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It is well known that length-minimizing networks in R2 consist
of segments meeting only in threes. This paper considers uniformly
convex norms Φ more general than length. The first theorem says
that for any such smooth Φ, minimizing networks still meet only in
threes. The second theorem shows that for some piecewise smooth
Φ, segments can meet in fours (although never in fives or more).

1. Introduction. Length-minimizing networks in R2 consist of
straight line segments meeting only in threes. Soap films meet in threes
for exactly the same reasons. (See Figures 1.0.1 and 1.0.2 and [CR,
pp. 354-356].)

This paper studies the structure of minimizing networks for elliptic
integrands Φ, which depend on direction and thus are more general
than length. (The surface energy of most crystals, unlike that of soap
films, depends on orientation as well as area.)

THEOREM (3.3). Let Φ be a smooth, elliptic integrand. Then, seg-
ments in Φ-minimizing networks meet only in threes.

THEOREM (3.4). There is a piecewise smooth, elliptic integrand Φo
for which the X is Φo-minimizing (see Figure 1.0.3).

Theorem 3.3 is proved by showing that conjunctions of more than
three segments are unstable. The proof of Theorem 3.4 uses symmetry
arguments to reduce the analysis to a one-dimensional calculus prob-
lem. The result holds for an infinite family of elliptic integrands with
unit balls that are perturbations of the square. (The unit ball is the
set of all points reachable from the origin with an energy no greater
than one.) (See Figure 1.0.4.) The square itself is the unit ball of the
rotated "Manhattan Metric," ΦM, for which our result would be triv-
ial; however, ΦM is not elliptic because the square is not uniformly
convex (see §2).
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FIGURE 1.0.1

Segments in length-minimizing networks only meet in threes

FIGURE 1.0.2

Soap films also meet in threes

FIGURE 1.0.3
The X is Φo-minimizing for a piecewise-smooth elliptic integrand Φo

(a) (c)(b)

FIGURE 1.0.4
(a) The unit ball for the length integrand. All directions have equal
cost, (b) The unit ball for the Manhattan Metric. Diagonal directions
are favored, (c) The unit-ball for our integrand Φo , a perturbation
of the square. Diagonal directions are favored. Theorem 3.4 shows
the X is Φ0-minimizing.

Theorem 3.3 is the main result of a senior thesis by Adam Levy [L]
at Williams College under the supervision of Professor Frank Morgan.

Theorem 3.4 is the work of the Geometry Group of the Williams
College SMALL Undergraduate Research Project, Summer 1988. For
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a period of ten weeks, each of fifteen Williams students worked in two
of the five groups that comprised the Project. The Geometry Group
consisted of the following members: Manuel Alfaro, Mark Conger,
Kenneth Hodges, Rajiv Kochar, Lisa Kuklinski, Zia Mahmood, and
Karen von Haam. Adam Levy was the student leader and Professor
Frank Morgan was the supervisor of this group.

General background can be found in [T], [Ml], [M2], and [F]. Ear-
lier related results were obtained by J. Abrahamson [Ab], R. Bassini
[B], and M. McCutchan [Me].

Support for the project was provided by grants from the National
Science Foundation (including add-on student stipends from the Re-
search Experiences for Undergraduates Program), the Ford Founda-
tion, G.T.E., Shell, the PEW Charitable Trusts, and the Bronfman
Science Center at Williams College. The NSF awards were given
to Colin Adams (DMS-8711495), Colin Adams and Frank Morgan
(DMS-8802266), Deborah Bergstrand (DMS-8808695), and Frank
Morgan (DMS-8504029).

2. Definitions. For a given, finite set of boundary points in R2, a
network S is a finite collection of smooth curves, intersecting only
at endpoints and connected as a graph, whose endpoints include the
boundary points. The other endpoints are called nodes. For example,
the network of Figure 1.0.1 has four boundary points and two nodes.

An integrand is a positive, continuous function Φ(t) which assigns
to each unit direction vector t a cost associated with that direction.
Since we work with only unoriented networks, we require Φ to be
even. Φ assigns to any network S an energy

E(S)= [φ(t)ds,
Js

where t is a unit vector tangent to S. We will often write Φ as
a function of θ, the angle of t in polar coordinates. A network is
called Φ-minimizing if no other network for the same boundary has
less energy.

An integrand Φ(t) is elliptic if the unit Φ-ball

{rt: rΦ(t) < 1}

is uniformly convex. An elliptic integrand has the property that
straight line segments are uniquely Φ-minimizing. See [L, Lemma
2.3] or [F, 5.1.2].

3. The existence and structure of energy-minimizing networks. Here
we present our main results, which first appeared in [L] and [Al].
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FIGURE 3.2.1
Segments can never meet in fives or more—whenever three intersect-
ing segments lie in a half-plane, a network of less energy can be pro-
duced as shown. Furthermore, if segments meet in fours, opposite
segments must form straight lines

3.1. PROPOSITION [L, Prop. 2.81]. Let Φ be an elliptic integrand
in R 2 . For a given, finite set of boundary points, there exists a Φ-
minimizing network.

REMARK. This result holds in Rn as well.

Proof. Since Φ is elliptic, one need only consider acyclic networks
of straight line segments and obtain bounds on the number of nodes
and segments. The result then follows by a standard compactness
argument.

The following theorem classifies all singularities in Φ-minimizing
networks. Theorem 3.4 will show that the juncture of four segments
occurs.

3.2. PROPOSITION [L, Prop. 3.1]. Let Φ be an elliptic integrand in
R 2 . A Φ-minimizing network consists of straight line segments which
never meet at nodes in fives or more. If they meet in fours, opposite
segments form a straight line.

Proof. Since Φ is elliptic, of course, a minimizing network must
consist of straight line segments. A network which includes three seg-
ments meeting at a point and contained within a half-plane cannot
be energy-minimizing, since the outer two of these line segments can
be replaced by a straight line segment: see Figure 3.2.1. Therefore,
segments cannot meet in fives or more, and if they meet in fours,
opposite segments must form a straight line, since straight lines are
uniquely energy-minimizing for elliptic integrands.

The following theorem shows that the standard regularity for length-
minimizing networks also holds for any smooth, elliptic integrand.
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3.3. THEOREM [L, Theorem 3.5]. Let Φ be a smooth, elliptic inte-
grand in R2. In a minimizing network, segments meet at a node only
in threes.

REMARK. This result applies as well to "variable-coefficient" inte-
grands Φ(;c, ί) by a limit argument which is not difficult.

Proof. By Proposition 3.2, we need only eliminate the possibility
of two lines crossing. Suppose there is a case where such a network
is energy minimizing. We can apply a linear transformation to the
integrand to produce a case in which the " X " is minimizing; i.e., the
two lines crossing are orthogonal.

We consider the variations suggested by Figure 3.3.2, in which the
boundary points are kept fixed and one of the intersection points is
moved slightly away from the center of the square, thus either increas-
ing θ (perturbation 1) or decreasing θ (perturbation 2). The energies
of the right half or perturbation 1 and the top half of perturbation 2
are given by

Perturbation 1 Perturbation 2

FIGURE 3.3.2
If the X is the minimizing network, then Perturbations 1 and 2 must
have more energy than the X
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Taking the appropriate one-sided derivatives of these energies gives

The inequalities follow from the assumption that the X is energy-
minimizing.

Now, since Φ is elliptic, the curvature K of the unit ball of Φ is
positive. The border of the unit ball is given in polar coordinates by

r{θ) = Φ(θ)

and the formula for curvature in polar coordinates is

κ_f2(θ)-f(θ)f"(θ)
κ

Thus, the curvature of the unit ball of Φ is

/ Φ(0) \ „

which, since K > 0, means

Φ(0) + Φ"(0)>O.

If Φ(0) + Φ"(θ) = 0, then Φ(0) = Φ(0) cos θ + Φ'(O) sin θ. Since we
have a strict inequality, we can conclude

(5) Φ(0)>Φ(O)cos0 + Φ'(O)sin0 for all θφO,

and similarly,

(6) Φ ( 0 ) > φ ( | ) s i n 0 - Φ ' ( | ) c o s 0

But (5) and (6) yield

while (3) and (4) yield

2Φ(0) + 2Φ ( I ) - 2>/5 [Φ ( ΐ ) + Φ (-£)] > 0,
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(a) (b) (c)

FIGURE 3.4.1
(a) A double-y with nodes E and F. (b) A double-7 with two
coincident nodes at E . (c) A double- Y with two nodes coincident
at the boundary point C

clearly a contradiction. So for no smooth elliptic integrand can four
segments meet at a point in a Φ-minimizing network.

The following theorem shows that if the smoothness of Φ is relaxed
to piecewise smoothness, four segments can meet in a Φ-minimizing
network. The particular example X is the diagonals of a unit square.
We show the X is minimizing for any elliptic integrand whose unit
ball is a suitably symmetric small perturbation of the square. (See
Figure 1.0.4.)

3.4. THEOREM. There is a piecewise smooth elliptic integrand Φo
in R2 such that the X is Φo-minimizing.

Proof. For an elliptic integrand Φ, let S be a Φ-minimizing net-
work having the four corners of a square as boundary. It is easy
to show that a network with four boundary points has at most two
nodes. We may say that any potential length-minimizing network has
two nodes, each one connected to two adjacent boundary points and
the other node, if we allow the possibility that the nodes are coin-
cident with each other or boundary points. We call these networks
"double-7" networks (see Figure 3.4.1), and say they are made up of
two " V V (the segments connecting a node to boundary points) and
a "bar" connecting the two nodes.

If Φ is symmetric about the x- and y-axes, we can show that any
double-y can be improved by placing both nodes on the horizon-
tal or vertical bisector of the square. We decompose the double- Y
ABCDEF of Figure 3.4.1 (a) into the two K's (AEB and CFD)
and the bar (EF), and we draw lines / and m parallel to an axis of
symmetry. (See Figure 3.4.2.)

We reflect AEB around / to form the network ABEAfBf (see Fig-
ure 3.4.3). By ellipticity, we know AGB' has less energy than AEB1
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(a) (b)

FIGURE 3.4.2
To show the double- Y ABCDEF is not minimizing, (a) we decom-
pose it into the subnetworks AEB , EF , and CFD . We then (b)
draw lines / and m containing the points E and G and H and
F , respectively; by reflecting the subnetworks around these lines we
will show ABCDGH has less energy than ABCDEF

FIGURE 3.4.3
Reflecting AEB creates the network ABEA'B1. Since, with elliptic
integrands, the least-energy path is a straight line, ABGA1B1 has less
energy than ABE A1B'

and BGA! has less energy than BE A!. Therefore, E(ABGA'B') <
E(ABEA'B'). Since Φ is symmetric, E{ABGA'B') = 2E(AGB) and
E{ABEA'Bf) = 2E(AEB), and so E(AGB) < E(AEB). Reflecting
CFD about m and using an identical argument shows E(CHD) <
E(CFD). Finally, reflecting EF about either line shows that GH
has less energy than EF (see Figure 3.4.4). Clearly E(EJE') <
E{EFEf). E(EJE') = 2E(EJ), E{EFEf) = 2E(EF), and E(EJ)
= E(GH) therefore, E(GH) < E(EF). Therefore, ABCDGH has
less energy than ABCDEF.

S therefore must consist of two symmetric V 's joined by a bar (of
length > 0) on the horizontal or vertical bisector of the square (Figure
3.4.5).

In each of the networks (a) and (b) in Figure 3.4.5, clearly one of
the angles of the minimizers must be greater than π/2. A similar
computation to that in the proof of Theorem 3.3 shows that the rate



SINGULARITIES IN Φ-MINIMIZING NETWORKS

G

209

FIGURE 3.4.4
Reflecting EF to get the network EFEf shows clearly that GH has
less energy than EF

(a) (c)(b)

FIGURE 3.4.5
"Symmetric" double- Y 's with their nodes on the horizontal or vertical
bisectors of the square, (c) is a degenerate case. Only symmetric
double- Y s are potential minimizers for any Φ symmetric about both
the x- and y-axes

of change of energy as that angle decreases is negative, provided that

(7) φ ( | ) - 2 Φ ( 0 ) s i n 0 - 2 Φ ' ( 0 ) c o s 0 > O i f θ < 0 < ^ and

Φ(0) - 2Φ(0) cos θ + 2Φ'(0) sin θ > 0 if ^ < θ < | .

Therefore, if condition (7) is satisfied, S must be of form (c) of
Figure 3.4.1 (i.e., it must have a bar of length 0), because forms (a)
and (b) are unstable. Since Φ is elliptic, opposite segments of S must
form a straight line (by Proposition 3.2), hence S is just the diagonals
of the square.

There are many elliptic integrands with the required symmetry sat-
isfying equation (7). For example, one could take the family of inte-
grands

+ - ^ when - | < θ < | or ^ < θ < ^ ,

, / Λ N ίΛ v, . Λ l 6 , 71 Λ 371 5TΓ Λ 77Γ
Φ c (0) = (1 - β ) s in0 + -τ= when -<θ< — or — <θ< —

Λ/2 4 4 4 4

as long as 0 < ε < (4 + >/2)/7.

Incidentally, if ε = 0, Φ ε has the square as its unit ball.
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Added in proof. Finding a length-minimizing network is often called
the Steiner problem. E. Cockayne [C] considered general integrands or
norms Φ but did not discuss the dependence on the differentiability
of Φ. M. Hanan [H] noted that for the nonelliptic "Manhattan" or
"rectilinear" integrand, minimizing networks can meet in fours.

More recently, M. Conger [Con] has proved a result analogous to
Theorem 3.4 for six vectors along the axes in R3. G. Lawlor and
F. Morgan [LM] have generalized Theorem 3.3 to differentiable norms
Φ o n R " , showing « + l a sharp bound on the number of segments
that can meet at a node.

A survey appears in [M3, Chapter 10].
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