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THE MODULI OF RATIONAL WEIERSTRASS
FIBRATIONS OVER P 1 : SINGULARITIES

PABLO LEJARRAGA

The Weierstrass equation y2 = x3 4- ax + b, where a and b are
rational functions of one variable, defines a fibration over P1 , which
we call a Weierstrass fibration. We consider the moduli space W of
rational Weierstrass fibrations over P1 . In this paper we determine
the singular locus of W and we compute the general singularities.
We work over C, but it seems possible to generalize our methods to
characteristic p Φ 2, 3 .

Introduction. In [Mi] Miranda has constructed moduli spaces WN,
N > 0, for Weierstrass fibrations over P 1 whose zero section has self
intersection number —Nm the associated elliptic surface. Seiler has
generalized and extended this work in [Sei2] and [Sei3]. For N — 1,
we have the moduli space of rational fibrations W =W\. The points
of W parametrize isomorphism classes of rational Weierstrass fibra-
tions over P 1 with at most rational double point singularities whose
associated elliptic surface (= minimal resolution of singularities) has
only reduced fibers. By passing to the associated elliptic surface, W
can be viewed as parametrizing isomorphism classes of relatively min-
imal elliptic surfaces over P 1 admitting a section which have only
reduced fibers. The basic definitions and constructions are reviewed
in §1.

To determine the singular locus of W, we first find the locus S
of Weierstrass fibrations that have non-negligible (= nontrivial) auto-
morphisms. By means of the Weierstrass equation, this boils down
to finding stable pairs of Weierstrass coefficients whose isotropy group
with respect to the action of G = GL2/ ± / is nontrivial. This work is
the content of §2 and culminates in Theorem 1 where the 7 irreducible
components of S are listed.

The general singularities turn out to be cyclic quotient singularities.
We compute and classify them with the help of the slice theorem and
work of Prill [Pr] in Theorem 2, §3.

This work is part of my Ph.D. thesis. I want to thank my advisor
M. Artin and Rick Miranda for their help.
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1. Generalities. All varieties we consider are defined over the field
of complex numbers C. Unless otherwise stated all topological no-
tions refer to the Zariski topology. We refer the reader to [Mi], [Ka]
and [M-S] for proofs of the following facts in this section.

Let S be a variety. Let p: Y —• S be a flat proper morphism of
irreducible varieties whose fibers are of one of the following types:

(a) an elliptic curve,
(b) a rational curve with a node,
(c) a rational curve with a cusp.
Let σ be a section of p not touching the nodes and cusps of the

fibers. The quadruple (Y, S,p, σ) is called a Weierstrass fibration

over S. We usually denote Weierstrass fibrations by Y/S when there
is no risk of confusion.

A morphism of a Weierstrass fibration (Y, S, p, σ) into a Weier-
strass fibration (Yr, S', pf, a1) is given by a pair of morphisms / :
Y —• Y1 and φ: S —• S1 such that pr o f = φ o p and / o σ = a1 o φ .

When 5 = C is a complete nonsingular connected curve, a Weier-
strass fibration with nonsingular general fiber and only rational double
point singularities is called a Weierstrass model. As is well known, a
Weierstrass model Y/C can be described by a Weierstrass equation
over C, i.e. there exists an invertible sheaf 3* over C and sections
α of - 2 ^ 4 and 6 of ^ ^ such that Γ is isomorphic to the hyper-
surface in P(OC ®.S^- 2 ) θ - S ^ " 3 ) ) given by y 2 = x 3 + ax + b. The
morphism J = J(a,b) = 4a3/(4a3 + lib2) of C into P 1 is called
the J-invariant.

Let S = P 1 . Choose coordinates ί, s such that t = 1, s = 0 is the
point at infinity. Call ^ the set of homogeneous functions of degree
« o n P 1 viewed as homogeneous forms of degree n in t, s. Call G
the quotient group GL2/(±/). We use the same notation for a matrix
(" £) in GL2 and for its image in G. We also use the notation ( a

 δ)
for diagonal matrices, a — ( a

 a) for scalar matrices and ( γ

 β) for
matrices with zeros in the main diagonal. Let f(t,s)eVn and g be
an element of G with matrix ( a β

δ). We define

This defines a right action of G on Fw . The pair of coefficients (a~\b)
of a rational Weierstrass model over P 1 can be interpreted as an ele-
ment of K4 x Kg.

In this way we get an injection of the set of isomorphism classes of
rational Weierstrass models over P 1 into (V4 x F6)/G, where G acts



RATIONAL WEIERSTRASS FIBRATIONS 93

by means of its actions on V4 and V^. Denote by X the open set of
SLi-stable (= finite stabilizer and closed orbit) elements of V4 x V^
(to be called just stable from now on). The quotient algebraic variety
W = X/G is called the moduli of rational Weierstrass fibrations over
P 1 . We denote by π: X —> W the canonical map. Under the above
injection points of W correspond to classes of Weierstrass models
whose associated elliptic surface has reduced fibers. For / e Vn and
τ G P 1 denote by vτ(f) the order of vanishing of / at τ . An element
(a, b) e V4 x V§ is stable if and only if the following numerical criterion
holds:

min(3ΐ;τ(α), 2vτ(b)) < 6

for all τ e P 1 .
Let x = {a, b) e X. Denote by Yx the Weierstrass fibration

with equation η2 = ζ3 + aξ + b. Denote by Stab x the isotropy
group (= stabilizer) of x with respect to the action of G. Denote by
Aut^ir(Yx/P1) the automorphism group of the Weierstrass fibration
Yx/Pι and by N the normal subgroup of negligible automorphisms,
i.e., those of the form

Define Aut j R^ ir(7 x/P 1) = ( A u t ^ H Γ x / P 1 ) ) ^ , the reduced automor-

phism group of Yx/P1. Given g e Stabx with matrix λ(a

y

β

δ ) , A / 0,

aδ - βγ = 1, the formulas

*7 = A"3?/, £ = λ~2ζ', t = at' + βsf, s = yt' + δs'

define an element of AutR^/^Γx/P1) denoted by Autg. The follow-
ing proposition follows from well known facts.

PROPOSITION 1. The canonical group homomorphism Stabx —•
1 is bijective.

We view the /-invariant J(x) = J(a, b) = 4a3/(4a3 + 27b2) as a
morphism of P 1 into P 1 . We denote by Aut J(x) the group of deck
transformations of J(x): P 1 —> P 1 . For # an element of G with
matrix (" | ) we denote by Pg the linear fractional transformation
z H-> (αz + /?)/(yz + <J), viewed as an element of PGL2 = AutP 1 . The
proof of the following easy corollary is left to the reader.

COROLLARY. Suppose that x e X has nonconstant J-invariant.
The canonical group homomorphism Stabx —• Aut/(x), g *-> Pg
is injective.
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REMARK. In fact the homomorphism of the above corollary is bi-
jective, but the proof is more involved.

2. Components of S. Recall that π: X —• W is the canonical mor-
phism. Define

S = π{xeX\Stabx^ 1}.
By the corollary to Proposition 1, this set is the locus in moduli of
Weierstrass fibrations with nontrivial automorphisms. In this section
we determine the irreducible components of the closed set S.

Let the group Γ operate on the set E. Let H be a subgroup of Γ.
We denote

EH = {xe E\xg = x for all g e H}.
For g G Γ, define Eg = E^ , where (g) is the group generated by
g we remark that Eg is the set of x in E such that xg = x. When
E = X, Γ = G, H subgroup of G, g e G, we use the notations

It is clear that

K G> g ^1 ? ^ o f finite o r d e r }
LEMMA 1. Le£ g e G be of finite order. The sets ln\ g and π(Inv g)

are irreducible closed in X and W respectively.

REMARK. It follows from Lemma 1 that the maximal elements
among the π(Invg) are the irreducible components of S. Since a
Noetherian topological space has a finite number of irreducible com-
ponents, the set S is closed.

Proof of Lemma 1. We have

where (V* x V6)
g is a sub-vector space of K4 x K6 and X is open in

V4xV^. It follows that Inv g is irreducible and closed. Consequently
π(Invg) is irreducible. We have not used the fact that g is of finite
order up to here.

Now let C be the conjugacy class of g . Since g is of finite order
it follows from [Bo, pp. 227-228] that C is closed. Moreover G
acts properly on X by [GIT, p. 41, Converse 1.13] and the fact that
π: X —* W = X/G is affine. Hence the morphism

XxG^XxX,

(x,h)\-+ (xh, x)

is proper.
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Denote by Ax the diagonal morphism of X into X x X. It follows
that the set Aχl(ψ(X x C)) is closed. Since

AχX(ψ(X x C)) = {x e X\xg = x for some g eC}

is G-saturated, it is clear that

is closed. D

For any prime number p, let Rp be a system of representatives of
the equivalence classes of elements of F* - {1} = (Z/pZ) - {0, 1} with
respect to the equivalence relation between elements u,v of F* - {1}
defined by the condition "u = v or u = v~ι". Moreover we define
ζn = e2πi'n.

LEMMA 2. We have

where g runs over the following list:

('• ••)

11.

-1 \ ί-i
1

The inclusion
|Jπ(Inv£)c,S

is obvious. Now let u € S. There are two cases:

(i) J(x) = 0 (resp. J{x) = 1) for all x e r ' ( i ί ) .
(ii) J(x) is nonconstant for all x G π~ι(u).

(i). The conditions J(x) = 0 and J(x) = 1 are equivalent to
x G Inv C3 and x £ Inv 1 respectively. We conclude in this case that

ue\Jπ(Invg)

w h e r e g = i,ζ3.

Case (ii). Since J(x) is nonconstant, it follows from the rational-
ity of the Weierstrass model determined by x , that deg/(x) < 12,
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where deg/(x) denotes the degree of the cover J(x): P 1 —• P 1 .
The following argument shows that every element φ of AutJ(x)
has order < d = deg/(x) < 12. Take a classical nonempty open
set U in P 1 such that (J(x))~ι(U) is a disjoint union of d copies
of U. Suppose that V is one of such copies. Then the sequence
V = φ°{V), φι(V), . . . , φd{V) has a repetition, say

φ\V) = ^"(F) for 0 < i < j < d.

Thus
V = φj-\V)

which implies, since φ is an analytic function, that φ has order <
j — i <d. We conclude by the corollary to Proposition 1 that every
element of Stabx has order < 12. Now we notice the following facts.

(a) If u G 7r(Inv#), there exists x e π~ι(u) such that x e Invg.
Thus Stab c D (g). It follows that g has order < 12 by the above
considerations.

(β) If u G π(Invg), there exists x e π - 1(w) such that x € Invg.
Since J(x) is nonconstant, x = (a, b) with aφQ, b Φ 0. Suppose
g were scalar with matrix (A

 λ ) . It follows that

ag = A4α = a, 6g = /16Z? = b

which implies λ4 = λ6 = 1. Thus λ2 = 1, which contradicts the fact
that g Φ 1 in G. Consequently # is nonscalar.

(7) Given g of finite order there exists g' € (g) of prime order
such that

π(Invg) C π(Invg').

(δ) Given g of finite order there exists a diagonal element gf

conjugate to g such that

π(Invg) = π

(ε) If (g ) is conjugate to (g'), then

π(Inv^) = π

We conclude from (a) to (ε) that

where g runs through a system of representatives of the equivalence
classes of nonscalar diagonal elements of G of prime order < 12
with respect to the equivalence relation between elements g, gf of
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G defined as follows. We say that g is equivalent to gf if (g) is
conjugate to (gf).

Let g be of prime order p < 12 with matrix ( ι

 λ), λ\ Φ λi. In

case p = 2, we have either λ\= λ\ = \ or λ\ = λ\ = -\. Thus g is
equivalent to one of ( - 1

 1), (~ι .). In case /? is odd, suppose first
that λp

{ = λξ = 1. If Λ.2 = 1, then λi Φ 1. There exists an integer μ
such that

Thus g is equivalent to (^ ) . The case λ\ = 1 reduces to the
previous one by conjugation with the matrix

G ' ) •
If λ\ φ 1, λ2 φ 1, there exists an integer μ such that

For some integer / φ 0, 1

Thus g is equivalent to

When λ^ = λp

2 = - 1 , set λ\ = -λ/, / = 1, 2 and reduce to the
previous case.

The proof of Lemma 2 is finished by the observation that whenever
m / = 1 (mod/?),

is equivalent to ( p

 r ) . D

For g G G, we have

= (F4 x V6Y ΠX = (V* x V*) nX.

Let g be diagonal. The g-invariant monomials of Vn form a vector
basis of Vff. Thus a general element of V$ is given by a linear
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combination with general coefficients of elements from such a basis.
A general element of Vf x Vξ is just a pair of general elements of Vf
and Vξ. Such a general element is also a general element of Inv g
since X is open. It is stable if some specialization is stable.

Now we choose the following Rp for p — 3, 5, 7, 11:

Ri = {2 ,3 ,6} ,

H π = { 2 , 3 , 5 , 7 , 10}.

In Table 1 we give bases of ^-invariant monomials of Vf and Vξ
for the different values of g that appear in Lemma 2 subject to the
above choice of i?/s, except for the cases g = /, £3 which are trivial.
We also indicate for which values of g the set Inv g is nonempty.

TABLE 1. Invariant Monomials. We list all g-invariant
monomials of degrees 4 and 6

P

2

3

5

7

11

g

( - , )

( C > ι )

( c .)
(ίs< 0
C' , )
C' c)

( ί ; t, )

(C'° c )

degree 4

ΛΛ2,/

Λ2

5 4

" 3

4

4

Λ

No solutions

Λ2

z 2 , 2

No other solutions for p = 11 .

degree 6

Λ,Λ3,Z/

t 6 , Λ 3 , j 6

ΛΛ3,,6

t5s,s6

tΛs2

s6

s6

ts5

No solutions

Λ3

?

3.3

^-invariant pairs

some stable

some stable

some stable

some stable

some stable

some stable

all unstable

all unstable

some stable

all semistable

all semistable



RATIONAL WEIERSTRASS FIBRATIONS

TABLE 2. Components of S. Here Γ is the component
π(Inv^), x = (a, b) is an element of the general orbit
over Γ

99

Γ

A

B

C

D

E

F

G

g

( - , )

x = (a,b)

(a = (ί2- s2)(t2 - k2s2)

\b = c(t2 - m2s2)(t2 - Λ V ) ( ί 2 - p2s2)
ra = {t2_s2){t2_k2s2)

\b = cts(t2 - m2s2)(t2 - nV)

j a = (t3 -s3)s
j , , J 3 3w,3 3 3v

^ 6 = c ( ί - m s )(ί - n s )

U = C(/5 - 55)5

U = Λ2

U = ̂ 5

Γα = 0

\b = t(t- s)s(t - ms)(t - ns)(t - ps)

Stab*

c2

c2

deg/(x)

12

12

12

10

5

7

/ Ξ Ξ O

dimΓ

5

4

3

1

0

0

3

THEOREM 1. 77ze irreducible components of S are listed in Table 2.
Suppose g and x are entries in a row of Table 2 with x an element
of the general orbit over Γ = π(Inv g). Then Stab* = (g).

In Table 2 the element x = (a, b) is obtained by taking a general el-
ement of Inv g constructed from Table 1 and eliminating parameters
redundant with respect to the action of G. The resulting parameters
are chosen in such a way as to make explicit the zeros of a and b.

Keeping in mind the remark after Lemma 1, we first prove that the
sets π(lnv g) for g in Table 2 are an irredundant decomposition of
S. Among the π(Invg) in Lemma 2 the following inclusions hold:

(a)

(β)

π Inv ί . ] c π Inv ( j ,

πlnv C πlnv
- 1

(a) By putting c = 0 in the element of the general orbit over
π l n v ( - 1 j) we get

? = 0 .

By dimension considerations we get that the locus / = 1 which equals
π Inv( ι .) is contained in π I n v ( - 1

 χ).
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(β) Since ( {

 1 ) is conjugate to ( - 1

 γ) we have

π Inv ί J = π Inv ί

But the general element of Inv^ 3 ) is invariant under ( {

 ι).

To check that there are no other inclusions we use systems of eigen-
values. More precisely, let R be the equivalence relation on C2 gen-
erated by the relations "(V, / ) = (y, x)" and "{xf, / ) = (-x, -y)"
both between the elements (x, y) and ( x ' , / ) of C 2 . Thus the
class of (x, y) consists of the elements (x, y), (y, x), (-x, -y)
and (— y, —x). The system of eigenvalues of an element of finite
order g e G will be considered as an element of C2/R.

For a subgroup of finite order H of G we denote by Eigenval(//)
the set of systems of eigenvalues of elements of H. Clearly
Eigenval(//) depends only on the conjugacy class of H.

Let gι, g2 appear in Table 2 and suppose that π(Inv^ 1 )cπ(Inv^ 2 )
Suppose X\ is the element of the general orbit over π (Inv g\), given in
Table 2. Then π(x\) e π(lnvg2), which implies that X\ G \rwh~xg2h
for some h. By (ii) it follows that

(gι) = Stab x{D(h-ιg2h).

Thus Eigenval(gi) D Eigenval(^2) The reader can easily check case
by case that this can only happen when g\ — g2.

Now it remains to prove that Stabx c (g), for g, x satisfying the
conditions of the theorem. The inclusion (g) c Stabx is obvious. In
cases D, E, F, suppose h = (α

y

β

δ ) e Stabx, x = (α, b). By comparing
coefficients in the equations αh = α and bh = b, one concludes that
he(g). The remaining cases depend on a series of lemmas.

As usual, we identify P 1 with C U {oc} and automorphisms of P 1

with linear fractional transformations. Moreover, given a set E of
n > 3 distinct points of P 1 , every automorphism of P 1 stabilizing the
set E is determined by the induced permutation of E. We indicate
such automorphisms by giving only the induced permutation. We
omit the proof of the following well-known lemmas.

LEMMA 3. Every automorphism of P 1 that permutes the points 0,
1, oo, m, n, p, where m, n, p are in general position, is the
identity.
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LEMMA 4. The group of automorphisms of P 1 that permute the
points 0, 1, oo, k, for general k is Klein's four-group consisting
of(0 l)(oofc), (0oo)(l k), (1 oo)(0fc) and the identity e.

LEMMA 5. The group of automorphisms of P 1 that permute the
points 1, C3, ζ\, 00 is the tetrahedral group.

LEMMA 6. The group of automorphisms of P 1 that permute the
points 1, — 1, k, —A:, ybr general k is Klein's four-group consisting
of (I -\){k -k), (lk)(-l -k), (1 -k){-lk) and the identity e.

Now we return to the proof of Theorem 1. We omit Case B because
it is similar to case A. We treat case G first.

Case G. Suppose bh = b for b = t(t - s)s(t - ms)(t - ns)(t - ps),
m, n , p in general position and h e G. By Lemma 3, we infer that
h has the matrix (λ

 λ) since the automorphism of P 1 induced by h
permutes the zeros of b. Thus λ6 = 1.

Case A. Suppose ah — a ϊox a — (t2 - s2)(t2 - k2s2), k general,
h e G. By Lemma 5 the linear fractional transformation Ph is one
of (1 - l)(fc - fc) , (1 fc)(-l - fc) , (1 - fc)(- lλ ;) or the iden-
tity. But (1 fe)(-l -fc) and (1 - k){-l k) cannot stabilize the set
{m, — m 9 n, —n, p, —p} for m , π , p in general position.

Case C. Suppose ah — a for h e G. By Lemma 6, PA belongs to
the tetrahedral group permuting the points 1, ζ 3 , ζ\, oo, which is
isomorphic to the alternating group of the set {1, £3 , ζ2, 00} . Taking
into account the form of the elements of this group ([Se], p. 41), for
m, n in general position the subgroup stabilizing the set of zeros of

b is ((IC3C32)). D

3. Singularities. In this section we prove that S is the singular
locus of W and we determine the general singularities.

All the representations we consider in the following are finite di-
mensional linear representations over C of finite groups.

We need the notion of isomorphism of two representations p: H —•
GL(K) and p'\ Hf —• GL(K;) of not necessarily identical groups
H, Hf. The definition is obvious. The representation p: H —> GL(F)
is called small if no element in the image of p has 1 as eigenvalue of
multiplicity dim V - 1. We gather in the following proposition the
results we need from [Pr].
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PROPOSITION 2. Two small faithful representations p: H —• GL(F)
and pf: //' —> GL(F') <zre isomorphic if and only if the germs of ana-
lytic space (V/H, 0) <zm/ (V'/H', 0) are isomorphic.

A small faithful representation p: H -> GL(F) w identically equal
to the identity if and only if (V/H, 0) is nonsingular.

Now let u be a point of W and x an element of X such that
u = π(x). Put 7/ = Stabx and let N be an //-invariant complement
to Tx(xG) in TX(X). By the slice theorem ([Sch], p. 56) and the fact
that π is affine, there exists an isomorphism of germs of analytic space
(W, ύ) -^ (N/H, 0). Call p = ρx N the representation of H defined
by its action on N and pf — pζ N the faithful representation of
///Kerp induced by p. The isomorphism class of the germ {W, u)
depends only on the isomorphism class of the representation p. We
say that the representation p = ρx N is associated to the point u =
π(x).

THEOREM 2. The set S is the singular locus of W. Representations
associated to the general singularities, which are given in Table 3, are
faithful and small

The following corollary is immediate by Proposition 2.

COROLLARY. The isomorphism classes of the associated representa-
tions classify the general singularities up to isomorphism.

TABLE 3. Associated Representations. Here Γ is the com-
ponent of π(Inv£), x is the element of the general orbit
over Γ such that Stabx = (g), P = PX,N is a represen-
tation of Stabx associated to u = π(x)

Γ
A
B

C

D

E

F

G

Stabx

c 2
c 2
c 3

c5

c5
Q

1,
1,

1,

1,

£7,

1,

1,
1,

1,

£ 5 ,
£ 5 ,
£7

2>
1,

Eigenvalues of

1,
1,

1,
ζ2

£5,

£ 2

1,

1,
1,

£3,
ζ2

ζ2

£?'
£3,

1,
- i ,

£3,
ζl

ζ2,

ζ4,

£3,

Pig)
- 1 ,
- 1 ,

£3,

£ | ,

£ 5 ,
£3,

- 1 ,
- 1 ,

£ L
Cl

£7,

£3,

- 1
- 1

£ 3

2

£ 5

4

α
£7
£3
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Proof of Theorem 2. It is clear that the representations in Table 3
are faithful and small. We have to prove that they are associated to
the general points of the components of S.

First of all we recall some generalities on infinitesimals of first order.
Let X be an analytic space, x e X. Let C[ε] be the algebra of dual
numbers. Let Specan C[ε] be the analytic space with only one point
o and with local ring C[ε] at that point. We use the notation

X(C[ε])x = H o m ( ( S p e c a n C [ ε ] , o),(X, x))

for the set of C[ε]-valued points of I at x .
The map

jc, C) - H o m c _ a l g l o c ( ^ , x , C[e]),

t —• u = x + εt

establishes a bijection of TX(X) onto X(C[ε])x .
Now denote by X the set of stable elements of V4 x V6 and by

G the group GL 2/(±/) as before. Let x e X. The orbital map
p: G —• X, g »-• xg is etale because Stabx is a finite set. We get the
following commutative diagram:

G(C[e])x - ^ X(C[ε])x

<p\

M 2 ( C ) -J-+ V4xV6

w h e r e w e i d e n t i f y Tχ(G) = 7 / ( G L 2 ) = M 2 ( C ) = 2 x 2 m a t r i c e s ,
TX(X) = TX(V4 x Vβ) = V4xV6, TX(G) = Im dρλ and φ and ψ are
the bijections described above. Note that p and dp\ are injective.
We have a canonical basis t\, . . . , t4 of Im dp\ namely the image of
the canonical basis

1 °\ E = ( ° ι\ E = (° °\ E = ί 0 °
of M 2 (C). It can be computed explicitly from the equation

x (/ + εEi) = x + εti

which follows from
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and
{ψo dpι){ei) =x + eti.

Now let us explain how to choose N. Let θ: V4 x V6 -^ C 1 2 be
the isomorphism defined by the canonical basis, (t4, 0), (t3s, 0), . . . ,
( s 4 , 0 ) , ( ( M 6 ) , . . . , o f F 4 x F 6 . L e t U =
Let A be the matrix

α 4 , 0 " ' α 0 , 4
4 . . . 4

The row space of A is Im d/^ . We choose a square submatrix B Of
4̂ such that detl? Φ 0. The submatrix 5 is gotten from A by deleting

a row (α£ z) (resp. a row (βι

m>n)) if and only if (fc, /) e D (resp.
(m, n) e E) for well determined sets D, E. The subspace N = NB

generated by ( ί V , 0), (k91) e D and (0, tmsn), (m9n) e E is a
complement of Im dp\. This is obvious by considering their images
under θ.

To calculate the matrix A we use the following formulas, where
/ = ΣafijPs-i is an element of Vn .

We indicate the explicit choice of the square submatrix B in each case
by underlining the corresponding columns of A. The reader should
keep in mind Table 2.

Case A. By setting

κ= - ( 1

λ = k2,

μ= - [m1 + n2 + p2),
9 9 ? 9 9 9

π = - m2n2p2,

the general element x can be written

(a = t* + κi1s2 + λs

\b = c(te + //ίV +
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The matrix A has the form
4
0
0
0

0
4

2κ
0

2κ
0
0
2κ

0
2κ
4λ
0

0
0
0
4λ

6c
0
0
0

0
6c
2μc
0

4μc
0
0
2μc

0
4μc
4ι^c

0

2vc
0

0
4Ϊ/C

0
Avc
βπc

0

0
0
0
βπc

and the submatrix B consists of the underlined columns. It is clear
that deti? φθ for k, m, n,p general enough.

The action of g = (~1

 t ) on Nβ is given by

s4; t6 t5s, t4s2 3s3
t3s t2s4

ts5

+ 1, + 1 , - 1 , + 1 , - 1 , + 1 , - 1 , +1
where the first line is the canonical basis of Nβ which consists of
eigenvectors of g and the second line are the corresponding eigenval-
ues.

In the following cases we just indicate the matrices A, B.

Case B. Here

v = m
2
n

2
,

4 0 2κ 0 0

0 4 0 2κ 0

0 2κ 0 4 0

0 0 2κ 0 4

0 6c 0 3μc 0 uc 0
0 0 6c 0 3μc 0 i/
c 0 3μc 0 5ẑ c 0 0
0 c 0 3μc 0 5i/c 0

C. Here

0
0

μ = (m
3

0 -4

0 0

0 0 3 0 0
1 0 0 - 4 0

0 0

6c 0

v = nv'rr'

0
0

3μc
3μc

0
0

0
0

6vc
0

Case D.
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 4

0 6c 0 0 3μc 0 0

0 0 3μc 0 0 βvc 0

0 5c 0 0 0 0 0
0 0 5c 0 0 0 0
c 0 0 0 0 -6c 0
0 c 0 0 0 0 -6c

Case E.
0 0 0 1 0
0 0 0 0 1
0 0 3 0 0
0 0 0 3 0

0 0 4 0 0 0 0
0 0 0 4 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
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Case F.
0 3 0 0 0
0 0 3 0 0
1 0 0 0 0
0 1 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 5 0 0
0 0 0 0 0 5 0

Case G. Here

μ = - 1 - m - n —p,

v
 = m
 +

 n
+p + mn + mp + np

π = pmn - mp -np - mnp,

p = mnp,

0

0 5 4μ Zv 2π p 0

0 0 5 4μ 3v 2π p

0 μ 2v 3π Ap 0 0

0 0 μ 2v 3μ 4p 0

The reader can check by specialization that the underlined matrix
B has det B φθ for m, n, p general enough.
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