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A PHRAGMEN-LINDELOF THEOREM

X. T. LIANG AND Y. W. LU

Let Ω be an unbounded and connected domain in En. Consider
on Ω x (0, oo) the parabolic equation

ut - divA(x, t, u, Vw) = B(x, t, u, Vw).

Under proper conditions a theorem of Phragmen-Lindelόf type is
proved for generalized solutions of the equation.

Introduction. The classical Phragmen-Lindelόf principle gives an
important property of harmonic functions defined on a plane sec-
tor domain. That has been generalized not only to generalized so-
lutions of quasi-linear elliptic equations in more general unbounded
and connected domains (see [l]-[5]), but also to the ones of quasi-
linear parabolic equations in divergence form which have their prin-
cipal parts only [6]. In this paper the result is extended to generalized
solutions of the equation (1). We prove the result by an argument
based on the technique of Moser [7] and Ladyzenskaja-Ural'ceva [8].
We have not seen any reference discussing such behavior for solutions
of parabolic equations except [6] where the simpler situation of the
equation (1), namely B = 0, is considered.

The paper is organized as follows. In §1 the main result is men-
tioned and in §2 several lemmata are given as preliminaries. Finally,
a full proof of our theorem is stated in §3.

1. Main result. Let Ω be an unbounded and connected domain in
the ^-dimensional Euclidean space En . Denote by <9Ω the boundary
of Ω. On Ω x (0, oo) we consider the following equation:

(1) ut -divA(x, t,u, VM) = B(x, t9 u9 VM)

where A(x 9t9u9ζ) and B(x, t,u,ξ) are defined on Ω x (0, oo) x
Eι x En

 9 continuous with respect to u and ξ for fixed x and t,
measurable with respect to x and t for fixed u and ζ 9 and satisfying
the following structural conditions:

(2) ξ A(x,t,u,ξ)>κo\ξ\\

\A(x9t9u9ξ)\<κx\ξ\9

\B(x9t9u9ξ)\<b(x9t)\ξ\9
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where Kγ > κ0 > 0, b(x, t) e L^Ω x (0, oo)) and

(3) \b{x, 01 = O(\x\'1) (uniformly for t) as \x\ -* oo.

We need the supposition on Ω: there exist some xo E dΩ and a
0 € ( O , 1) such that

(4) meas(Ω n {B(x0, Po)\B(xo, Pi)})

for any po> Pi > 0, where mease denotes the Lebesgue measure of
the set e in En and

P) = {x e En,\x - x o | < p}.

For G c En, W£(G) and W\(G) stand for the usual Sobolev
spaces. Let X be a Banach space formed by measurable functions
defined on G with respect to the norm || \\x. Denote Lp(09 T, X)
the Banach space formed by the mapping from [0, T] into X with
norm ||w||L ( 0 τ x) defined by

oτχ=(fT

MPdx\'P f=esssup||u|Uif^ = oc>|
Lr(θ,τ,x) \Jo x ) \ te(θ,τ) X ) '

Similarly, the space C(0, T, X) etc. can also be defined.
The function u is called a generalized solution of the equation (1)

if for any T > 0 and for arbitrary G c Ω and G c c F ,

(5) ueC(0,T,L2{G))Γ\L2{0,T, W

and the following holds:

(1)' / {-VtU + Vv A(x, t,u,Vu)-υB(x, t,u,Vu)}dxdt
Jo JG

r t=t

+ v(x, ήu(x, t) dx =
JG t=o

Vί € (0, Γ), t; € ^ ( 0 , Γ, L 2 (G))nL 2 (0 , Γ,

where w(x, 0) is a given initial value of u.

As the main result we have

THEOREM. Suppose that the conditions (2)-(4) are satisfied and the
generalized solution u of the equation (1) satisfies

(6) u+ = max(w, 0) = 0 on <9Ωx(0,oo) and u+\t=0 = 0.
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If there exists an R>0 such that M(R) > 0, then

M(p) —• oo as p —• oo

where

M(p) = ess sup u{x, ί) , β(/>) = {Ω n 5(x 0 , p)} x (0, /?2).

As an immediate consequence we have

COROLLARY. If the u in the theorem is bounded from above, then
u<0 on Ω x ( 0 , o o ) .

REMARK. The results of the theorem and corollary and the proof
given in §3 below are also true for subsolutions of the equation (1). As
the definition u is a subsolution if besides (5) it satisfies the following:

/7<-'
Λ' JG

vtu + Vv A ( x , t, u, Vw) - vB(x ,t,u, Vw)} dx dt

ί υ(x,t)u(x,t)
JG

t=t

dx<0,

o

' , f) c (0, Γ), veWj(0,T, L2(G))ΠL2(0, T, W\{G))

and v > 0.

2. Preliminaries.

LEMMA 1. Suppose G is a bounded domain in En, T > 0 is a
definite value and u satisfies (5) and (1)'. If there exists a constant
M > 0 such that

(7) (u-M)+eL2(0,T,W\(G)) and (u-M)+\t=0 = 0

then

(8) ess sup u(x, t) < M.
Gx(0,T)

Proof. If the statement were not true, there would be a

M' = ess sup u> M {M' = oo is not exclusive).
Gx(0,Γ)

By (7), we have for any k e (M, Mf)

{u-kγeL2{0,T,W\{G)) and (u- k)+\t=Q = 0.
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Hence it follows by the imbedding inequality in L2(0, T9 W\(G))

that

/ \{u-k)+\qdxdt) < C(n)\\\(u - k)+\\\Gx(OiT)

JG J

where q = 2(1 + 2/n) and

lll(κ-*nibχ(θ,D= e s s s u P t\(u-k)+\2dx
GX(0,T)JG

T p
/ \V(u-k)+\2dxdt.

o JG

We assume temporarily that (u - k)+ eW^(0,T, L2{G)) then υ =
(u-ky can be taken as a test function. Substituting v into (I)7 and
integrating by parts with respect to t, we have by the use of (2) that

(9) / \(u - k)+\2 dx+ f f I V(M - k)+\2 dx dt
JG JO JG

<C ί [ b(x,ή(u-k)+\V(u-k)+\dxdt,
Jo JG

where the constant C > 0 depends only on n and κ0. However,
we cannot guarantee (u - k)+ e W£ (0 9 T9 L2(G)) when u is the
function in Lemma 1. What we have to do now is to extend (u — k)+
to G x (-00, 0) by letting (u - k)+ = 0 and instead of υ we take

v1 = - / (w - fcγ~ dτ

as the test function. Repeating the above process again we obtain (9)
by letting h —• 0 in the last result.

Since the two terms on the left-hand side of (9) are all non-negative,
each of them does not exceed that on the right-hand side. Taking their
supremums for t G (0, T), we have

(10) | | | (W-/OΊ| |GX(O,Γ)<C [T f(u-k)+\V(u-k)+\dxdt,
Jo JG

where we absorb the \\b(x9 ί) | |^ into the constant C. Consider-
ing that the effective integral domain in (10) is only {G x (0, T)} Π
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{k < u < M'}, we then have by Holder inequality that

1/9

(11) / /(u-k)+\V(u-k)+\dxdt
Jo JG

<ε(k,M')l I ί \{u-k)+\qdxdλ

"

/ dxdt)
JGn{k<u<M'} J

where

ε(k,M') = (
\Jθ JGn{k<u<M'

Combining (10) with (11) we get

(12) 1 <C(n)e(k9M')9

where the constant C(n) > 0 is independent of k. So, we have

ε(k 9 M') —• 0 as k —• M1 because

dx dt —• 0 as k -> A/'.
{Gx(0,Γ)}n{fc<κ<AΓ'}

Hence, the contradiction is obtained by (12). α

For simplicity we write B(p) = 5(0, p).

LEMMA 2. Suppose po > p\ > 0, S c B(po)\B(p\) and

measS > (9meas{5(/?0)\5(/?1)}, fl G (0, 1).

Suppose u e W^{B{po)\B{pι))f p > 1 αnrf w = 0 o / i 5 . Then

I \uPdx<c(n,p9θ9&)/% f \Vu\?dx.
JB(PO)\B(PI) \ P\) JB(PO)\B(PI)

Lemma 2 is a variety of Theorem 3.6.5, in Money [9] and it can be
proved by the same method.

LEMMA 3 [10]. Let f(t) be a non-negative bounded function defined
for 0 < r ' <t<r. If

f{t) < A(s - t)'a + B + θf(s), Mr' <t<s<r
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where A, B, a, θ are non-negative constants and θ e ( 0 , 1), then
there exists a constant C depending only on a and θ such that

/(/>) < C(A(R - p)~° + B), W<p<R<r.

3. Proof of the theorem. Without loss of generality, let XQ be the
origin. We can rewrite the condition (3) as

(3)' \b(x, t)\ < K\x\-1 as |JC| > 1,

where K is a positive constant.
Let p > max(i?, 1), 0 < p2 < p\ < Po < P and let ζ(x) = ζ(\x\)

be a piecewise linear and continuous function of |JC| satisfying

(13) C(x) = i °' aS '̂ ' -2p~ pι 0 Γ 1*1 -

Then

The function u in the theorem as the generalized solution satisfying
(5) and (6) is locally bounded from above on (ΩudΩ) x (0, oo) [11].
Therefore

= esssupw(x, t)<oo9 Q(p) = {Ωn £(/?)} x (0, p2).
Q(P)

On Q(5p) let

Because of the boundedness of u on Q(5p), we have

(15) w e L2(0, 25p2 -W2

ι(ΩnB(5p)) n

w = 0 on{dΩΓ)B(5p)}x(0,25p2)U{t =

and

vGL2(0,25p2, ^

Suppose v € Wj(0, 25p2, L2(ΩnB{5p))) (otherwise, we add a limit
process to arrive at the same result). Such v can be taken as a test
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function. Substituting it into (1)' yields

(16) 0= f I ίζψΊ[(w-k)+)2)t
JO JΩnB(5p) {Γ

lM(5ρ) + ε-u+
ζ2{w - k)+Vu+ (w - k)+2ζVζ

+
{M(5p) + ε - u+)2 M(5p) + ε-u

ζ2(w
M(5p)

'
i /

ζ2(w-k)+B \ , .
77T—\ —+ tdxdt,

f(5p) + ε-u+ J
te(0,25p2).

By virtue of the appearance of ζ(x) and (w-k)+ in (16) the effective
integral domain is only

(17) {Ωn(B(4p + pι)\B(2p-pι))x(0,t)}Π{w>k},

on which u+ > 0 because of (14). By the use of (2) it follows from
(16)that

\f ζ2[(w - k)+]2 dx

+κoί ί (ζ2\V(w-k)+\2+ζ2(w-k)+\V(w-k)+\2)dxdt
JO JdΠB(5p)

<[ f {w-k)+[2ζ\Vζ\κλ + ζ2b{x,t)]\V{w-k)+\dxdt.
Jo JSϊΠB(5p)
[ f
o JSϊΠB(5p)

With the aid of Young's inequality it follows from the inequality above
that

(18) I ζ2[{w - k)+]2 dx + f I ζ2\V(w-k)+\2dxdt

<C f ί (w-k)+[\Vζ\2+ζ2\b(x, t)\2]dxdt
Jθ JanB(4p+pι)\B(2p-pι)

<c(-rr—,2+A) ff (w-k)+dxdt,
\{Pl - Pi) P / ^0 JΩΓ\B(4p+p1)\B(2p-pl)

where the last inequality in (18) is obtained by the fact that (3)' holds
on the effective integral domain (17) and the constant C > 0 depends
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only on n, KQ, K\ and K. Extend w by taking w(x, t) = 0 as
x £ Ω. We have from (4)

meas({2?(4/> + Pί)\B(2p - Pl)} Π {(w - k)+ = 0})

> (1 - θ) meas{B(4p + Px )\B(2p - px)}.

For p= 1, 2 applying Lemma 2 to (w-k)+ on
we obtain

(19)' / (w-k)+dx

<C{n,θ)p I \V(w-k)+\dx
JΩnB(4p+pl)\B(2p-pl)

and

(19)" ί [{w-k)+]2dx

<C{n,θ)p2 f \V(w-k)+\2dx
JΩ.C\B(4p+pχ)\B{2p-Pi)

respectively. It follows from (18) and (19)' that

(20) / ζ2[(w - k)+γ dx+ ί ί ζ2\V{w - k)+\2 dx dt
JΩnB(5p) JO JΩnB(5p)

Ί - P2)2 P2

f \V{w-k)+\dxdt
JΩnB(4p+p,)\B(2p-p,)

<c\ 1 +XXp2ί χ{k)dxdt
l{Pl-P2Γ PL\ JΩnB(4p+Pi)\B(2p-pλ)

+ \ f \V{w-k)+\2dxdt
4 JαnB(4p+pι)\B(2p-pι)

where the constant C > 0 depends only on n, KQ, K\, K and θ,
and χ(k) is the characteristic function of the set {w > k}. Taking
the supremum in (20) for t G (0, p2) we get
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(21) esssup/ ζ2[(w - k)+f dx

+ f ί ζ2\V{w-k)+\2dxdt
Jo JΩΠB(5P)

<c 1 1 - 2
P2

/ / χ{k)dxdt
JO JΩnB(4p+Pί)\B(2p-Pl)

\V{w-k)+\2dxdt.

pJ

According to the definition of ζ(x) it is obvious that

Γp
2 f

(22) / / \V{w-kγ\2dxdt
Jθ Jar\B(4p+p2)\B(2p-p2)

< I" ί ζ2\V(w-k)+\2dxdt.
Jθ JsϊΓ\B(5p)

On account of C being independent of p\ and pi and the arbitrari-
ness of p\ and P2 in 0 < pi < P\ < p, combining (22) with (21)
and applying Lemma 3 we obtain

tP2 r
(23) / / \V(w-k)+\2dxdt

Jo JsinB(4P+pΛ\B(2p-pΛ
2

1 1 , 2<c\,——^2 + -^\ P
[(P1-P2)2 P2\

ΓP2 t
• / / χ(k)dxdt,

Jθ JciίΛB(Ap+px)\B{2p-Pι)

where the constant C > 0 is independent of p\, P2 and p. There-
fore, if 0 < p\ < PQ < p, it follows from (23) by replacing p\ and
P2 by po and p\ respectively that

(24) / / \V(w-k)+\2dxdt
Jθ JanB(4p+pl)\B(2p-pl)

I" I χ{k)dxdt.
JO JΩΠB(4p+po)\B(2p-po)O JΩΠB(4p+po)\B(2p-po)
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From (15) we have

I it f \2/q

(25) / / \(w-k)+\«dxdt)
\Jθ JΩnB(4p+p2)\B(2p-p2) )

< C(n)\\\ζ(x)(w - fc)+|

<C{n)\ ess sup / ζ2[(w - k)+]2 dx
[te(0,p2)J^^B(5p)

+ Γ ί ζ2\V(w-k)+\2dxdt
JO JΩnB(5p)

+ Γ I \Vζ\2\(w-k)+\2dxdt\.
Jo JnnB(4p+Pl)\B(2p-px) JnnB(4p+Pl)\B(2p-px)

Collecting (19)", (21), (24) and (25), it follows that

/ / \(w-k)+\*dxdt
θ JΩnB(4p+p2)\B(2p-p2)

1 1 1 -, Γp ί

7 —^I + -T \P / χ{k)dxdt
\P\ - P2Γ Pi Jθ JΩΓ\B(4p+pi)\B(2p-pί)

+ il% 2Γ / χ(k)dxdt,2 + ί 1 P Γ f
KPθ~Pl) Pi Jθ JΩT\B(4p+po)\B{2p-po)

where C > 0 d e p e n d s only o n n, KQ, K\, K a n d θ. I n part icular,

let 0 < p" = p2 < Po = p' < p and p\ = ̂ (p' + p"). The inequality

above can be rewritten as follows:

( ίpl f
/ /

\Jθ JΩ

( ίp f
(26) / / \{w-ky\*dxdt

\J JΩnB(4p+p")\B(2p-p")

Γ I χ{k)dxdt.
Jθ JΩnB(4o+o')\B(2o-o')10 JΩnB(4p+p')\B(2p-p')

T a k e for v = 0 , 1 , 2 , . . .

pv = p/2v, kv = H- H/2U (H>0 will be special),

v= Γ I χ{kv)dxdt.
Jθ JΩC\B(4P+P..)\B(2P-P.)
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Since the constant C in (26) is independent of p1, p" and k , replace
p1, p" by pv , pv+\, and k by kv , it follows from (26) that

< / // K f )
θ JΩnB(4p+Pi/+1)\B(2p-pv+ι) )

P2ji^ ^ = 0 , 1 , 2 , . . . ,

namely,

(27)

2 ^ I / , i/ = 0 , 1 , 2 , . . . .

For v = 0 we have

(28) Λ = / / χ(0)dxdt<measB(5)pn+2.
JO JΩnB(5p)\B(p)

As long as we assume H > 0 so large that

(29)

26(l+2/(H+2))j2/(n+2)

from (27), (28) and (29) it can be shown by induction that

Av < δ^Ao, v = 1,2, . . . .

Let v —• oo then

Γ ί χ(H)dxdt = 0,
JO JΩnB(4p)\B{2p)

which implies
ess sup w <H.

{ΩnB(4p)\B(2p)}x(0,p2)

According to the definition of w we have

ess sup u+ < [M(5p) + e](ί - e~H).
{ΩnB(4p)\B(2p)}x(0,p2)

Let ε —• 0 then

ess sup w+ < M(5p)(l - e~H).
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It follows from Lemma 1 that

(30) M(p)= ess sup u< ess sup u
{ΩnB(p)}x (0,p2) {ΩnB(3p)}x (0, p2)

< esssup w+ < M(5p)(l - e'H).
{ΩnB(4p)\B(2p)}x(0,p2)

We see from (29) that H is determined by constants C and n hence,
H is independent of p.

Now, suppose po = max(i?, 1). For any p > po there exists an
integer v such that 5"po < p < 5"+1/?o Iterating by (30) we get

M{p) >
> (1 - e-H)M(p0)(l - e-

H)

= (l-e-H)M(po)(p/po)λ > (l-e-H)M(R)(p/p0)\

l-e-H)-ι>0, p>po.

Thus, M(p) —• oo as p —> c» whenever M(i?) > 0. The proof of the
theorem is completed.
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