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A CHARACTERIZATION
OF THE FINITE MOUFANG HEXAGONS

BY GENERALIZED HOMOLOGIES

H. VAN MALDEGHEM

A generalized homology of a generalized hexagon 5^ is an auto-
morphism of S? fixing all points on two mutually opposite lines or
fixing all lines through two mutually opposite points. We show that
if 5? is finite and if it admits "many" generalized homologies, then
5? is Moufang and hence classical.

1. Introduction and notation, A (finite thick) generalized hexagon
of order (s, t) is a point-line incidence geometry S? = (P, B, /)
satisfying (GH 1) up to (GH 4).

(GH 1) There are s + 1 points incident with each line, s > 1.
(GH 2) There are t + 1 lines incident with each point, t > 1.
(GH 3) Every two varieties (a variety is a point or a line) lie in a

common circuit consisting of six points and six lines.
(GH 4) For every circuit consisting of k points and k lines it must

be that k > 6.
At present there are, up to duality, only two classes known of fi-

nite generalized hexagons and they are related to the Chevalley groups
G2{q) and 3D4(q). We denote them respectively by G2(q) and 3D4(q)
(see e.g. [4]). Of course, there are two mutually dual choices for these
generalized hexagons, but we fix one by saying that 3D4(q) has order
(q, q3) and G2(q) is a subgeometry of 3D4(q). We will define these
hexagons below using Kantor's description (see [4]).

We now introduce some further notation. Let 5? = (P, B, /) be a
finite generalized hexagon. We will always assume that S? is thick. A
circuit consisting of six points and six lines (as in (GH 3)) is called
an apartment Let A be an apartment and x a variety of 5?. We
denote the set of all varieties incident with x but distinct from the
12 varieties of A by A*(x). A chain of seven distinct consecutively
incident varieties is called a root. If the middle element of a root is a
point, then we call the root short, if the middle element is a line, then
we call it a long root. Let 9ί = {xolx\ I - Ixβ) be a root. If a is
an automorphism of 5? fixing all varieties incident with JCI , x2, x-$,
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X4 or x5, then we call a an ίR-elation or, in general, a root-elation.
If the group of 91-elations acts transitively on the set of apartments
containing *H (for fixed JH), then we call ΰ\ a transitive root. In
that case the action just mentioned is regular. If every root of S?
is transitive, then S? is called Moufang and it was observed by Tits
(see [9]) that a theorem of Fong and Seitz [3] implies that, amongst
other things, all finite Moufang generalized hexagons arise from the
Chevalley groups mentioned above.

Two varieties x and y of & are called opposite if they lie at dis-
tance 6 from each other in the incidence graph, i.e. if they are opposite
vertices or opposite sides in every apartment containing them. Let x
and y be two opposite varieties and let a be an automorphism of 5?
fixing every variety incident with x ox y. Then we call a a general-
ized homology or an (x, y)-homology. Consider the group &{x, y)
of all (x, j/)-homologies. The number of orbits of &{x, y) on the
set of all varieties incident with a given variety z which is in turn
incident with x or y is independent of the choice of z and it is at
least 3 (since {x} or {y} is an orbit, as is the unique variety incident
with z and nearest to x or y). If that number is exactly 3 for some
(and hence for all) such z, then we say that S? is (x, y)-transitive
and that (x,y) is a transitive pair. If every pair of opposite varieties
of a given apartment A is transitive, then we call A itself transitive.
If every apartment of S? is transitive, then we say that S? has tran-
sitive apartments. The aim of the present paper is to show that the
latter is equivalent to S? being Moufang. Hence our main result:

MAIN RESULT. A finite thick generalized hexagon S? is Moufang if
and only if it has transitive apartments. If 5^ has order (s, /) with s >
2 and t > 2 and 5? is Moufang, then all root-elations are generated
by generalized homologies.

There is an immediate corollary.

COROLLARY 1. A finite thick generalized hexagon S? has transitive
apartments if and only if 5? or its dual is isomorphic to (72(0) or to
3D4(q) for some prime power q.

In §2 we will show that both Gι(q) and 3D4(q) have transitive
apartments (and hence also their duals). In §3 we prove the converse.

2. The classical generalized hexagons Gι(q) and ιD^{q) We start
with Kantor's description of 3Λι(#) (see [4]).
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Let

Q = {(a9β,c9δ9e)\a,c,eeGF(q);β,δeGF(q*)}9 and

(a,β,c,δ,e)(a',β',c',δ',ef)

= (a + a', β + β', c + c' + a'e -tr(β'δ), δ + δ', e + e'),

where tr(y) = γ + γq + γql. So Q is a group of order q9. If 1 < / < 5,
let Xi be the element whose /th coordinate is x and all others 0, and
let Xi be the set of all such X\. Define for all x e GF(q3) an
automorphism x^ of Q by

(a9β9c9δ,e)x<

= (a,β + ax,c- a2xι+q+q2 - tr(βq+q2χ) - tr(aβxq+q2),

δ + axq+q2 + βqxql + βq2χq,

e + αx 1 +*+* 2 + tr(^x^+^2) + \x(δx)).

Now identify ί € GF(q) with ί6 and define

Now let t run over GF(q3)U{00} and # over Q. Then the points of
3Z>4(#) are a symbol (00), all possible cosets A+(t)g and A2{t)g 9 and
all elements g. The lines of ^D^q) are the elements t and the cosets
^ ( f ) £ and A\ (t)g. Incidence is obtained via (suitable) inclusion and
moreover t is incident with A$(t)g and also with (00).

Restricting β,δ and t above to GF(q) produces Gι(q).
Now we fix the following apartment A in ^D^q).

A = (A4{oo) I A3{oo) I A2(oo) I Ax{oo) I (0, 0, 0, 0, 0) /

/ A2(0) I A3(0) I A4(0) I 0 / (00) / 00 / A4(oo)).

Let T € GF(qi) and define the following automorphism ΘT of Q.

Define θ^ also on the group of automorphsims te by mapping t$ —•
(Γί)6. Then it is an exercise to show that the mapping θj produces
an automorphism of 3D4(q) leaving all elements of A and all points
incident with the line 00 invariant and mapping the line t into the
line Tt. So we obtain a group of order q3 - 1 acting transitively
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on A*((oo)). This group is isomorphic to the multiplicative group of
GF(q3). Hence 3D4(q) is (x, y)-transitive for all pairs (x9y) of
opposite points (since the full automorphism group of 3D4(q) acts
transitively on such pairs).

Now let U G GF{q) and define the following automorphism ηv of

β .

ηu: (a9β,c9δ9e) - (Ua, Uβ, U2c, Uδ, Ue).

Then this induces an automorphism of 3D4(q) leaving all elements of
A and all lines incident with the point (oo) invariant and mapping
the point (a, 0, 0, 0, 0) into the point (Ua, 0, 0, 0, 0). As above,
we conclude that 3D4(q) is (x, y)-transitive for all pairs (JC, y) of
opposite lines. Hence 3D4(q) has transitive apartments.

Restricting β, δ, t and T to GF(q), we see that also G2(q) has
transitive apartments. This shows one way of our main result.

3. Finite generalized hexagons with transitive apartments.

3.1. Generalities, From now on we fix a given finite thick general-
ized hexagon 5? of order (s, t) and a certain apartment A in S?.
We suppose that & has transitive apartments. By duality, we can
assume that s > t. We denote the elements of A by

L\ I pi I L2 IP3 I L4 I p5 I L6 I p6 I L5 I p4 I L3 I p2 I Li.

If Xι,X2, ... ,Xi, i a positive integer, are varieties of S? then we
denote by &{x\, x2, . . . , Xi) the group of automorphisms of S? fix-
ing all varieties incident with at least one of X\, . . . , x/. If we want
the group fixing moreover varieties y\, y2, . . . , y ; for some positive
integer j 9 then we write %[y ^ 9,mm9y)(x\, . . . , Xi). We denote the
identity of the automorphism group of 5? by the usual 1. Here are
some useful lemmas.

LEMMA 1. Let p e {pi , f t} , L e {Li, L2, L4} and pIL. If
lp2 >P5){p ,L)φ\, then \β^2 fPs)(p ,L)\ = t. Also the dual holds.

x ισa

Proof. This is obvious if t = 2, so suppose t Φ 2. Let 1 Φ σ e
^ p )CP > L) and α E ̂ ( L i , L$). Consider α - 1 σ α . Then
( L p a runs over all elements of A*(p2) as a varies over ^ ( L i ,
But clearly orxaa e %[p yP ){p, L). D

LEMMA 2. If s >2 and t > 2, ί/zen ί/ze growp of automorphisms of
generated by all generalized homologies of & acts transitively on
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the triplets (p, L, B) where p is a point incident with the line L and
both lying in the apartment B.

Proof. It is easy to see that the group in question acts transitively
on the set of points opposite to a fixed point, hence it acts transitively
on the set of points. Dually, it acts transitively on the set of lines and
even on the set of pairs (p, L) of points p incident with a line L. If
B and Bf are two apartments containing such a pair (p, L), then it
is again elementary to see that we can map Bf to B fixing (p, L). D

LEMMA 3. Suppose s > 2. Then we have:
(a) Suppose <9* does not contain a proper thick subhexagon with s+l

points on a line. Then %p5(p\9 L\) Φ 1. If moreover β?{L\, L$) =
JT(L2, L5), then %?{L\, L6) = <%*(L3, L4) and every long root is tran-
sitive. On the other hand, if moreover %?{L\, Lβ) acts regularly on
A*(L2), then β?ps{Lχ ,puL2)φl. Also the dual holds.

(b) Suppose %f(L2,L<>) acts regularly on A*(p2). Then
%(P29P5)(PI > L2)φ\. Also the dual holds.

Proof, (a) Let (p21M^lq$IM5Iq^IMβlp5) be a (long) root not
lying in A. Let 1 Φ a e β?{Lx, L6) and choose β e %?{L\, M6)
such that aβ fixes at least one element of A*(p\). Clearly aβ Φ
1. Suppose aβ fixes a line M incident with p2 and distinct from
L\. Then it fixes a whole apartment, all points incident with L\
and at least three lines through p\ hence it fixes a thick subhexagon
with s + 1 points on a line. By assumption this implies aβ = 1,
a contradiction. Suppose now aβ does not fix a line M incident
with p\. Let L be any element of A*(p$) and consider the (L\, L)-
homology a^ mapping L$ into L°jP. If also 1/ e A*(p$), then
aj^aΓj} is an (L\, Z^-homology and hence, iϊ L Φ L', then α^α",1

does not fix Λf, so Λ/^ ^ Λfα^ . But there are t-2 valid choices for
L, so { M α 4 contains the t - 2 lines incident with /?! and distinct
from M, Li and L2. Hence we can choose L such that α^ maps M
into M α ^ . But similarly as before, aβa^} fixes A, it fixes all points
incident with L\ and it fixes M hence it is the identity, contradicting
the fact that aβ does not fix L. Hence aβ must fix all lines incident
with p\. But aβ fixes p$, and hence the first assertion follows.

Suppose now β?(L\,Lt) = %?{L2,L$). Then by Lemma 1,
%*{L\, Lβ) = ^ ( £ 3 , L 4 ) . So α/? above fixes also all points inci-
dent with L2 or L4. But since aβ acts semi-regularly on the lines
incident with p2 (distinct from L\), it has to fix at least one line
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M1 e A*(pz). By symmetry and by Lemma 1, there exists an auto-
morphism σ G &{L\, L2, p$, L4) mapping L3 into L°^ . So aβσ~ι

fixes ^4, Λf' and all points of L\ hence it fixes S?. So α/? = σ,
and hence aβ G -^(Li, p\, L 2 , P3, L4). The second assertion now
follows from Lemma 1.

Similar to the first assertion, one shows that every element of
^p5{p\, L\) must also fix all points of L2.

(b) This is similar to the first part of (a). D

LEMMA 4. Suppose p e {p\,ρ2, P4} and L G {L\, L 3 } . Suppose
both groups β?(p, p1) and &(L, V), where pf is opposite to p in A
and U is opposite to L in A, act non-trivially on A*(L2) and at least
one of them acts (modulo the kernel of the action) semi-regularly on
A*(L2). Then βίf[L ,£)(p, L) contains non-trivial elements. If more-
over &{p9 p') or %?{L, LJ) contains non-trivial automorphisms fixing
A*(x) elementwise, for some variety x e {p\, L\, pi, L$, p$}, then
%\L2iLs){P,L,x)= β?{LitLj}(p, L).

Let #3 G ^4*(L2) and suppose #3/ M4Iq5I M6Iq6I L5.
Choose a G ̂ (/?, p') not fixing ^ 3 and β e &{L 9 L") not fixing
p 3 , where L" e {Λ/4, M6} is opposite to L (this can be done by as-
sumption (use also Lemma 2) possibly by taking a "new" point #3).
Put σ = αΓ 1 /^/?- 1 . Clearly σ G <%(L2,L5)(P> L). Suppose σ is the
identity. Then p\ = p3 hence (/?f )α = pf and similarly (q%)P = ^^.
But this contradicts the semi-regularity of β?(p, p') or J^(L, L") on
the appropriate set of points. Hence the first assertion. The second
assertion now follows easily by the construction of σ above and by
Lemma 1. D

LEMMA 5. Let σ be an automorphism of S? fixing Li, p\ > L\, /?2,
L 3 , P4, L 5 and acting semi-regularly on the set of points distinct from
Px incident with L2. Let x e {p\, L\, p2, L3, p4} and suppose
βf(x, y), where y is opposite to x in A, acts non-trivially on A*(L2).
Then there exists a non-trivial automorphism τ of S? fixing all vari-
eties incident with x, fixing L2,p\, ..., L5 and fixing L\ or L4.
pointwise and p\, p2 or p4 linewise whenever σ does. Also the dual
holds.

Proof. Let a be an (JC , y)-homology acting non-trivially on A*(L2).
Possibly by replacing σ by β~ισβ for some β e &{p\, Pe), we see
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that a does not fix p%. Defining τ = a~ισaσ~ι, the assertion follows
similarly as in the proof of the previous lemma. D

From here on, we have to distinguish between three different cases:
s = t s > t and S? contains a subhexagon of order (s', t), 1 < s1 <
s\ s> t and S? does not contain any subhexagon of order (sf, t) for
any 1 < s' < s.

3.2. The case s = ί. Suppose s = t. By Cohen-Tits [1] (see also
Tits [8]), we may assume s > 2 otherwise <9* is Moufang. If some
non-trivial a e ^(p\, Pό) fiχe$ some point p e A*(L\), then it fixes
a subhexagon of order (sr, s), 1 < sr and hence by a theorem of Thas
[6], s2 > sf2s2, contradicting sf > 1. Hence ^(/?i, /?6) a c t s regularly
on A*(Lχ). Dually, ^ ( L i , Lβ) acts regularly on A*(p\). By Lemma
3, the groups <%ίs(P\, L\) and^ 5 (/?i, L\) are non-trivial.

Suppose first that &{L\, L6) = ^ ( ^ 3 , J74). Then, by the above
argument, &{L\, Lβ) acts regularly on A*(L2) and hence by
Lemma 3, %ps(L\, /?i, L2) is non-trivial. Dually, one shows that also
#L5(Pi y L\, p2) is non-trivial. By [10], S? is Moufang.

Hence we may assume that &{L\, L^) Φ <%"{p3, PA) Suppose
%*{p\ 5 Pβ) = ^{Pi 9 P5) By Lemma 3, all short roots are transitive.
Suppose a £ ^(L2, JL5) fixes some M e A*(p2). Let /? be any ele-
ment of A*(L\) and let β e &{p\, /?6) be such that pa = pP. Then
α/?"1 fixes i4, Λf and p\ hence it fixes a thick subhexagon of ^ .
So there exsits a point pf e ^4*(-Li) fixed by aβ~ι (since L2 belongs
to that subhexagon). So clearly β must fix p, a contradiction. Hence
^ ( L 2 , L5) acts regularly on A*(p2). By Lemma 3, ^ 2 > P j ) ( P i , ^2)
is not trivial. By Lemma 1 and Van Maldeghem-Weiss [10], 5? is
Moufang. Similarly & is Moufang if X{L\, L6) = ^ ( L 2 , L 5 ) .

By the preceding paragraph, we may assume &{L\, L$) φ
&(L2, Ls), -T(pi, p6) ^ ^ ( P 2 , Ps) and ^ ( L ! , L6) φ *(p3, p4)
So the group ^{p\9Pe) acts non-trivially on A*(p2). But if a non-
identity element a e ^ ( p i , pe) fixes at least one element of A*(p2),
then it must fix a subhexagon of order (1,5) and hence a fixes all
elements of A*(p2). So up to its kernel, the action of %*{p\, Pe)
on A*(p2) is non-trivial and semi-regular. By Lemma 4, the group
^(p2ip5)(Pu L2) is non-trivial. Dually, the group %{LVL5){P2, LX) is
non-trivial. By Lemma 1 and Van Maldeghem-Weiss [10], S? is
Moufang.

Clearly, there follows from our proof that, if s > 2 and t > 2,
the set of generalized homologies generate all root-elations. This com-
pletes the case s = t.
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3.3. Case s > t and S? contains a subhexagon of order (sf, t ) ,
1 < sr < s. In this case, we can assume by Lemma 2 that there is a
subhexagon S?1 of order (sf, t) containing A. Let p be a point of
«£" incident with L\. Consider α e &{p\9Pβ) mapping /? into a
point /?' not lying in &". Then S"α n <¥' is a proper subhexagon of
&" of order ($", t). By Thas [6], s'ί > s 2 ί 2 , so by Haemers-Roos [2],
t3 > s > s/2t, and hence s' < t. Again by Thas [6] t2 > s't > s"2t2, so
s" = 1, s' = t and s = t3.

Now let /? be as above and consider β e &(p\9 Pe) mapping p
into any other point of S?' in A*(L\). Again using Thas [6] one sees
similarly as above that 5?*^ = S?'. Also every (L, L')-homology of
S? preserves 5?' (granted L and U are opposite lines in &Ύ Hence
&" has transitive apartments and since s' = t, *5" is Moufang by the
first part of the proof. If t = 2, then the result follows again by the
uniqueness of the generalized hexagon of order (8,2) (see Cohen-Tits
[1]). So suppose t > 2. Again by Thas [6], S> does not contain a
proper thick subhexagon with s + 1 points on a line. So by Lemma
3, <%lP 9p ){p\, L\) is non-trivial and hence it contains a non-identity
element σ. But restricted to any subhexagon of order (t, t) contain-
ing A, σ is a root-elation. Since every variety incident with L\, L2,
L 4 , p\ or Pi lies in such a subhexagon, it must be fixed by σ. Hence
σ is a root-elation of S? and by Lemma 1 all long roots of & are
transitive.

If some non-trivial element of %?{L\, Le) fixes an element of
A*{Li), then it must fix a subhexagon of order (s, ί ;), implying tf = t
by Thas [6] again. Hence &{L\, L6) (and also ^ ( L 3 , L 4 )) acts
semi-regular on A*(L2). By Lemma 4, there exists a non-trivial σ €
^L5(Pi 9 L\) and by Lemma 5 we can choose σ such that it also fixes
every point incident with L3. But now we can assume (by Lemma
1, e.g.) that &" contains p°. Hence σ is a root-elation in S?1 and
hence it fixes all lines through pi and p 4 . So σ is a root-elation and
by Lemmas 1 and 2, all short roots of S? are transitive. Hence 5? is
Moufang.

Again it it clear by the proof that every root-elation is generated by
generalized homologies. This completes the proof of the second case.

3.4. Case s > t and S? does not contain any subhexagon of or-
der (s1, t), 1 < sf < s. As in the previous case, S" does not contain
proper thick subhexagons with s+1 points on a line. Note that t > 2.
By assumption, S? does not contain a proper thick subhexagon with
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t+ 1 lines through a point. So by (the dual of) Lemma 3, β%(p\, L\)
is non-trivial. Also, similarly to the previous step, βf{L$, L4) and

P4) both act non-trivially on A*(L2). Hence by Lemma 5,
, L\, L 3 , p4) is not trivial. Since 5? has no proper thick sub-

hexagons with s+l points on a line or t +1 lines through a point, the
order of the group %?{L\, L$), resp. <^(pi, Pό) > is ί - 1, resp. $ - 1.
Since s > t, there must be a (pi, p6)-homology acting non-trivially
on A*(L2). By Lemmas 5 and 1, all short roots of S? are transitive.

By Lemma 3, %p5(p\,L\) is non-trivial and by Lemma 5,
%T{L\, p\, L4) is non-trivial. Let σ e %f(Lx, P i , L 4 ) . Then σ acts
semi-regularly on the set of t lines through p 2 distinct from L3.
Hence σ cannot act semi-regularly on the set A*(p$) of size ί — 1.
So σ fixes at least three lines through p^. By Lemmas 1 and 2, there
exists τ e β?(L\, P3, L4) mapping L3 into L^. But then στ~ι fixes
^4, it fixes all points incident with L\ and it fixes at least three lines
through P3. By assumption, στ~ι is the identity and hence σ = τ ;
hence ^ ( L i , p\, P3, L4) is non-trivial.

Suppose βf(Lι, pi, L2, p3 9 L4) = 1. This implies that the com-
mutator

Li , p2, L 3

(which is in general a subset of %?{L\, p i , L 2 , P3, L4)) is also
trivial and this implies geometrically that every element of
%*{p\, Lγ, p 2 , L3, p4) fixes every line meeting Li or L2 .

Since 5 > t there exists α E %*{p\, Pό) fixing at least three lines
through p 2 and hence a fixes a subhexagon S1 of order (1, t).
Clearly every element τ of β?(L\, p\9 p$9 L4) stabilizes ^ and
therefore τ fixes at least two points incident with every line through
Pi or P3. Let p I L I p\ and suppose τ fixes p φ P\. Then
τ G %p{j)\, P3, L4) and it is easy to see that %f(L,px, p 3 , L4) =
%p{p\ > P3 ? ̂ 4) Hence τ fixes all points incident with L (or use
Van Maldeghem-Weiss [10] to conclude that in this case 5? is
Moufang). So τ fixes every point collinear with p\ or p 3 . Now let
σ G %*{p\, L\, p 2 , L 3 , p4) be arbitrary and consider £ = τ~ιστσ~ι.

Suppose there exists a line M I p2 such that σ does not fix
the unique point of y on ¥ . Then we choose τ (of the pre-
ceding paragraph) such that L\ = M. Hence P4 ^ p 4 . Let P I
L I pi with p φ P\ and L ^ A*(pχ). Consider the unique τ* G
^ ( p , L , p i , L i , p 2 ) mapping pj t o p 4 . Then £ τ * G ^ 4 ( L , p i ,Li , p 2 ) .
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If ξτ* Φ 1, then this would imply as above that %?{L, p\, L\, p2, L3)
is not trivial and hence by Lemma 1, S? would be Moufang. So we
can assume that ξ = (τ*)" 1 and hence ξ e ^(p, L, p\, L\, p2) and
it fixes all points at distance two from p\ except possibly those inci-
dent with L2 it also fixes all lines through these points since p and L
are arbitrary. So suppose ξ does not fix all points incident with L2.
By Lemmas 1 and 2, all elements φ of %?(p\, L\, p2, £ 3 , P4) fix all
points at distance two from p2 except for some points on one unique
line Lφ through p2. Since t > 2, we can take a JSG &{L\, L$)
not fixing Lφ. Then φ' = β~xφβ € </Γ(/?i, L i , /?2> £ 3 , P4) and
Lφ> Φ Lφ . But considering φφ' e ^{p\, Lup2, L 3 , p 4 ) , this leads
to a contradiciton. Hence every $? e ^ ( p i , L\, p2, L3, p4) fixes
all points at distance two from p2. Similarly one shows that every
φ e %*{p\, L\, p2, L3, P4) must fix every line at distance three from
p2. By Ronan [5], S? is Moufang.

Suppose now σ fixes on every line through p2 the unique point of
&' distinct from p2. Let M be such a line and PM the corresponding
point. Consider the unique σ' e &{p\, Lχ,p2, M, pM) mapping p\
back to /?3. Then σσ' e ^ 3 ,^Λ/)(JPi, ^1 > ^2) So if σσ1 Φ 1, then by
Van Maldeghem-Weiss [10], & is Moufang. Hence we can assume
that σ = σ'. But that implies that σ fixes all points of M and all lines
meeting M since σ' does. Since M was arbitrary, σ fixes all lines
at distance three from/?2 > hence again by Ronan [5], S?, is Moufang.

Note however that this third case cannot occur since all Moufang
generalized hexagons of order (s, ί) with s > t have subhexagons of
order (ί, t). This completes the proof of our main result.

4. Remarks. A similar theorem for generalized quadrangles fol-
lows immediately from Thas [7]. The finite thick generalized quadran-
gles with transitive apartments are the classical ones of order (q, g)9

(q, q2) and (q2, q), for prime powers q. The classical generalized
quadrangle H(4, q2) or order (q2, q3) is only (x, y)-transitive for
all pairs {x9y) of opposite points. However, the result in Thas [7] is
stronger than that. Indeed, for generalized quadrangles it is enough to
require (x, y)-transitivity for all pairs (x, y) of opposite points in
order to conclude that the generalized quadrangle is Moufang.

As for the generalized octagons, they behave much like the H(4, q2)
generalized quadrangle above with respect to generalized homologies.
So there exists no finite thick generalized octagon with transitive apart-
ments (and presumably neither an infinite one).
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