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Z/-FOURIER TRANSFORMS ON
NILPOTENT LIE GROUPS AND SOLVABLE LIE GROUPS

ACTING ON SIEGEL DOMAINS

JUNKOINOUE

We study Fourier transforms of Z/-functions (1 < p < 2) on
nilpotent Lie groups and affine automorphism groups of Siegel do-
mains. We get an estimate for the norm of the LP -Fourier transform
for certain classes of nilpotent Lie groups. For affine automorphism
groups, which are nonunimodular, we give an explicit definition of
LP -Fourier transform, and obtain an estimate for the norm.

Introduction. First of all, let us recall some known results of the LP-
Fourier transform on unimodular groups. For such groups, the classi-
cal Hausdorff-Young theorem was generalized by Kunze [13], Follow-
ing a description of Lipsman [14], we briefly mention the generaliza-
tion. Let G be a separable locally compact unimodular group of type
I, and G be the unitary dual endowed with the Mackey Borel struc-
ture. Denote by ί/g a Haar measure on G, and by μ the Plancherel
measure on G associated with dg. That is, μ is uniquely determined
by the abstract Plancherel formula; for φ e Lι(G) Π L2(G),

(0.1) / \φ(g)\2dg= ίn(π{φyπ(9))dμ(π)9

JG JG

where π(φ) = fGφ(g)π(g)dg. We consider the Fourier transform
£P to be a mapping of Lι(G) to a space of //-measurable field of
bounded operators on G\ (&>φ)(π) = n{φ), for φ e Lι(G), π e G.
Let 1 < p < 2 and q = p/(p - 1), and for a //-measurable field of
bounded operators F o n G , let

where | |F(π) | | C f = (tr(F(π) F(π))*/ 2) 1/*. Denote by Iβ{G) the Ba-
nach space defined by the space of measurable fields F such that
| |JF| |^ < oo in the usual way (with norm || | | ^) . Then the Hausdorff-
Young type inequality

(0.2) \\&φ\\q < \\φ\\p

295



296 JUNKOINOUE

holds for φ e Lι{G) n LP{G). Thus the HausdorίF-Young theorem

asserts that the map φ-^^φ from Lι(G)ΠLp(G) to Lq(G) extends

to a continuous operator £Pp\ LP(G) -» Lq(G) and its norm

(0.3) \\&p{G)\\ = sup \\^p(φ)\\q < 1.
<i

Next, let us consider the norm H ^ίC?) ! ! . For the case of G =
R" (the classical Fourier transform), Babenko [1] and Beckner [2]
obtained the norm

(0.4) | | ^ p ( R n ) | | = A", where Ap =

On the other hand, by a result of Fournier [8], the following statements
(1) and (2) are equivalent for a locally compact unimodular group G:

(1) \\^P(G)\\ = l.
(2) G has a compact open subgroup.

For various examples which do not have compact open subgroups,
Russo obtained estimates for the norm in [18], [19] and [20].

In §1, we deal with connected and simply connected nilpotent Lie
groups G with Lie algebras g. We first treat irreducible representa-
tions of G, and give an estimate for | | π ( ^ ) | | c (φ £ Lι(G) n LP{G))
for irreducible representations π satisfying the condition (Cl) (Propo-
sition 1.2). Then we give an estimate for | | ^ P ( G ) | | for groups G
satisfying the condition (C2) (Theorem 1.3) as follows:

(0.5) 11^(6)11 < 4 2 d i m G " m ) / 2 ,

where m is the dimension of generic coadjoint orbits of G in g*
(the dual space of g). Here let us note that the Plancherel measure
is supported on the set of representations corresponding to generic
orbits in g* by the Kirillov mapping. Applying Theorem 1.3 to the
Heisenberg groups and the nilpotent groups of real upper triangular
matrices, for example, we get the same estimates as those obtained by
Russo in [19].

Section 2 is devoted to a nonunimodular case. We will treat con-
nected and simply connected Lie groups whose Lie algebras are normal
7-algebras (see 2.1 for definition). In the sequel, let G = expg be such
a group.

An extension of the Hausdorff-Young theorem to general (i.e., not
necessarily unimodular) locally compact groups was given by Terp
[21] in terms of the spatial theory of von Neumann algebras. But we
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will give an explicit realization of the LP -Fourier transform based on
the Plancherel theorem of Duflo and Moore [5]. For each irreducible
representation π corresponding to one of the generic coadjoint orbits,
which are open, we modify the map φ —• π{φ) using the operator
called the formal degree of π [5], and define U-Fourier transform
&p . Then the following estimate for the norm is obtained:

(0.6) \\&>p(G)\\<AfmG/2

(Theorem 2.2.1). This result (0.6) is compatible with (0.5) for m =
dimG.

Let us remark that Eymard and Terp [7] and Russo [20] developed
their LP -Fourier analysis for the ax + b group (the group of all affine
transformations of the real line), and we are generalizing their results
to our G.

The author would like to thank the referee for his very useful com-
ments and for the suggestion of focusing on the LP norm estimates.

NOTATIONS. Let G be a Lie group and dg a left Haar measure on
G. We denote by Δ = Δ^ the modular function of G, i.e., d(gx) =
A(x) dg. If φ is a function on G and 1 < p < oo, we put φ*^p\g) =
A(g)-ι/pφ(g-1) for g e G. (We often use φ* for φ*W .) We regard
LP{G) as equipped with the involution φ —> φ*W .

Let %? be a Hubert space. Then we denote by ό&ffi) the space of
bounded operators with the operator norm || - ||oo ? and by 2? (%(%')
the space of compact operators. For 1 < p < oo, Cp(β^) is the space
of Γ E ^ ( / ) satisfying | | Γ | | ς = (tr((T*Ty/2))ιίP < oo, where tr( )
denotes the trace. It is a Banach space with the C^-norm || | |c

1. The norm of the LP -Fourier transform for nilpotent Lie groups.
Here we treat connected and simply connected nilpotent Lie groups.
First of all, let us summarize the Plancherel theorem for such groups
in terms of the orbit method. (For details, we refer to Chapter 4 of
[4].)

Let g be a nilpotent Lie algebra, G = expg, θ : 0*/G —• G be the

Kirillov mapping which assigns the coadjoint orbit G / (/ G g*)

to the class of πy = ind^ χf: the representation of G induced by a

character χf of Bf = exp by, where bf is a real polarization at /

and χf(expX) = e^/W (X e bf).
Let {X\9...-,Xn} be a strong Malcev basis for g (i.e., g, =

R-span{X!, . . . , Xi} is an ideal of g for each / ) , and let {l\ , . . . , / „ }
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be the dual basis for g*. For each / e g * , define S(l) = {2 < j < n
0;-i + fl(/) φ ΰj + 0(/)}, where g(/) = {X G g; /([X, g]) = {0}}, the
radical of /([•, •]).

Then there are disjoint sets of indices S, T with S U T = {1, . . . ,
ή), and a G-invariant Zariski-open set % such that S(ΐ) = S for all
/ G ̂ . Define the Pfaffian Pf(/) for / G ̂  by

Let Vτ = R-span{/z i G T} and dl be the Lebesgue measure on Vj
such that the unit cube spanned by {// / G T} has volume 1. Then
for a function φ G Lι(G) Π L2(G), we have the Plancherel formula

O l) Ibl l2= / ll*2π/(ί>)llc

Thus we get the following description:

(1.2)

Before computing (1.2), we treat the Q-norm of π(φ) for an irre-
ducible representation π.

DEFINITION 1.1. Let f) be an ideal of g and dX be a Lebesgue
measure on f) and / G ψ such that /([(), f)]) = {0}. For φ G
define a function «^p(/)( ) o n ^ associated to / G ()* by

(1.3)

for almost all g eG.

Since ^φ(l)(hg) = e~v/=T/(y^$!>(/)(<?) f°Γ ^ = expl^ Ξ
expί), we regard ffiφ(l)(-)\ as a function on /ΓyG.

PROPOSITION 1.2. Let f G g* αn<ί πy be the corresponding irre-
ducible representation of G. Suppose the following condition:

(Cl) there exists an ideal f) satisfying g(/) c I) #m/ /([f), f)]) = {0}.
Let t)f = {X e g;/([X,f)]) = {0}}, which is a subalgebra,

and H? = expl/. Taking Lebesgue measures on f) and ϊ / , /̂ ί
I Pf(()//(),/)I = (det(/[7 / ? Yj]))1'2, where {Yt} is a unit basis for
f//*) of volume 1. Giving a Haar measure on G, we take the in-
variant measures on H, Hf, H\G and H^\G normalized by the
Lebesgue measures on t) and f/ through the exponential map and the
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transitivity of invariant measures. Then the following inequality holds
for 1 <p<2, \ + \ = 1 and φ e Lι(G)nLP(G):

(1.4) \\πf{φ)\\q

lHf\G
LP(H\G)

where

t), f,p) = ((2

and dg is the invariant measure on H^\G

\^φ(g-1 ' (fU))(')\ as a function on Hf\G.)

If p = 2, equality holds in (1.4).

(We regard g

Proof. The proof is by induction on the dimension of g. The propo-
sition is trivial for dimg = 1 (regarding c(g, I), f,p) = 1 in this
case). Assume that the proposition is valid for all dimensions of g
less than or equal to n — l9 and that dim g = n . Let 3 be the center
of g and Z = expj.

Case 1. Suppose that anker(/) ^ {0}. Taking 0 φ Z € ( jΠker/),
let g = g/RZ with the quotient map pr: g —* g, and G = expg with

P: G —• G. We factor down / and π into / G g* and π e G
respectively. Then the radical g(/) = pr(g(/)), (pr(fj))^ = pr(ίj ̂ ) ,
and the coadjoint orbit G / corresponds to π.

For φ G CC(G) (compactly supported continuous functions on (?),
define the function φ eCc(G) by

Φ{g) = / '
^R

geG.

Then, writing ίj = pr(ίj) and ίΓ = expί), and taking the invariant
measures on G, JζΓ\(r and H^\G associated to those on G, if\(?
and Hf\G through the projection P respectively, we have π(φ) =
π(φ) and by the induction hypothesis,

\\π(φ)\\c = \\π(Φ)\\c

LP(H\G)

LP{H\G)
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where dg and dg are the invariant measures on fif\G and Hf\G.
(The last equality is verified by the property of the quotient spaces.)

Case 2. Suppose that ker(/)Π3 = {0}. Since 3 is 1-dimensional, we
can take Xo, Y, Z eg such that 3 = RZ , [0, Y] = ι, [X0,Y] = Z,
and f(Y).= 0. Regarding 0 as acting on f), we may assume

(1.5) Γeϊ> i f ί)^3

Let 0i = ker(ad Y) and Gi = expfli. Then 0 = 01 ® RXo > the radical
of / ' = / | β i : 0 1 (/') = 0(/) + R7, and f) c 01. Let πi denote the
irreducible representation of G\ corresponding to G\ f.

Using the supplementary basis XQ to 01, we realize π as induced
from π\, whose space is denoted by ^ That is, for ξ = £(ί) G
L2(R, <^), the space of ^[-valued L2-functions on R with a Lebesgue
measure dt, define the action of G = G\ expRXo by

π(gιcxpsX0)ξ(t) = π i U O ^ + ϊ),

where gιeGΪ9 g[ = (expίXo)<?i(exp-^o)
Then we have π(φ) for φ e CC(G) as the integral operator

π(φ)ξ(t)= f kφ(t,s)ξ(s)ds,

where kφ{t, s) = /^ π1(<?1)^(<?1 'exp^s - t)X0)dgx, έ/^ is the Haar
measure on G\ such that (ig = dg\ dt for g = g\ exp /Xo F°Γ ^ a c h
fixed t,s eR, putting φ^s{gχ) = φ(g^ Qxp(s - t)XQ) e CC{GX), we

regard the integral kernel as

Here let us recall an inequality of Hausdorff-Young type for integral
operators due to Fournier and Russo [9]. Let %? be a complex Hubert
space, ό&ffi) be the space of bounded operators on ^ , and M be
a σ-finite measure space. Denote by L2(M, βf) the Hubert space of
square integrable ^-valued functions on M. We consider an integral
operator K on L2(M, ^ ) with operator-valued kernel A:, a
valued function on M x M, by letting

for all ξ e L\M, JT), and almost all x e M.
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If 1 <p, r,s<oo, define the norm || | |c ,r,s by

We get from [9] the following estimate for the norm of K. Let

1 <p < 2, i + i = 1. Suppose \\k\\Cq,p,q < °° a n d \\k*\\cq,P,g < o°>
where k*(x, y) = k(y, x). Then the integral operator K with kernel
k belongs to Cq{L2(M, %?)), and

a £\ II EΉI ^ H 7 ^ l | l / 2 11/^*11^/2

,Ό) \\JS.\\c ^ l l^ l l^ n n\\ He n a'

If p = 2, equality holds in (1.6).
Now we return to the proof. Giving RXQ the Lebesgue measure

such that XQ has volume 1, let dX\ be a Lebesgue measure on $χ
adapted to the direct sum decomposition g = Q\ @'.

Subcase 2.1. Here we suppose that ί) = 3 = g(/). Let 31 = βi(/') =
R Z + R 7 , which coincides with the center of Q\ . We apply the induc-
tion hypothesis to G\ with the Haar measure dg\ = d(expXi) = dX\,
π i , 3i with the Lebesgue measure normalized as 31 = RY Θ RZ and
^/,5 putting a basis {Y/}i<;<n_3 of 01/31 whose unit cube has vol-
ume 1, and writing f\ = f\h , we get

(1.7)

where

Yi9 Yk])h<i9k<n-3\-l/q)l/2>

and get equality in (1.7) for p = 2. For gi G Gi ?

where {Z*, 7*} c j j is the dual basis of {Z, Y}, and A = / ( Z ) .
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We first calculate the norm ||A:*||c ,p,q '•Q '

1/β

QlP

ds\ (by (1.7))

ffi φ(λZ* + sλY*)(gι exptX0)\pdgι dt) ds\

JR\JRJZ1\G1 J J
l/P

iff if \plq \
^CΛ ( / ffitψβZ* +sλY*)(gίexvtX0)\qds) dgxdt\

\JRJZχ\Gλ \JR / /

(by the generalized Minkowski's inequa]

< ( 2 π ) ι / Ά p λ - ι / g C ι I f f [ | 5 * 3 > ( Λ Z * ) ( e x p j ; 7 s i cxptX0)\pdydgι d t )
y j R J z ^ J R J

(by (0.4) with our normalization of the Lebesgue measures)

(If p = 2, equality holds in the above estimate.) Noticing that the
unit cube of the basis {YQ = Y ,Yχ,..., Fπ_ 3, Yn-2 = ^o} of 0/3
has volume 1, and that [Yt, Yo] = 0 for i < n - 3, [Yn_2 ,YQ] = Z,
we get

det(/([y; , Yk]))0<i,k<n-2=λ2dCt(f([Yi,

and

; , Yk]))o<i,k<n-2\-i/q)ι/2.

Thus we have

On the other hand, remarking that k*=Έ^,we also have \\kφ\\c p q

,ι, f,p)\\9lφ*{fx){.)\\L,(^G). Since W '
)()II > w e conclude that

and that equality holds for p = 2 .
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Subcase 2.2. We next suppose that h Φ 3. Recalling that 7 e f )

(1.5), we note that (/ c Q\ . As in Subcase 2.1, we will estimate the

norm \\k*\\c ,p,q . Apply the induction hypothesis to G\, %\, h and

φs'1 using the Haar measure on G\ adapted to the decomposition

g = 01 Θ RXo and the invariant measures on H^\G\ (denoted by

dg\) and on H\G\ suitably normalized:

<C(9ι,i),f,p)

where f\ = /|ι,. Since

= f
for

dt

L'(H\GX)

lHf\G,
dggλ

)
)

L"(H\G)

Thus,

< ί jf (f W,9({gιe*.psXoΓι fi)( )\qdέλ

i/β

ds
L"(H\G)

(by the induction hypothesis)

fύ(-)\qd
Lp(H\G)

(by the generalized Minkowski's inequality)

L"[H\G)
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Since dimgi+dimfliC/7) = dimg+dimgC/*), we get C(g, f), f,p) =
C{ΰi, f), / ' , p). As the proof of Subcase 2.1, the inequality (1.4) is
verified. D

Now we get an estimate for \\^p{φ)\\q when g admits an ideal f)
such that the condition (Cl) is satisfied for almost all / e g * with f).
Remark that if a subspace I of 9 satisfies that /([[, I]) = {0} for all
/ E ^ c g * , where % is a dense subset of g*, then I is an abelian
subalgebra.

THEOREM 1.3. Let g be a nilpotent Lie algebra of dimension n,
G = expg and m be the dimension of the generic orbits. Suppose that
g satisfies the following condition. (C2) There exists an open dense
subset % of g* such that the ideal generated by [jfe^g(f) is abelian.

Then the inequality

\\^p{G)\\<Afn'm)/1

holds for 1 <p < 2.

COROLLARY 1.4. Let G = expg be a connected and simply con-
nected nilpotent Lie group with the center Z = expj. Suppose that
G has irreducible square integrable {mod the center) representations.
Then

\\&P{G)\\ < ^ d i m G + d i m Z ) / 2 .

Proof. An irreducible representation π is square integrable mod Z
(i.e., π occurs discretely in the induced representation ind^ τiz by
the central character πz of π) if and only if the dimension of the
corresponding orbit Ω is dim 0/3, that is, g(f) = 3 for / e Ω (e.g.,
[4](4.5)). And then square integrable representations correspond to
the generic orbits. Thus the condition (C2) is satisfied in this case.

REMARK 1.5. There are nilpotent Lie groups which satisfy (C2) but
do not have square integrable (mod the center) representations. For
example, the nilpotent Lie group Nn of n real upper triangular ma-
trices with ones on the main diagonal is such a group for n > 4. In
this case,

In [19], Russo obtained similar estimates for ^ ^ ( ( j ) ! ! for the
Heisenberg groups, the group Nn and some low dimensional nilpotent
Lie groups. The results are based on estimates for | |π(^) | |c for each
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irreducible representation π using the inequality (1.6) of integral op-
erators under explicit realization of π. Our method, where we also
use (1.6), is a generalization of the computation in [19].

Proof of Theorem 1.3. Let f) be an abelian ideal satisfying f) D g(f)
for all / G ^ , and H = expί). We may choose a Malcev basis
{Xι, . . . , Xn} for g such that f) = H - s p a n ^ , . . . , Xk} for some
k. We use the notations in the Plancherel theorem (1.1). Noting
T c { 1 , . . . , £ } , let S' = {l,...,k}\T9 Vg. =R-span{/ /;7 e S'}
and ps> be the projection oϊ ψ = Vτ ®VS' to Vs>. If / G %, then
fj-L + G / = Gf, where ί)x = {/ e 0* /|ft = 0}, since ί) D g(f). Thus,
considering the coadjoint action of G on \f, we get a parametrization
of generic orbits in % from Chapter 3 of [4]. (We may assume that
% is included in the set of generic orbits treated in the reference.):
The set ^ ; = {/fo; / G ̂ } is dense in \f and every G-orbit in W
meets Vj in a unique point. Furthermore, there is a diίfeomorphism
Ψ: ( r n F Γ ) x ^ -> ^ such that {pSΌψ)(f, λ) = λ, and the Jacobian
determinant of Ψ is identically 1. Let Sj = {1 < / < n β/_i + ^ ^
0ι + f)̂ } and Γ9 = {1, . . . , n}\S^. We take the invariant measures
on G, ff and if^\G defined by the Lebesgue measures on 0, I)
and f)Λfl such that {X 1 ?...,X,,}, {Xl9...,Xk} and {̂ - j e S j }
span unit cubes of volume 1 respectively. Identifying G with H x
(H\G), let us treat φ = φo®φxe CC{H)®CC(H\G). Writing 0O(O =
Jh e^tWφfaxpX) dX, we have

/ \φo(Ψ(f, λ))\g dλ
vs,

/ \Φo(g-1 (/M)r dg\ Pf(/)|,

where dλ is the Lebesgue measure such that {// iES'} spans a unit
cube of volume 1, and dg is the (/-invariant measure on H^\G. In
fact, the Jacobian determinant of the map H^\G —• {/} x Vs>: g —•

is

and

2 = \det(f([Xi9Xj]))iJes\
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Thus from Proposition 1.2 and (0.4),

/
%T\VT

\\π2πf(φψc \T>f(f)\df

(

f
J \Φo{g (/|*))|dg\\ψι

= Afn-m)/2(2πAΪ>)-diml> fJΦodWdl\\φι\\l

q(2n~m)/2

This implies the theorem. D

2. The Z/-Fourier transform on affine automorphism groups of Siegel
domains.

2.1. Preliminaries. Concerning affine homogeneous Siegel do-
mains, let us recall the notion of normal j-algebras introduced by
Pyatetskii-Shapiro:

DEFINITION 2.1.1. A triple (g, j , ω) is a normal j-algebra if

(1) g is a real completely solvable Lie algebra (i.e., g admits a
decreasing series of ideals g, such that dimg//g/+i = 1),

(2) j : g —• 0 is a complex structure,
(3) \jX,jY] = [X,Y] + j[jX,Y] + j[X9jY] for all X9Yet9

(4) ω G 0* has the properties
(a) ω([Y, jY]) > 0 for all Y e β - {0},
(b) ω([jX, 7T]) = ω([X, 7]) for all X, 7 € 0.

It is known that the connected and simply connected Lie group G =
exp 0 with a normal y'-algebra (0, j , ω) can be realized as an affine
automorphism group acting simply and transitively on a Siegel domain
of type II, and vice versa. (For details, see e.g. [11], [16].) Thus,
starting from a normal j-algebra (0, j , ώ), which we often denote
by 0 only, we study the corresponding group G = exp 0.
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Here we summarize fundamental facts of the structures of normal
y-algebras and unitary representations of corresponding groups.

For a normal j-algebra (g, j , ω), let Λ be the symmetric positive
definite bilinear form A(X, Y) = ω([X, jY]) on g, and let α be the
orthogonal complement of [g, g] with respect to Λ. Then α is an
abelian subalgebra of g, and the adjoint representation of α on [g, g]
is real diagonalizable. There exists a unique element Sea such that
adS\ja = lja. The eigenvalues of adS are at most 1, \ and 0.
Denoting each eigenspace by g^, k = 1, \ , 0, we have

0 = 0i θgi/2θgo, and

701 = 00 > 701/2 = 01/2 > [0/ > 0A:] c 0/+A: >

with the convention that if / + k ψ 1, \ nor 0, Qi+k = {0}, [11],
[16].

We next consider unitary representations of G = exp g. Since G
is an exponential group (i.e., the exponential mapping is a diffeomor-
phism of g onto G), its unitary dual G is parametrized by the coad-
joint orbits of G on g* through the Kirillov-Bernat mapping. In the
case of a normal 7-algebra, G has open orbits, whose union is dense
in g*. They correspond to the classes of square integrable represen-
tations of G. (The criterion of square integrability used in the proof
of Corollary 1.4 holds for exponential groups [6].)

Let us give a more detailed description of open orbits. Notice that
the subgroup Go = exp go acts on gf by the coadjoint action since
gi is an ideal of g. Let / e g * , and l\ = / | 0 i . Then the orbit G /
is open in g* if and only if GQ l\ is open in Q\ . Thus, regarding
g* = g* 0 g* 2̂ © g* according to the direct sum decomposition g =
01 θ 01/2Θ 00. we have

G -1 = GQ lχ + olβ + go,

for an open orbit G / [15] (1.3), [17] (Proposition 3.3.1).
Throughout §2, g is a normal y'-algebra, G = expg and dg is a

left Haar measure on G.

2.2. A Hausdorff-Young theorem for G. Let π be an irreducible
square integrable representation of G in a Hubert space %?. Then
from [5], there exists a unique operator Kπ in ^ , self-adjoint posi-
tive, semi-invariant with weight Δ " 1 , i.e.,

(2.1) π(g)Kππ(g)-ι=A(g)-ιKπ
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and satisfying that

(2.2) [ \ ( ) \ \
G

for all ξ e & and η e domK~ι/2, the domain of K~ι/2. The
operator Kπ is called the formal degree of π.

Using the formal degree, we state our Hausdorίf-Young theorem as
follows.

THEOREM 2.2.1. Let g be a normal j-algebra, G = expg, and dg
be a left Haar measure on G. Taking a set of representatives of classes
of irreducible square integrable representations of G, {(π/, ^ ) i G
/}, let K%i be the formal degree of πi in the sense of [ζ\. Let p, q be
exponents such that I <p <2, A + ± = 1.

(1) Let φ e Ll(G)f)Lp(G). Then the operator πi(φ)KιJq can be

extended to a Cq-class operator, denoted by [πi(φ)K^q], and satisfies
the following inequality;

(2.3)
\i€/

If p = 2, equality holds in (2.3).
(2) The mapping φ —• π^(φ) = [πi(φ)K^q] extends uniquely to a

continuous mapping π?: LP{G) -> Q ( ^ ) , i e l .
Let &>p: LP{G) -> (BieICq(#ίt) be the mapping defined by φ ^

£Pv{φ) = Θ/e/πf(^) Then &p is continuous and injective, and the
image &>P{LP{G)) is dense in 0 / G / Q ( ^ . ) .

The involutions of L?(G) and @i£iCq{β^π^) are preserved, i.e.,

(2.4)
iel

In the case of p = 2, ^ 2 is a surjective isometry.

REMARK 2.2.2. It is obtained from the Plancherel theorem of Duflo
and Moore [5] that 3d2 is a surjective isometry. But we will prove it
simultaneously in the course of establishing the inequality (2.3).

On the ax+b group, Eymard and Terp [7] and Russo [20] obtained
similar results. The former is based on the Plancherel theorem of
Duflo and Moore, but the latter is based on that of Kleppner and
Lipsman [12]. In order to obtain LP-estimates, they used the integral
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operator inequality (1.6), which we will also use, and got the same
estimate with that of our n = 2 case.

We give here a representative of each class of irreducible square
integrable representations, and an explicit description of the formal
degree, to be used later.

Recalling that the classes of irreducible square integrable represen-
tations correspond to open coadjoint orbits, let Ω be an open coad-
joint orbit. Put an element / e Ω and take a real polarization b/
at / satisfying the Pukanszky condition [3]. Defining a character Xf
of B = expb/ by χf(&φX) = eV^/W for X e bf, construct the
induced representation π = ind# Xf of G from Xf. The representa-
tion π is irreducible and its class is the corresponding one under the
Kirillov-Bernat mapping. Remark that we can always take such a po-
larization bf such that Q\ C by c 01/2 (see [10], Remark 2.5). Thus
putting n = 0i + 0^2, which is a nilpotent ideal, and N = expn, we
regard π as induced from the irreducible representation σ = ind^ Xf
of N, π = ind# σ .

Regarding G as the semidirect product G = NGQ , we take a right
Haar measure dg0 on Go and dn on N such that A~ι(g)dg =
dndgo, for g = ng0, n e N9 g0 e Go. Letting ^ be a space
of σ, we realize π in the space L2(GQ , %?σ, dgo) of ^-valued L2-
functions on Go, acting on the right:

(π(ngo)ξ)(xo) =

for ξeL2(G0,J%,dg0), ngoeG = NGo, xoeGo.
We next choose the Lebesgue measure dX on 0 such that dg =

μG(X)dX, where μG(X) = |det((l -e~*άX)/adX)\, g = expX [3].
Letting {Xi)\<i<n be a basis of 0 such that the unit cube has volume
1, define a function I -±D\ on 0* by

(2.5) Dι = I det(/([*,, Xk])h<i,k<n\ (I 6 0*).

Putting a unit basis {Zi, . . . , XΆχ, Vx, . . . , VΆi, ^ , . . . , YHι}, where
n = span{F/, F*; 1 < Ϊ < ni, 1 < A: < n\) and 01 = span{F^; 1 <
k < Π\} > we get

(2.6) A = I det(/([K,, ^] ) ) 1 < / ^<,J I det(/[X,,

since [01, n] = {0}.
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DEFINITION 2.2.3. Let Kf be the operator in L2(GQ, %fσ, dgo)
defined by multiplication by the function C/Δ"1, where Cf =

d i / 2

Then Kf is the formal degree of π (see [6]).

2.3. Proof of Theorem 2.1. Let Ω be an open coadjoint orbit. Tak-
ing an element / € Ω and a real polarization by at / , we realize the
corresponding irreducible representation π in %? and define the for-
mal degree Kf as we mentioned in 2.2.

DEFINITION 2.3.1. Let ψeLι(G) and dX be a Lebesgue measure
on 0! . We define the partial Euclidean Fourier transform &{ψ on
G\ = expβi with dX by

for I EQ\ and almost all g eG.

Let φ e CC{G), and ζ e XT = L2(G0, %, dg0) such that Kι

f

lqξ e
%?. From the semi-invariance (2.1),

(2.7)

J G

Let us identify G with gi x (G\\G) by taking a global section ό
of G\\G, and choose a right Haar measure dg on (JI\(7 such that
Δ~\g)dg = έ/JΓέ/^ for * = (expXV(έ) with l E j l 5 ? G (GX\G).

We next suppose that φ = ψ\ ® φ e Cc(βi) ® QίGiXG) and that
the Euclidean Fourier transform of ψ\, denoted by ^ i , is of support
compact. Letting λ: Go —̂  g\ be the mapping defined by A(XQ) = -̂ ό"1

f\, where XQ € Go and /i = / | f l , and noting that π(expX)η(xo) =
^^ for X e QI and f/eX, we get
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\\π(φ)K^ζ\\2 =

= f if A-i/Hxo)e^~^xo-χ\π(4g))ξ)(xo)φ((expX)4g))

/ /
G0 JGX\G

< sup \A-^(xo)φι(x^-fι)\2 f f \\(π(4g))ζ)(xo)

= sup \A-ιl%λ-\l))φx{l)\2\\φAχlP\\
/6G0 /,

\\ζ\\

(Note that A is a diffeomorphism of Go onto GO /i •) Here we
regard the function / —• £>/ on g* as defined on g\ remarking that
Dι+m = A for any m € gf. Then

Thus

sup

sup suρ\φι\2 <oo,

which implies that the operator π(φ)Kιlq extends to a bounded op-
erator, denoted by πp(φ).

REMARK 2.3.2. For such a φ, it holds that

(2.8)

(2.9)

πp{φ)* =
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Proof. Let ξ, η e X and suppose that ζ e domKι/q . Then

Noting that Kχlq is self-adjoint, we conclude that π(φ*)η e domK ι l q

and that πp(φ)* = Kι/qπ(φ*). Using (2.7), the second equality of
(2.8) and (2.9) are obtained. D

Now, we will estimate the Q-norm of πp(φ). Identifying G with
according to the realization of π, we get for ξ e domK ι l q

π(φ)Kι/qξ(x0)

= cΨ I I σ(xonxQl)A-1^{xQgo)ξ{xQgo)φ{ngQ)A(go)dndgo
J JN JG0

= c)lq I I σ{xonxQί)ζ(go)φ(nxQigo)
J JN JGn

= cψ I I σ(n)ξ(go)φ(x^ngQ)Aι^(go)dndgo,
JN JGQ

where A0(g0) = Ide^ad^Xo)!"1 Letting φxo(ngo) = φ(xQlngo) and
for each fixed XQ , go^Go, regarding <px*(ngo) as a function on N,
define a Fourier transform for σ

σ(φxo(ngo)) = / σ(n)φxo(ngo)dn,
JN

which is a bounded operator of β^σ . Then

[
Go

and we regard np(φ) as the integral operator with integral kernel

kφ{xo, go) = cι

f

/qσ(φxo(ngo))Aι/p(go).

Let us remark that the representation σ = indβ χf is square in-
tegrable. In fact, from Df Φ 0 and (2.6), the singular space of the
bilinear form /([•,•]) on n is j i , which is the center of n. Choose
a Haar measure dh on G\\N such that the transitivity holds with
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measures dn and dX. Applying Proposition 1.2 to σ, for each fixed
XQ, goGGo, we get

where c(σ) = (2π)( d i mβ- d i m3)/ 2 |Pf( 0/ 3, f)\~ι. Using the notations

Δ^ΛΓO) = I detad0 i xoΓ 1 , ΔN(x0) = \ detadn^oΓ1 for x0 e Go, we get

and

/

Thus we have the inequality

([(2.10) \\kφ(x0, go)\\c(*.)<<*([

•A-N

ι/p(x0)A-ι/q(x0)AV»(gQ),

where

for x0, go € Go.
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As the proof of Proposition 1.2, we first estimate the norm

<Aι{ιι
\JG0 XJGQJG

ϊ(go,xo)\\cadgo] dxo\

\ QIP

ί
JG

• A-"lp{x0)^\xo)dxo\ (by (2.10))

= a ί ί I \^^Xf)()\pdhA{)dΛ

( ( \Plq \
<a If ί ( / \&ϊφ(Xol Λ)(ngo)\gAϊι(xo)dxo) dfιA(go)dgo)

yGQJG^N \JG0 I J

(by the generalized Minkowski's inequality for measures
and dfιA(go)dgo).

Choose a Lebesgue measure d$X on go such that

for £o = expX e Go, where μGo(X) = | det((l - e~^x)j adX) | . Let
{Xi} (resp. {Yi}) be a basis of % (resp. $\) whose unit cube has
volume 1. Then under the mapping x0 -+ λ(x0) = χ~ι - fx from Go

(with the Haar measure dgo) to g\ (with the Lebesgue measure dλ),
which is the dual space of Q\ with the Lebesgue measure dX, we
have dλ(xo)=A-ι(xo)\det(A[Xi, Yk]))iΛ\dx0. Thus we have

<a\det{f([Xi9Yk]))i9kΓ
1'*

'([ ί (ί l^φWingoWdλY'* dhA(go)dgo) ,
\JG0 JG^N \JΩ' ) j

where Ω7 = Go f\ c 0\. Again noticing that k* = k •& from (2.8),
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we get

( i f (f
\JG0 JG^N \JΩ'

dhA(go)dg0

By some simple calculation, it can be shown that the right-hand sides
of the above two inequalities coincide.

Recall that

and that

c(σ) = ((2π

where {Vj} is a basis of n/jji whose unit cube has volume 1. Using
(2.6), we get

^ ^ ] ) ) l 1 / 2 ,

and

a\ detf f(\X- Y \Ϋ\\~^I^ = (27i)~^m®i/QAmn *

Thus identifying with 01 x (Gι\G),

(2.11) \\π(φ)Kyq\\Cq

(7

Taking a system of representatives {ft / G /} of open orbits Ωz

(/ € / ) , let {πi,β^, Kf) be the associated representation and the
operator of 2.2. Then, recalling that φ = ψ\ <g> φ, φ e Cc(β\) and
φ e CC(G\\G) 9 we obtain the following:
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iei

r / r \p'q \qlp

I II \ 1

G,\G \Ja' ι J )
(by (2.11))

) QIP

\φι{X)ψdXJ G\φo(g)\pA(g)dg\

(by (0.4))

This proves (2.3), and the mapping #> —• [π(φ)Kyq] extends uniquely
to the continuous mapping πp: LP{G) —• Q ( ^ ) . If p = 2, equality
holds in (0.4), (2.10) and the Minkowski's inequality. Thus we get
equality in (2.3) for p = 2.

Using Remark 2.3.2, we can obtain the following

LEMMA 2.3.3. πP(φ)* = πP(φ*W) for φ e LP{G).

We next prove that πp(LP) is dense in Cq{β^π). Noting that Lι{G)*
LP{G)c LP(G), we get

π(ψ)πp(φ) = πp{ψ * φ) for ψeL1(G),φe LP(G).

Let T G Cpitf) such that tr(πp{φ)T) = 0 for all φ e U{G). Then

tr{π{ψ)πp{φ)T) = 0 for all ψ e LX{G).

Since π(Lι (G)) n / ΦW) is dense in / Φ(&), whose dual is Q ( X ) ,
it follows that πp{φ)T = 0 for all φ e LP{G).

From Remark 2.3.2, it holds for φ e CC{G) that

πp{φ) = Kx

f

lqπ{Δ-χlqφ).

Thus π(φ)T = 0 for all φ e CC{G), that is, letting ξ € ^ , we
have 0 = (π(?»)Γί, //) = / c <π(^)Γί , η)φ{g)dg, for all ι/ G ̂  and
ί? € CC{G). This implies that {π(g)Tξ, η) = 0 for all # € (? and
ηe&, i e., Γ = 0. This proves that πp{LP) is dense.
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REMARK 2.3.4. Concerning the case p = 2, we have proved that
\ L2(G) —• 0 / G / C2(^ f ) is a norm-preserving mapping of image

dense. This concludes that &2 is a surjective isometry.

LEMMA 2.3.5. Let 4 e CC(G) and φ e LP{G). Then φ*4 e L2(G)
and

(2.12)

Proof, Assume that φ e CC(G). Then φ * / e CC(G), and

πj(φ * / ) = [miφ * / / 2 / / 2

= πf
for i e l . Thus

and using our HausdorfF-Young theorem,

where C(4 9p) is a constant depending only on 4 and /?.
Noting that the equality ||<^2((0 * 4)\\c2 = | |^ * ̂ Ίb holds, we get

\\φ*k\\2<C(4,p)\\φ\\p,

which implies that the mapping φ —• φ * 4 eL2(G) can be extended
to a continuous mapping of LP(G) into L2(G). This verifies the
assertion of the lemma for all φ e LP{G). •

Now we prove that ^ is injective. Suppose that ^p(φ) = 0
e LP{G)). Then using (2.12), it holds for every 4 e CC{G) that

* 4) = 0, which implies that φ * / = 0 since ^ 2 is injective.
Thus φ = 0. D
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