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BORSUK-ULAM THEOREM, FIXED POINT INDEX
AND CHAIN APPROXIMATIONS FOR MAPS
WITH MULTIPLICITY

FRriTZ vON HAESELER AND GENCHO SKORDEV

In this article we consider m-acyclic maps with respect to a field F
and prove the existence of chain approximation for such maps. Fur-
thermore we provide a unified approach to the Borsuk-Ulam theorem
and the Bourgin-Yang generalization. Finally we prove the existence
of A-systems for certain m-acyclic maps and define a fixed point
index.

There are essentially two ways to handle multivalued fixed point
or coincidence problems. The first one is based on homological ar-
guments (homological method) and the second on the homotopical
method where the multivalued map is approximated with single val-
ued maps. For a survey of both methods we recommend [3], for single
valued maps we refer to [4, 8].

The homological method also splits in two directions—the consid-
erations on the level of homology groups and chain approximation
techniques. For the first one see [3], the second one—chain approx-
imations of multivalued maps—has roots in the early work of L.
Vietoris (see [1] where the Vietoris-Begle mapping theorem is proved).
The chain approximation technique is used by S. Eilenberg and D.
Montgomery [10] to prove a Lefschetz fixed point theorem for acyclic
maps on compact ANR’s. B. O’Neil constructed chain approxima-
tions for a more general mapping class, i.e. (1, n)-mappings, and also
proved a Lefschetz fixed point theorem for such mappings on polyhe-
dra [22]. The same technique was the main tool for developing the
fixed point index with all properties (including commutativity and
mod-p-property ; multiplicity is proved in [26]) for multivalued maps
of ANR’s ([9, 11, 25]). The main result in [25] may be stated as
follows: If a class of multivalued maps has arbitrarily close chain ap-
proximations, then there is a fixed point index with all properties for
this class.

In this paper we consider so called m-acyclic maps with respect
to a given field F and prove that for such mappings there exist chain
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approximations. m-maps are also called acyclic carriers and are inves-
tigated in [5, 6]. Therefore from [25], for m-acyclic maps there is also
a fixed point index with all properties. The class of m-acyclic maps
includes F-acyclic maps, (1, n)-maps [22], single valued maps with
values in symmetric products of a space [20], m-maps [16], weighted
maps [7], and others.

We also provide a unified approach to Borsuk-Ulam theorems for
single valued mappings as well as for m-acyclic maps with respect to
Z, via chain approximations. The Borsuk-Ulam theorem or antipodal
theorem can be stated in several ways; we prefer the following formu-
lation: If f: S” — R” is a continuous map, then there exists a point
x € 8" such that f(x) = f(—x), see [30]. We prove that this theorem
holds for every multivalued map F: S" — R" which has arbitrarily
close chain approximations with odd Kronecker index. Therefore the
Borsuk-Ulam theorem is true for m-acyclic maps w.r.t. Z,, especially
for (1, 2k + 1)-maps. This is a partial answer to a question of H.
Schirmer in [23]; see also [15] for acyclic maps.

There are various generalizations and applications of Borsuk-Ulam
theorems (cf. [30] for a good review). We shall consider also the
Bourgin-Yang generalization of the Borusk-Ulam theorem, see [12,
30]. If f: Sk - R", k > 0, is a continuous map and B(f) =
{x € S"*|f(x) = f(-x)} then dimB(f) > k, or, more generally
g(B(f)) > k, where g(B(f)) is the genus of the space B(f) with
the antipodal involution x — —x, cf. [17, 30]. The Bourgin-Yang
theorem is proved for acyclic (or admissible maps) in [12].

We shall show that the Bourgin-Yang theorem holds for all multi-
valued maps F: S"*k — R”, k > 0, having arbitrarily closed chain
approximations with odd Kronecker index. Therefore the Bourgin-
Yang theorem is true for m-acyclic maps w.r.t. Z,.

Acknowledgment. We would like to thank Professor H.-O. Peitgen
for valuable discussions and for helpful suggestions.

1. Preliminaries.

1. Multivalued maps with multiplicity. We consider multivalued
maps F: K — L [2] for which F(x) is a nonempty compact subset
of L for each x € K. Two points (x;, y;) € I'(F) ={(x, y)|x € K,
yeF(x)}CKxL, i=1,2,are equivalent ((x;,y1) ~ (X2, y2)) if
and only if x; = x; and y;, y, are in the same connected component
of F(x). This defines a new set I'(F) = I'(F)/ ~, with elements
denoted by (x, C(x)); C(x) denotes also a connected component of
F(x) as a subset of L.
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By A we denote a ring without zero divisors, and by F we denote
a field.

DEeFINITION 1. Let F: K — L be a multivalued map and A a ring
without zero divisors. A map m: I'(F) — A is called a multiplicity
function.

DEFINITION 2 ([5, 6]). Let F: K — L be a multivalued map with
multiplicity-function m: I'(F) — A. F is an m-map (w.r.t. A) if
the following two conditions are satisfied:

1. F(x) consists of finitely many connected components for each
xeK.

2. Forall xp € K with F(xp) = Cy(xo)U---UCs(2p), s = s(xp) , and
disjoint neighbourhoods U; of C;(xg) there exists a neighbourhood
U of x such that (a) F(U) c Uj_, Ui, and (b) m(xg, Ci(xp)) =
2cmey mx, C(x)) forall xeU and i=1,...,s.

REMARK 1. If K is connected and Xx;, x; € K then

> m(xy, Cx)) = Y m(xa, C(x2)),

C(x,) C(x,)

where the summation is taken over the connected components of
F(x;), i = 1,2 (cf. Lemma 2.3 in [16]). Therefore, for K con-
nected it makes sense to speak of the multiplicity of the m-map F,
m(F) = 32y m(x, C(x)), which is well defined.

In all that follows we suppose K to be connected.

DEerFINITION 3. Let F: K — L be an m-map with multiplicity
m(F)=a# 0. Then F is called an m-acyclic map (w.r.t. A) if for
each x € K the connected components C(x) of F(x) are acyclic
compact sets with respect to Cech homology with coefficients in A,
re., Hi(C(x),A)=0, i>0.

If for each x € K the connected components of F(x) are points
we call F an m-point map (w.r.t. A).

REMARK 2. If F is an m-acyclic map with multiplicity m(F) # 0
w.r.t. the field F, then we may consider F as an m-acyclic map with
multiplicity 1 and multiplicity-function

mi(x, C(x)) = m(x, C(x))m(F)™L.

We assume that m-acyclic maps (w.r.t. a field F) have multiplicity 1.
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ExAaMPLES. 1. Acyclic [10] or single valued maps are m-acyclic
maps, m-point maps resp. with multiplicity-function m(x, C(x)) =
1.

2. (1, n)-maps F [9, 22], with n =1 (mod 2) are m-acyclic maps
w.r.t. Z; and multiplicity-function m(x, y) =1 forall x,y e I'(F).

3. Let R C—>C,C=CuU {o0}, be a rational map; then the
map R!(z) ={w € @|R(w) = z} is an m-point map w.r.t. Z and
multiplicity-function m(z, w) = local degree of R at w. Further-
more, m(R~!) =d, the degree of R. For polynomials cf. [14].

4. Let X , X be finite polyhedra and =: X — X aramified coveging
with multiplicity map ji: X — N, see [28]. The map 7n~': X — X is
an m-point map (w.r.t. Z) with multiplicity-function u: I'(z~!) - Z,
M(x, X) = (%)

5. Let X be a G-space and |G| < o0, Gx denotes the stability
subgroup of x, Gx = {g € G|gx = x}. Then the inverse map,
n~!, of the projection n: X — X/G is an m-point map w.r.t. Z. If
') = {x1,..., x5}, s = s(y) the multiplicity-function is defined
by

m(y’ xi) = lGin'

6. Let f: K — SP"L, n € N, be a single valued map; SP"L
denotes the n-th symmetric product of L [20]. Then f induces an
m-point map F w.r.t. Z which is defined by

F(x) =n(f(x)),

with 7: SPPL — L, z(x{"---x) = {x1, ..., X}, S ki =n. The
multiplicity-function is given by m(x, x;) = k; and F has multiplic-
ity n.

On the other hand, if F: K — L is an m-point map w.r.t. Z with
multiplicity m(F) =n >0 and m(x, C(x)) >0 for all x € K, then

this induces a single valued map F: K — SP"L defined by F (x) =

xf'-‘-xskf, s=s8(x),and F(x)={xy,...,Xs}, ki=m(x, Xx;).

More examples may be found in [5], [21], [28].

2. Block complexes. We shall use a special kind of CW-complexes,
namely block-complexes, cf. [19, p. 134] (it is possible to work with
regular CW-complexes [29, p. 60]).

DEeFINITION 4. Let K be a finite simplicial complex with fixed
triangulation 7. An n-block (w.r.t. A) in K is a pair of subcomplexes
(e, é) in T suchthat ¢ Ce, dime =n, dimé = n—1 and Hj(e, é) =
Hy(B", B") for every s >0 (B" denotes the n-dimensional ball and
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B" its boundary, homology with coefficients in A). The subcomplex
é is called boundary of the block e, and Int(e) = e\é is called interior
of e.

DEFINITION 5. A block dissection (b.d.) 7 of the triangulation 7 is
a set of blocks (w.r.t. A) of T such that

(a) every simplex of the triangulation 7 is in the interior of just one
block of 7, and

(b) the boundary é of each block e of 7 is a union of (dime —1)-
blocks.

If in the simplicial complex K with given triangulation T a b.d. 7
is fixed, we call K a block complex with block structure 7, and write
(K, 1).

REMARK 3. The block complex K is a regular CW-complex, [29, p.
60]. The mesh of the block complex (K, 7) is defined as mesh(X, 1)
= max{diam(e)le € 7} (we consider the metric in K defined by
barycentric coordinates of the triangulation 7 of K).

We shall consider block complexes w.r.t. a ring A or a field F.

DEerFINITION 6. Let (K, 7) be a block complex of the simplicial
complex with triangulation 7 and let 7; be a block structure of a
subdivision 7; of the triangulation 7. The block structure 7; is
called a subdivision of the block structure 7 if every block of 7; is in
the interior of just one block of 7. In this case we write 7; > 7.

DEFINITION 7. Let 7; be a b.d. of the triangulation 7;. The se-
quence % = {7;} of block subdivisions of 7, is called a fundamental
sequence of block dissections (f.s.b.d.) with respect to 7; if:

(a) 7,41 1s a subdivision of 7;, i >0, and

(b) lim;_, ., mesh(K, 7;) =0.

Let 7 be a b.d. (w.r.t. A) of the triangulation 7. We denote by
C.«(K, 7) or C.(7) the chain complex of the block complex 7 with co-
efficients in a given ring A (the chain complex of the block-complexes
(K, 1), [19]).

For M c K we define St(M,1) = U{e € 1lenN M # o} and
Stktli(M , 1) = St(Stk(M , 1), 1) for k €N.

For a given b.d. 7; and its block subdivision 7, there is a chain
map (chain subdivision)

b(ty, 12): Ci(t1) = Ci(12)

such that (a) b(t,, 1,)(e) = e for every 0-block, and (b) |b(t;, 75)(e)|
C e for every block e € 7, [26]. Here |c| denotes the support of the
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chain ¢ € C,(1), i.e., the smallest block subcomplex K’ C K of the
block structure 7 such that c € C.(K’, 7).
There exists a chain map (chain approximation of the identity)

x(12, 71): Cu(72) = Cu(T1)

such that (a) x(7,, 71)(e) is a O-block in 7; for every 0-block e € 1;,
and (b) |x(72, 71)(e)| C |e| for all blocks e € 7,, where |e| is the
support of the block e in 7y, i.e., |e| is the unique block in 7; such
that e C Intje].

The chain map x(73, 7;) is not unique but every two such maps
are chain homotopic with a chain homotopy D such that |D(e)| C |e|,
[26].

If 2= {r;} isafss.b.d. of K we shall consider

Cu(%) = {Ci(1), b(7i, Tiz1), X(Tix1, Ti), 1=0,1,...}

with fixed chain maps x(7;41, 7;). If the fis.b.d. is clear from the
context we use the notation b(i, i+ 1) and x(i+ 1, i), and for k <
| we denote the chain subdivision map from C.(t;) in C.(7;) by
bk, )=b(l-1,0)b(l-2,1-1)---b(k,k+1) and by x(7;, 7x) =
x(k—1,k)---x(l,l—1) the chain map from C.(7;) in C.(74).

3. Chain approximation of upper semicontinuous maps.

DEFINITION 8. Let K and L be finite simplicial complexes with
given block structures 71, 7, 72 > 7y on K,and x on L (w.r.t. A).
Let F: K — L be an upper semicontinuous (u.s.c.) map. The chain
map

p: Cu(t2) — Cu(1)

is called a (ty, u)-chain approximation (or chain approximation) of
the map F (with coefficients in a ring A) if for every block e € 7,
there is a point s(e) € K such that (a) e C St(s(e), 1), and (b)

lp(e)|  St(F(s(e)), u) .

REMARK 4. 1. For upper semicontinuous maps see [2].

2. In [25], [26] it is proved that every F-acyclic map F has arbitrar-
ily close chain approximations (with coefficients in F, i.e., for every
block structure 7; and u there is a block structure 7,, 7, > 71, and
a chain map ¢: C.(72) — C.(u) which is a (7, u)-chain approxima-
tionof F.If 1y€% and pu€ it (% and f are f.s.b.d. of K and L
respectively) then 1, € 2. We say F has a chain approximation with
respect to 7 and /.
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3. If F: K — L is an u.s.c. map which has chain approximations
with respect to a given f.s.b.d. ¥ and 2 of K and L, respectively,
then F has chain approximation with respect to any f.s.b.d. 7; and
iy of K and L, respectively (follows from [26]).

4. In [9, 22] the existence of arbitrary close chain approximations
(with coefficients in F) for (1, n)-maps F: K — L, n > 2, is proved.

DEFINITION 9. Let K, L be finite simplicial complexes with tri-
angulations 7, &, resp., and let 7 = {t;}, 2 = {u;} be f.s.b.d. with
respect to T and iz, resp. Let F: K — L be an u.s.c. map. The graded
set

A(F) = {A(F);|i € N}
where A(F); is a nonempty set of chain maps from C.(7;) to C.(y;)
with coefficients in a ring A is called an approximation system (A-
system) of F with respect to 7 and g if

(a) for every ¢ € A(F); thereis k > i, k € N, such that ¢ =
ob(i, k) and @: C.(1;) — Cu(u;) is a (t;, u;)-chain approximation
of F, where b(i, k): C.(1;) — Ci(7tx) is a barycentric subdivision,
and

(b) for every i € N there is i; > i, i; € N, such that for m >
) > iy, Y = ab(lall) € A(F)la v = Wb(ma ml) € A(F)m with
my > Iy, the chain maps ¢yx(m,, ;) and x(m, /)y are homotopic
with a chain homotopy D satisfying the following condition: for every
block e € 1, there is a point b(e) € K such that e C St(b(e), ;)
and |D(e)| C St(F(b(e)), wi)-

REMARK 5. 1. In [26] it is proved that every F-acyclic map has an
A-system (coefficients in the field F) with respect to a given f.s.b.d. 7
and i with Kronecker index, KIA(F) =1, i.e., for every ¢ € A(F),
KIp = 1. The Kronecker index KI¢ of a chain map ¢: C.(1;) —
Ci(u;) is defined as KIgp = e(p(e)), where e: Co(u;) — A is the
augmentation of the chain complex C.(u;) and e is a 0-dimensional
block, see [27, p. 167]. Since we consider connected polyhedra the
Kronecker index KIg¢ of the chain map ¢ is well defined.

2. In [9] the existence of an A-system A(F) for every (1, n)-map
with KIA(F) = n with coefficients in a fixed field F is proved. In
particular, if one chooses F to be Z, and n odd there exists an A-
system of F with Kronecker index different from zero. We consider
only A-systems with nonzero Kronecker index.

4. Equivariant maps, block complexes and A-systems. Let X be a
compact space. The single valued continuous map y: X — X is called



376 FRITZ VON HAESELER AND GENCHO SKORDEV

an involution if ?(x) = x for all x € X. The involution is called
free if y(x)# x forall xe X. If y(x) =x forall x € X then y is
called the trivial involution. By a we denote the antipodal involution
on R", a(x) = —x, x € R", or some a-invariant subset of R”.

Let X;, i = 1,2, be spaces with involution y,: X; — X;, resp.
and F: X; — X, an m-acyclic map (w.r.t. A) and multiplicity func-
tion m: I'(F) — A. Suppose that F is (y;, y;)-equivariant, i.e.,
F(y1(x)) = y2(F(x)). Then there is an involution y on the graph
T(F) = {(x,) € X; x Xz|y € F(x)} defined by y(x, y) = (1 (%),
72(¥)) with (x, ¥) € X; xX,. The involution y induces an involution

on I'(F) which we also denote by y.

DEerFINITION 10. Let X;, i = 1, 2, be spaces with involution y;,
respectively. The m-acyclic map F: X; — X; w.r.t. A with multi-
plicity function m: I'(F) — A is called (y;, y2)-equivariant if

(a) F(y1(x)) = y2(F(x)) for all x € X;, and B

(b) m(y(x, C(x))) =m(x, C(x)) forall (x, C(x)) eI'(F).

Let K be a simplicial complex with a block structure 7, and invo-
lution y: K — K. The block structure 7, is y-equivariant if y(e) is
a block in 7; for every block e € 7.

REMARK 6. 1. The map F: X; — X, is called (y;, y,)-equivariant
if the condition (a) of Definition 10 is fullfilled. If % is a f.s.b.d. on
K, 7 is called y-equivariant if each 7; is y-equivariant.

2. Let R" = {(xy,..., Xm)|x; € R} be the m-dimensional Eu-
clidean space. If » > m we consider R™ as a linear subspace of R”
consisting of the points (x;, ..., Xn,0,...,0).

Let aeR, a >0, then D7 denotes the cube

DI = {(x1, ..., xm)||xi| < a}.

The inclusion 11 R” — R"” (n > m) induces the inclusion D' C D .
The boundary of D?*! is denoted by S”, or simply S”, again S™ C
S" for n > m. The antipodal involution a acts on both spaces D7
and S7.

We consider the following block structure u(a) (cubic block sub-
division of R") which consists of all translations of D? with vectors
>, 2ak;e;, where e; denotes the i-th unit vector and k; € Z. If
a € N then u; = u(1/k), k € N, is a block structure on D}, and
S; 1s a block subcomplex. S7 is a block subcomplex in S?, n > m,
also. The block structure on S? induced by pu; is denoted by 7.
Then g = {u} and 7 = {1} are a-equivariant f.s.b.d. of D! and
S, respectively.
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3. Let K be a block complex with a given f.s.b.d. T = {r;}. The
simplicial complex K x K has a natural block structure 7;x7; induced
by t1; for every i € N:

TiXTi={€1X6’2|€,'€T,‘, i=1,2}.

Then? x 7 is a f.s.b.d. for K x K. We call £ x T the product block
structure. E.g., the block structure 2 = {u;} of D} is a product of
block structures on the interval D} .

4. On the space K x K acts the involution 7: K x K — K x K,
T(x,y)=(y,x). The f.s.b.d. T x 1% is T-equivariant.

Let K;, s = 1, 2, be finite simplicial complexes with involutions
7s and ys-equivariant f.s.b.d. %, = {7{}. Since the block structures
7 are yg-equivariant each y; induces a chain map which we denote
also by y;:

vs: Ciu(t]) = Ci(77).

A chain map (or homomorphism) ¢: C.(t}) — Ci(1?) is (y1, 72)-
equivariant if ¢y, = ye. If K, = K,, y; = y, = y we simply say
y-equivariant.

Since the f.s.b.d. 7; are y;-equivariant the chain subdivision maps
b(k+1, k)= b(t}, 1) are ys-equivariant too. In this situation we
choose chain approximations of the identity x(k+1, k) = (7}, 7})
to be ys-equivariant also, and we consider C,(7°) with these chain
maps.

Let F: Ky — K; be a (y1, y2)-equivariant u.s.c. map. The A-
system, A(F), with respect to a ps;-equivariant f.s.b.d. 75, s=1, 2,
is called (y;, y»)-equivariant if every chain map ¢ € A(F) is (¥, »2)-
equivariant. Again, if K; = K,, y; = y, = 7 the A-system A(F) is
called y-equivariant.

DEerFINITION 11 ([29, p. 60]). Let (K, 7;) and (K3, 1) be block
complexes. A carrier from (K;, 7;) to (K;, 72) is a function &
which assigns to each block e € 7; a block subcomplex #(e) in 7,
such that for e; € e, F(e;) C F(e). An n-acyclic (resp. acyclic)
carrier & satisfies ﬁi(%(e)) =0 for 0 <i<n (resp. for all i) and
every block e € 1 (coefficients in A).

If p; is an involution on K; such that the block structure 7; is
yi-equivariant, { = 1,2. Then the carrier & is called (y;, 72)-
equivariant (or equivariant) if #(y;(e)) = y,(%F(e)) for all blocks
e € 7. A chain map ¢: C.(1;) — Ci(17) is carried by the carrier
& if g(e) is a chain in the complex #(e) for every block e € 1.
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A map f: K| — K, is carried by the carrier & if f(e) c % (e) for
every block e €1, .

REMARK 7. 1. The block structure 7 = {7, } on S? is a-equivariant
and the block complex S? is a-free cell complex, i.e., a(e)Ne = @
for every e € 1,

2. For later use we note the following. The covering w; = {4y, ...,
An} of a given space is finer than the covering w, = {By, ..., By}
of the same space if every A; is contained in some B;. If the covering
w; is finer than the covering w, we denote this by w; > w;.

I1. Borsuk, Borsuk-Ulam and Bourgin-Yang theorems for chain map-
pings. In this section we state some lemmata which will be important
for the following. In this section we consider chains, A-systems, and
homology with Z, coefficients.

For a block complex (K, 7) we denote by K(9) the i-dimensional
skeleton of K w.r.t. 7.

LEMMA 1. Let S", n > 1, be the n-dimensional sphere with the
a-equivariant block structure 1. Then there exists an a-equivariant
chain map

B CU((SM)D, 1) — Cu(S™H, 1)

with Kronecker index KIB =1 (mod 2) and such that

(a) the chain map B with values in C.(S", t;) is chain homotopic
to the identity inclusion (S")"~! c S™ with an a-equivariant chain
homotopy D, and

(b) for each block e in S"! one has B(e) =e and D(e) =0.

Proof. Consider the carrier : ((S")"~1, 1) — (S"!, 14), de-
fined by &(e) = S"! for every block e € (S*)"~1) | cf. Definition
I.11. & isan a-equivariant (n—2)-acyclic carrier. Since ((S”)"1, 1)
is a free a-complex, Lemma 2.2 in [29] implies the existence of an
a-equivariant extension B of the identity chain map on S”~! over
(S")(»=1) | Furthermore, f considered as a chain map with values
in C.(S”, 1) and the chain map induced by the identity inclusion of
(S™)("=1) c S” are chain homotopic with equivariant chain homotopy
D satisfying (b). O

REMARK 1. Lemma 2.2 in [29] is proved for an acyclic carrier, but
for our purposes it suffices to assume that & is an (n — 2)-acyclic
carrier.
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The following lemma shows that each a-equivariant chain map
K: C*(S", 1) — C*(S", 1) is homotopic to an a-equivariant map
K , which is a chain map on (§"7!, 7).

LEMMA 2. Let k: C*(S", 13) — C*(S", 1) be an o-equivariant
chain map. Then there exists an «-equivariant chain map X:
C*(S", 1) — C*(S", t1) such that

(a) k¥ and ¥ are chain homotopic, and

(b) for all blocks e € S*~1, %(e) is a chain in S"!.

Proof. Let B ={B;}, D={D;}, i=1,2, beasin Lemma 1 and
let e be an i-dimensional block in S” with de =3_;e(j). Define

Bi(x(e)) for e € S*1 |
Ki(e) = {4 x(e)+ Di_y(x(e())) ifenS™!=e(j),
K(e) otherwise.
Then ¥ = {x;|i =0, ..., n} is an a-equivariant chain map satisfying

(b)and KIk=KIk=1 (mod 2). Consider the carrier &: (S", 13) —
(S", 1), E(e) = S" for every block e € 7, . Itis an (n — 1)-acyclic
carrier. The chain maps x¥ and ¥ are carried by % (cf. Definition
I.11). Since 7 is an a-free complex and the Kronecker indices of
these chain maps are equal, K/x = KIk =1 (mod 2), using Remark
1 following Lemma 2.2 in [29], we conclude that the chain maps «
and ¥ are homotopic. O

LEMMA 3. Let k: C.(S", 1) — C.(S", 1) be ana-equivariant
chain map with Kronecker index KIxk =1 (mod 2). Then degx =1
(mod 2), where deg denotes the degree of k.

Proof. Due to Lemma 2 we may assume that x: C.(S"!, 1) —
C.(S™ 1, 1;). Because chain homotopy does not change either the
Kronecker index or the degree this is no restriction. The proof pro-
ceeds by induction on n. We start with n=1.

Due to our assumption x: C,(S9, 1;) — C.(S9, 1) and since K1k
= 1 (mod 2) we obtain k(1) =1 or k(1) =1, S% = {1, 1}. Let
D+ = {(xlaxZ) € S1|x2 2> O}’ D_ = {(X1,X2) € Slle < 0} be
subcomplexes of S! which we consider as 1-dimensional chains in 7,
such that 8D, = 1+ 1 = 8D_ (coefficients in Z,). The chain k(D)
may be written as k(D) = uD,+vD_ and since k(1) = 1 or 1, then
Ok(Dy) = (u+v)(1+1) =141 (mod 2). Now, (u+v)=1 (mod 2)
yields
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degi(Dy +D_) =k(Dy +D_) =D, +D_ (mod 2),

therefore degx =1 (mod 2).

Now let us assume that the assumption is true up to » — 1. Then
K|gn-1: Cu(S"1, 1) = Cu(S™!, 1) is a-equivariant and deg(x|g-1)
=1 (mod 2). Let

D+ = {(xl 9y eeey xn+1)|xn+l 2 O}a D_ = {(xl 9 ey xn+l)lxn+l S O}

be considered as chains in S”. If we consider S”~! as an (n — 1)-
dimensional chain in 7; we obtain the relation 4D, = D_ = S"~!
(w.r.t. Z, coefficients).

Now we calculate x(D; + D_) using x(Dy) = uDy + vD_,
degk|g-1(S" 1) = k(ODy) = (u+v)(S" 1) = 8"! and u+v =
deg(x|gn—1) = (mod 2). Then

degK(D+ + D__) = K(D+ + D_.) = (u + ’U)(D+ + D._.) = D+ +D_.

Therefore degx =1 (mod 2). m]

An immediate consequence is

COROLLARY 4 (Borsuk theorem for chain maps). Let k: C.(S"7x)
— C.(S™, 1) be an a-equivariant chain map with Kronecker index
KIk =1 (mod2). Then m>n.

LEMMA 5 (Borsuk-Ulam theorem for chain maps). Let k: C.(S", 1)
— Cu(D?, u) (cf Remark 1.6.2) be a chain map with Kronecker in-
dex KIx = 1 (mod 2). Then there exists a block e € t such that

k(@) Nlx(ale))| # 2.
Proof. Assume that
(1) |k(e)|N|x(ale))| =2 for all blocks e € 7.
Consider the map A: S” — S” x S” defined by A(x) = (x, —x) and

the block structure on S” x S" given by tx t. The map A is (a, T)-
equivariant (cf. .4, and Remark 1.6.2). The carrier #: (S”, 1) —
(S" x S", 1 x 1), with F(e) = e x a(e) is (a, T)-invariant and
acyclic (A is carried by %). Since (S”, t) is an a-free block com-
plex, Lemma 2.2 in [29] implies the existence of an («, T')-equivariant
chain map Ay C,(S", 1) — C.(S" x 8", T x T) which is carried by
the carrier %, i.e., Ag(e) is a chain in e x a(e) for all blocks in 7
and KIA4; =1 (mod 2).
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_ Consider the chain map (k ® k)Ay: Ci(t) — Ci(T x 7). Since
|Ax(e)| C e x a(e) for every block e € T then

(ke ® K)As(e)] C [K(e)] x [x(ale))]
and from (1) we obtain
(2) |(k ® K)Ag(e)| N |(k ® k)Ag(ale))| = @

for every block e € 7. _
The chain map (k ® k)Ag is (a, T)-equivariant and from (2) it
follows that
l(k ® K)Ag(e)| N M = @

for every block e € T and M = {(x, y) € D! x D?|x = y}. Then
there exists a block subdivision y; (/ > k) of the block structure
Ui (cf. Definition 1.6) such that |(x ® x)Ag(e)|N M’ = @ for every
block e in 7, and M’ = St(M, u; x u;). Let N be the closure of
D?xDI\M'. Then N is a subcomplex in D} x D! with respect to the
block structure u; x y; and N is T-equivariant. Since |(k ® k)Ag(e)|
isin N then b(uy; x uy, 1 x u;)(x @ k)Ag(e) is a chain in N and
therefore b(uy x iy , % t7)(k ®%)Ay is a chain map from C,(S”, 1)
to Cu(N, y; x ;) which is (a, T)-equivariant (cf. .2 for the chain
subdivision b).

Let d: N — 8" ! be defined by d(u, v) = (u—v)/||u—v| . Obvi-
ously d is (a, T)-equivariant. Let dyg: C.(N, u; x ;) — Co(S™1, 1)
be the (a, T)-equivariant chain map induced by d with Kronecker
index KIdy =1 (mod 2) for / sufficiently large.

Finally, consider the chain map

E = dyb(ue X e, 1y % 1)k @ K)A: Cu(S™, 7) — Cu(S"7, 1),

which is a-equivariant with Kronecker index K/= =1 (mod 2). This
contradicts Corollary 4. O

Let (K, v) be a block complex with y-equivariant block structure
v and y a free involution on K.

DEFINITION 6. The chain genus of a y-free block complex (K, v)
is defined by

there exists a (y, a)-equivariant
chain map n: C.(K, v) — C«(S!, 1)
with KIn =1 (mod 2) and |n(e)|N
[n(afe))| = o for all e € v.

& (K, y)=minq /
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REMARK 2. The genus g(K, y) of a free involution y on K is defined
as

there is a (y, a)-equivariant, continuous,
single valued map f: K — S';

g(K, y) = min {l

it is easy to see that g(K, y) > g.(K, y). Furthermore, recall that
dimK > g(K, y), cf. [30]. Therefore dimK > g.(K, 7).

COROLLARY 7. Let x: C.(S"*, 1)) — C.(D", u;), k >0, be a
chain map with Kronecker index KIx =1 (mod 2). Then g.(B(x), ¥)
>k, with B(x) = U{e € 1| x(e)| N[k (ale)) # 2} .

Proof. The case k = 0 is an immediate consequence of Lemma
5. We assume k > 1 and use the idea in [12, 2.6]. Assume that
8(B(k),a) = m < k. Then we consider the chain map #:
C«(B(x), 1;) — Ci«(S™, 17;) (cf. Definition 6) as a chain map in
C. (D™, u;) (S™ is a boundary of D™*!). Let € be the carrier
from B(x) in D™+! defined by &(e) = D™*! for all blocks. This is
an a-equivariant acyclic carrier. Since KI5 =1 (mod 2) there is an
(a-equivariant) chain map

: C*(Sn+k , 71) = Cu(D™ )

with Kronecker index KI# =1 (mod 2) and which is an extension of
the chain map 7 (Lemma 2.2, [29]).

Consider the carrier &, from (S"tk, 1;) in (S"+k x S"™+k 1, x 1))
defined by %j(e) = exe. Thisisan (o, @)-equivariant acyclic carrier,
with @(x, y) = (a(x), a(y)) forall (x, y) € S"tkxS"+k  Lemma 2.2
in [29] guarantees the existence of an (a, @)-equivariant chain map
Ay: C(1)) = Cu(1;x 7/) With KIAx =1 (mod 2) and |A«(e)| C Bi(e)
for all blocks e € 1;.

Since C.(D", u;) ® Co(D™!, u;) ~ Co (D" x D™ u; x p;) =
C.(D™+1 ;) we consider the chain map E = (k ® /j)A¢ as a chain
map

=- C*(Sn+k , 7)) — C*(Dm+n+l s 1)

with Kronecker index KIE = 1 (mod 2). Since m < k, then
(D™H+L D) € (DR u;) and we consider E as a chain map in
Co(D™E, py) .

Then from Lemma 5 there is a block e € 7; such that

|(x ® M)Ag(e)| N [(x @ 7)As(a(e))| # @
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and therefore also

(Ix(e)] x |f(e)]) N (Jr(e(e))] x |fi(ale))]) # &,

ie., |k(e)|N|x(a(e))| # @ and |ij(e)|N|7i(a(e))| # @ . The first implies
that e € B(x), therefore 7j(e) = n(e) and 7j(a(e)) = n(a(e)). This is
impossible since |n(e)| N |n(ale))| = @, cf. Definition 6. ]

CoROLLARY § (Bourgin-Yang theorem for chain maps). Let x:
Cu(S™k 1)) — Cu(D", ), k > 0, be a chain map with Kronecker
index KIx =1 (mod 2), then dimB(x) > k.

The proof is a direct consequence from Corollary 7 and Remark 2.

II1. Borsuk, Borsuk-Ulam, and Bourgin-Yang theorems for maps with
A-systems with coefficients in Z, .

1. Borsuk theorem.

PrOPOSITION 1. Let F: (8", a)—(S™, a) be anu.s.c. a-equivariant
map. If F has an a-equivariant A-system A(F) with coefficients in
Zy then m > n.

Proof. Let ¢ € A(F);. Then ¢ is a-equivariant and Klgp =
1 (mod 2). From Corollary 11.4 follows m > n. a

2. Existence of A-systems for products of two maps with A-system.
To prove the Borsuk-Ulam theorem for u.s.c. maps F: S" — R" with
A-systems (with coefficients in Z;) we have to establish the existence
of a nontrivial A-system for a product of two maps with A-systems
with coefficients in a field F (cf. Definition 1.9).

This will be done first. Let (K;, ') and (L;, #*), i = 1,2, be

finite block complexes with fixed f.s.b.d. ¢, ji’, respectively (cf. Def-
inition 1.7). We consider the product f.s.b.d.

0=t'xt2={6 =1L x12k=0,1,...}
on K; x K,, and
O=p'xp?={0, =ul xpuilk=0,1,...}

on L x L,, respectively (cf. Remark 1.6.3).

The tensor product C, = C.(Kj, 7})®C.(K;, 72) (over the field F)
is a chain complex with differential 0(e;®e;) = 0e;®ex+( —1)dime o @
dey, ej € i, cf. [8, 9.1, p. 161]. Using [8, 9.21(4), p. 166] we may
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identify the chain complexes C.(K; x K3, 6;) and C, via the chain
isomorphism defined on the generators by e; xe; —e; Qe;.
Following [26], we consider the chain subdivision maps

bik, I): Cu(K;, %) — Cu(K;, T))
and a chain approximation of the identity (see 1.2) for / > k
Xi(l9 k) C*(Kis T;) - C*(Kh T;c)

For the chain complex C.(K; x K, ) we consider analogously the
chain maps b(k,[) and x(/, k) defined by

bk, 1) =bi(k,)@by(k, 1),
x(, k)=, k)®x(l, k)

which gives the chain subdivision and a chain approximation of the
identity map for a f.s.b.d. 8 on K; xK,. We call it the tensor product
subdivision and a tensor product approximation of the identity.

For the block complexes (L;, i’ = {u,i}) , i =1,2, we consider
C.(L; x L,, 6) with the tensor product subdivision b(k, /) and a
tensor product approximation of the identity x(/, k).

LemMA 2. Let (K;, %), (L;, iY) be block complexes with f.s.b.d.
and let F;: K; — L; be u.s.c. maps with A-systems A(F;) with coeffi-
cientsin F, i =1, 2. Then there exists an A-system with coefficients
in F for the u.s.c. map Fy x F,: K| x K, — L{ x L, with respect to the
product fs.b.d. 6 = ' x 12, 0 = 4! x j® and with Kronecker index
(KTA(F))(KIA(F)).

Proof. The map FixF, isdefined by (FyxF)(x, y) = Fi(x)xF(y)
for (x, y) € K; x K;,. Define

A(F1 ) @ A(F2)r = {91 ® 92|01 € A(F)i» 92 € A(F2)}-
The tensor product of ¢; and ¢,
91 ® 92 Cu(1}) ® Cu(13) = Culity) ® Cu(tz)

is a chain map, cf. [8, p. 162]. We shall show that A(F;) @ A(F;) =
{A(F})i ® A(F,)r|k € N} is an A-system for the u.s.c. map F; x F,
with respect to the f.s.b.d. § and 6.

Let Kk € N and ¢; ® ¢; € A(F)); ® A(F,);. Since ¢; € A(F);,
i=1, 2, there exists an integer / > k (it is no restriction to assume
that / is the same for ¢, and ¢;) such that ¢; = 9,b;(k, /) and the
chain maps @; are (%, u})-chain approximations of F;, respectively,
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cf. Definition 1.9. Writing ¢; ® ¢, = (9, ® 9,)b(k, [) we obtain a
(0) , 8;)-chain approximation of the map F; x F,. This proves part
(a) of Definition L.9.

Let n € N; there is an integer k > n (again we assume k to be
independent of i) such that for integers m; > I, > m > [ > k,
and ¢; = §ibe(l, ) € AF), wi = Uibi(m, my) € A(F)p the
chain maps @;x;(m;, ;) and ¥;(m, [)¥; are chain homotopic with
homotopies D;, i =1, 2, satisfying the condition (b) of Definition
1.9 for the A-system A(F;), respectively. According to [8, p. 163] the
chain maps

(@1 ®@)x(my, Iy) and Y (m, ) (W, ®V,)
are homotopic via the chain homotopy
D =Dy ® (@yx2(m1, 1)) + (x1(m, )@,) ® Ds.

This homotopy satisfies the condition (b) of Definition 1.9. Thus
A(Fy) ® A(F,) is an A-system for the map F; x F,, with coefficients
in the field F, and with respect to the f.s.b.d. 6 and 6. We call
it the tensor product of the A-systems A(F;) and A(F,). Finally,
let 91 ® 92 € A(F1) ® A(F2)y; then Klg; ® 93 = (K1g1)(Klgy) =
(KIA(F))(KIA(F)). D

CoROLLARY 3. Let F;: K — L; be u.s.c. maps with A-systems A(F;)
(coefficients in the field F) with respect to f.s.b.d. © on K and Q' on
L;, i=1,2. Then the map

(I)=(F1XF2)AZ K—>L1XL2

has an A-system (with coefficients in F) with respect to f.5.b.d. T and
il x p? with Kronecker index (KIA(F\))(KIA(F,)). Here A: K —
K x K denotes the diagonal map A(x) = (x, x).

Proof. Lemma 2 shows that the tensor product A(F;)® A(F3) is an
A-system for the map F; x F, with respect to f.s.b.d. #x %, ol x g2.

Since the diagonal map A is single valued there exists an A-system
A(A) with coefficients in F for A with respect to ¢ and 7 x 7,
and Kronecker index KIA(A) = 1, see [25, 26]. The composition
(A(F)) ® A(F>))A(A) of A-systems provides an A-system for the map
@ with Kronecker index (KIA(Fy))(KIA(F3)), cf. [25, Lemma 2.16].
The chain maps in the A-system (A(F;) ® A(F,))A(A) are composi-
tions of chain maps of A(A);, and (A(F;) ® A(F>))x , cf. [25, 1.2] for
the definition of the composition of A-systems. O
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Let K be a block complex with f.s.b.d. 7 = {7;}. Then the product
f.s.b.d. Tx 1 on K x K is T-equivariant (Remark 1.6.4). Therefore
T induces a chain map

T: Ci(t) ® Ci(t) — Ci(ti) ® Ci(Ti)
defined by T(e; ® e;) = (—1)dime dime,p, & o,

COROLLARY 4. Let F: K — L be an u.s.c. map and A(F) an A-
system (with coefficients in F) for F with respect to given fs.b.d. T,
it on K and L, respectively. Then there exists an A-system with
coefficients in F for F x F w.r.t. x 1, jix i whichis T-equivariant,
with Kronecker index (KIA(F))(KIA(F)).

Proof. Let Ap(F x F);, = {p @ ¢|lp € A(F)} and Ar(F x F) =
{A7(F x F)|k € N}. Obviously A7(F x F) C A(F)® A(F). Since
A(F)®A(F) is an A-system for F x F then A7(F x F) is an A-system
and it is T-equivariant; and KIA7(F x F) = (KIA(F))(KIA(F)).O

3. Borsuk-Ulam theorem. In this subsection we prove the Borsuk-
Ulam theorem for u.s.c. maps having A-systems with coefficients in
Z,.

PROPOSITION 5. Let F: S" — D! be an u.s.c. map with A-system
(coefficients in Z,), then the set

B(F)={xeS"|F(x)NF(-x) # 2}
is not empty.
Proof. Let 7 be a f.s.b.d. induced by an a-equivariant block struc-
ture on S” and i be the f.s.b.d. induced by the cubic subdivision
of D7 (see Remark 1.6.2). Without loss of generality we consider the

A-system for F with respect to the f.s.b.d. ¥ and .
On the space D} x D we consider the map

d: D! x D! - D}, withd(x,y)=x-y,
and on S” the map
A: 8" — S" x S",  with A(x) = (x, —x).

On the spaces S™ x.S” and D! x D acts the involution 7" defined by
T(x,y) = (y,x). The map A is (a, T)-equivariant, the map d is
(T, a)-equivariant. Since the map A is single valued there exists an
(a, T)-equivariant A-system (coefficients in Z;) A(A) with respect to
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f.s.b.d. # and 7 x %, KIA(A) = 1, this follows form Lemma IV.3 or
from appropriate simplicial approximations of A.

For the map d there exists a (T, a)-equivariant A-system A4(d)
(coefficients in Z,) with respect to f.s.b.d. ix 2 and /i and KIA(d) =
1; again, this follows from appropriate simplicial approximations of
d . Corollary 4 guarantees the existence of a T-equivariant A-system
(Zy coefficients) A7r(F x F) with respect to f.s.b.d. Tx % and i x 2
with Kronecker index (KIA(F))(KIA(F)).

Assume that the set B(F) is empty and consider the map

¥ =d(F x F)A: S" — D%,
The assumption B(F) = @ leads to
(Fx F)A(S")n{(x,y) € D} x D} x Di|x =y} = &

and the compactness of (F x F)A(S") ensures the existence of kg € N
such that the sets

N = St*((F x F)A(S™), e, ¥ pi)

and

D =S22({(x, x) € D} x D}, e, X 1)
are disjoint. Since D is a T-equivariant block complex with block
structure gy X f then Ny = DI x D}\D is a T-equivariant block
complex with block structure s X I, and NCN,.

Due to the assumption B(F) = @ it follows that 0 & d(N;) and
there exists /[y € N such that S72(0, ”10) Nd(Ny) = @, here 0 denotes
the point (0, ..., 0) € D}, . Let Do = D5 \St2(0, p; ). Then Dy is
an a-equivariant block complex with block structure M, - The map
p: Dy — S™! defined by p(x) = x/||x|| is a-equivariant. Since it
is single valued there exists an a-equivariant A-system (coefficients in
Z,) A(p) for p with respect to i’ = {y|l > lp} and 7.

It follows from [25, Lemma 2.16] that the composition

A(p)A(d)AT(F x F)A(B)

is an A-system for the map p¥: S” — S" ! with respect to % =
{tili > mg}, my = max(ly, kp). This A-system with coefficients in
Z, is a-equivariant. This contradicts Proposition 1. O

4. Bourgin-Yang theorem. Let F: S"tk - R"  k >0, be an u.s.c.
map. The set B(F) = {x € S"tk|F(x)n F(-x) # @} is compact and
a-equivariant. If B(F) # @ we consider the genus, g(B(F), a), of
the space (B(F), a), where « is the antipodal map, see Remark II.2.
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PROPOSITION 6. Let F: S"tk — R", k > 0, be an u.s.c. map with
an A-system (coefficients in Z;). Then g(B(F), a) > k.

Proof. From Corollary 4 we have that B(F) # @. Following [12,
Theorem 8.7], we assume g(B(F), a) = m < k. Then there exists
an a-equivariant single valued map f: B(F) — S™. Let f: S"tk —
R™*! be a continuous single valued extension of f, and consider the
multivalued map

= (F x f")A Stk _, g R = gl

defined by ¥(x) = F(x) x f(x), where A(x) = (x, x) is the diagonal
map. The map ¥ is u.s.c. and Corollary 3 implies the existence of an
A-system with coefficients in Z, for ¥. Since m < k then n+m+1 <
n + k. From Proposition 5 one concludes the existence of a point
Xo € S™* such that ¥(xp) N ¥(—xp) # @, which is equivalent to

F(x0) N F(-Xo) # @ and f(x) = f(—xo). But, then x; € B(F)
and f(xo) = f(x0) = f(~x0) = f(~Xo). Since f: B(F) — S™ is

a-equivariant we derive a contradiction. m]

COROLLARY 7. Let F: S"™k . R", k >0, be an u.s.c. map with
an A-system with coefficients in Z,. Then dim B(F) > k.

Proof. This is a consequence of dimX > g(X, y) [30], for any
space with a free involution y and of Proposition 6 ]

IV. Existence of A-systems, fixed point index.

1. A-systems. In this section we prove the existence of A-systems
with coefficients in F for (y;, y;)-equivariant m-acyclic maps (W.r.t.
a field F), and y; a free involution, see 1.3 for the notation.

LEMMA 1. Let (K, %) and (L, i) be compact polyhedra with a
given f.s.b.d., furthermore, let F: K — L be a (y,, y»)-equivariant
m-acyclic map (w.r.t. a field F), y, a free involution, and multiplicity
m(F)=a€F. Let n, ky, ly € N. There are numbers 0 < ky < --- <
kny1; 0<lp <--- <l,4y1 €N such that for any block e € 173 there
exists an integer l;_i(e) and a point a(e) € K such that

(a) 1;_, <l_(e)<lfori=1,...,n+1.

(b) The covering {St3(y, l,-(e))ly € L} is finer than the covering
{St(y, li)ly € L} and e C St(a(e), ki_y) (cf Remark1.7.2).

(c) 1(a(e)) = a(yi(e)) and li_1(e) = l;i-1(r1(e)).
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(d) F(St*(e, k;)) C St(F(a(e)), li_1(e)), and if F(a(e)) = Cy(a(e))
U---UCs(a(e)), s=s(ale)), thenforall u#v, u,v=1,...,s,

St?(Cu(ale)), li-1(e)) NS*(Cy(ale)) , li-i(e)) = 2,
and

m(a(e), Cula(e))) = > m(x, C(x)).

C(x)CSHC (a(e)),],_,(e))

(€) The inclusion St*(Cy(a(e)), lii1(e)) c St(Cyla(e)), li_y) in-
duces the zero homomorphism in the reduced homology with coefficients
in F.

The proof is immediate from [25, Lemma B], [26, Lemma 2] and
[9, Lemma 4.1].

LEMMA 2. Let the assumptions of Lemma 1 be satisfied. For any
T €T, U € i there exists a k > k, and a chain map

9: Cu(K,k)— C.(L, )

such that
(a) ¢ is (y1, y2)-equivariant,
(b) KIp =m(F),
(c) for any block e € T there exists a point t(e) € K such that

e e St(t(e), k),
lp(e)| C St(F(e)), ),
t(y1(e)) = r1(t(e)).

_ Proof. Applying Lemma 1 for ko =k, lp =1, n =dimK we set
k = k,.1. We shall construct successively chain maps

0’2 (C((K, k) = CulL, In-y),

where (K, k) denotes the j-skeleton of (K, k), such that ¢/ is
(71, 72)-equivariant, and for any block e € 75 with dime < j there
exists a point #(e) € K such that e € St(t(e), k,—j), t(yi1(e)) =
n(te)). If

F(1(e)) = Ci(t(e)) U---UCs(t(e)), s =s(tle)),

then g/(e) = ¢/(e); +--- + ¢’ (e)s with |p/(e)u| C S(Cu(t(€)), ln-;)
and KIg/(e), = m(t(e), Cy(t(e))) forall u=1,...,s.
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Step 1. We start with j =0. Let e € 7 and dime =0; Lemma 1
for i = n+ 1 guarantees the existence of a point a(e) € K such that
(a)-(e) of Lemma 1 hold. We set ¢(e) = a(e) and #(y;(e)) = yi(t(e)).
Let a, be a zero-dimensional block in S#(Cy(t(e)), l.(e)), where
Cy(t(e)), u=1,...,s = s(t(e)), denotes a connected component
of F(t(e)). Therefore

9e) = o)
u=1

with
0%(€)u = x(In(e), ln)m(t(e), Cu(t(e)))ay
is well defined and satisfies the above conditions.
Step 2. Let j =1 and e € 7 with dime = 1 and @ = |e, k|
(support of the block e in 75, ). Due to Lemma 1 there exits an
a(é) € K and [,_y(e) such that (a)-(e) of Lemma 1 hold; define

t(e) = a(e) and t(y1(e)) = y1(z(e)).
Let 8e = e; —eo and p0(e,) = 35, 9%es)u, 5 = s(t(ey)), for
v=0,1. ¢%e,), is a chain in St(Cy(t(e,)), ln). Furthermore,

St(F(t(e)), In) C SE*(F(a(@)), ln-1(2))
and
19°(e,)| € SE(F(a(@)), ln-1(@)).
Now
SE(F(a(@)), l-1(e)) = |J SA(Cr(a(@)), [h-1(@)), s* = s(a(e)),
r=1
and we consider ¢%(e,) = 5_, p°(e,)” with

¢0(eu)r = Z ("O(eu)u >

uel,
where I, = {u|Cy(t(e,)) C St2(C,(a(@)), l,—1(€))}, which gives
KI9%(e,) =Y mlt(e,, Cult(e,)))) = m(a(e), C(a(e))).

uel,

Then x(ly, L,—1)(9%(eo)” — @°(e;)") is a chain in the block complex
St(F(a(e)), l,_,) with Kronecker index zero. Therefore there exists
a chain ¢, = p!l(e), € St(F(a(e)), l,_;) such that

acr = x(In, ln1)(9%(e0)" — 9°(er)"),
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and define p'(e) = Y5_, ¢'(e), and ¢'(y1(e)) = 72(¢'(e)). Fora
zero-dimensional block e we define ¢'(e) = x(ly, l,—1)9°(e). The
homomorphism ¢! is a chain map which satisfies the above condi-
tions.

Now it is clear how to proceed for j > 1, see [25, Lemma 3.5], [26,
Lemma 3], [9, Theorem 4.3]. O

REMARK 1. If F is an m-point map (or m-acyclic map, such that
all connected components of F(x) are Rgs-sets, cf. [13]), then the
above construction holds even for rings A, i.e. in Lemmata 1 and 2
the field F may be replaced by the ring A.

LEMMA 3. Let the map F be as in Lemma 1, with fs.b.d. T and
[L. Then there exists a (y;, y2)-equivariant A-system with coefficients
in F for F such that KIA(F) = m(F).

The proof follows directly from the above lemmata and the proofs
in [25, Lemma 3.8], [9, Proposition 5.3].

REMARK 2. 1. For m-point maps F, Lemma 3 implies the exis-
tence of A-systems with coefficients in a ring A.

2. Let ®: K — L such that there exists an m-acyclic map (w.r.t.
F) F: K — L with F(x) c P(x), forall x € K, i.e., F is a selector
of the map ®. Then ® possesses an A-system with coefficients in F,
and Lemma 3 holds for ®.

3. Let F: K — L be an m-acyclic map (w.r.t. Z) and multiplicity
function m > 0 and multiplicity » > 0. Then F may be decomposed
into an u.s.c. acyclic map F: K — SP"L (w.r.t. Z) and an m-point
map n: SP"L — L with multiplicity », where (cf. Definition 1.2)

F(x)={x"xFlxieCx), ki=m(x, G(x)}, s=s(x),

and
n(xi‘ .- -xsl’) ={X1, ... Xs}.

Then F = nF and F has an A-system with coefficients in F, because
F has one [25] and 7 has cne induced by a simplicial approximation
of 7 in [20].

4. For the maps in [5], [7], [16], the A-system can be constructed
using simplicial approximation developed in [5], [7], [16], resp.

5. Let p: K — L be a continuous single valued map, K, L finite
polyhedra. We say that p is a map with multiplicity (w.r.t. A) if
the map p~': L — K is an m-acyclic map (w.r.t. A). If p~! is
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an m-point map it is sufficient to work with coefficients in a ring A,
otherwise the coefficients should be in a field F. Let A(p~!) be the
A-system for p~! constructed in Lemma 3. Every chain map ¢ €
A(p~1) induces a homomorphism ¢.: H.(L, A) — H,(K, A) which
is a transfer homomorphism for the map p, i.e. p.p. = m(p~1)id,
cf. [28]. Therefore, the homomorphism p,: H,(K, A) — H.(L, A) is
an epimorphism (A is the quotient field of the ring A.) We will not
go into more details.

PROPOSITION 4. Let F: (S", o) — (S™a) be an a-equivariant m-
acyclic map w.r.t. Z,;, then m > n.

Proof. Lemma 3 implies the existence of an A-system for F with
coefficients in Z, and Proposition III.1 yields m > n. (]

PROPOSITION 5. Let F: S"tk  R", k > 0, be an m-acyclic map
w.r.t. L. then dim{x € S"*|F(x)NF(-x) # @} > k.

Proof. The existence of an A-system for F with Z,-coefficients and
Corollary III.7 prove the assertion. a

2. Fixed point index. For every map ®: K — K which has an A-
system A(®P) with coefficients in the field F there exists a fixed point
index defined in [25, Definition I1.2.6]. Let U be an open subset in
K such that U is a subcomplex in some 71, € 7. Suppose x & ®(x)
for all x € 9U, i.e., the triple (K, ®, U) is admissible.

DEFINITION 6. The fixed point index K, (K, ®, U) is defined as

where ¢ € A(®);, n: C(K, 1)) = C.(U, 1;) is a homomorphism
(projections) such that n(e) =0 for e ¢ U and n(e) =e for ec U,
e isablock in 7; (I > k), and A(n(¢|g)) is the Lefschetz number
of the homomorphism 7#(¢|7) .

This definition does not depend on /, 7 and 7 for sufficiently large
l € N [25, Lemmata I.1.5 and I1.2.5].

The fixed point index I4(K, ®, U) has all properties, i.e., addi-
tivity, homotopy invariance, normalization, commutativity, mod p-
property, see [25]. Let .Z(F) be the set of m-acyclic maps of polyhe-
dra w.r.t. the field F. Let F € #(F), F: K — K, and U an open
subset in k such that the triple (K, F, U) is admissible. Applying
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Lemma 3 to the map F, y; and p, being the identity, we obtain an
A-system A(F) with KIA(F)=m(F)=1.

DEeFINITION 7. The fixed point index i(K, F, U) is defined as
i(KaF’ U)=IA(K,F> U)

w.r.t. A-system A(F) for every F € .# (F).
For m-acyclic maps the index (K, F, U) is independent from the
choice of A-system A(F), since KIA(F) =1, see [25, 26].

PrOPOSITION 8. Let F € #(F), i.e., F is an m-acyclic map w.r.t.
the field F. Then the fixed point index i(K, F, U) has the following
properties:

(a) Homotopy invariance. Let H € #(F), H: U x I — K, be
a homotopy joining the maps ®,|y, Pl € 4 (F) such that for all
tel and H;: U — K, Hy(x) = H(x, t), the triple (K, H;, U) is
admissible. Then

i(K,®,,U)=iK, ®,;, U).
(b) Additivity. Let ® € #(F), ®: K — K, and Uy, U, be open
disjoint subsets of U . If Fix(®|y) c U U U, then
I(K,®,U)=i(K,®,U)+iK, D, U).
(c) Normalization.
i(K, 9, K)=AA(D));

here A(A(®)) denotes the Lefschetz number A(¢) of a chain map
9 € A(D); .

(d) Commutativity. Let ®: K — L, ®,: L - K be in #(F), and
let (K, ®,®,U) and (L, ®®,, ®;'(U)) be admissible. Assume
that for all y € Fix(®;®,)\®;'(U):

D, (y) NFix(®®4ly) = 2.
Then
I(K, @@, U)=I4L, ®,D,, ®;'(V)),
where the fixed point index is defined with the A-systems A(®,)A(®P,),
A(Dy)A(D,), respectively.
(e) Mod p-property. Let p € N be prime and let ® € M (Zp),

(K,®,U), (K,®?,U) be admissible. Assume that for all y €
Fix(®?)\U :

@ () NFix(®?(0)) = o, 1<k<p.
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Then
(K,®,U)=1,K,®",U) inZp.

Here the fixed point index for ®° is defined with the A-system
A(D)--- A(D) (p-times).

(f) Multiplicity. Let ®;: K; — L;, ®;, € #(F), and (K;, ®;, U;)
be admissible. Then

i(Ky x Ky, @) x Dy, Uy x Up) = i(Ky, @1, U)i(Ky, Oy, Uy).

Here the index for ®, x®, is defined with the A-system A(D,)QA(D,),
see 111.2, and is independent from the choice of A-systems.

Proof. The properties (a)-(e) follow from [25]: Homotopy invari-
ance from II.15, additivity from I1.2.8, normalization from Definition
5, commutativity from I1.2.17, mod- p-property from II.2.19.(f), and
multiplicity from [26, II1.9]. 0

REMARK 3. 1. For maps f: K — SP"K the fixed point index is
defined in [18].

2. In [9] the fixed point index for (1, n)-valued maps F ,i.e., F(x)
consists of 1 or n acyclic components, is defined; for n-valued maps
see [24].

3. For the composition of m-maps see [5], [16].

4. The m-point maps F (w.r.t. Z), or more generally m-acyclic
maps for which the connected components of F(x) are Rgs-sets, [13],
have A-systems w.r.t. Z (Remark 2.1). Therefore the fixed point index
i(K, F, U) is integer valued.

The fixed point index for this kind of map with nonnegative multi-
plicity is constructed in [13].
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