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THE BRAID INDEX OF GENERALIZED CABLES

R. F. WILLIAMS

If one knot is fashioned into another, by replacing each strand with
q strands, then something gets multiplied by q . What? The answer
should not be overly dependent on how these strands are intertwined.
We show that an invariant called the braid index is an answer. This
proposition is apparently new. Another answer covered by our proof is
the bridge number, though this was proved by Shubert in 1954. It was
only with the advent of the Jones polynomial and its relatives in the
mid 1980s, that much attention has been given to the braid index. For
example, the knots obtained by repeated period doubling were shown
to obey the multiplication rule, though no one seems to have thought
of it this way. Their braid indices are powers of 2. We first considered
the current proposition in trying to show that a certain knot, known
to have braid index 5, could not be a two-cabling of anything.

DEFINITIONS. It is a classical result of Alexander [A] that any link,
that is, a finite collection of smooth oriented simple closed curves
embedded in Euclidian 3-space, can be isotoped into the (closure) of
a braid on some number of strands, say n. By the braid index of a
link we mean the least such number n.

The bridge number is the minimal number of local maxima for any
smooth isotopic copy of a link L. See Shubert [SI; Satz 9, p. 283].
Our result follows as a corollary to Shubert's theorem in those cases for
which these invariants are equal, since the bridge number is trivially
seen to be less than or equal to the braid index.

We use b(L) to denote the braid index (respectively bridge number)
of an oriented link L. In the theorem below, we assume that each
component of our link is knotted; this assumption is necessary in that
(for example) any (p, q) torus link is both a /7-fold and a <?-fold
cabling of the unknot For p Φ q its braid index cannot be both p
and q. In fact its braid index is the lesser of p and q as can be
seen, e.g., by the theorem of Morton [M] and Franks-Williams [FW].
That is, if L is the closure of a positive braid on p strands which
has a full twist, then L has braid index p. But, any (p, q) torus
link is a positive braid on p strands as follows: denote the generators
of the braid group Bp by 2, 3, . . . , p. The {p, q) torus link Lpq

is the closure of the braid β = ( 2 , 3 , . . . , p)q . Since the full twist
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FIGURE 1. A 2-cabling of the Hopf link

is ( 2 , 3 , . . . , p)p , β contains a full twist, in case p < q. For as the
closure of a braid in Bp the (p, q) torus link is positive, and if p < q
it contains a full twist. Another example: the Hopf link (i.e., the link
consisting of two simply linked circles) has a 2-cabling of braid index
3. For example, cable one component by 2 parallel circles, the other
by the unknot, just as one "doubles" a rubber band. The resulting
2-cabling has braid index < 3, as one sees by relaxing the "rubber
band." Having 3 components, its braid index is > 3, and thus 3.

Start with the Hopf link, the first diagram in Figure 1. Next, 2-cable
it getting the second diagram. Then the long arc from A to B in the
second diagram is moved to the short diagonal stretch in the final pic-
ture. In terms of the braid generators 1 ,2,3 of B4, 213212312 —>
213121312 ^211323112 -> 211232112 —> 211221112.

Below we work with generalized cablings of knots in R 3 . By a
generalized q-cabling of a link L we mean a link L' contained in the
interior of a tubular neighborhood Lx D2 of L such that

(a) each fiber D2 intersects LI transversely in q points; and
(b) all strands of U are oriented in the same direction as L itself.
Note that any link which is arranged as a braid on p strands, is

a generalized p cabling of the unknot, since it can be put inside the
unknotted torus, always travelling in the same direction. Thus the
figure eight knot is a generalized 3-cabling of the unknot, which cannot
be a cabling of the unknot, as it is easily seen to not be a torus knot.

We shorten this phrase to g-cabling or #-g-cabling below. The term
cabling is reserved for the g-cablings which are actually on the bound-
ary torus itself. Part of the interest in our proof is its simplicity and
the fact that it works for both invariants with no change at all. It is a
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pleasure to thank my colleagues, John Berge, Cameron Gordon, Ray
Lickorish, and John Luecke for helpful conversations. We would like
to thank the referee for bringing to our attention a related result of
Schubert [S2, Satz 1, p. 275], reviewed by R. Fox, in Math. Reviews
17, p. 298.

THEOREM 1. The braid index {respectively bridge number) is multi-
plicative under generalized cabling. In detail if L is a link with each
component a non-trivial knot and Lf is a generalized q-cabling of L
then

b(L') = qb(L).

Proof. Clearly

b(L')<qb(L),

since the obvious cabling of L is a braid of qb(L) strands. (Respec-
tively, is a plat with bridge number qb{L).) We proceed to prove the
other inequality, and to simplify notation, prove it first in the case
that our link L has only one component and thus is a knot, K, with
generalized g-cabling Kf. Assume on the contrary that

b(K') = b< qb{K).

We work in the smooth setting, and assume K' is presented as a
g-g-cabling of K in a small tubular neighborhood N of K. This
neighborhood is a solid torus neighborhood TV of the knot K. Under
our assumption, we know there is a global diffeomorphism Φ: R3 —•
R3 of compact support such that

(a) Φ(Kf) has exactly b maxima and b minima which are non-
degenerate and no other singularities;

(b) the "height" function h: bdryΦ(TV) —• R is a Morse function,
i.e., h has finitely many singularities, all non-degenerate.

We are given condition (a). But since this condition is generic, by
a small perturbation, we may assume (b).

Let T2 = bdryΦ(N). By (b) the intersection of horizontal planes
with our torus T2 consists mostly of disjoint simple closed curves.
The finitely many exceptional intersections are at singularities of h
and have in addition, an isolated point or "figure eight." These latter
consist of two simple closed curves, which intersect in a single point.

A simple closed curve in T2 which bounds a disk in T2 will be
called trivial. For a non-trivial / c T2, we follow tradition and say
/ is a meridian, provided / bounds a disk in Φ(JV). Note that for
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a meridian / the linking number l(K 9 J) = 1 and that for our q-
g-cabling K', l(K', /) = q, these numbers being determined up to
sign.

REMARK 1. If / is a simple closed curve lying in T2 n n, where π
a horizontal plane, then / is either a meridian of T2 or is trivial in
Γ 2 .

Proof. Since / bounds a disk in the plane, it bounds a disk in R 3 .
But the only such simple closed curves on T2 are meridians or those
that bound disks in T2, because K is knotted.

REMARK 2. There is a horizontal plane intersecting T2 in a merid-
ian.

Proof. This is Morse theory at its simplest: let T(x) consist of all
those points p E T2 of height h(p) > x , for x e R. Then T(x) is
empty, for x large. As we decrease x, T(x) first becomes a point,
then a disk, changing its topological type only at singularities of h.
Thus under the assumption that we never meet a meridian, only three
things can happen: a new disk is added, two disks are joined making
one less disk, or (a priori, only) an old disk is capped off with a new
disk, forming a sphere. Thus, for small x we get T2 = T(x) is the
union of finitely many disjoint disks and disjoint spheres, which is
absurd.

Let / be a meridian of T2 lying on a horizontal plane π. We can
and do assume T2 is transverse to π and that / is innermost among
meridia. Then / bounds a disk d c π and by our remarks above,
d separates Kf into a number of components {Q}. Some Q ' s a r e
non-trivial, in that there is an arc Z>z in the interior of / such that

C, U Di U {end points} = Kι

traverses Φ(N), the interior of T2, longitudinally. Others may be
trivial in that such a Kt bounds a disk in Φ(ΛΓ). However

REMARK 3. There are (at least) q non-trivial Ki.

Proof. The signed linking number of L with / is q. The trivial Kt

add nothing as they bound in Φ(N) and each non-trivial Ki counts
+ 1.
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FIGURE 2

Discard the trivial K\. The remaining K\ are not presented as
braids (respectively plats) only because the D\ are horizontal. How-
ever, this is easy to remedy. Choose another plane π' just below π so
that together they cut an annulus A off of T2 whose other boundary
curve J' is essentially parallel to / . Then form

(Q - C) U Z> U {end points} = Kt,

where D\ is a rising arc lying between the planes replacing a small arc
C c C|, which is discarded. It is clear that the Ώ\ can be taken to be
disjoint, so that the Ki are disjoint as well. See Figure 2.

Thus we have determined q knots K\, K2, . . . , Kq , each isotopic
to K. Now compute

q

^{number of max of Kj} < {number of max of K1}

= b(K') = b< qb{K).
But the Ki are mutually disjoint. It follows that one of the Ki has
fewer than b(K) maxima and thus is a braid on fewer than b(K)
strands (respectively, plat with fewer than b(K) bridges). This con-
tradicts the fact that each Ki is isotopic to K and hence has the same
braid index (respectively bridge number) as K. This completes the
proof, in case of a simple knot, K.

We turn to the general case in which our link consists of several
knots. We introduce notation as follows: L is a link whose com-
ponents are knots (each is knotted) Kγ, K2, . . . , Kk, and L' is a
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9-g-cabling of L. We then assume for contradiction that

b{L') = b< qb{L).

Then L! = K[ U K'2 U U K'k where for each j , Kj is a #-g-cabling
of Kj lying in a small tubular neighborhood Nj of ϋΓ/. Under our
assumption, there is a global diffeomorphism Φ: R3 —• R 3 , with com-
pact support, so that Φ(L') is represented by a braid (respectively, a
plat) with b maxima.

As before, we may adjust the neighborhoods Φ(JV}) slightly, so
that the torus, dΦ(Nj) = Tj has a Morse height function, for j =
1, 2, . . . , k. We must deal with all of the 7) simultaneously, since
neither the braid index nor the bridge number is additive over com-
ponents. Fix j . Then just as before there is a plane π ; so that
Tj n πj is a meridian of Tj. Proceeding as before, construct q
knots, Kj\, Kj2, . . . ? Kjq C Φ(Kj), which are disjoint, and except
for short rising arcs, are subsets of Φ(Kj). Having done this for each
7 = 1, . . . , fc, define

L i = Kx i U K2 i U U Kk i, ϊ = 1, . . . , q.

Now compute

q

]P{number of max of L/} < {number of max of U}

= b{Lf) = b< qb{L\

But the Li are mutually disjoint. It follows that one of the Lz has
fewer than b(L) maxima and thus is a braid on fewer than b(L)
strands (respectively, plat with fewer than b(L) bridges). This con-
tradicts the fact that each Lf is isotopic to L and hence has the same
braid index (respectively bridge number) as L. This completes the
proof, in case of a simple knot, L.
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