ON SIX-CONNECTED FINITE H-SPACES

JAMES P. LIN AND FRANK WILLIAMS

In this note we shall prove the following theorem.

MAIN THEOREM. Let X be a 6-connected finite H-space with associative mod 2 homology. Further, suppose that $\operatorname{Sq}^4H^7(X; Z_2)=0$ and $\operatorname{Sq}^{15}H^{15}(X; Z_2)=0$. Then X is either contractible or has the homotopy type of a product of seven-spheres.

0. Introduction. It should be noted that there are several results related to this theorem. Lin showed that any finite *H*-space with associative mod 2 homology has its first nonvanishing homotopy in degrees 1, 3, 7, or 15 (or is contractible). A seven-sphere is an *H*-space, but not a mod 2 homotopy-associative one [4, 10]. Further work of Hubbuck [5], Sigrist and Suter [12], and others has shown that spaces whose mod 2 cohomology has the form

$$\Lambda(x_7, x_{11})$$
 or $\Lambda(x_7, x_{11}, x_{13})$

are not realizable as H-spaces. (Here x_i denotes an element of degree i.) One is led to conjecture that

Conjecture 1. Every two-torsion-free 6-connected finite H-space is homotopy equivalent to a product of seven-spheres (or is acyclic).

Conjecture 2. Every two-torsion-free homotopy-associative 6-connected finite *H*-space is acyclic.

Conjecture 1 implies Conjecture 2 by [4, 11].

Henceforth, X will denote an H-space that satisfies the hypotheses of the Main Theorem, and $H^*(X)$ will denote $H^*(X; \mathbb{Z}_2)$. The proof of the Main Theorem will be accomplished in a series of steps, which we record here. Our goal is to show that under the hypotheses, X has mod 2 cohomology an exterior algebra on 7-dimensional generators. This relies heavily on the following theorem.

Steenrod Connections [8]. Let X be a finite simply-connected H-space with associative mod 2 homology. Then for $r \ge 0$, k > 0,

$$QH^{2'+2'^{+1}k-1}(X; Z_2) = \operatorname{Sq}^{2'k}QH^{2'+2'k-1}(X; Z_2)$$
, and $\operatorname{Sq}^{2'}QH^{2'+2'^{+1}k-1}(X; Z_2) = 0$.

(Here QH^* denotes the indecomposable quotient.)

In §1 we shall use a relation in the Steenrod algebra and the methods of [1] to produce a new factorization of Sq¹⁶. We then apply this factorization to show that $H^{23}(X) = 0$. This implies that $H^*(X)$ is an exterior algebra on generators in degrees of the form $2^d - 1$, $d \geq 3$, with trivial action of the Steenrod algebra. In §2 we use the Cartan formula for secondary operations, [7], and a particular factorization of the cube of a certain 8-dimensional cohomology class, [10], to show that $H^{15}(X) = 0$. In §3 we turn to the *c*-invariant, [14], to complete our calculations by showing that no algebra generators for $H^*(X)$ exist in degrees greater than seven. Once it is shown that the mod 2 cohomology is exterior on 7-dimensional generators, it follows by the Bockstein spectral sequence that the rational cohomology has the same form. But since the rational cohomology is isomorphic to the E_{∞} term of the mod p Bockstein spectral for any prime p, it follows by [2] that $H^*(X; Z)$ has no odd torsion. Thus $H^*(X; Z)$ is torsion-free, and we may use the Hurewicz map together with the multiplication in X to obtain a homotopy equivalence

$$S^7 \times \cdots \times S^7 \to X$$

1. $H^{23}(X)$. In this section we prove that there are no 23-dimensional generators in $H^*(X)$. We will also show that $H^*(X)$ is an exterior algebra with trivial action of the Steenrod algebra. We shall use the notation $\operatorname{Sq}^{i,j}$ to denote $\operatorname{Sq}^i\operatorname{Sq}^j$.

THEOREM 1.1. Let Y be a space and $x \in H^k(Y)$ be the reduction of an integral class. If x is in the intersection of the kernels of Sq^2 , Sq^7 , Sq^8 , and $\operatorname{Sq}^{8,4}$, then there exist classes $v_i \in H^{k+i}(Y)$, i=3,7,8,10,12,13,14,15, such that

(1.1)
$$\operatorname{Sq}^{16}x = \operatorname{Sq}^{11,2}v_3 + (\operatorname{Sq}^{7,2} + \operatorname{Sq}^{6,3})v_7 + (\operatorname{Sq}^8 + \operatorname{Sq}^{6,2})v_8 + \operatorname{Sq}^{4,2}v_{10} + \operatorname{Sq}^4v_{12} + \operatorname{Sq}^3v_{13} + \operatorname{Sq}^2v_{14} + \operatorname{Sq}^1v_{15}.$$

Proof. Consider the following matrix of relations:

$$(1.2) \quad \begin{array}{c} v_{3} \\ v_{7} \\ v_{8} \\ v_{10} \\ v_{12} \\ v_{13} \\ v_{14} \\ v_{15} \end{array} \left(\begin{array}{cccccc} \operatorname{Sq}^{2} & 0 & 0 & 0 \\ 0 & \operatorname{Sq}^{1} & 0 & 0 \\ 0 & \operatorname{Sq}^{2} & \operatorname{Sq}^{1} & 0 \\ \operatorname{Sq}^{9} & \operatorname{Sq}^{4} & \operatorname{Sq}^{3} & 0 \\ \operatorname{Sq}^{8,\,2,\,1} & 0 & 0 & \operatorname{Sq}^{1} \\ \operatorname{Sq}^{12} & 0 & \operatorname{Sq}^{4,\,2} & 0 \\ \operatorname{Sq}^{13} + \operatorname{Sq}^{12,\,1} & \operatorname{Sq}^{8} & 0 & \operatorname{Sq}^{3} \\ \operatorname{Sq}^{14} & 0 & \operatorname{Sq}^{8} & \operatorname{Sq}^{4} \end{array} \right) = 0.$$

Let

$$w: K(Z, n) \to K(Z_2; n+2, n+7, n+8, n+12) = K_0$$

be defined by

$$w^*(\iota_{n+2}) = \operatorname{Sq}^2 \iota_n; \ w^*(\iota_{n+7}) = \operatorname{Sq}^7 \iota_n;$$

 $w^*(\iota_{n+8}) = \operatorname{Sq}^8 \iota_n; \ w^*(\iota_{n+12}) = \operatorname{Sq}^{8,4} \iota_n.$

If E is the fiber of w, we have the following diagram

$$\Omega K_0$$

$$\downarrow j$$

$$E$$

$$\downarrow$$

$$K(Z, n) \xrightarrow{w} K_0$$

and there exist elements $v_j \in PH^{n+j}(E; \mathbb{Z}_2)$ defined by the relations (1.2).

A calculation shows that the element

$$z = \operatorname{Sq}^{11,2}v_3 + (\operatorname{Sq}^{7,2} + \operatorname{Sq}^{6,3})v_7 + (\operatorname{Sq}^8 + \operatorname{Sq}^{6,2})v_8 + \operatorname{Sq}^{4,2}v_{10} + \operatorname{Sq}^4v_{12} + \operatorname{Sq}^3v_{13} + \operatorname{Sq}^2v_{14} + \operatorname{Sq}^1v_{15}$$

lies in $PH^{16+n}(E) \cap \ker(j^*) = p^*PH^{16+n}(K(Z_2, n))$. It follows that $z = cp^*(\operatorname{Sq}^{16} \iota_n)$, where $c \in Z_2$. For n = 16 there is a commutative

diagram

where $f^*(\iota_{16}) = \iota_2^8$. Now consider $\overline{w}: K(Z_2, 16) \to K_0 \times K(Z_2, 17)$ given by the same formulas as w on the fundamental classes in K_0 and such that $\overline{w}^*(\iota_{17}) = \operatorname{Sq}^1 \iota_{16}$. Let \overline{E} be the fiber of \overline{w} .

There exists a commutative diagram

$$\Omega K_{0} \longrightarrow \Omega K_{0} \times K(Z_{2}, 16)$$

$$\downarrow \qquad \qquad \qquad \downarrow \overline{j}$$

$$E \longrightarrow \overline{h} \longrightarrow \overline{E}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K(Z, 2) \xrightarrow{f} K(Z, 16) \xrightarrow{h} K(Z_{2}, 16)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

Further, there is another lifting $\tilde{h}:K(Z,2)\to \overline{E}$ of hf that has its H-deviation

$$D\tilde{h}: K(Z, 2) \times K(Z, 2) \rightarrow K(Z_2, 16)$$

given by $[D\tilde{h}] = \iota_2^4 \otimes \iota_2^4$. This holds because

$$B(hf)^*B\overline{w}^*(\iota_{18}) = \operatorname{Sq}^{9,4,2}\iota_3 = (\operatorname{Sq}^{4,2}\iota_3)^2$$

and because $B(hf)^*B\overline{w}^*$ is zero on the fundamental classes in K_0 . In $PH^*(\overline{E})$ there exist elements \overline{v}_j such that $\overline{h}^*(\overline{v}_j)=v_j$. The components of \overline{v}_j in $H^*(K(Z_2, 16))$ are:

(1.5)
$$\overline{v}_3$$
: $\operatorname{Sq}^3 \iota_{16}$; \overline{v}_7 : 0; \overline{v}_8 : $\operatorname{Sq}^8 \iota_{16}$; \overline{v}_{10} : 0; \overline{v}_{12} : $\operatorname{Sq}^{8,4} \iota_{16}$; \overline{v}_{13} : $\operatorname{Sq}^{4,9} \iota_{16}$; \overline{v}_{14} : 0; \overline{v}_{15} : $\operatorname{Sq}^{15} \iota_{16}$.

It follows that $\tilde{h}^*(\overline{v}_i)$ is primitive except for $\tilde{h}^*(\overline{v}_8)$ which has

$$\overline{\Delta}\tilde{h}^*(\overline{v}_8) = \iota_2^8 \otimes \iota_2^4 + \iota_2^4 \otimes \iota_2^8 = \overline{\Delta}(\iota_2^{12}).$$

Because $H^*(K(Z, 2))$ is trivial in odd degrees and is Z_2 in even degrees, we conclude

$$\tilde{h}^*(\overline{v}_j) = 0 \quad \text{if } j \neq 8, \quad \text{and}$$
 $\tilde{h}^*(\overline{v}_8) = \iota_2^{12}.$

Therefore if

$$\overline{z} = Sq^{11,2}\overline{v}_3 + (Sq^{7,2} + Sq^{6,3})\overline{v}_7 + (Sq^8 + Sq^{6,2})\overline{v}_8 + Sq^{4,2}\overline{v}_{10} + Sq^4\overline{v}_{12} + Sq^3\overline{v}_{13} + Sq^2\overline{v}_{14} + Sq^1\overline{v}_{15},$$

it follows that

(1.6)
$$\tilde{h}^*(\overline{z}) = \operatorname{Sq}^8 \tilde{h}^*(\overline{v}_8) = \operatorname{Sq}^8(\iota_2^{12}) = \iota_2^{16} = \operatorname{Sq}^{16}(\iota_2^8).$$

Now \tilde{h} and $\bar{h}\tilde{f}$ both lift hf, so

$$\overline{h}\widetilde{f}=\widetilde{h}+\overline{j}F,$$

for some

$$F = (F_1, F_2): K(Z, 2) \to \Omega K_0 \times K(Z_2, 16).$$

But ΩK_0 is odd-dimensional with the exception of $K(Z_2, 22)$. If \tilde{f} is altered by F_1 , then

$$\overline{h}\,\widetilde{f}=\widetilde{h}+\overline{i}F_2$$

and $[F_2] = d\iota_2^8$, $d \in \mathbb{Z}_2$.

Using (1.5) we calculate that for all j

(1.7)
$$F_2^*\overline{j}^*(\overline{v}_j) = 0$$
, and hence $\tilde{h}^*(\overline{v}_j) = \tilde{f}^*(v_j)$.

Therefore

$$\tilde{f}^*(z) = \tilde{h}^*(\overline{z}) = \operatorname{Sq}^{16}(\iota_2^8).$$

It follows that c = 1.

THEOREM 1.2. $QH^{23}(X) = 0$.

Proof. By the restrictions on the degrees of generators of $H^*(X)$, $H^i(X \wedge X) = 0$ for i = 7, 15, and 31. So by the Steenrod connections, all generators in degrees less than 63 may be chosen to be primitive. Further, in degrees < 40, $H^*(X)$ is an exterior algebra in which

$$(1.8) QH^k(X) = 0, k \neq 7, 15, 23, 27, 29, 31, 39.$$

The lowest-dimensional possible non-trivial Steenrod operation is Sq^8 acting on $H^{15}(X)$. So let $x_{23} = Sq^8x_{15} \neq 0$. By (1.8), Sq^2 , Sq^8 , and $Sq^{8,4}$ are all zero on x_{23} , and $Sq^7x_{23} = Sq^{15}x_{15}$, which is zero by hypothesis. Thus the factorization (1.1) applies to $Sq^{16}x_{23}$. We now construct the universal example.

Let p_0 : $E_0 \to K(Z, 23)$ be the fiber of the map

$$g: K(Z, 23) \to K(Z_2; 25, 30, 31, 35)$$

given by

$$g^*(\iota_{25}) = \operatorname{Sq}^2(\iota_{23}),$$

 $g^*(\iota_{30}) = \operatorname{Sq}^7(\iota_{23}),$
 $g^*(\iota_{31}) = \operatorname{Sq}^8(\iota_{23}),$ and
 $g^*(\iota_{35}) = \operatorname{Sq}^{8,4}(\iota_{23}).$

Next, define $p_1: E_1 \to E_0$ to be the fiber of the map

$$g_0$$
: $E_0 \to K_0 = K(Z_2; 26, 30, 33, 35, 36, 37, 38; $\overline{32}, \overline{33}, \overline{35})$ given by$

$$g_0^*(\iota_{23+m}) = v_m \qquad (m \neq 8),$$

and

$$g_0^*(\bar{\imath}_{31+k}) = \operatorname{Sq}^k v_8 \qquad (k = 1, 2, 4).$$

Consider the element in $H^{47}(K_0)$:

$$\begin{split} \chi &= \, \mathrm{Sq^8}[\mathrm{Sq^{11}},^2 \imath_{26} + (\mathrm{Sq^{7}},^2 + \mathrm{Sq^{6}},^3) \imath_{30} + \mathrm{Sq^{4}},^2 \imath_{33} + \mathrm{Sq^{4}} \imath_{35} \\ &\quad + \mathrm{Sq^{3}} \imath_{36} + \mathrm{Sq^{2}} \imath_{37} + \mathrm{Sq^{1}} \imath_{38}] \\ &\quad + \mathrm{Sq^{15}} \bar{\imath}_{32} + (\mathrm{Sq^{14}} + \mathrm{Sq^{10}},^4) \bar{\imath}_{33} + \mathrm{Sq^{12}} \bar{\imath}_{37}. \end{split}$$

Applying g_0^* to χ , we get

$$\begin{split} g_0^*(\chi) &= \mathrm{Sq^8}[\mathrm{Sq^{11}},^2v_3 + (\mathrm{Sq^{7,2}} + \mathrm{Sq^{6,3}})v_7 + \mathrm{Sq^{4,2}}v_{10} + \mathrm{Sq^4}v_{12} \\ &\quad + \mathrm{Sq^3}v_{13} + \mathrm{Sq^2}v_{14} + \mathrm{Sq^1}v_{15}] \\ &\quad + (\mathrm{Sq^{15,1}} + \mathrm{Sq^{14,2}} + \mathrm{Sq^{12,4}} + \mathrm{Sq^{10,4,2}})v_8 \\ &= \mathrm{Sq^8}[\mathrm{Sq^{11,2}}v_3 + (\mathrm{Sq^{7,2}} + \mathrm{Sq^{6,3}})v_7 + \mathrm{Sq^{4,2}}v_{10} + \mathrm{Sq^4}v_{12} \\ &\quad + \mathrm{Sq^3}v_{13} + \mathrm{Sq^2}v_{14} + \mathrm{Sq^1}v_{15} + (\mathrm{Sq^8} + \mathrm{Sq^{6,2}})v_8] \\ &= \mathrm{Sq^8}\mathrm{Sq^{16}}p_0^*(\imath_{23}) \\ &= (\mathrm{Sq^{24}} + \mathrm{Sq^{23,1}} + \mathrm{Sq^{22,2}} + \mathrm{Sq^{20,4}})p_0^*(\imath_{23}). \end{split}$$

The values of the last three operations on ι_{23} are in the kernel of p_0^* . So

$$g_0^*(\chi) = \operatorname{Sq}^{24} p_0^*(\iota_{23}).$$

Hence there exists an element $v \in H^{46}(E_1)$ such that $\overline{\Delta}(v) = p_1^* p_0^*(\iota_{23}) \otimes p_1^* p_0^*(\iota_{23})$ and $j_1^*(v) = \sigma^*(\chi)$, where j_1 is the fiber of p_1 .

We now need to map X into E_1 . Let $f: X \to K(Z, 23)$ be such that $f^*(\iota_{23}) = x_{23}$. We remark that f can be chosen to be an H-map, since $H^{23}(X \wedge X; Z) = 0$. Since the composition $g \circ f$ is nullhomotopic, there exists a lifting $f_0: X \to E_0$ of f. The H-deviation of f_0 factors through f_0 , the fiber of f_0 , say $f_0 = f_0 \circ \widetilde{f}_0$. The map $f_0 \in \mathcal{D}_0$ corresponds to a set of classes in $f_0 \in \mathcal{D}_0$ and $f_0 \in \mathcal{D}_0$.

We shall work in P_2X , the projection plane of X. Recall that there is an exact triangle [3]

(1.9)
$$H^*(P_2X) \longrightarrow IH^*(X)$$

$$IH^*(X) \otimes IH^*(X)$$

that relates P_2X to X. This implies that

$$(1.10) H^k(P_2X) = 0 (17 \le k \le 22).$$

Let $u_{16} \in H^{16}(P_2X)$ correspond to x_{15} and set $u_{24} = \operatorname{Sq}^8 u_{16}$. By (1.10) and the Adem relations, Sq^2 , Sq^8 , and $\operatorname{Sq}^{8,4}$ are all zero on u_{24} . So by [3], the components of \widetilde{D}_0 in degrees 24, 30, and 34 are all zero. Thus $\widetilde{D}_0 \in H^{29}(X \wedge X)$, so it is a sum of terms of the form $x_7 \otimes x_7' x_{15}$, $x_7 x_7' \otimes x_{15}$, and twists of these terms. Consider the elements $f_0^* \circ g_0^*(i)$, where i is one of the fundamental classes of K_0 . We have

$$\overline{\Delta}(f_0^* \circ g_0^*(\iota)) = (Df_0)^* g_0^*(\iota) = \widetilde{D}_0^* \circ j_0^* \circ g_0^*(\iota).$$

Referring to the matrix relation (1.2), we see that the only possible non-zero values can be when $i = i_{37}$, when

$$\widetilde{D}_0^* \circ j_0^* \circ g_0^*(\iota) = \operatorname{Sq}^8 \widetilde{D}_0^*(\iota_{29}).$$

Hence the images under $f_0^* \circ g_0^*$ of all the fundamental classes of K_0 , with the possible exception of ι_{37} , are primitive, so for degree reasons they must be zero. We might possibly have

$$f_0^* \circ g_0^*(\iota_{37}) = \sum x_{i,7} x'_{i,7} x_{i,23}.$$

But since Sq⁸: $H^{15}(X) \to H^{23}(X)$ is onto, we may alter the lift f_0 by the action of the fiber on the map \tilde{f} : $X \to K(Z_2, 29)$ given by

$$\tilde{f}^*(i_{29}) = \sum x_{i,7} x'_{i,7} x_{i,15}$$

so as to make, for the altered f_0 , $f_0^* \circ g_0^*(\iota_{37}) = 0$. Thus there exists a lifting $f_1: X \to E_1$.

We now consider the element $f_1^*(v) \in H^{46}(X)$. We have

$$\overline{\Delta}(f_1^*(v)) = (f_1^* \otimes f_1^*)(\overline{\Delta}v) + (Df_1)^*(v) = x_{23} \otimes x_{23} + (Df_1)^*(v).$$

There is no term in $H^*(X)$ whose coproduct has $x_{23} \otimes x_{23}$ as a summand. Now

$$Df_1 = \theta + j_1 \circ \widetilde{D}_1,$$

where $\theta\colon X\wedge X\to E_1$ is a map given by applying the Cartan formula, Theorem 3.1 of [7], to Df_0 . The map θ factors through cohomology classes in $H^*(X\wedge X)$ of which one factor is a primary or secondary operation applied to a decomposable element, and, by the Cartan formulae for primary and secondary operations, such operations cannot hit x_{23} . Also, $(j_1\circ \widetilde{D}_1)^*(v)$ lies in the image of Steenrod operations applied to elements of degrees $\neq 30$ or 38, so $x_{23}\otimes x_{23}$ cannot be in this image. Thus Sq^8 is identically zero on $H^{15}(X)$ and hence $QH^{23}(X)=0$.

COROLLARY 1.3. $H^*(X)$ is an exterior algebra on generators concentrated in degrees of the form $2^d - 1$ for $d \ge 3$. Further, the action of the Steenrod algebra on $H^*(X)$ is trivial.

Proof. By the Steenrod connections, any element of $QH^*(X)$ not in a degree of the form 2^d-1 lies in the image of Steenrod operations applied to generators in degrees of the form 2^d-1 . By Theorem 1.2 and the Steenrod Connections, it follows that

$$\operatorname{Sq}^{2^{i}}QH^{2^{d}-1}(X)=0$$
 for $i=0,1,2,3$.

By [1], Sq^{2^i} factors through secondary operations for $i \geq 4$ if x_{2^d-1} lies in the kernel of Sq^{2^j} for $0 \leq j \leq i-1$.

So consider the first nontrivial Steenrod operation, say $\operatorname{Sq}^{2^i} x_{2^d-1}$. By the Cartan formula, $\operatorname{Sq}^{2^i} x_{2^d-1}$ is primitive, so it must be a generator. By the Steenrod connections we must have i=d-1. By Theorem 1.2 we must have $d\geq 5$, so $i\geq 4$. But this implies $\operatorname{Sq}^{2^{d-1}} x_{2^d-1}$ is in the image of Steenrod operations of lower degree, which cannot happen. Thus the action of the Steenrod algebra on $H^*(X)$ is trivial. Hence $H^*(X)$ is an exterior algebra on generators in degrees of the form 2^d-1 , $d\geq 3$.

2.
$$H^{15}(X)$$
.

THEOREM 2.1. $H^{15}(X) = 0$.

Proof. Let x_{15} be a nonzero element of $H^{15}(X)$. We define a cohomology operation as follows. Consider the diagram:

(2.1)
$$E_2$$

$$\downarrow^{f_2}$$

$$E_1 \xrightarrow{g_2} K(Z_2; 18, 19, 22, 23, 24, 30)$$

$$\downarrow^{f_1} \downarrow^{p_1}$$

$$X \xrightarrow{f} K(Z, 15) \xrightarrow{g_1} K(Z_2; 17, 19, 23)$$

which is associated with a factorization of Sq16 as

$$\mathrm{Sq}^{16} = \sum \alpha_{ij} \varphi_{ij}$$

in which the α_{ij} are Steenrod operations and the φ_{ij} are the secondary operations of Adams, [1], and is constructed as follows.

The map g_1 is given by the formulas

$$g_1^*(\iota_{15+2^k}) = \operatorname{Sq}^{2^k}(\iota_{15}), \qquad k = 1, 2, 3.$$

The map g_2 is given by the formulas

$$g_2^*(\iota_{14+2^i+2^j}) = v_{ij}$$
,

where v_{ij} is an element in $H^*(E_1)$ that represents the secondary operation φ_{ij} .

The map f represents the element x_{15} . The lift f_1 exists since all Steenrod operations are zero on x_{15} , by Corollary 1.3. Now the H-deviation of f_1 factors through the fiber of p_1 , namely $K(Z_2; 16, 18, 22)$. Hence the reduced coproducts of the $f_1^*(v_{ij})$ are in the image of Steenrod operations, which are all zero. Hence the $f_1^*(v_{ij})$ are primitive, so they are all zero. Therefore the lift f_2 exists.

In $H^{30}(E_2)$ there is an element v whose reduced coproduct is $p_2^*p_1^*(\iota_{15})\otimes p_2^*p_1^*(\iota_{15})$. We shall show that the reduced coproduct of $f_2^*(v)$ contains a term $x_{15}\otimes x_{15}$, which will be a contradiction. Let us write the factorization of the H-deviation Df_1 of f_1 as

$$Df_1 = \widetilde{D} \circ j_1.$$

The map \widetilde{D} determines elements in degrees 16, 18, and 22 of $X \wedge X$. Checking possibilities, we see that the components in degrees 16 and

18 are zero, while we may express the component in degree 22 as

$$\widetilde{D}^*(\iota_{22}) = \sum x_{7,i} \otimes x_{15,i}$$

for elements $x_{7,i}$ and $x_{15,i}$ in degrees 7 and 15 respectively. Use of the Cartan formula, [7], now enables us to express the H-deviation of f_2 as the sum of terms in the image of Steenrod operations (which are all zero) together with terms of the form

$$\psi_i(x_{7,i})\otimes x_{15,i}$$
,

where the ψ_i are secondary operations. We need to check that it cannot happen for $x_{15,i}$ and $\psi_i(x_{7,i})$ both to be x_{15} . To determine the secondary operations involved here, we may consider the diagram

$$\begin{array}{ccc}
G \\
& \downarrow \\
X & \xrightarrow{h} K(Z, 7) & \xrightarrow{\operatorname{Sq}^{2}, \operatorname{Sq}^{4}} K(Z_{2}; 9, 11).
\end{array}$$

Using either the Serre or the Eilenberg-Moore spectral sequence we see that a basis for $H^{15}(G)$ is given by elements in the image of Steenrod operations together with an element $\tilde{w}_{0,3}$ that restricts to the fiber of π to be $(\operatorname{Sq}^5 + \operatorname{Sq}^{4,1})i_{10}$. So we need to determine whether $h_1^*(\tilde{w}_{0,3})$ can be x_{15} .

For dimensional reasons, h_1 is an H-map. Hence it determines a map \hat{h}_1 : $P_2X \to BG$, where BG denotes the classifying space of G. If $h_1^*(\tilde{w}_{0,3}) = x_{15}$, then $y_{16} = \hat{h}_1^*(B\tilde{w}_{0,3})$ is a representative in $H^*(P_2X)$ of the primitive class x_{15} . In [10], Corollary 1.3, we derived the formula (in the cohomology of BG)

$$(B\pi^*(i_8))^3 \equiv \mathrm{Sq}^8(B\tilde{w}_{0,3}), \quad \text{modulo Im}(\mathrm{Sq}^{12}, \, \mathrm{Sq}^{6,3}, \, \mathrm{Sq}^{4,2,1}).$$

In general, three-fold cup products in $H^*(P_2X)$ are all zero. By the hypotheses on X and (1.9), $H^*(P_2X)=0$ in degrees 12, 15, and 17. So $\operatorname{Sq}^8\hat{h}_1^*(B\tilde{w}_{0,3})=0$. By [13], $\operatorname{Sq}^8(y_{16})=\sum y_{8,i}y_{16,i}$, where the $y_{8,i}$ and $y_{16,i}$ correspond to $x_{7,i}$ and $x_{15,i}$, respectively. So we obtain that $\psi_i(x_{7,i})$ cannot contain x_{15} as a summand; hence the reduced coproduct

$$\overline{\Delta}h_2^*(v) = x_{15} \otimes x_{15},$$

which, as stated above, is a contradiction.

3. $QH^{2^k-1}(X)$. By Corollary 1.3 and Theorem 2.1, $H^*(X)$ is an exterior algebra on generators in degrees 7 and 2^d-1 , for $d \ge 5$, and has trivial action of the Steenrod algebra.

THEOREM 3.1. $QH^*(X)$ is concentrated in degree 7.

Proof. Let $x = x_{2^k-1}$, $k \ge 5$, be a generator of lowest degree greater than seven. Let $\xi H^*(X)$ denote the image of the cup-squaring map $\xi(x) = x^2$. Since $H_*(X)$ is associative, we may assume by [8] that $\overline{\Delta}x \in \xi H^*(X) \otimes H^*(X)$, which is trivial since $\xi H^*(X) = 0$. Hence x may be chosen to be primitive. We shall construct an operation similar to that in the proof of Theorem 1.4. Consider the following diagram:

in which $K_1 = \prod_i K(Z_2; 2^k - 1 + 2^n)$, $1 \le n \le k - 1$, and

$$g_1^*(\iota_{2^k-1+2^n}) = \operatorname{Sq}^{2^n} \iota_{2^k-1},$$

and in which $K_2 = \prod_{i,j} K(Z_2; 2^k - 2 + 2^i + 2^j)$, and g_2 represents the secondary operations φ_{ij} associated with a factorization of Sq^{2^k} .

By Corollary 1.3, all Steenrod equations vanish on x, so $g_1f \simeq *$ and the lift f_1 exists.

We note that in degrees below 2^k-1 , $H^*(X)$ is concentrated in degrees divisible by seven. Since x is primitive, f is an H-map. Therefore $D_{g_2f_1}$ factors through the fiber of p_1 . Hence the formula for the H-deviation of a composition yields that $D_{g_2f_1}$ is in the image of primary operations in $H^*(X \wedge X)$, so it is zero by Corollary 1.3. Hence g_2f_1 is represented by primitive elements of $H^*(X)$ in degrees not of the form 2^d-1 . Since all primitives are concentrated in degrees of the form 2^d-1 , g_2f_1 is nullhomotopic, and the lift f_2 exists.

To simplify the situation, we loop the entire diagram to obtain

$$(3.2) \qquad \begin{array}{c} \Omega E_2 \\ \downarrow \Omega p_2 \\ \Omega F_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega p_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega p_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_1 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \downarrow \Omega P_2 \end{array} \qquad \begin{array}{c} \Omega G_2 \\ \end{split} \qquad \begin{array}{c} \Omega G_$$

Note. The c-invariant was introduced in [14] as the obstruction to an H-map between two homotopy-commutative H-spaces preserving the homotopy-commutative structure. There are various choices for this invariant, which depend on the choice of homotopy realizing the H-map. It was observed that if Y and Z are H-spaces and $h: Y \to Z$ a map, then the composition

$$(3.3) \qquad \sum \Omega Y \wedge \sum \Omega Y \xrightarrow{\varepsilon \wedge \varepsilon} Y \wedge Y \xrightarrow{Dh} Z$$

has as its double adjoint $\Omega Y \wedge \Omega Y \to \Omega Z$ a particular choice for the c-invariant $c(\Omega h)$. In the sequel we shall always make this choice for our c-invariants.

We have a suspension element v in $H^{2^{k+1}-1}(\Omega E_2)$ such that

$$c(v) = (\Omega(p_1 p_2))^* \iota_{2^k - 2} \otimes (\Omega(p_1 p_2))^* \iota_{2^k - 2}.$$

We shall consider the c-invariant of the element

$$(\Omega f_2)^*[v] \in H^{2^{k+1}-1}(\Omega X) = 0.$$

Let $u_{2^k-2} = \sigma^*(x_{2^k-1})$. Then, applying (3.3) to the formula for the *H*-deviation for a composition of maps, we obtain

$$0 = c((\Omega f_2)^*[v]) = u_{2^k-2} \otimes u_{2^k-2} + c(\Omega f_2)^*[v].$$

Since x_{2^k-1} is primitive, u_{2^k-2} is a c-class. Hence $c(\Omega f_1)$ factors as

$$\Omega X \wedge \Omega X \xrightarrow{\hat{c}} \Omega^3 K_1 \to \Omega^2 E_1.$$

We have a commutative diagram

(3.4)
$$\begin{array}{c}
\Omega^2 E_2 \\
\downarrow \Omega^2 p_2 \\
\Omega X \wedge \Omega X \xrightarrow[c(\Omega f_1)]{} \Omega^2 E_1
\end{array}$$

Now $c(\Omega f_1)$ is adjoint to

$$\sum \Omega X \wedge \sum \Omega X \longrightarrow \Omega K_1 \longrightarrow E_1,$$

$$X \wedge X$$

hence $[c(\Omega f_1)] \in (PH^*(\Omega X) \otimes PH^*(\Omega X))^{2^k+2^n-4}$. According to [6], there is an isomorphism of coalgebras

$$\operatorname{Tor}_{H^*(X)}(Z_2, Z_2) \cong H^*(\Omega X).$$

It follows that $H^*(\Omega X)$ in degrees less than $2^k - 2$ is a divided polynomial coalgebra on primitive elements of degree 6. Therefore

$$(3.5) [c\Omega f_1)] \in PH^6(\Omega X) \otimes PH^{2^k-2}(\Omega X) + PH^{2^k-2}(\Omega X) \otimes PH^6(\Omega X).$$

Further, the indecomposables of $H^*(\Omega X)$ in degrees less than $2^k - 2$ are concentrated in degrees of the form $3 \cdot 2^r$. But if k > 4, no Steenrod operation on an element in one of these degrees can hit an indecomposable in degree $2^k - 2$, so $u_{2^k - 2}$ is not in the image of the Steenrod algebra.

An analysis of the Cartan formula [7] for secondary operations applied to diagrams 3.4 and 3.5 yields that $u_{2^k-2} = \psi(u_6)$, where ψ is a secondary operation defined on 6-dimensional primitives in the kernel of all Steenrod operations. We proceed to study all such operations. Note that ψ has degree 2^k-8 . The possibilities come from the suspension elements in $H^{2^k-2}(G)$, where G is the space defined as follows. Let G' be defined to be the fiber of the horizontal map g' in the diagram

$$G'$$

$$\downarrow$$

$$K(Z, 2^{k} - 1) \xrightarrow{\operatorname{Sq}^{2}, \operatorname{Sq}^{4}, \dots, \operatorname{Sq}^{2^{k-1}}} \Pi K(Z_{2}; 2^{k} - 1 + 2^{n})$$

Now set

$$G = \Omega^{2^k - 7} G' \quad \text{and} \quad g = \Omega^{2^k - 7} g'.$$

So G is fibered as $\pi: G \to K(Z, 6)$. We shall see that in $H^{2^k-2}(G)$, $\operatorname{im}(\sigma^*) \subset \overline{A(2)} \cdot H^*(G)$. For, if an element ψ of $H^{2^k-2}(G)$ is a stable operation, then by [1] ψ can be expressed as a sum

$$\psi = \sum \alpha_{ij} v_{ij} \,,$$

in which the v_{ij} represent the operations ψ_{ij} applied to $\pi^*(\iota_6)$. We note that none of the v_{ij} occurs in degree $2^k - 2$.

If $v \in H^{2^k-2}(G)$ represents an unstable operation, then it must be in the image of $(\sigma^*)^{\bar{N}}$ but not in the image of $(\sigma^*)^{N+1}$, for some N. Write $v = (\sigma^*)^N[\hat{v}], \hat{v} \in H^{2^k-2+N}(B^NG)$. Since \hat{v} is not a suspension, its a_m -obstruction [12] must be non-zero for some m. Such an obstruction must arise from having

$$\iota_{N+7}^m \in \operatorname{Im}(B^{N+1}g)^*$$

for some m of the form $m=2^r$. If r>1, then $\iota_{N+7}^m=\operatorname{Sq}^{2^{r-1}(N+7)}\gamma\iota_{N+7}$, where

$$\gamma = \operatorname{Sq}^{2^{r-2}(N+7)} \cdots \operatorname{Sq}^{N+7}.$$

If r=1, then $N=2^k-14$, so that $\iota_{N+7}^2=\operatorname{Sq}^1\gamma\iota_{N+7}$, where $\gamma=1$ Sq^{2^k-8} . In either case there is a relation

$$\gamma = \sum \alpha_n \operatorname{Sq}^{2^n}, \quad \alpha_n \in A(2),$$

so there exists an element $w \in H^{2^k-3}(G)$ that restricts to the fiber to be $\sum \alpha_n l_{2^n+5}$. Hence a representative of v is given by $\operatorname{Sq}^1 w$ if r=1and by $Sa^{2^{r-1}(N+7)}w$ if r > 1.

Thus $\psi(u_6)$ must be in the image of the Steenrod operations. This implies that u_{2^k-2} lies in the image of Steenrod operations which is a contradiction. Since

$$\sigma^*: QH^{2^k-1}(X) \to PH^{2^k-2}(\Omega X)$$

is monic, we conclude that $QH^{2^k-1}(X) = 0$.

Proof of the Main Theorem. We now know that $H^*(X)$ is an exterior algebra on seven-dimensional generators. If $H^*(X; Z)$ has odd torsion, then for some odd prime p, there is an even generator of the form $\beta_1 P^n x_{2n+1}$ by [9]. Applying the Bockstein spectral sequence, this yields an odd generator in the rational cohomology of degree $(2np+2)p^d-1$ for $d \ge 1$. But

$$(2np+2)p^d - 1 > 7$$

so $H^*(X; Z)$ has no odd torsion. Hence it is torsion-free. Therefore

$$H^*(X; Z) \cong \Lambda(x_1, \ldots, x_r)$$

where $deg(x_i) = 7$.

We now use the Hurewicz isomorphism to obtain our desired homotopy equivalence

$$S^7 \times \cdots \times S^7 \xrightarrow{f} X$$
.

REFERENCES

- [1] J. F. Adams, On the nonexistence of elements of Hopf invariant one, Ann. of Math., 72 (1960), 20-103.
- [2] W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153–178.
- [3] W. Browder and E. Thomas, On the projective plane of an H-space, Illinois J. Math., 7 (1963), 492-502.
- [4] D. Goncalves, Mod 2 homotopy-associative H-spaces, Geometric Applications of Homotopy Theory I, Proceedings Evanston, Springer Lec. Notes 657 (1977), 198-216.
- [5] J. Hubbuck, Generalized cohomology operations and H-spaces of low rank, Trans. Amer. Math. Soc., 141 (1969), 335–360.
- [6] R. Kane, On loop spaces without p-torsion, Pacific J. Math., 60 (1975), 189-201.
- [7] J. Lin, Higher order operations in the mod 2 cohomology of a finite H-space, Amer. J. Math., 105 (1983), 855-937.
- [8] _____, Steenrod connections and connectivity in H-spaces, Mem. Amer. Math. Soc., 369 (1987), 1-87.
- [9] ____, Torsion in H-spaces II, Ann. of Math., 107 (1978), 41-88.
- [10] J. Lin and F. Williams, Two torsion and homotopy-associative H-spaces, J. Math. Kyoto Univ., 30 (1990), 523-541.
- [11] F. Sigrist and U. Suter, Eine Anwendung der K-theorie in der Theorie der H-Raume, Comment. Math. Helv., 47 (1972), 36-52.
- [12] J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc., 108 (1963), 275-312.
- [13] F. Williams, *The H-deviation of a lift*, Proc. Amer. Math. Soc., **104** (1988), 1291–1295.
- [14] A. Zabrodsky, Cohomology operations and homotopy commutative H-spaces, in The Steenrod Algebra and its Applications, Springer Lecture Notes in Math., 168 (1970), 308-317.

Received January 18, 1990 and in revised form October 30, 1991. The first author was supported in part by a grant from the National Science Foundation.

University of California, San Diego La Jolla, CA 92043

AND

New Mexico State University Las Cruces, NM 88003