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', v' both label the weight S, then u+u4' = u+ B = u+v', and the
factor m, cancels from

Myl = kn,m,

leaving 7, = k=, . In this way, the dimension of the projective space
in which X is naturally embedded can often be decreased; Theorem
4 gives the precise statement.

As already mentioned, this result is used elsewhere in a study of
Grobner bases of the ideals defining projective embeddings of torus
orbits.

Our final Theorem, in §7, is important for the analysis of the com-
plex Toda lattice. Let X be a torus orbit in G/B. Let D; be the
torus invariant divisor defining the line bundle Lw; .

THEOREM. The intersection number (D, --- D)) is given by
(**) (Dl"-D1)=IW|/dCtC,

where |W | is the order of the Weyl group of G and C is the Cartan
matrix of G.

There is a similar formula for the intersection (D; ---D; ; V (1)),
where V' (7) is a suitable slice transverse to the intersection of the D; .
This computation uses all the formulas derived in the preparatory §§3,
4, and 5.

In the nonperiodic Toda lattice, the interest is in the cohomological
and set-theoretic intersection multiplicity of divisors linearly equiva-
lent to the D;. These are the so-called “balances” of Painlevé anal-
ysis. Empirical formulas were found by one of us (H.F.) in 1986,
and stimulated much of our subsequent work. Formulas like (¥x)
were announced by M. Adler and P. van Moerbeke at a conference
at MSRI in June 1989; in their setting, X is an additive torus orbit,
i.e., abelian variety, in a loop group, and the D; are translates of
the theta-divisor; this is relevant to the periodic Toda lattice. It is not
clear at present why results about (C*)-invariant divisors should carry
over to a quite different situation with barely any change; a generaliza-
tion of the present paper to loop groups may provide some interesting
answers.

Acknowledgments. We thank Doug Pickrell for many helpful expla-
nations of Lie theory. H.F. was supported in part by the NSF and by
the AFOSR (through the Arizona Center for Mathematical Sciences).
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2. Notation and basic facts. In this section, we set down some Lie
theory notation and certain facts about torus orbits in homogeneous
spaces. The material will be used routinely in later sections, so the
reader might want to skim this part in order to become acquainted
with our conventions.

2.1. Lie theory. G is a simply connected complex semisimple Lie
group of rank /. Fix a Borel subgroup B and its torus H. The Lie
algebras are ¥, #, and # . The Weyl group is

W = Normalizer(H)/H.

We denote its elements by w, and we do not distinguish between the
class w and a representative of that class unless, of course, the choice
of representative makes a difference.

The positive simple roots are «;, ..., a;. The root system is R,
and the set of positive (resp. negative) roots is R* (resp. —R*). The
root lattice will be denoted by M, and the Euclidean space spanned
by M is called Mg (this notation conforms to [8]). There is a natural
inner product (-, -) on Mg. The Weyl group W acts on Mg, pre-
serving the inner product. The reflection in a root B will be denoted
by sg. For a € R, we fix a root vector e, in the root space &, ; thus
[, ex] = a(é)ey, &£ € #. The homomorphism H — C* induced by
a is denoted by exponent «:

(exp&)® = exp(a(f)).

The fundamental weights are called w;, ..., ;. The coweights are
defined by
i = 2w i
77 (aj, aj)’

the Z-lattice generated by the @; is called N, and the corresponding
Euclidean space is Ny . M and N are dual; we denote the pairing by
(-, ), sothat (@;, aj) =J;;. The Weyl group W also acts on Ng.

Abstractly, one may identify Ng with the real part #& of the Lie
algebra of H, and Mg with its dual (ZR)*. The pairing (-, -) is
given by the Killing form.

A subgroup P of G containing B is called parabolic. Every para-
bolic P is associated witg certain data. Thereisasubset Sc{l1, ..., [}
determined by P; let S be the complement of S. Let —R+(§) be
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the set of negative roots in the root subsystem of R generated by
ag, k€S, and let —R*(S) = —-R*\ — R*(S). The Lie algebra & of
P has the direct sum decomposition

P=)Y C&%+ Y C&.
a€R" a€—R*(S)

Set
'/I/}" = Z Cga s
a€—R*(S)
this is a nilpotent Lie algebra, and & = #/p & & . Let Np be the Lie
group Np =expfp.
Let wp, or w for short, be the weight >, ;. This weight is
stabilized by the subgroup Ws of W generated by the reflections s, ,

k € S. There is an irreducible representation p® of G, with highest
weight w; call the representation space V' and the highest weight
vector v¥ . We use the same notation for the infinitesimal representa-
tionof . P isthe subgroup of G that stabilizes the one-dimensional
complex vector space spanned by v?. The projectivization of the or-
bit #% of G through v® can be identified with G/P:

P(@#?) =P({p”(g)v”|g € G}) = G/P.

This identification amounts to an embedding of the abstract algebraic
variety G/P into the projective space P(V?).

Let I1% be the set of weights of the representation -p® (weights that
have multiplicity are thought of as being listed several times). For each
u €I1%, choose a weight vector v#. Every x € P(@?) = G/P can be
written as

x=c Z mu(x)vH
uell®
the (nonzero) scalar ¢ is arbitrary, since we are dealing with the pro-
jectivized orbit. The homogeneous coordinates [7,] on P(V'?®) are
called Pliicker coordinates. 1t is possible to introduce a Hermitian in-
ner product in V® so that the weight vectors form an orthonormal
basis; moreover, the operators p®(e,) and p“(e—,) are adjoints of
each other, and elements of the compact real form of G are repre-
sented by unitary operators. The orbit P(#%) is defined by a set of
equations in the [7,]; we explain those later. For a (projectivized)
weight vector v# to lie on P(@?), it is necessary and sufficient that
U € W - w = the orbit of the Weyl group through w. Actually, since
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Ws stabilizes w, the w’s range only over coset representatives from
W /Ws; we write w € W /W for short.

Both the description of P in terms of the root subsystem —R+(§)
and as stabilizer of v® will be useful later.

ExampLE 1. Let G = SL(3, C). Take S = {2} C {1, 2}. The set
—R*(S) is {-a;}, and —R*(S) = {—a2, —a; — ay}. The subgroups
P and Np consist of matrices of the form

* % % 1 00
p=|* * x|, n=]101 0].
0 0 = * % 1

The weight wp is the fundamental weight w,. The corresponding
representation p®: acts on /\2 C3 by g:vAw — gv A gw. Evi-
dently, the parabolic P stabilizes the line through the highest weight
vector v; A v, or—equivalently—the plane spanned by v; and v,
({vy, v, v3} is the standard basis of C3). The orbit #“: can be
identified with the set of all 2-planes in C3 ; this is the dual projective
plane (CP?)*. The Pliicker coordinates are the standard homogeneous
coordinates [z : z3 : z3]. O

2.2. Torus orbits. The complex torus H C G acts on G/P in the
obvious way:

H>h: gP+— hgP=hgh™'P.

The orbits of this action have dimension d, 0 < d < [/. We are
interested primarily in /-dimensional orbits that are generic in a sense
we now define.

DEFINITION 1. For w € W/Ws, let P¥ be the group wPw™!,
and let N¥ = wNpw~!. Let Z¥ be the big cell of G/P¥, i.e. the
set of cosets gP¥ for which g has a factorization g = n¥p¥, with
n¥ € Ny and p* € P¥.

One knows that Z¥ is a Zariski open subset of G/P¥ . It can also
be identified with a Zariski open subset of G/P.

LEMMA 1. There is a natural isomorphism G/P¥ = G/P.

Proof. Send gP" to gwP. This is bijective:
gP'=g'P¥ & g7 lg cwPw ' o w g lgweP
& (gw) Y (gw)eP & gwP = g'wP.

One should note that the argument does not depend on a choice of
representative for w . a
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LEMMA 2. The Z¥ cover G/P.

Proof. This follows from the Bruhat decomposition [2]. m

Terminology. A set Y = {hgP|h € H} is called an open torus orbit
(through gP). “Open” refers to the fact that Y is open in its closure;
it is almost never open in G/P. If dimY =dimH =/ =rank G, we
say that Y is maximal. We say that an open torus orbit Y is generic
if it is maximal and 5

Yyc () 2zv.
weW /W
The closure X of a generic open torus orbit it called a torus orbit.
The closure of an open torus orbit of dimension d </ will be called
a torus orbit, and there will be some qualifier like “codimension k”
or “lower-dimensional”.

REMARK 1. (i) Since we are interested primarily in the closures of
generic open torus orbits, it seems reasonable to minimize the number
of adjectives in that case.

(ii) Suppose an open torus orbit Y meets Z¥ in one point
n¥ P¥ . Then all points of the form hn¥h~1P% are in the big cell of
G/P"Y,so that Y Cc Z". Thus, as soon as an open torus orbit meets
Nwew;w, Z , it is generic.

(iii) A point x € G/P belongs to Z¥ if and only if the Pliicker
coordinate 7,.,(x) is nonzero. Therefore, an open torus orbit is
generic if and only if all Pliicker coordinates m,.x(x), w € W/Ws,
are nonzero. This is the type of definition of “generic” used in [3].

(iv) One can prove that generic open torus orbits must have the
maximal dimension /; see below.

Fix a torus orbit X in G/P. We now list certain properties of X .
The first result is proved in [3].

Fact 1. X contains the points wP, w € W /Wy ; they are invariant
under the action of H .

When G/P is realized as the projective variety @¢, the torus orbit
X C G/P also becomes a projective variety and so acquires a Kdhler
form whose imaginary part, Q, is symplectic. Let K be the compact
real form of G, andlet T C K be the (compact) maximal torus whose
complexification is H. The action of T on G/P is Hamiltonian
with respect to Q, and has a momentum mapping J: G/P — J*.
Here * is the dual of the Lie algebra .7~ of 7 (which is naturally
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identified with Mg .) We are concerned only with the restriction of J
to a torus orbit X ; it will again be denoted by J .

Fact 2. The image J(X) of X under J is a closed convex polytope
in Mg with vertices w-w, w € W/Ws. Furthermore, J(wP) = w-w.

The proof is in [1] and [3]. It is important to note that Q, J and
J(X) depend on a choice of projective embedding (into P(V'“), in the
present case); furthermore, the momentum map J is determined only
up to translation in Mg . The normalization in Fact 2 is the customary
one; we return to this matter later. A fairly explicit description of
J(X) in terms of roots and weights is worked out in §3.

Fact 3. The set of regular values of the momentum map J: X —
Mg is the interior of J(X). The singular values of J lie on the
boundary of J(X). Each lower-dimensional torus orbit in X maps
onto a closed, lower-dimensional face of J(X), and each face is the
image of exactly one lower-dimensional torus orbit.

REMARK 2. Since dim J(X) =/ for a generic torus orbit, it follows
from Fact 3 that dim X = /. A generic torus orbit is necessarily of
maximal dimension. o

The final result is a special case of Theorem 5.5 in [7].

Fact 4. Let 7 be a codimension 1 face of J(X), and let Y; be
the open torus orbit, of codimension 1 in X, whose image under J
is the relative interior of 7. Let u € Mg be normal to 7, and let
L € Nr = # be the element that is dual to x via the Killing form.
Then:

(i) the torus exptlt fixes the points of Y;;

(ii) the Weyl group stabilizer W, of u permutes the vertices of 7;

(iii) # may be taken to be a Weyl group conjugate of one of the
fundamental weights wq, ..., @;.

We indicate briefly how this follows from Lerman’s theorem. Ler-
man works with the compact group K and realizes G/P as a coadjoint
orbit, but this is a minor point. He is interested in singular values of
the momentum map from all of G/P to 9*. He shows that the
irreducible components of the set of singular values have the form

convex hull of W, - 17,

where 7 is a vertex of J(X) and u is Weyl group conjugate to some
w;. In general, such a set intersects the interior of J(X). Atiyah’s
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Wy

- W, / \ OJI—OJZ

FIGURE 1

result, Fact 3, guarantees that the singular values of J on X lie on
the faces of J(X). If now 7 is a vertex of 7, then by Fact 2 the set
W - n consists of all vertices of J(X). To get exactly the vertices of
7, one must cut down to a subgroup of W that leaves 7 invariant.
According to Lerman, this subgroup is W, for some u. Itis generated
by reflections in roots orthogonal to u, and since the face 7 has
codimension 1, u must be orthogonal to it.

EXAMPLE 1, CONTINUED. The torus diag(h;, hy, h3) (with hyhyhs
= 1) acts according to:

[z}:z3: 231 [A] z} s hylzy s byt 23]

The fixed points are [1 : 0 : 0], etc. One checks that [0 : 0 : 1]
represents the plane v; Av,, which is the coset id P; [0:1:0] is the
plane v; Av; = the coset

1 0 O
wP=|00 -1]P,
01 O

and so on. There are three one-dimensional open torus orbits: [+ :
*:0],[*:0:%],and [0: *: %] (“*” means a nonzero entry.) The
generic open torus orbit Y is [ : *: *]. In particular, ¥ = (CP2)* ,
so that there is only one torus orbit, G/P itself.

One can find the Kihler form of G/P in [10], for example; the
polytope J(X) has vertices at the weights

Wy, Wy—a)=W01—W, W—a—a=—W0

of the representation p®:, see Figure 1. The weight vectors are vy A
vy, V1 Av3, and vy A vz, which correspond to the fixed points, as just
explained. o
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2.3. Toric varieties. We collect some basic properties of toric vari-
eties. Our notation follows [8].

The theory of toric varieties deals with abstract manifolds equipped
with a torus action. The torus is isomporphic to (C*)!, just like H
in the preceding subsection, but it is not given quite so explicitly: one
starts with dual lattices N and M, and thinks of the torus as a group
of characters,

Ty =Homz(M, C*) = N ®zC*.
Thus, an element of Ty is a function ¢: M — C* satisfying
tim+m') = t(m)t(m'), t(0) = 1. Points of the lattice N give rise to
algebraic one-parameter subgroups of T according to

L()=cm),  cech

In Lie group notation, one would set s = logc and write the one-
parameter subgroup as expszn. The corresponding character is deter-
mined by the values of the roots on the subgroup: ¢(m) = (expsn)™.

DEFINITION. A subset g of Ng is a strongly convex rational poly-
hedral cone if there exist ny, ..., n, € N such that

o={an + - +anla; >0,Vi}
and o N (—ag) = {0}.

DEFINITION. A fanin Ng is a finite collection A of strongly convex
rational polyhedral cones satisfying the following conditions: (i) Every
faceof any 0 € A isin A; (ii) forall g, ¢’ € A, the intersection aNa’
again belongs to A; (iii) Uyecp 0 = Nr.

ReEMARK. Oda calls this a finite complete fan, but since we consider
no other kind we drop the adjectives. See Figure 2 below for a picture
of a fan. m|

To a fan A, one associates an abstract variety with torus action.
We review the steps.
Let o € A. The dual cone is the set

g={xeMg|(x,y)>0, Vyead}.

Set % =MnNdg. % is an additive semigroup. A character of %, is
a function u: .%, — C satisfying

u0)=1, u(m+m')=um)u(m’), m, m' €%,

Note that u is allowed to be zero. Let U, be the set of all characters
of %.
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PROPOSITION [8, Prop. 1.2, abbreviated]. Let my, ..., m, € % be
elements such that

S = Zzoml +--+ Zzomp.
Define e(m)(u) = u(m). The map
(e(my), ..., e(mp)): U — CP

is one-to-one, and if U, is identified with its image, it becomes an
irreducible normal affine variety.

The U,, o € A, are patched together as follows. Let 1 =0 no’.
Its dual ¥ contains both & and &'. There exist [8, Proposition 1.3]
my € % and myg € %, such that

(mo, 7) = (mgy, 1) =0

and
t =5 ®Ryo(—mo) = &' & Ryo(—my).

v

Note that if u is a character on 7, it must satisfy
u(mo)u(—mo) = u(mg + (—mq)) =u(0) =1,

so that u(mg) # 0. Likewise, u(mj) # 0. This characterizes the
intersection U, N U, . If u € Uy, extend it to TN M and restrict it
to U, ; that defines the transition functions.

PROPOSITION [8, Theorem 1.4, abbreviated]. The U,, o € A, glue
together to define a complete (but not necessarily projective) algebraic
variety denoted by Ty emb(A). Such a variety is called a toric variety.

ExAMPLE 2. Because we will use this example to illustrate certain
points later on, we go against our conventions this one time and let
N be the coroot lattice and M the weight lattice of the Lie algebra
A, =sl(3, C). The computations that follow are related to Example
1, but that won’t be clear until the end of this section.

Consider the fan A and the dual cones depicted in Figure 2.

Look at the dual cone &;. The lattice semigroup S =NM is
generated over Zs( by three elements, w; + w;, 2w, —w;, and ;.
Call them m;, m, and mj. Since

(@1 + @) + 2w — W) = 3wy,
a character ¥ must satisfy

u(wy + W2)u(2wy — ;) = u(wy)?.
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Therefore we have, identically on Uj ,
e(m,)e(m;) = e(m3)>.

Set e(m;) = x;. Up, is identified with its image in C3 under (e(m,),

e(my), e(ms)): it is the affine variety x;x, = x3.

Likewise, for the cones g, and g3, we set
(e(—wl + 2(02) s e(_zwl + 0)2) ’ e(wZ - C’)l)) = (yl » V2, y3)

and
(e(wy — 2w,), e(—w; — wy), e(—wy)) = (21, 22, 23).

The equations defining the affine varieties are the same:
Y12 =.V§ » 2122 = z§.

We show how to find the transition functions. Consider o; N o3 .
This is the one-dimensional cone 7 through &; + 2d&;,, with dual 7 =
the upper half plane in Mg . The annihilators of 7 are

my, m{) =+2w; — w,).

The intersection Us N Up, is defined by x; # 0, y2 # 0. To get the
transition functions, compute as follows:

u(wy + w)u(-2w + wy) = u(—w; + 2wy),

which implies
X1Y2=JY1.
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In this way, one finds

yi=x1/X, ya=1/x3, y3=Xx3/x2,
zZy=X2/X1, za=1/x1, z3=Xx3/x1.

These three affine varieties, together with the transition functions, de-
fine the variety Tx emb(A). It is easy to check that 7 emb(A) can be
defined by a single equation in homogeneous coordinates [wg : w; :
w, : ws] in CP3,

Wow Wy = W3,

The surface has three singularities of type A,, and is birational to
CP2. It contains the torus Ty as open dense subset: indeed, Us, N
Us, N Us, is the set of all nonzero characters, which is identified with
Ty. 0

We now explain what polytopes in Mg have to do with fans in Ng.

Ty emb(A) is an abstract algebraic variety. One tries to embed
it in a projective space. To this end, one needs an ample divisor.
By [8, Corollary 2.5], it is'enough to look for ample torus-invariant
divisors. Such divisors are unions of codimension 1 torus suborbits
in Ty emb(A), which can be described in terms of the fan A.

For each edge p (= one-dimensional face in A), the characters u
on Mnpt define a codimension 1 toric subvariety V' (p) of T, emb(A)
[8, Proposition 1.6], and all such subvarieties are obtained in this way.
A torus-invariant divisor (and hence every divisor, up to linear equiva-
lence) is determined by assigning an integer (the multiplicity) to each
edge in A. The multiplicities are encoded in a function 2 which
carries additional information about the divisor.

DEFINITION. Let #: Ng — R be a continuous function which as-
sumes integer values on N and is linear on each ¢ € A. Such a
function is called a A-linear support function; we write h € SF(N, A).
If h(x+x') > h(x)+h(x') forall x, x' € Ng, we say that & is upper
convex, and if the inequality is strict when x, x’ belong to different
cones o, a’ of A, h is said to be strictly upper convex.

THEOREM [8, Proposition 2.1, Corollaries 2.14, 2.15). If p is an edge
in A, let n(p) € N be the minimal lattice generator. Let h € SF(N , A)
be strictly upper convex. Then the divisor

Dy == h(n(p)V(p)
P
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is ample (and very ample if Ty emb(A) is nonsingular). On each cone
g €A, h is defined by

h(x) = (ls, x)
for a certain |, € M. The convex hull of the l; is a polytope O, in
Mg . The dimension of H°(X , @x(Dy)) equals the number of lattice
points on and inside 0y, .

REMARK. As is pointed out in [8], the sign convention is pecu-
liar. To get positive multiplicities, one must assign negative values to
h(n(p)) . ul

This beautiful theorem opens the door to the detailed study of toric
varieties. As explained in [8, Chapter 2], there is a 1-1 correspondence
between torus-invariant divisors and A-linear support functions. Fur-
thermore, every divisor is linearly equivalent to a torus-invariant one.
For each 4, there is a (possibly empty) polytope [J;, , whose definition
is different from the one in the theorem when /4 is not upper convex.
The number of lattice points in [, always gives dim H%(X , &y (D)) .

One of our goals is to find the [J, corresponding to the V'“ em-
bedding of a torus orbit in G/P, and to relate it to the momentum
polytope J(X).

EXAMPLE 2, CONTINUED. Thus far, an abstract toric variety
Ty emb(A) was realized as wow wy = wg in CP?>. We compute
the hyperplane divisor and the corresponding function 4.

Take the edge p through &; + 2d, (see Figure 2). In the cone
&1, pT is the line through 2w, — w,. A character on M N pL is one
that vanishes on the other two generators of &; N M . Under the map
€(-), this corresponds to x; = x3 = 0. Similarly, one sees that the
edge through &; — &, corresponds to x; = 0 and the edge through
—2&;—ap to y,=0.

Now, a hyperplane section of the embedding into CP? is w; = 0.
Its divisor on wow w, = fwg is torus invariant. It has three irreducible
components: w; = 0, wy; = 0, and wy = 0, which correspond,
respectively, to x; = 0, x, = 0, and y, = 0. Thus, the divisor can
be written

V(d + 2d&;) + V(a) — az) + V(-2a&; — a3).
These multiplicities are provided by the function # defined by
(~wy,)onagy, (W —w;,-)onoy, (W, )onaos.

The polytope [, is just the triangle in Figure 1. 0
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We can now explain the point of this example.

(1) Associated to a projective embedding of a toric variety
Tn emb(A), there is a polytope O, with vertices in M (the root lat-
tice, in our setting);

(2) associated to a projective embedding of a torus orbit X in G/P,
there is the momentum polytope J(X) with vertices in the weight
lattice (Fact 2).

[8, Theorem 2.22] also describes an inverse to the construction 1):

(3) Given a convex polytope 00 with vertices in M , there is a fan
A(O) and an & = hg € SF(N, A(O)) such that O =0J,.

In Example 1, we computed J(X) for the torus orbit X = (CP?)*.
The fan in Example 2 corresponds to this polytope under the inverse
construction 3); this emerges at the end of the example, when it is seen
that (0, = J(X). Obviously, the singular variety 7 emb(A) found in
Example 2 is not the original X . Thus, the sequence of constructions

X = J(X) = A(J (X)) — Ty emb(A(J (X)))

does not return to the starting point. In the next two sections, we
compute the correct fans and polytopes that describe torus orbits and
their projective embeddings.

3. The momentum polytope. According to Fact 2, §2, the image
J(X) of X under the momentum map of the action of the compact
torus is the convex hull of the Weyl group orbit W -w. We shall need
quite a bit of information about this polytope. Some of the results are
probably known, but since there seems to be no convenient reference,
we supply the (short) proofs.

DEeFINITION 2. The convex polyhedral cone, with vertex at w, gen-
erated by the edges of J(X) emanating from w, is denoted by w+B.

First we describe the edges that generate the cone w + B. The
geometry is fairly clear. The weight w lies in the intersection of
1 —|S| walls of the positive Weyl chamber, and in the closure of |Wj|
many Weyl group translates of that chamber. To get the edges leaving
w, one must reflect @ in the |S| “opposite” walls of each chamber
containing w. In general, not all of the images will be distinct.

LEMMA 3. w+ B =0+ jes wew, Ryow(—a;j).

Proof. Let K be the cone defined by the sum on the right. Since
the generators of w + K are WSa - @ (j €S, we Ws), which are
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vertices of J(X), it is clear that w + B contains w + K. We must
show the other inclusion.

The proof goes by induction on the /level of weights in the orbit
W.o If p=w- Z§=1 nja; is a weight, its level L(u) is defined to
be Z§-=1 n; . We make the induction hypothesis:

when L(w-w) <r, thenw -we w+XK.

This is clearly true for r = 0 (the only weight being w itself) and
for r = 1, where the weights are saj(w) =w-oaj, j€S. Suppose
it true up to level r. We must show that if 4y € W . w is a weight
with L(u) < r (assumed to lie in @ + K) and s, is a reflection in
a simple root, then 4’ = 5o (4) € @ + K. Of course, we need only
consider o; for which x4’ haslevel r+ 1. If i ¢ S, then 5, € Wy,
this reflection stabilizes both w and K, and so ¢/ € w + K. If
[ €S, then s, (4) = u —no; (for an integer n), and this is clearly in
w+K. O

COROLLARY 1. Let X be a torus orbit in G/B. The weight w
is 0 = wy+ -+ w;. There are precisely | edges emanating from
each vertex w -6 of J(X): they connect w-9J to w -6 + w(—a;),
j=1,...,1.

Proof. At the vertex ¢, this follows from the Lemma, since W =
{id}. Apply w € W to get the conclusion for the other vertices. O

COROLLARY 2. If u and u' are two vertices of J(X) connected by
an edge, then u— ' is a root.

REMARK. This result improves on the characterization of “ (G, P)-
hypersimplex” in [3, §7], at least for generic torus orbits. There, it
is shown that every edge u — u' of J(X) (for possibly nongeneric
X) is a real multiple of a root. (The argument is not quite correct.)
Compare also Lemma 4 in [6]. O

Proof. For edges issuing from @, this is just the definition of K.
Apply the Weyl group to get the result at the other vertices. O

DEFINITION 3. Let C~ be the cone in Mg spanned by —ay, ...,
—ay. The dual cone C~ is spanned by the negatives of the funda-
mental coweights. It might be called the “negative co-Weyl chamber.”
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LEMMA 4. B =Uyew, v C™.

Proof. If w € Wy, then w -, j € S, always contains «;, so it
is a positive root. Thus, for 1 <i</, je€ S, and w,w' € Wy, we
have {

(w(—&)i), wl(_aj» = (d)h (. ’LU’ : a])
= (®;, positive root) >0,
which, by Lemma 3, shows that w-C~ c B, for all w € Ws.

To establish the other inclusion, we need only show that
(%) if x € Ng, there exists some w € Wy such that

(x, w(-a;)) 20 forall j¢S.
Indeed, if x € B, then for this choice of w € Ws, we see from
Lemma 3 that
(x,w(-aj)) >0 foralljes,
which shows that x e w - C~. 5

Let us prove (). Introduce the Lie algebra & generated by the «;,
Jj ¢ S. Let N be the coweight lattice of £, considered as sublattice
of N. Every x € Ng has a decomposition

X =y+ZA,-c‘o,~, y GNR.
i€S
Since Wy is the Weyl group of &, there exists some w € Ws such
that w1 -y belongs to the “negative co-Weyl chamber” of £, i.e.
(v, w(—a;)) >0 forall j ¢ S.
Because w stabilizes @;, i € .S, we have
<Zl,~c‘o,~, w(—aj)> = <Z,1,-c‘o,-, —aj> =0 forallj ¢ S.
i€S ieS
Hence
(x,w(-aj)) >0 forallj ¢S
as desired. O

COROLLARY 3. B = Nyep, w-C.

Proof. This follows from a simple property of duality: for any finite
collection & of closed convex cones,

\%

(Ue) -0
geEY (324

if Uzey o is convex. O
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DEFINITION 4. Let ;4 be the cone in Mg generated by the roots
in —R*(S).

LEMMA 5. Gq = B.

Proof. If w € Wy and j € S, then w(—a;) € —R*(S). Thus, by
Lemma 3, B C 6;4. By Corollary 3, the other inclusion is established
if we show that

-R*(S)c [} w-C".

weW;

This, however, is obvious. If a € —R*(S), it has a simple root —a;
as a summand, for some j € S. Then for w € Wy, w -« still contains
—a;j, so it is a negative root and w-a€ C™. a

LemMa 6. T1? C J(X).

REMARK. In [3], this is attributed to [1], but we could not find the
result in Atiyah’s paper. It is probably standard. O

Proof. Let u € I1”. It has the form
/
u:a)——anaj,
j=1

or p=w+a with a€ C~. Forall we W ,onehas w-u < w [4].
If weWs,then w-w=w,and w > w-u = w+ w -a implies that
w-a € C~. It follows that

a e n w-é’,

wEW;

whence by Corollary 3,
I c w + B.

Now choose another point w - @ in the orbit W - w. Declare the
Weyl chamber containing this weight to be positive, and repeat the
argument above with the corresponding new set of simple roots. It
follows that II“ is contained in the intersection of all the cones with
vertices in W-w and generated by the edges of J(X) at those vertices,
and that set is precisely J(X). O
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LEMMA 7. If a € —R*(S), then o +a € I1%.

Proof. Let o € —R*(S). Write

a = —-anaj— Z nra.

J€S k¢s
Since @ =} ;g wj, we have
(@, a) <0.

Because w — a is not a weight, it follows that w + « is a weight. O

4. The fan of a torus orbit. We will show that a torus orbit in G/P
is a toric variety Ty emb(A); according to our conventions, the fan A
will lie in the space Ngr generated by the coweight lattice, while the
dual cones lie in Mg, the Euclidean space containing the root lattice.

Let X be a fixed torus orbit. Set Z¥ = Z¥ N X. The Z¥ cover
X by Lemma 2, and because X is generic, the Z¥ are nonempty.
They will be shown to correspond to the affine varieties U, for the
maximal-dimensional cones ¢ of a certain fan A.

LEMMA 8. Fix an ordering of the roots in —R*(S). Every n € Np
has a unique factorization
n= ][] exné.
a€E—R*(S)
where &, € %,, and the product is taken in the chosen ordering of
the o.

This is standard; see, for example, [2, Ch. 14]. We write &, = c,€, ,
and refer to the ¢, € C as the coordinates of n € Np.

REMARK. A similar factorization holds for elements of Ny'. O

REMARK 3. Let X, be the generic open torus orbit in X (so
that X = X). By definition, Xy C ﬂweW/Ws Z¥. On the other
hand, if x € ((Z"Y, then by Remark 2, the open torus orbit through
X 1is generic, so it has dimension /. But X contains only one /-
dimensional open torus orbit, so that

Xo= [ zv. 0
weW /W

When X, is thought of as subset of Z%, we will call it Zj’. The
goal now is to define a cone & of lattice points in M, and to iden-
tify Z§’ with a certain set of characters on So, . Then, the lower-
d1mens1onal open torus orbits in Z¥ are identified with characters
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supported on the lower-dimensional faces of % . In this way, we
build the dual cones &, and piece together the affine varieties Us.
It will suffice to do the construction for w = id; the results for Z¥
follow upon conjugation by w . For simplicity, write Z and Z; for
Z4 and Z{¢4.

Once and for all, pick a reference point

nPeXxo= (| Zv,
wEW W,

and write its coordinates with respect to G/P as ¢0. The torus H
acts on nOP as follows:

(1) hn®h7'P= T[] hexp(cle)h™'P= T[] exp(hcle.)P.
a€E—R*(S) a€—R"(S)

DEFINITION 5. Let x = hn®h~'P € Z,. Define the character uy
on %id = G;a N Mg by

(2) ux(a) =h*, a€—-R*(S)

(for a;4 see Definition 4). Extend u, to all of % by the rules
ux(0) =1,  ux(m+m') = ux(myux(m').

Let Ugid be the set of characters obtained in this way.

REMARK. Note that by definition, u, is never zero on 5”% . There-
fore, U 0 is a proper subset of the set Us, of all characters. o

We now associate a character of . to the remaining points of Z .
The argument is carried out in detail only for characters corresponding
to the points of (nongeneric) codimension 1 open torus orbits in Z .
It will be clear that the extension to smaller nongeneric open torus
orbits in Z requires more complicated notation but no new ideas.

Let Y be a codimension 1 open torus orbit in X . By Facts 3 and 4,
§2, the one-dimensional stabilizer torus expzt of Y is generated by
a u € My that is normal to a codimension 1 face of the momentum
polytope J(X). Assume first that this face contains the vertex w of
J(X). Then by Lemma 5, y is normal to a codimension 1 face ¥ of
0iq - In the expression

(3) exp(ti)nlexp(—tit) = ] exp(e®™cles)
ae—R*(S)

there are factors with a(it) = 0 (when o € %) and factors with a(it) #
0. Change the sign of u, if necessary, to make a(it) < 0 for all
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a € —R*(S). This is possible because the whole cone &;4 lies on one
side of ¥. As t — oo, the factors with a(lt) < O tend to the identity
element, and the limit is

n%(z) = [ ] exp(clea).
o€l
The point n(7)P still belongs to the big cell of G/P (it has an NpP
factorization); hence it lies in Z . The (/ — 1)-dimensional torus gen-
erated by the annihilator of x4 in # = Ng acts in the usual way:

(4) hn(t)h~1P = ] exp(h®clea).

a€ct
It follows from (4) that the whole orbit Y lies in Z. Now define a
character on points of the form (4) by setting

()_{ha, ifaeft,
Y=o, ifagt

Extend it to d;q N Mg according to the usual rule.

The codimension 1 open torus orbits associated to faces of &;q are
in fact the only ones that meet Z. Take any codimension 1 open
torus orbit Y. Let

(5) nY)P= [] exp(cle.)P
a€E—R*(S)

be a point in Y N Z . Since I1? C J(X), there exists a & € Ng = A&
such that w(¢&) > u(¢) for all u € 11, u # w. In particular, since
(by Lemma 7) w+ a € I1? for all a € —R*(S),

(6) W) > (w+a)&) & al) <0 forallae-R*(S),
and therefore

; & -t _ 13 @) Yo \ = i
() lim e®n(Y)Pe~* = lim II expe™@cle,) =idP.
a€—R*(S)

This shows that id P € Y, and since J(idP) = w (see Fact 2 in
§2), the face of J(X) associated to Y contains @.

Entirely similar arguments establish a correspondence between codi-
mension k£ open torus orbits in Z and the relative interiors of codi-
mension k faces of &;3. The only difference is that the stabilizers are
now generated by k elements f;, ..., I in Ng, all of which are
normal to a codimension k face of 4.
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FIGURE 3

We have now associated a character u, on % to each point x €
Z . There are, in fact no other characters: if « is a character, define
X €Z by

x= J] exp(u(a)cles).
aE—R*(S)

It is easy to see that this definition is consistent.

To complete the identification of the torus orbit X with an abstract
toric variety 7y emb(A), one must construct the fan A in Mg and
verify that the patches U, glue together as described in 2.3.

THEOREM 1. Set
Oid = U w-C™.
weWw,
The fan A of X consists of the cones w - a4, for w € W [Ws, and all
their faces.

Proof. 1t follows from Lemmas 4 and 5 that the cones g4 and &4
are dual. The verification of the patching conditions is tedious but
straightforward, and is omitted. O

EXAMPLE 1, CONTINUED. Consider again the torus orbit X = (CP?)*
= G/P. The fan described in Theorem 1 is drawn in Figure 3.

In the next section, we show how to compute the polytope [J,
that determines the embedding of this toric variety into P(V%:). It
is related to, but not quite the same as, the momentum polytope
J(X). O

5. The Pliicker embedding of a torus orbit. The Pliicker embedding
of G/P into P(V?) can be described in terms of a certain very ample
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line bundle L, on G/P. The weight w defines a character x, on
the parabolic subgroup P,

Xo(p) = (p°(P)v®, v*)~!,
and L, is the quotient of G x C by the equivalence relation

(g,¢)~(gp, 15 (P)c)
with g€ G, c€ C, and p € P. The space H°(G/P, L,,) of global
sections of L, may be identified with the set of holomorphic func-
tions s: G — C satisfying

s(gp) = o' (p)s(8).
One possible basis for this space is provided by the Pliicker coordinates

nu(8) = (p“(g?, v¥).
In this section, we compute the pullback LY (necessarily very ample
on X) of L, to a generic torus orbit X C G/P. The projective
embedding defined by LY will be called the Pliicker embedding of the
torus orbit.

Let h € SF(N, A). It defines a torus-invariant divisor D, and an
equivariant line bundle L, (an invertible sheaf, if the torus orbit X
is singular). We compute its transition functions. Each m € M deter-
mines a holomorphic function e(m) on the torus 7x . This function
extends to a rational function, still called e(m), on X = Tyemb(A).
The divisor of e(m) is a principal torus invariant divisor on X . One
has div(e(—m)) = D, with A = (m, -) on each cone o € A [8, Propo-
sition 2.1]. Furthermore, a codimension one toric subvariety V' (p) of
X meets an affine set U, only when p is an edge of o [8, Propo-
sition 1.6]. Now D,, by its very definition, coincides on U, with
div(e(—/s)) . It then follows that the transition functions are given by

PyqsU)=e(ls — 1) (u) onU;,NU,.
Notice that since /; =/, on g Na’, one has
lg—la.' GMﬂ(GﬂG')'L C%na',

whence both functions e(/; — /) and e(/;: —/;) are holomorphic and
nonzero on U, N U, .

THEOREM 2. Let X be a torus orbit in G/P. The pullback LY of
the line bundle L, from G/P to X can be defined by

h=(w-w-w,) onw- gy, weW/Ws.

The proof is based on a sequence of simple lemmas.
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LEMMA 9. The image Z¥ of the big cell of G/PY under the iso-
morphism G/PY = G/P in Lemma 1 can be identified as

Zv = {gPlw~'gP € big cell of G/P}.

Proof. Remembering that the isomorphism in question sends gP¥
to gwP, we have
gP e ZY & gP = wnP for some n € Np
o wlgP=nP < w!gP e big cell of G/P. O

_LemMA 10. The line bundle L, can be trivialized over the covering
Z"Y of G/P. For fixed choices of the coset representatives of the Weyl
group elements, the transition functions
W' ZY NZY — C*
of L, are given by
Ww'w(gp) = Xw(P,)/Xw(P) ’
where p, p' € P are defined by

g=wnp=w'np, n,n € Np.

Proof. Let [(g,c)] € L, with gP € Z¥. By Lemma 9, we can
factor
wlg=np, neNp,peP,
and then
(&,¢)=(wnp, c) ~(wn, 2u(p)c).
Define a trivialization w, on Z¥ by

Yu(lg, c]) = (&P, Xu(p)c).

The rest is clear. If a different coset representative for w is chosen,
then y,, is multiplied by a nonzero constant of the form x,(k),
h € H, and the corresponding cocycles differ by a coboundary. o

LEMMA 11. Let B € —R*(S) and assume that there is an edge of
J(X) from w to w+ f. Let

n= H exp(Cqa€q) € Np.
aE—R*(S)
Then
(p®(nyu®, v+B) = gy,
with kg a nonzero constant independent of n.
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Proof. If there is an edge of J(X) from w to w+ B, w+ B is
a vertex of J(X) and so lies in the orbit W - w. It is a weight of
multiplicity 1. Hence p®(eg)v® = k,;v“’*ﬂ with kg # 0. One easily
computes that

POV = v? + kgepgv®h 4+ " kaCuutr -
a€—R*(5)
a#p

The “--- ” represent terms involving weight vectors v# for weights u
of the following form:

s
,u=w+anyj, nj€Zsp,y; € —R*(S), andn; >2ifs=1.
Jj=1

If s=1, then u # w+ B since ny is not a root when n > 2. If
s > 2,then ) i_;n;y; is a sum of at least two lattice points in G4,
and there can be no edge from w to x4 in w+d;q O J(X). It follows
that the coefficient of v?*# in p?(n)v? is precisely kgcp , as was to
be shown. O

REMARK. Lemma 11 does not deal specifically with torus orbits.
If nP lies on a torus orbit through some generic reference point
n%P, then the conclusion remains true even if there is no edge from
w to w+ . (Remember that, by Lemma 7, w + f € I1® when
B € —R*(S)). The argument, however, seems to require the Pliicker
equations for the torus orbit (cf. §6). o

Proof of Theorem 2. First we need to show that 4 is integral and
continuous. Integrality is clear: w-w is a weight, so w-w—w is a root
and belongs to the lattice M . To prove continuity, it suffices to show
thatif p =Ryon,, n, € N, is an edge common to w-ojq and w'-gyq,
then ((w —w') - w, ny) =0. The edge p defines a codimension one
torus suborbit V' (p) of X [8, Proposition 1.6]. According to Fact 4,
§2, the corresponding codimension 1 face t of J(X) annihilates n,.
Furthermore, since p is common to w-o;q and w’ g4, V(p) meets
Uv.e, and U, o, As we saw in §4 (cf. computation of transition
functlons between the Us), T contains both w-w and w'-w, which
gives ((w —w')- w, n,) =0 as desired.

Let us denote by v, (respectively, ¢,,,) the cocycles defining
LY (respectively L;) over the covering Z%* =Z¥NX of X. The



276 HERMANN FLASCHKA AND LUC HAINE

rest of the argument consists in showing that
C,,'
(8) Vw'w = ¢w'wcl' s
w
with ¢, some nonzero constant. The cocycles ¥ and ¢ therefore
differ by a coboundary, and the line bundles are isomorphic.

We first observe that it suffices to establish (8) for adjacent cones
w- o4, w0y (ie., the cones intersect in a codimension one face).
Indeed, since |J,cp 0 = Nr, any two cones w - 0ig, W' - 6jq can be
connected by a sequence

W Oiq = W) - Oig, W2 0ig, ..., Wn Oig =W -0jq
with w;-0iq and wj,-0iq adjacent. If now (8) is proved for adjacent
cones, then by the cocycle condition we have

Cw1 sz _ C—wl

Yww, = Vww, Vww, = Quww, Puww ww,
1773 172 2773 172 2773 1773
Cuw, Cw, Cw,

on Z¥'NZ% N ZY . Because this intersection contains the unique
open dense torus orbit, we have

Cw
Yww, = ¢’wlwgc_I on Z*1NZY
3

by continuity, and then (8) follows by induction.
To prove (8) for adjacent cones, we may assume that w’ =id. For
n € Np, Lemma 10 gives
Viaw(nP) = 15" (),
with p uniquely determined by w=!n =n'p, n’ € Np, p € P. From
this we obtain (omitting the symbol p® for ease of notation)
9) Vidw(nP) = (pv?, v°)
= ((n/)—l,w—lnvw’ ,Ucu)
= (wnv?, v?)
= ay(nv?, v ?),  ay #0.
In the last two steps, we used properties of (-, -) mentioned in §2.1.
Recall that Z'¢ and U, are identified by
u—~n= [] expu(a)cles)
a€-R*(S)
and that the cocyle defining L, is

(10)  @iqw(u) = e(ly — la)(¥) = e(w - © — @)(u) = u(w - © — ).
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An argument similar to that used to prove continuity of 4 shows that
the cones 0,y and w - 0;q are adjacent if and only if w and w-w are
connected by an edge in J(X). By Lemma 3, then, w-w = w +
with # € —R*(S), and by Lemma 11,

(p?(m)v®, v2*F) = kpcgu(B).

Note that ¢ # 0 because the reference point n° was chosen to be
generic. Combining (9) and (10), we get

Vidw = QuwkgCQPidw = CuPidw »
where c;q is normalized to be 1. This concludes the proof. o

ExXAMPLE 1, CONTINUED. For the fan in Figure 3, we define 4 to
be 0 on gid » (—az, ) on §y - 0Gi4, and (-—Oq -, ) on §187 - 0igd
here s;, s, are the fundamental reflections in «;, a;. The divisor is
Dy, = V(d,). This is the hyperplane divisor on (CP?)*, which gives
the standard embedding into CP?. O

Notice in this example that (0, = J(X)—w;: the polytope O, from
toric variety theory is a translate of the momentum polytope. This is
true in general.

COROLLARY 4. In the setting of Theorem 2, 0, = J(X) — w.

Proof. Because LY is very ample, [8, Theorem 2.13] says that [J,, is
the convex hull of the /; for ¢ running over the maximal dimensional
cones in A. Thus, OJ;, is the convex hull of the points w-w—w, w €
W/Ws. 0

We now compute the dimension of HO(X, LX), which, according

to [8, Corollary 2.9], is #(O, N M), the number of points of the root
lattice on and inside [Jj, .

THEOREM 3. Let X be a torus orbit. Then dim HO(X, LX) = the
number of distinct weights in the weight system II® of the representa-
tion p®.

Proof. From Lemma 6, the number of distinct weights in II® is
the number of weight lattice points congruent to @ (modulo the root
lattice) in the convex hull of W - w. By Corollary 4, that is precisely
the number of points of the root lattice A on and inside [J, . m]

ExaMPLE 3. Let G = (G,, and take «; to be a long root. Let
S ={1}. Then w = w; = 2a; + 3a;, and the representation p%: is
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the adjoint representation, which is 14-dimensional. The flag variety
G/ P, is embedded (by Ly, ) into CP!3. Since 0 is a weight of multi-
plicity 2, and all other weights (= roots) have multiplicity 1, a torus
orbit X is embedded (by LX) into CP'2. It is easy to check that
the polygon [J, from Theorerﬁ 2 is the hexagon with vertices at

0, —ay, —3a; — 3ay, —4a; — 6ay, —3a; — 6ay, —a; — 3ay,

and that it contains 13 points of the root lattice.
The polygon O, contains a lot of information. For example, there
is the following criterion for nonsingularity of a toric variety:

THEOREM [8, Theorem 2.22, abbreviated). Let X = Ty emb(A) be
a toric variety, let h define a very ample divisor Dy, and let OJ;, be the
corresponding polytope in Mg. Then X is nonsingular if and only if
the edges emanating from each vertex of O, are generated by a Z-basis
of the lattice M .

Now, the edges from the vertex 0 in our example go to —a; and
—aj—3a;, and these are certainly not a Z-basis of the root lattice M .
Hence, a torus orbit in G/P; is singular. (This provides a counter-
example to Proposition 3.3.1 in [3].) O

REMARK 4. Example 1 and Corollary 4 show that the polytopes [J,
and J(X) generally lie in different lattices, and can define different
toric varieties when the construction in [8] is used.

We have already mentioned that usually (e.g. in [1], [3]) the momen-
tum mapping on G/P is normalized so that the vertices of the image
lie in the weight lattice. The weight lattice is the character group of
the maximal torus H in the simply connected group G. Its center Z
acts trivially on G/P but (in general) nontrivially on L.

Other tori can acton G/P as well. A u in the weight lattice defines
a character x, of H. Let Zy = {{ € Z|x,({) = 1}. The character
lattice of H/Z; is a subgroup of the weight lattice. When u = w,
it becomes the root lattice M . Since the momentum map of the
T-action is defined only up to translation by a constant element of
J* = My, it is natural, when considering the action of H/Z;, to
perform a translation J — J — u. For the adjoint torus action of
interest to us, this agrees with Corollary 4.

We should also note that a torus 7 always acts effectively on
Tyemb(A). (Indeed, a ¢t € Ty is a homomorphism from M to
C*, and it acts on u € % by (tu)(m) = t(m)u(m). Thus, t acts
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as the identity only if ¢ = 1.) It is impossible, therefore, to have a
non-effective action of 7y on G/P and an effective action on a line
bundle over G/P (as is the case for H). O

EXAMPLE 4. The results obtained so far allow us to decide which
torus orbits in G/P are nonsingular, when G = SL(/ + 1, C). This
is somewhat tangential to the main concerns of the paper, so we only
give a brief summary.

ProrosITION. Let G =SL(/ + 1, C). A torus orbit in G/P is non-
singular if and only if the weight wp is either w, or wy, or if it has

the form
J
wp=)
k=i
for some i, j satisfying 1 <i<j<lI.

The varieties G/P associated to w; and w; are CP' and (CP/)*;
they are themselves torus orbits (see Example 1), and are obviously
nonsingular. In the general case, we use the criterion mentioned in
Example 3.

Consider first a maximal parabolic P, . Then S = {k}, and —R*(S)
consists of roots of the form

J
=D om;
m=i

with i < k < j. None of these is a positive linear combination of the
others, so they all represent edges of the cone ;3. When 2 <k < /-1,
we see via Lemma 5 that there are more than / edges at the vertex
id-w - w=0 of O,, and such a torus orbit must be singular.

Warning. Remember that “torus orbit” means “generic”. There are
nonsingular maximal orbits in G/P;, but they are not generic. For
example, the generic torus orbit in G(2, 4) is singular, but there are
non-generic ones isomorphic to CP?.

Now let S = {iy, ..., is}, so that o = w; + -+ w; . For each
maximal parabolic Pij , abbreviate —R*({i;}) = —R;:. One has

If
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then
B=—(ai+ ta+ - +a + - +a))

=—(a,~+~~-+a,~j)——(a,~j+1+‘-~+a,~m+---+aj).

e:}(; 8:1;:;,
Since B is a sum of two lattice points in &4, it is not the generator of
an edge of &iq. If we remove all the sets —R} N—R} from —R*(S),
we are left with the edges of &;4. This is a property of SL(/+ 1, C),

and fails even for other classical groups.
It is not hard to see that —R*(S) is generated (over Z) by blocks

Qis..-» Qi of roots; here Q,'j contains all roots of the form
t
(11) —Zak, ij_1<r$t<ij+1,
k=r

with the convention iy = 0, i;,; = [+ 1. An illustration is given
in Figure 4, for the weight w; + w4 of As. The blocks @, and Q4
are marked by o and o, while the remaining roots in —R*(S) are
indicated by e. The roots of the parabolic are marked with *.

* ok ok ok %k Xk
* k% ok k ok k
O O *x % *x %
O O *x *x *x X%
e & O O *x %
e 0 O O x %
FIGURE 4
The roots in
S
(12) Ue,
k=1
represent edges of [J, at the vertex 0. One sees from (11) that there
are [ edges precisely when i, ..., iy are consecutive integers. In
that case, it is easy to verify that the / edges in (12) are a Z-basis
for M. O

6. Pliicker equations. We saw in Theorem 3 that a torus orbit X in
G/P naturally embeds into a projective space whose dimension is the
number of weights in the weight system I1?» (minus 1). This embed-
ding, which we called the Pliicker embedding of X, is the restriction
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to X of the familiar Pliicker embedding of G/P. In this section, we
derive the “Pliicker equations” for this torus orbit embedding.

First, a short review of the Pliicker equations for G/P realized as
P(#?) is useful. Those equations are due to Kostant; his proof was
apparently first published in [6]. We use the form given in [S] and in
unpublished lecture notes by Dale Peterson:

THEOREM. Let G/P be realized as projective highest weight orbit
P(@?) in P(V?). Pick a basis {u;} of & which is orthonormal with
respect to the Killing form. Let |w|* denote the squared length of w
in the usual metric on the weight lattice. The quadratic equations

(P) @2x ®x = 3 p°(ui)x ® p°(u)x

generate the ideal of P(¢*®) in P(V®).

Every x € V' is a linear combination of weight vectors v#, where
the u run over the set &/ of all weights, counted with multiplicity:

(13) X = Z my(x)vk.
UEL
The coordinate-free relations (Pl) produce many equations for the
Pliicker coordinates m,(x). These provide some perspective on our
result, so we give a brief summary.
Substitute (13) into (P1). The left side is

|w)? Z (X)), (X)v* @ vY.
U VES

For each pair (u, v) € & x &, we get an equation

(14) |OPRu(x) s (X) = Y i ma(X)7e(x)-
0,7€¥

The coefficients in the right side of (14) are complicated: one must
expand each p®(u;)x in the basis {v#}, collect terms, and so forth.
We cannot, and do not need to, describe them explicitly. It is possible,
however, to restrict the range of the summation on the right side of
(14).

If £ € # and x € P(@?), then exp(t) - x € P(@?) also. Insert
this into (13): we get

exp(t¢) - x = Y my(x)e vk,
pest
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and it follows that
n,(exp(t€) - x) = e, (x).
If the same substitution is made in (14), one finds

|27, (x) 7, (x)e B+ = N cOtmy (x)me(x)e!C+IE),
g,TeY

It is now easy, by letting ¢ range over the subspace of Nr annihi-
lated by u + v, to extract a set of more restricted Pliicker equations:

LEMMA 12. The ideal of P(@¢%) is generated by equations of the
form

(15) oPru()m(x) = Y pas(x)m(x),

o+T=U+v

where u, v, o, 1T range over the set & of weights.

We will show that the Pliicker equations of a torus orbit X are
closely related to (15). Basically, each equation in (15) is replaced by
a set of equations

Tully = CMgMe =C'MyMy =+, u+tv=o+t=ad+17---.

Some of these equations, however, may amount to 0 = 0, and others
become linear, so we cut down the dimension of the ambient projective
space, from

CPdim Ve-1 to CP# of distinct weights in I1°—1

Let xo € X be a generic point, with Pliicker coordinates n2 . Recall
that “generic” means: n0 , # 0 for w € W/Ws. The following
convention is useful: if a weight u has multiplicity > 1, the Pliicker

coordinates associated to u are denoted by 7, n” , nZ e

LEMMA 13. For each distinct weight u, there is at least one Pliicker
coordinate amongst the 7t2 , n;to, ... that does not vanish (at the point
Xo). Pick one, and let m,(-) be the coresponding coordinate function
on X. Then: the set of these m,’s, one for each distinct weight, is a-
basis of HO(X, LY).

Proof. Since LY is the pullback of L, from G/P to X, the set
{my, my, ... |luel”}
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generates HO(X, LX). If u € W-w, then 7} # 0 by definition of
“generic”. Suppose now that u ¢ W - w. Because

mu(h - Xo) = h*x),
it follows that either

=q =" =...=0 ifn%=74%0=...=
y=n,=n,=--=0 ifn,=m, " =..-=0,

or
7 0 nuO ) 0
Ty, My =y, ..., ifm,#0.

Thus, if 7} =x,%="..=0 for some u ¢ W -w, we would have

dim H°(X , L¥)w) < # of distinct weights of p®,
contradicting Theorem 3. o

REMARK. From the theory of toric varieties, one knows that the
space L(D;) of functions with at most a simple pole along D), has
the basis

{e(m)lm € M NO}.
Since the map m — w + m is an isomorphism between M N[, and
the weight system I1? (Corollary 4 to Theorem 2), one finds that
752; Ney+m

e(m) = e(m) (xg) -~

for any one of the possible bases {n,} of HO(X, LX) described in
Lemma 13. In particular, this shows that

Dy, = div(ze|x),
for 4 as in Theorem 2. o

The next theorem describes the ideal for the Pliicker embedding of
a torus orbit X in G/P.

THEOREM 4. Let {n,} be a basis of HY(X, LY) as in Lemma 13.
The set of quadratic equations

. ot
(16) Go=05, Mtv=0o+T
mnd  mom?

generates the ideal of the Pliicker embedding of X,
n: X —CP’,

x = 1(x) € [7,()]perre-
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Proof. Let 77 denote the zero locus of (16), and let X, be the
(unique) open dense torus orbit {#-xp} in X.

One inclusion is clear: if x = h - xp, then m,(x) = h/‘n2 , and the
equations (16) are satisfied. Conversely, we want to show: if y € CP°,
with coordinates [z,], belongs to

7 N{n, # 0 for all u},
there exists an 4 € H such that
my = ch*nl;

here ¢ € C* is a nonzero constant allowed when one compares pro-
jective coordinates.
The argument goes by (repeated) induction on the weights in the
weight system [1®. When u € I1?, and
i
(17) p=w-=> njwa;,  njp) €Ly,
j=1

recall that L(u) = Ei-:l nj(u) is the level of the weight u. We will
define the desired 2 € H by prescribing the values A% of the fun-
damental roots on 4. For each j, there is a first level at which «;
appears in a weight (17), or else a; never appears in a weight (this
can happen, for instance, when G is semisimple but not simple). In
the latter case, 4% remains arbitrary, and its value does not affect the
subsequent argument. We therefore disregard such roots.

Suppose now that o; does appear in (17); at the first level involving
a;, there is at least one weight of the form x4 =v — a;; we pick one
of these weights and define

o, Tv [ T
h% = 29/ 2
We now claim that for all u € I1®,
T 4
18 £ = (—wh“") h*,
( ) ng 7!2)

This is evidently true at level 0, for the weight w, and at level 1,
where the weights have the form w — a; . Suppose that (18) has been
established up to level L(u) — 1, and consider a weight u at level -
L(u). There are three cases.

Case 1. The weight u is used to define a value A% ; in this case,
(18) follows by definition and (for the compatibility with earlier steps)
by induction hypothesis.
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Case 2. A root a; first appeared at level L(u), the weight u in-
volves «;, but another weight u' was used to specify the value A% .
So, we have

p=v-o;, g=v-a;, LE)=LE)=Lg-1=LH)-1.
The consistency condition (18) follows from
Tulty _ Ty Ty

/ ! /
= U+v =v+v —aj=u +v
npn) b’ JEETY

the induction hypothesis, and Case 1.

Case 3. The weight u could not have been used to define any of
the numbers 4% . There is then an index j such that 4 =v —a;, and
h® was defined by a weight ' = v’ —o;, with L(u') < L(u)—1. As
in Case 2, we argue that (18) holds. O

ReEMARK. It is clear from the proof that one can use ratios like
h®/h®~* only to determine the value A* of roots on h. This again
confirms that the root lattice, rather than the weight lattice, is relevant
for the description of torus orbits. o

7. Intersection theory. Introduce the line bundles L; = L, over
G/B, defined (as in §5) by the characters

xj(b) = (p®(b)v® , v®)~1, beB.

They are not ample; the space H(G/B, L j) maps G/B to the highest
weight orbit P(#®)) in P(V'), which is isomorphic to G/P; where
P; is the maximal parabolic subgroup corresponding to S = {;j}. Put
differently, the natural projection #;: G/B — G/P; is followed by the
embedding of G/P; provided by the line bundle L; — G/P;. Let X
be a torus orbit in G/B. Then 7;(X) is a torus orbit in G/P;, which

has a Pliicker embedding by the sections of L;F’(X) as described in §5.
The corresponding torus invariant divisor D, on 7;(X) pulls back
to a torus invariant divisor D; on X . Since these divisors correspond
in a natural way to the fundamental weights, we call them (for lack
of a better term) the fundamental torus invariant divisors on X . We
want to study their intersection theory.

To begin, we note that each D; is defined by the same support func-
tion h;. Indeed, the fan A; of z;(X) has as maximal dimensional
cones certain unions of the co-Weyl chamber C~ in Ny, as described
by Theorem 1. The support function #; is defined on the maximal
dimensional cones of A; by the formula in Corollary 4. The fan A of
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SO

\\
////////

%

)

FIGURE 5

X has for its maximal dimensional cones a// the images wC~ of C~
under the Weyl group (since the parabolic subgroup B corresponds
to the choice S = {1, ..., [}, so that W5 = {id}). Thus, each A;
is a function on Nr which is not only linear on the cones of A; but
also on the cones of A. In fact, it is linear across several cones, so
it is upper convex but no longer strictly upper convex, which by [8,
Corollary 2.14] means that the divisor D; is not ample. (dx(D;)
is, however, generated by global sections [8, Theorem 2.7].) Further-
more, the polytope [J;, is the one described, for G/P;, in Theorem
2. Figure 5 has an illustration for the case G = SL(3, C); the fans A
and A; are pictured.

THEOREM 5. The intersection number (D;...D)) is
|W|/detC,

where |W| is the order of the Weyl group of G and C is the Carian
matrix.

REMARK. The intersection number in the theorem is the usual inter-
section number of cycles whenever X is nonsingular. This happens
in our setting: a torus orbit X C G/B is always nonsingular. The
proof uses the nonsingularity criterion ([8, Theorem 2.22]) stated in
Example 3, and Corollary 1 to Lemma 3. O

Proof of Theorem 5. We use [8, Proposition 2.10], according to
which the desired intersection number is the mixed volume of the
polytopes Elh] ey Dh, . Normalize volume in Mg so that the basic
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parallelopiped
l
{ijajlo <x;< 1 V]}
j=1
has volume 1. One knows that the volume
(19) Vol(n Oy, + -+ n0y )

is a homogeneous polynomial in the variables #;. The mixed volume
is, by definition, the coefficient of 1'[’l n; in this polynomial (we ignore
a factor 1//!, which cancels out of the final equation).

Some simplifications are in order. It suffices, in the definition of
mixed volume, to let the »n; be positive integers. We may translate
each polytope in (19) so that its vertices lie in the weight lattice. The
volume of the sum in (19) will change, but the mixed volume remains
the same. This follows from the linearity of mixed volume in each of
the arguments, see [8, Appendix]. The sum

nl(D;,‘ + 0)1) + -+ n,(Dhl + wy)

then has a simple description: it is the convex hull of the Weyl group
orbit through
A=nmw;+ -+ now.
Call this polytope [0,. We need its volume, i.e. the number of root
lattice points in [, , as function of the n;. It is easier to count weight
lattice points, so in the end we will divide by det C, which is the index
of the root lattice in the weight lattice. Furthermore, it is enough to
count the number of points in the positive Weyl chamber C*, and
to multiply the result by |W#|. The structure of the formula in the
Theorem should now be clear. (Note also that we write C* rather
than C+ ; the notation is simpler if we forget for the moment that the
root lattice is dual to our basic lattice N .)
The intersection [0, N C* is bounded by the walls of C*

{x|(x, &;) =0}, j=1,...,1,

(the &; are the simple coroots) and by the hyperplanes through A and
orthogonal to the fundamental weights w;,

{xl(x, wj) = (4, wj)}, j=1,...,1L

Introduce the parallelopiped IT bounded by the walls of C* and by
the hyperplanes through A and parallel to the walls:

{x|(x,&)=n;}, j=1,...,1L
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(X‘*’z) (| ‘”2)' — A=y, + Ny,
[] ) { -
@ A\ W) =(\
’ <
()ga/)=n/ [/:JU}/
-
&, 1T
e (x&)=0
@,
7
FIGURE 6

(See Figure 6 for an SL(3, C) example.) The number of weight lattice
points on and inside II is [T} (n; + 1), and so the volume of II is

(detC)~lny---my.
We show that the difference
(OnNCH\II

consists of polyhedra whose volumes, as function of n;, ..., n;, are
independent of at least one n;. Suppose this has been proved. Then
the volume of O, NC™* is

(detC)~'n;---n; + other monomials,

whence the mixed volume of all of [, is [W|/detC, as desired.
First we prove that

HcO,nCT.

Let x € II, x = xj0; + - + x;0;. Of course, x € C*. Since
0<(x,a;)<n; forall j, we have 0 < x; < n;. Then

! !
> xi(w, w)) SZ (@, @;) Vj
k=1 k=1

since (wy, w;) >0, and so
(x, wj) < (4, w;) V.

This shows that x € [J,, .
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A similar argument also shows that if (x, &;) > n; for all j, then
(x, wj) > (A, w;) for all j, which contradicts x € O0,. Therefore,
for each x € (O,NC*)\II there is a subset © C {1, ..., [} such that

0<(x,a;)<n; forj¢®O
and
ne < (x, &), (x, )< (4, w) forke®.

Let g be the set of such x ; the Og are disjoint up to sets of measure
zero. Now if x € Og, then

y=x- Z niw;
€8
satisfies:
0<(y,a&;)<n; forj¢eo,

and

0<(y,a), ,w)< (Z nmwm,wk) for k € ©.
m¢e

Let [0° be the set of such y. Clearly, (g and [0° differ only by
a translation. Hence, they have the same volume. Since Vol((1®) is
independent of n;, k € ©, this volume as function of the n; cannot

involve the factor [} n;. The theorem is proved. O

Finally, we generalize Theorem 5 to find the intersection multiplic-
ity of arbitrary intersections of the D;. Choose

©={ir,...,is}c{l,.... I},

and let V' be an S-dimensional closed subvariety of X . The inter-
section number

Dy ---D; 3 V)
is defined to be the coefficient of v, ---v; in the polynomial
XX, Oy ®s, Ox(1D; + -+ vsD;)),

where x is the Euler characteristic.

Let £© be the Lie algebra generated by a;, j € ©,let G® and B®
be the corresponding Lie group and its Borel subgroup, and let W®
and C® be the Weyl group and Cartan matrix of £°.
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THEOREM 6. Let 1 € A be the cone spanned by @, k ¢ ©. Then
(Dj - Dy ; V(1)) = |W®|/ det CO.

Proof. We need some notation. As in [8, Corollary 1.7], introduce
N(t)= N/Z(tnN), N(t)r= Nr/Rz,
and _ .
A(7) = {G = image of ¢ in N(7)r|T < 0 € A}.
As abstract toric variety,
V(t) = TN(T)emb(Z(r)).

Let # € SF(N,A) be the support function defining the divisor
Yjcov;jDj on X. By[8, Lemma2.11], thereisan 4 € SF(N (1), A(1))
such that

(20) x(Dy) ®s, Ov (1) = Ov(z)(Dy)-
The argument now consists of two steps.
Step 1. V(1) can be identified with a generic torus orbit in G®/B®.

Step 2. Since by Step 1, V(1) is a torus orbit, we can speak about
the fundamental torus invariant divisors. Call them D? ,..., D8,
Then: /4 defines the divisor 11D +--- + ¥, D® on V(7).

Let us show how the theorem follows from Steps 1 and 2.

(Di, Dy V(1) € coeff of vy - vy

in (X, Ox(v1D; +---+vsD;) ®s, Oy(v)

20 Coeff of vy--vs in 2 (V (1), Oy (Dy)

step 2
z coeff of vy - - - v

in x(V(2), Byy(iDP + - + D7)

def
= (DP...Df9)

= |W®|/detC®,

the last equality following from Step 1, which allows Theorem 5 to be
applied to the torus orbit ¥ (z) in G®/B®.

Proof of Step 1. We need to show that the fan A(z) defining

V(t)= Tﬁ(r)emb(A(t))
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can be identified with the fan of a torus orbit in G®/B® as described
in Theorem 1.

Since the sets {®@;, j € ©} and {®;, k ¢ O} span complementary
sublattices of N and complementary subspaces of Ng, it is clear that
we can identify N(t) with the coweight lattice N® of £° and N(1)g
with N9 . The cones ¢ € A for which 7 < ¢ are of the form

o=14+w- (ZRzosz‘) )
i€®'
where © C O, and w € W® = subgroup of W generated by Sa; s
j € ©. The projections onto N(7)g of these cones are identified with
d=(c+R7)/Rt=w- (ZRZOd)?) , wewe,
ic®'

which by Theorem 1 are the cones of the fan A® of a torus orbit in
G®/B°.

Proof of Step 2. We know that the divisor vyDi +---+vsDj 1s
defined by the function

h=(w-A-4,) onwC~,

with A = vj@; + - +vsw; . Since h|; = 0, [8, Lemma 2.11] says
that we may take A = #.

We compute the divisor determined by %#. Let M® be the root
lattice of £® (spanned by o;, j € ©); it is a sublattice of M and
Mg is a subspace of Mg . The fundamental weights w? of £ are
not always identified with fundamental weights of £, since the latter
may not lie in M. Rather, we have (for i, € ©)

e
o, =w; modw, k ¢ 6.

Hence s
A=) ol + Y wmoy )8 4 > oy
p=1 k¢e k¢®

Now, h = (wAi—A,-) on w-C~ for w e W9, but since w stabilizes
i,k ¢ 6, t_his is the same as (wA® — 18, .), which in turn gives
the values of 4 on the cones of A® . Tt then follows from Theorem 2
that 4 determines the divisor I/1D18+"'+ vsD® on V(t). Step 2 is
proved. a
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