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SOLUTIONS OF THE STATIONARY
AND NONSTATIONARY
NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS

ZHI1-MIN CHEN

It is shown that a nonstationary exterior Navier-Stokes flow tends
to a small stationary flow in L? like =34 as t — oo.

0. Introduction. In this paper we are concerned with the stationary
Navier-Stokes equations
(0.1) (w-Dw—-Aw+Dp=f, D-w=0 inG,
w=0 ondG (D =grad),
and the nonstationary Navier-Stokes equations
v+ (W -Dv—-Av+Dp=f inGx (0, c0),

D-v=0 in Gx (0, c0),
v=0 ondGx (0, ),
Vjfp—o=a+w inG (v,=0v/dt).

Here and in what follows G denotes a smooth exterior domain of
R3, f = f(x) is a prescribed vector field, and p (resp. p) represents
unknown stationary (resp. nonstationary) scalar pressure which can
be determined by the stationary solution w via (0.1) (resp. nonsta-
tionary solution v via (0.2)).

As is well known, it was shown by Finn [8, 9] that (0.1) admits a
small solution

(0.3) w e L®(G; R?), Dw e L3(G; R?),
Co = sup |x]| |lw(x)| < 0.
X€G

If Cp < 1/2 the Finn’s solution w may be formed as a limit of
a nonstationary solution v as ¢ — oo in local or global L?-norms
(cf. Heywood [15, 14], Galdi and Rionero [11], Miyakawa and Sohr
[23]) and in other norms (cf. Heywood [16], Masuda [20]). More-
over it has recently proved (cf. Borchers and Miyakawa [4]) that ev-
ery weak solution of (0.2) tends the Finn’s solution in L%(G; R3)
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like ¢t~(3/P=3/2)/2 with 6/5 < p < 2, provided Cy < 1/2 and a €
L%(G; R} N L2(G; R%).

In this paper we are only interested in the case w € L3(G; R3),
Dw € L3%(G; R®%), or Dw € L"(G; R%)NLP(G; R%) with 1 <r <
3/2 < p < 2. Under certain smallness assumptions on w we show

now that every weak solution of (0.2) tends to the stationary solution
w in L%(G; R?) like the sharp decay rate 1=3/4.

1. Notation and main result. In this paper we use the following
spaces.
LP = the Lebesgue spaces L?(G; R®), with || - ||, the associated
norm,

Cy° = the set of compactly supported solenoidal in C*°(G; RY),
Wk:P — the Sobolev space W*-?(G; R3),

J? = the completion of C3° in L7,
W}-P = the completion of C° in W17,
W-P = the completion of C° under the norm ||D - ||,
W2P = the space {u € W, ?/®7"); D2y e 17(G; RY)}

forl<p<3,
W12 = the dual of W2,
W~1:P = the dual of W) P01 with | - |1, the associated norm.

Moreover for 1 < r < oo and » > 1, we denote by 7 the real
r/(r—1),by (-, -) the inner product in L2(G; R"), by P the bounded
projection from L' onto J” (cf. [22]), by 4 the Stokes operators
—PA with the domain W,}'" N W2 by A the Laplacian —A with
the domain W?2:7(R3; R3), and by C a positive constant which may
vary from line to line, but is always independent of the quantities ¢,
T, u,v,w, f, u,,and a.

Now we make preparations for stating our main result. The exis-
tence of the stationary solutions w is guaranteed by the following.

LEMMA 1.1. Let 1 <r<3/2<p<2,and fe C. Then there
is a small h > 0 such that (0.1) admits a unique solution within the
class . .

{we W " nWi-P; | Dw|s;, < h},

provided that | fl|-y,3/2 < h*. Moreover
[Dw|lr + [Dwll, < CUSN-1,r + If1-1,p)-
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From (0.1) and (0.2) we see that # =v —w and p =P —p solve
the problem
(1.1) U+ (u-Du—Au+ (u-D)w+ (w-D)u+Dp =0,
D-u=0 in Gx (0, 00),
u=0 ondGx (0, ),
Ul;—o=a 1in G.

Weak solutions are given in the following sense.

DEFINITION 1.1. Let a € J?, and w € ng,yz solve (0.1). A
weakly continuous function u: [0, c0) — J? is said to be a weak
solution of (1.1) if #(0) =a, u € L®(0, co; J2) N L2(0, co; W}?),

t
(1.2) lu(o)|3 + / 1Du(2)|2dz < |u(s)I3,

t
(1.3) (u(t), g(1)) + / ((Du, Dg) + ((u-D)w, g)
+ ((w-D)u, g)—(u, g-))dz

= (u(s), g(s)) - / (u-Dyu, g)dz

forall 1> s >0 and all g € C([0, 0); W23 nCI(0, 00); J?),
where g, =0g/0z.

The existence of weak solutions to (1.1) is guaranteed by the fol-
lowing.

LEMMA 1.2. Let a € J?, and w € A(,l’3/2 such that ||Dwlj3;; <
1/8. Then (1.1) admits a weak solution.

We are now in a position to state our main result.

THEOREM 1.1. Let 1 <r<3/2<p <2, aeJ*nL', and let
w € W' Wy P such that w solves (0.1) and |Dw||, + ||Dw||,
is sufficiently small. Then every weak solution of (1.1) possesses the
sharp decay property

lu(®)ll2 = O

Section 2 is concerned with the proof of Lemmas 1.1 and 1.2. In
[23], it has been obtained an existence result on weak solutions of
(1.1) with w the Finn’s solution such that C, < 1/2. However,
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the argument of [23] heavily depends on the property (0.3). In §3,
with the use of the approach developed from [7], we shall show sharp
decay estimates of solutions to the linearized equations of (1.1). If w
only satisfies (0.3) and Cy < 1/2, such estimates seem unavailable.
Theorem 1.1 will be proved in §4 by making use of the estimates
carried out in §3 and studying the time average ¢! fé llu(s)|2ds. A
similar technique has been used in [23, 4]. However, we have not used
the spectral decomposition of the Stokes operator 4 in L2 as usually
used in earlier work concerning the L? decay problem. Moreover our
proof seems much simpler.

It should be noted that the L? decay problem of (1.1) with w =0
stems from Leray [19], and has affirmatively been solved (cf. [24, 3, 2]
and the references therein). If 1 < p <2 and u is a weak solution of
(1.1) with w = 0, it has been proved that |[u(t)|, = O(¢t~(3/P=3/2)/2)
provided u(0) € J2NLP (cf. [2]), and ||u(t)||; = O(¢~3/4) provided
u(0) e JZNL! and |le~a|, < Ct=3/4|a||; (cf. [3]).

2. Proof of Lemmas 1.1, 1.2. To begin with we give the estimate
(cf. [2, Theorem 3.6] or [12, 18] for a similar consideration)

(2.1)  ||Dull < Csup{|(Du, Dv)|; v € C5°, ||Dv||,» = 1}
forl<p<n,ueWl?,
and the Sobolev inequality (cf. [13])
(2.2)  Nullsp/-p) < 22(3 = p)~'37 /2| Dullp
forl<p<n,ueWwWh?r.

Proof of Lemma 1.1. Let r and p be given in Lemma 1.1. We
rewrite (0.1) in the abstract form Aw + P(w - D)w f,wewhn
Wl P . Since the proof of [5, (3.1)] implies that 4 can be extended

asa bounded and invertible operator from W2 7 onto J? with 1 <
g < 3/2, we can set

H: Whawlp - W23/6P) guch that Hw = A~ (f—P(w-D)w).

Let we W nWh?, r<s<p,and v e C® with |[Dufy = 1.
Integrating by parts and using the divergence condition D-w =0, we
have

(DHw, Dv)=(f,v)- ((w-D)w, v)
=(f,’l))+((1U'D)’U,’w)
< (f5 ) +llwllsllwllzs -5 1DVl
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that is, by (2.1)~(2.2),
IDHw]||s < C(|lfll-1,s + | Dw||s||Dw]|3/2)-
Similarly, for w, w* € W,*" n W7 we have
IDHw — DHw*||s < C(||Dwl|3/2 + [[Dw*||3/2)|Pw — Dw* ;.

Consequently, the desired assertion follows immediately from the con-
traction mapping principle. The proof is complete.

In [23], Miyakawa and Sohr proved that (1.1) admits a weak solu-
tion in case w is the Finn’s solution and Cy < 1/2. However, as for
our case, the argument of [23] does not work somewhere. Now we give
our proof in a slightly different way. Similar to [23], we also study ap-
proximate solutions of (1.1) by applying a technique developed from

[6].

Proof of Lemma 1.2. Let k > 1. We set J, = k(k + A)~! and
I = k(k+A)~'E, where E denotes the extension operator such that
Eu=u in G and Eu = 0 outside G. With the use of the notation
above, we have
(2.3) NJeullp < Ck)ullr,  [Hxull, < C)lullr

forl<r<p<oo,uelJ",

2.4) N Leullr < ullrs N1 Jeull- < Cllull, forl<r<oo,ueJ’,

where C is independent of k. (2.3) is a consequence of the Sobolev
embedding theorem and L’-estimates. The first inequality in (2.4)
follows from the proof of [1, Lemma 10.1], and the second one from
[2, Theorem 1.2].

Now we proceed to the evolution equation

(2.5) (d]dt)yu, + Auy = Fi(uy), ug(0)=Jea in J?,
where Fj(u) = Fi(u, u) with
F,(u,v)=—-P(Jyu-D)v — P(Jyw - D)u — P(I,u- D), w.
For u, v € W!'2, we have
(2.6)  ||F(u, v)ll2 + [[P(Jxv - D)ul|>
< Wkulloo 1DV |2 + (| ew]loo | D]l 2
+ 1 ulls| DIwlls + | Jevlool Dul
< C(k)(lullllDvllz + llwll3]| Dull2
+ lullell ik DEw||3 + [lvll¢l Dull2) , by (2.3),
< C(K)||Dull2 (|| Dvll2 + [IDwll3/2), by (2.2).
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On the other hand, given £ and 7 > 0, we suppose that u; solve
(2.5)over [0, T),and uy € L2(0, T; W) 2nw2:)nw-2(0, T; J2).
Then multiplying (2.5) by 2u, and 2Au, , respectively, we have

(d/d0)luell3 + 2l Durl3 = 2(Fi(ux) , ),
(d/d0)||Dug 5 + 2l Aug||3 = 2(Fic(ug) , Auy).
The estimation of the right-hand side terms of the preceding identities
can be achieved as follows.
2(Fp(ug) , u) = 2((Ixug - D)y, [rw),
since D-Jyup, =D -Jyw =D -LLu=0,
< 2| Lrup|l6l| Dutge |21 I w3
< (12/37'2)lwlls| Duell3, by (2.4) and (2.2),
< 8||Dw32/Duicll3, by (2.2),
< ||Dwili3, by setting [ Dw|3 /2 < 1/8,

2(Fy(ug) , Auy)
< 2||Aug |2 (1 ki lloo | Durc]2 + | T w ]l oo | Dk ||2
+ x|l Ix DEw|2)
< C(o) | Augll2l1Dug|l2(lukll2 + [|Dwll3/2 + [IDEw]|3/2)
by (2.3) and (2.2),
< C(k) | Aug |21 Dug [l (g ll2 + [[Dw |3/2)
< 20 dui |3 + CROIDuk |53 + IDw 3 ).

Consequently, we have

t
Q1) B+ [ 1Du()IBdz < [, 0<s<i<T.

(2.8) [1Dux(1)II3
< |DJgall3 + C(k)/o 1D ()13 (lurc ()13 + 1Dw]32) ds
< [|DJxall3 + C(k)|[Jal3 (| Jkall3 + 1Dwli3), by (2.7)

Thus, following the same way as in the proof of [23, Proposition 3.4]
by making use of (2.6)-(2.8), we conclude that (2.5) admits a unique
global solution u; satisfying (2.6), and u;, € L2(0, T; W, >2nw?2:2)n
w120, T; J? forall T >0.
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To obtain a weak solution of (1.1), we need to study compactness of
the sequence u; . Let v € W,'2. Applying (2.2) and (2.4) repeatedly,
we have, from (2.5),

((d/dtyuy , v)

< I Dugll2liDvllz + [ Jeuxllsl| Dug ll2llvlle + | Jrwllsl Dugll2llv il
+ [ uglls | DIxwl32]|v 6
< Dugll2llDvll2 + Cllvlls(lluellsl| Dull2 + llwll3 | Dug |2
+ lurlls|DEw]3/2)
1/2 3/2
< CIDv s (IDwicll2 + Nuiclly 21D l3 + 1Dt | Dw il 2)
2 3/2
< CIDola(1 + llally”® + |Dwlls o) (1Dull> + 1 Due15),
by (2.7) and (2.4),
with C independent of k. This together with (2.7) implies that the
sequence u; is bounded in
L™(0, 003 JH)NL20, 0oy W nw-4530, T, w1-2)

forall 0 < T < co. From [26, Theorem 2.1 in Chapter III] it follows
readily that there are a function u and a subsequence of u; , denoted
again uy , satisfying

we ™ uin L0, 00; J?),

up 3 uin L2(0, 003 W1-2),

u; — u strongly in L (G x (0, 00)).

As in [21], we can check that the limit u is a weak solution of (1.1).
The proof is complete.

3. Decay estimates. In this section, we let 1 > 0, 1 <r < 3/2 <
p <2,and w be a solution of (0.1) such that w € W,>>'n WP and
set

Lu=Au+ P(u-D)w + P(w - D)u,

n
B*u=—-p(w-Du+ PZ u'Dw',
i=1

L*u = Au + B*u.
Thus, we see that

(Lu,v)=(u, L*v) foru,vewlh2nw??2,
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and the linearized equation of (1.1) can be stated in the form
(d/dtyv+Lv =0, v(0)=u.

Denote by e~ 'Ly the solution of the preceding equation. It is the
purpose of this section to prove the following.

PROPOSITION 3.1. Suppose that |Dw||,+||Dw||, is sufficiently small.
Then there holds
(3.1) lle=EPully < Ct3/4u||;
for ue L' N LY/3,

The preceding proposition is based on the following decay estimates.
(3.2) e ulloo < Ct™Y*||ul¢ for ue J®,
(3.3) |le7"ulls < Ct=B/a=3/9/2)y||, for1l<g<s<oo,uecJ?,
(3.4) ||De~"u||y < Ct=+34=3/92)y||, forl<g<s<3,ueJi.
The estimates (3.3) and (3.4) were recently obtained by Iwashita (cf.
[17, Theorems 1.2, 1.3]). (3.2) will be proved in the Appendix by

using the argument of [17].
With the use of (3.2)—(3.4), we can now prove the following.

LEMMA 3.1. Let u € C°. Then there hold
(3:5) lle™ A ulloo < Ct3*||ull2,
(3.6) |le " B*ul|le + ||[De " B*ul|3

< Ce32(t + 1)7CI 302 (Jlul| oo + || Dull3) (| Dwlly + [|Dw]p)-

Proof. From (3.2), (3.3), (2.2) and the semigroup property of e~/4

we get (3.5) and
lle™"B*ullo < Ct=*|| B ul;
< Ct7 || Dw|lp(|[ulloo + [|Dull3)
for b =r, p. Moreover (3.4) and (2.2) yield
IDe~*B*ull3 < Ct=||Dw|y(|lulloo + | Dull3) forb=r,p.

Collecting terms, we get readily (3.6) and complete the proof.

Proof of Proposition 3.1. Setting v(t) = e~'L'u with u € C°, we
have obviously that v € C([0, 00); L* N W,}*3) and

t

v(t) = e"Au+/ e~ =9)4B*y(s) ds.
0
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This gives, by (3.4)-(3.6),
lv(&)lleo + 1DV (2)]]3
t
< Ct- ¥4l + C / (t = 5)32 (1 — 5 4 1)~B/r=3/p)2
0
X ([[v]loo + [[DV][3) ds([Dw || + || Dw][p).

Setting [|[v||le = suPos<; 74 ([[0(5)lloo + [IDV(s)][3) , We have

[v(®)lloo + 1DV (D)]]3
< Ct38ully + CIDw]lr + [Dwlip)lllv]]

X /t(t —§)73 (1 — 5 4 1)"CI=3)25=3/4 g
0
< C ¥4 ully + Cr3 (| Dw |l + [Dw (i) ]
y /’S_s/zp(s + 1)=G/r=3/n)/2 g
1 c,?z‘/“—3/21’(z + 1)~ IDw]l, + [ Dwllp)llo]lls

< Ce(fully + (IDwllr + [Dwlip)lv 1),

where we have used the condition r < 3/2 < p. Hence, if we presup-
pose that

(3.7) C(|[Dwlly + [[Dwllp) < 1/2
with the constant C given in the last term above, we obtain
(3.8) le™" ulloo < 173/ 4ju].

Now we take u € L' N L5 and v € L?. By (3.8) we have
(e Pu, v) = (u, ™ Pv) < lullie™" Pvlloc < Cr¥[ulli|lv]]2

and therefore the validity of (3.1). The proof is complete.

4. Proof of Theorem 1.1. In this section we always suppose that the
stationary solution w € W' n WP with 1 < r < 3 /2 < p <2 such
that (3.7) holds. Let u be a weak solution of (1.1). Then (1.2) implies

(a.1) lu()s < ! /O lu(s)ll2 ds.

On the other hand, taking v € C3° and applying (1.3) with g(z) =
e (=9L"y  we have

t . t «
(u(t), v) + /0 (Lu(s), e" =9 ) ds — /0 (u(s), L*e~ =9 v)ds

* t *
= (a, e 'Tv) —/ (u-DYu, e =9 v)ds,
0
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that is,
t
w(t), v) = (ea, v) — / (e~=9LP( . Dyu(s), v)ds
0
< lle” ’Lallzllvllz+/ le=U=EP(u - D)u(s)||2 ds|lv ]2
< Cllvll <1‘3/4Ha||1 +/0 (£ = )7 uls)ll2 1 Duls)]l2 dS) ;
where we have used (3.1). We then get
()l < €5 lall+ € [ (s = 2) 4 u(z) I Duz) 2=
Integrating the above inequality from 0 to ¢, we have
t t t
| ds <coal+c [ az [ =27 juz)alDu(z) s
z

t
< C1'4jal|, + C/4 /O u(s)|]2]| Due(s)]|2 ds

; 1/2
<ceali+ials ([ luiBds) . by (12)

Combining this with (4.1), we have

; 1/2
[0l < C¥¥al + Ce/al | uu<s>||%a's) ,

that is,

; 12
(4.2) ||u<z>||2sc1t-3/4(1+(/0 ||u<s>||%ds) )

where and in what follows C; = Ci(||a||;, ||a]2) may vary from line
to line.

Now we apply (4.2) and (1.2) to complete our proof via a boot strap
iteration argument.

Note that
(4.3) lu(Ol2 < Cy, by (1.2),
and
(4.4) lu(®)|la < Cit=3*(1 +t1/2), by (4.2) and (4.3).

Combining (4.4) with (4.3), we have
(4.5) Ju(n)ll2 < Cre 4,
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Moreover, taking (4.2) and (4.5) into account, we have
lu(®)]2 < Cre 41+ 214,
This together with (4.3) implies
(4.6) lu@®ll2 < Ci(e+ 1)~
Similarly, (4.2) and (4.6) yield
lu(@®)ll2 < Cre (1 +1In(z + 1)),
and so, by (4.3),
(4.7) lu(@)lla < Ci(z+ 1)~
Finally, by (4.2) and (4.7), we arrive at the desired estimate
lu()ll2 < Cre=3*

and complete the proof.

REMARK 4.1. It should be noted that the validity of the assumption

of Lemma 1.2 follows from the inequality ||Dw||3,, < ||[Dw||,+|[Dw||,
and (2.7).

Appendix: Proof of (3.2). Let Q be a domain of R3. By |- ||x. 2.0

and || - ||,,o we denote respectively the norms of the Sobolev space
Wk:P(Q;R%) and the Lebesgue space L?(Q;R3). Of course, || - ||x.,
=|lk.p.¢ and |||, =1 llp,c. P is the bounded projection from

LP(R3; R?) onto JP(R3; R3), where J?(R3; R?) denotes the com-
pletion of the set of compactly supported solenoidal in C*(R3; R3).
Let 4 be a constant such that |x| < -1 for x € G, and let
g € C*(R3; R) be a fixed function such that g = 1 for |x| > 4 and
g =0 for |x| < h—1. Moreover we set G, ={x € G; |x| < h}.

In arriving at (3.2), we need the following lemmas.

LEMMA A.l. Let 1 < p<gqg<oo, t>0, velLPR;RHn
LY(R3; R3), n>1,and uc J®. Then we have

(A1) lle™ ||, p < C1732(1 4+ 1)~ (o|| ) 4o + o]l o),

(A.3) le™“ullan,6 < C(t~" + 1)l|ulls.

(A.1) is deduced immediately by an elementary calculation. (A.2)
is a consequence of LP-estimates (cf. [25]) and the Sobolev embedding
theorem. One can also refer to [17] for details.
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LEMMA A.2 ([17, Lemmas 5.3, 5.4] and (A.2)). Let t >0, v e J®,
and P* be a certain pressure such that p* = Ae~(+DAy 4 Ae—(t+ DAy
Then

lle=t+ D)5 6,6, + |de™ D]y 6 6, + 1P (D)ll3,6.6, < Ct™/4v]le.

LEMMA A.3 ([17, (5.18)] and (A.2)). Let v € J®, and t > 0. Then
there is a function v* such that

D-v*=D.(ge (+D4y),
suppv*(f) C {x e R*; h— 1 < |x| < h},
[v*(D)ll2,6 + 1(8/88)v*(D)]ls < C(t + 1)"/*|jv]ls.

LEMMA A 4. Let t > 0, v and v* be given in Lemma A.3. Then
we have

llge™ D4y — v* (1)l < C(t+ 1)"4|0]ls.
Proof. Set u(t) = ge= D4y —v*(¢), uy = u(0), and

F(t)=p*(t)Dg — 2(Dg 'D)e‘("”)Av _ (Ag)e—(H'l)Av
+Av (1) — (8/00)0*(0),

where p* is given in Lemma A.2. By Lemmas A.2, A.3 we have that
the support of F(¢) is contained in {x € R3; h— 1 < |x| < h}, and

(A.3) (t+ DY4F@)6 + luoll1,6 < Cllvlls »
u;—Au+D(gp*)=F, D-u=0inR>x(0, ).

We thus rewrite # in the integral form
— t —
(A.4) u(t) = e “ug +/ e~ =94PF (s)ds.
0
From (A.1), (A.3), and Sobolev’s embedding theorem it follows that

lle™ o]l y g2 < C(t+ 1)~ 4 (Jluolloo + lolls) < C2=/*|1v]ls.
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and

t —
/ e~ =94PF(5)ds
0

oo,R3

t
<C [(t=97 =5+ MUFG)ls 6, + IF g, ds
sc/Vr—w*”a—s+1r”wFGMau
0

t
< C[|v||6/ (L= )12t — 5+ 1)"3/4(s + 1)~/ ds
0
< Ct+ 1)~V4 vl
Taking (A.4) into account, we have the desired estimate and complete
the proof.
Proof of (3.2). Let v € J%. By Lemmas A.1, A.2, A.3, Sobolev
inequality, and Gagliardo-Nirenberg inequality (cf. [10]), we have
lle=(+D 4o, < ||ge™ D ]| + le DAyl 6,
< |lge” "Dy — v*(D)]loo + Cllv* (D)1 6
+ Clle= V| 6 6,
<C(t+ 1) V4 ull¢ fort>0,
_ - 3/4y — 1/4
lle=4v]|o, < Clle~*0]g"*lle~"v]l"¢
< Ce' + Djulls < Crmjulls
for 1 > ¢ > 0. The proof is complete.

The author would like to thank T. Miyakawa for sending [2, 3, 4].
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