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MODULI OF LINEAR DIFFERENTIAL EQUATIONS
ON THE RIEMANN SPHERE

WITH FIXED GALOIS GROUPS

MICHAEL F. SINGER

For fixed m and n , we consider the vector space of linear differen-
tial equations of order n whose coefficients are polynomials of degree
at most m . We show that for G in a large class of linear algebraic
groups, if we fix the exponents and determining factors at the singular
points (but not the singular points themselves) then the set of such
differential equations with this fixed data, fixed Galois group G and
fixed (/-module for the solution space forms a constructible set (i.e.,
an element of the Boolean algebra generated by the Zariski closed
sets). Our class of groups includes finite groups, connected groups,
and groups whose connected component of the identity is semisimple
or unipotent. We give an example of a group for which this result is
false and also apply this result to the inverse problem in differential
Galois theory.

1. Introduction. In this paper we consider the set J?(n, m) of
homogeneous linear differential equations

n m

(1) L(y) = an{x)yW + • + <*)(*) = Σ Σ aUχJy(i)

of order at most n whose coefficients are polynomials of degree at
most m with complex coefficients. By identifying Le.^f{n, m) with
the vector (αz ;), one sees that <£?(n, m) may be identified
with an affine space c ( " + 1 ) ( m + 1 ) . Let G be a linear algebraic group
and V a G-module. One would like to understand the structure of
&{n, m, G, V), the set of L e &(n , m) with Galois group Gal(L)
equal to G and having solution space Soln(L) isomorphic to V as a
G-module. In general 2C{n, m, G, V) is not a Zariski closed subset
of 5f(n, m) or even a constructible subset of £f{n, m) (i.e. an ele-
ment of the Boolean algebra generated by the Zariski closed sets). To
see this consider the family of equations Lc(y) = xy' -cy = 0, c eC
The Galois group is a subgroup of C*, the multiplicative group of
nonzero complex numbers. It equals C* if and only if c is not a
rational number. If c = p/q, p, q € Z, (p, q) = 1, then Gal(Lc) =

343



344 MICHAEL F. SINGER

Z/<?Z. Therefore -2^(1, 1, C*, C) is not constructible. Another ex-
a m p l e i s t h e f a m i l y L a ^ b { y ) = y" - (a + b)yf + a b y = 0, a ^ b eC. A
fundamental set of solutions is {eax, ebx} and Gal(Lfl j^) c C* x C*
with equality if and only if a and b are linearly independent over
Q. Therefore -2*(2, 0, C* x C*, C2) is not constructible. Note that
in the first example c is an exponent at the singular point 0 and in
the second example ax and bx are determining factors at infinity
(see §2(c) for precise definitions). In this paper we show that for G
in a large class of linear algebraic groups, if we fix the exponents and
determining factors at the singular points (but not the singular points
themselves) then we can insure constructibility of the set of linear
differential equations with this fixed data, fixed Galois group G and
fixed G-module for the solution space.

To make this precise, let W be a finite set consisting of elements of
C. We denote by Jϊf(n , m, W) the set of L e 5f(n , m) such that at
any singular point a of L, the exponents at a belong to W . We re-
fer to W as a set of weak local data. ^f{n , m , W) is a constructible
set. Let &{n9 m, W, G, V) =5?(n, m, W)n*&(n9 m9 G, V). If
G is a linear algebraic group and G° is its connected component of
the identity, we denote by KerX(G°) the intersection of all char-
acters χ: GΌ -> C* of G°. Theorem 3.14 below implies that if
G° = KerX(G°), then for fixed G-module V and fixed n, m and
W, Jϊf(n, m,W, G, V) is a constructible set. In particular, if G
is finite or if G° is semisimple or unipotent, then this result holds.
In §3, following this result, we present an example (due to Deligne)
of a parameterized family of second order fuchsian linear differen-
tial equations with fixed exponents such that for all parameters the
Galois group will be a subgroup of C* xi Z/2Z but such that the set
of parameters for which the Galois group is C* x Z/2Z is not con-
structible. This shows that if G° φ KerZ(G°), it is not generally true
that a5f(n9 m,W9G9V) is constructible. Nonetheless, we are able
to weaken the assumption that G° = KerX(G°) in the following way.

Let 2 be a finite set consisting of elements of C and polynomi-
als with coefficients in C. We denote by Jΐf(n, m, 9ί) the set of
L G J?(ft, m) such that at any singular point α of L, the expo-
nents and the determining factors at a belong to 2 . We refer to
2! as a set of local data. ^f{n, m, 2) is a constructible set. Let
&(n, m,3f9 G, V) = ^{n, m,3ί) n&(n9 m, G, V). Deligne's
example shows that, in general, £f{n , m 93S, G 9 V) is also not con-
structible. For arbitrary G, KerX(G°) is not only a normal sub-
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group of G° but also a normal subgroup of G and G°/KerX(G°) is
a torus. There is a natural action of G/G° on G°/KεrX(G°). The-
orem 3.16 below states that if the action of G/G° on G°/KεrX(G°)
is trivial, then for any fixed G-module V and fixed n, m and 2 ,
^f{n, m, ^ , G, F) is a constructive set. In particular, if G is con-
nected, J?(fl, m, ^ , (7, F) is constructible. We also give an exam-
ple to show that one must fix both the exponents and the determining
factors and not just the exponents as in Theorem 3.14.

When one restricts oneself to linear differential equations with only
regular singular points (the fuchsian equations), the parameters re-
maining free after one fixes the exponents at the singularities are
called accessory parameters (see [HI15] for a discussion of this clas-
sical notion). Our main result states that if the action of G/G° on
G°/KerX(G°) is trivial, then when one fixes the exponents of a fuch-
sian equation, algebraic conditions on the accessory parameters and
the singular points determine if the equation has Galois group G.

Phenomena similar to our main results are known to already occur
when one looks at the Lame equation:

Ln,B,e3(y) = f W + hf{x)y' - (n{n + l)x + B)y,

where f(x) = 4(x - e\)(x - β2)(x - ^3), the βι are distinct, β\ is
fixed and ^ 1 + ^ 2 + ^ 3 = 0. The exponents at each et are 0 and
1/2. At infinity the exponents are -n/2 and (n + l)/2. Several au-
thors have investigated the problem of determining those n, B and
e3 such that LniB,e3(y) — 0 has only algebraic solutions. In this
case the Galois group G c GL(2, C) will be finite and coincide with
the monodromy group (see [SI81] or the discussion in §4 of this pa-
per). Brioschi showed (see [POO66], §37) that if n + \ is an integer,
there is a non-zero polynomial p e Q[u, v] of degree n + \ in v
such that LHyB,e3{y) = 0 has only algebraic solutions if and only if
p(ei, B) = 0. Furthermore, he showed that if this is the case, the
image of G in PGL(2, C) is the non-cyclic abelian group of order 4.
Baldassari [BA81], [BA89], Chiarellotto [CH89], and Dwork [DW90a]
have also studied algebraic solutions of the Lame equation. Dwork
shows that if 2n is not an integer then, for fixed n, there are only a
finite number of pairs (e$, B) such that G is finite. This is a con-
sequence of the following general result of Dwork. Consider the set
of second order fuchsian homogeneous linear differential equations
with m + 1 singular points. Assume that three are fixed at 0, 1, 00
and that the Wronskian is constant. Fix the exponent differences,
μι, . . . , μm+\ in Q and assume the /th singular point is apparent
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(resp. regular) if μ, e Z, μt > 2 (resp. μx• — 1). Dwork shows that
if we fix a finite subgroup G of PGL(2, C), then the set of such
equations whose Galois group has image G' in PGL(2, C) is a Q-
constructible set of dimension bounded by Inf(/>, m - 2) where p is
the number of / such that μz G Z, μ, > 1. (For the Lame equation,
if 2n is not an integer, the projective image of the Galois group is
either the octahedral or icosahedral group.) Dwork's proof relies heav-
ily on the fact that such an equation must be the weak pullback of a
hypergeometric equation whose exponent differences appear in a list
compiled originally by H. A. Schwarz. For higher order equations or
infinite groups there does not seem to be a similar fact. The proof of
our main result proceeds in a different manner, which we now outline.

Let G be a linear algebraic group, W a set of weak local data
and 2 a set of local data. One of the key ideas in this paper is that
knowing n and m and having a bound on the exponents of some
L G Jϊ?(n, m) allows us to bound a priori the exponents and degrees
of coefficients of operators L\ and L2 such that L(y) = Lχ{L2{y)).
This information also allows us to bound the exponents and degrees of
the coefficients of certain auxiliary equations that we construct from
L. This will be used in the following way. For example, it is known
that Gal(L) c SL(/i) if and only if WΓOΊ ,...9yn) = R(x) G C(x)
where Wr is the Wronskian determinant and {y\, . . . , yn} is a basis
of Soln(L). Knowing that L e ^{n, ra, W) allows us to find an
N that bounds the degrees of the numerators and denominators of
possible R(x) G C(x) (in fact, to find JV it is enough to assume
L EL<2f(n, m) and to have a bound B on the real parts of exponents of
L). Therefore for L eS?{n9m,W), Gal(L) c SL(Λ) is equivalent
to the statement "There exists a basis {y\, . . . , yn] of Soln(L) and
a rational function R(x) whose numerator and denominator have
degree < N such that Wr(yi, . . . , yn) = R(x)." We use elimination
theory to show that this is a constructible condition. We note that we
not only use the usual elimination theory for algebraic sets but also
use the elimination theory for differential algebraic sets (originally
due to Seidenberg, [SEI56]; see §3(a)). In a similar way we can show
that for any group G, the condition " Gal(L) c G " is constructible
(Proposition 3.1). This is enough to show that Jzf{n, m,W\ G, IQ
is constructible when G is finite, since G then has only a finite number
of subgroups and constructible sets form a Boolean algebra. This also
allows us to show that if Gal(L) c G , " Gal(L) is mapped surjectively
onto G/G° by π: G -• G/G° " is constructible.
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Assuming Gal(L) c G, we then show that "KerX(G°) c Gal(L)"
is a constructive condition. To do this, we need the following con-
cept. If V is a G-module and χ is a character, we let Vχ = {v e
V\g ^ = X(s) v for all g e G}. For distinct χ\, X2, Vχx and
J^ are independent. Let C\\Q{V) — 0 Vχ, the sum being over all
characters. We show that for any G there is a G-module W7 such
that if H is a subgroup of G, then Ker(G°) c H if and only if
ChGo{W) = ChfinGo(W). We also show that if Gal(L) c G, then
W is isomorphic to a Gal(L) submodule of K, the Picard-Vessiot
extension of C(x) associated to L. Furthermore, W = Soln(L)
for some L whose order, degree of coefficients and weak local data
can be determined from weak local data for L. The condition that
OΔG°{W) — ChGal(LjΠG°(W) is then shown to be equivalent to certain
factorization properties of L and these are constructible properties
because we have bounds on the exponents and degrees of the coeffi-
cients of L.

Given the facts that Gal(L) c G, Gal(L) is mapped surjectively
onto G/G° by π: G -> G/G° and KeτX(G°) c Gal(L), we need
only show that dim(Gal(L)°/KerX(G0)) = dim(G°/KerX(G0)) to
conclude that G = Gal(L). We show that dim(Gal(L)°/KerX(G0)) -
dim(G°/KerX(G°)) is equivalent (under the assumption that G/G°
acts trivially on G°/KerZ(G°)) to the statement that K contains
dim(G°/KerX(G°)) algebraically independent elements zz such that
z\jzι G C(x). Knowing local data 2! for L (and not just a bound)
allows us to show that this condition is also constructible.

The rest of the paper is organized as follows. In §2 we present facts
from group theory, Galois theory and the structure theory of singular
points of linear differential equations that are needed in subsequent
sections. In §3 we discuss the elimination theory needed to show sets
are constructible, use this to show various subsets of J?(n, m) are
constructible and prove the main results. In §4 we give two applica-
tions of Theorem 3.14. In the first, we show, using results of [DW90b]
and [KA70], that the set of L{y) e &(n, m) having fixed finite Ga-
lois group, k singular points and fixed exponents has dimension at
most k. In the second application, we are able to show, by refining
techniques of [TT79], that for any connected linear algebraic group
defined over C c C and any faithful G-module V of dimension n
defined over C, there is an integer m and a finite set S c C such
that <5f{n , m, S, G, V) is not empty. We show that this in turn im-
plies that any linear algebraic group G, defined over an algebraically
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closed field C of characteristic zero, with G/G° acting trivially on
G°/KerX(G°), is the differential Galois group of a homogeneous lin-
ear differential equation with coefficients in C(x), xf — 1. To do
this it is important that we show that all the constructible sets we deal
with are defined over C.

The author wishes to thank P. Deligne for many helpful comments
on earlier manuscripts. In particular he suggested that one should
think of a connected group G in terms of KerX(G) and G/KerX(G)
and that invariant lines in some representation would guarantee that a
subgroup of G contains Ker X(G). B. Dwork also made many helpful
comments and suggested the application in §4(a). We would also like
to thank A. Duval and M. Loday-Richaud for allowing us to see the
preprint [DL89] which contains calculations that helped us formulate
Theorem 3.16. Some of the results presented here were formulated
and proved at the Universite Louis Pasteur in Strasbourg during a
visit in May 1989. We would like to thank the mathematicians at
this institution, and especially C. Mitschi, J.-P. Ramis and the late J.
Martinet for their intellectual as well as financial support.

2. Ancillary results.

a. Group theory. In this section we investigate the following prob-
lem: Given a connected algebraic group G, does there exist a represen-
tation of G in which we can distinguish G from all of its subgroups
H using invariant subspaces, that is, in which for any subgroup H,
there is an H invariant subspace not left invariant by G ? As we shall
see (cf. the discussion following Proposition 2.7), this is not true in
general. Our main result (Proposition 2.9) implies that we can find a
representation such that if H cannot be distinguished from G by an
invariant line then H contains the intersection of the kernels of all
characters of G. Let C be an algebraically closed field of character-
istic zero, let G be a linear algebraic group defined over C and let
V be a G-module. In this paper, all G-modules are assumed to be
finite dimensional. If χ: G —> C* is a character of G, we define the
χ-space Vχ of V to be {v\g v = χ(g) v for all g e G} . Note that
non-zero elements of different /-spaces are linearly independent and
therefore that Vχ Φ {0} for only a finite number of χ . The character
submodule C h ^ F ) of V is defined to be 0 Vχ where the sum is
over all characters of G. Let X(G) be the group of characters of G
and let KerX(G) = C\xex{G) K e r ( # ) KerX(G) is a normal subgroup
of G. X(G) is a finitely generated abelian group ([HUM81], p. 103)
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so KerX(G) = f|£Li Ker(χ/) for some finite set of characters. If G
is connected, then X{G) is torsion free so (χ\, ... , χm)' G —> (C*)m

maps G onto a torus. Therefore, if G is connected, G/KerX(G) is
a torus. If V is a (j-module and H is a subgroup of G, we define
F ^ = {u|λt; = v for all h e H} .

We begin by giving a group theoretical characterization of Ker X(G).
A Levi factor of G is a reductive group P such that G = RU(G) x P
is the semidirect product of P and the unipotent radical RU{G). In
characteristic 0, Levi factors exist and are all conjugate. Furthermore,
if H is a connected reductive subgroup of G, then H belongs to
some Levi factor of G ([MO56]). 4

LEMMA 2.1. Let G be a connected linear algebraic group, RU{G) be
its unipotent radical and P a Levi factor. Ker X(G) is the group gener-
ated by (P, P) and RU{G). Furthermore, all characters of KerZ(G)
are trivial and KerX(G) is connected.

Proof. Any character of G is trivial on (P, P) and RU(G) so these
groups are contained in KerX(G !). To prove the other inclusion note
that since P is reductive, P = (P, P) -T where T is a central torus
of P ([HUM81], p. 125 and p. 168). Since G = Ru(G)xP = Ru(G)χ
((P, P) T), we see that RU(G) (P, P) is a closed normal subgroup
of G such that the quotient is a torus. Therefore RU(G) (P, P) D
KerX((r). Note that (P, P) is semisimple so all of its characters
are trivial. Since all characters of RU(G) are trivial, all characters
of KerX(G) are trivial. Since RU(G) and (P, P) are connected,
KQTX(G) is connected. D

LEMMA 2.2. Let G be a connected algebraic group and V a G-
module then ChG(F) = vKeτX^ .

Proof. Since ChG(V) is the sum VXχ Θ Θ VXn of /-spaces and
each / f is trivial on KerX(G), we have ChG{V) c VKQΐX^ . On the
other hand, vKerX^ is a G-submodule of V and the action of G
on KK e r X(G) factors through the action of G/KevX(G) on F . Since
G/KevX(G) is a torus, this action is diagonalizable so F K e r X ( G ) c

D

LEMMA 2.3. 2>/ G be a connected linear algebraic group, V a G-
module and H a subgroup of G such that KerX(G) c H. Then



350 MICHAEL F. SINGER

Proof. We have ChG(F) c ChH{V) c ChKeΐX{G). Since

O l K e r W H = V^X^ = ChG(F),

we can conclude Ch#(F) = ChG(V). D

Our aim now is to show that for an appropriately chosen V, the
converse of Lemma 2.3 is true (Proposition 2.9).

LEMMA 2.4. Let G be a connected semisimple linear algebraic group.
There exists a G-module V such that for any proper connected sub-
group H, ChG(V)ζChH(V).

Proof. For any subgroup H of G, there exists a G-module WH

and a one dimensional subspace L# c WH such that H = {g e G\g
LH = LH} ([HUM81], p. 80). G has, up to conjugacy, only finitely
many maximal proper closed connected subgroups, say H\, ... , Hn

([DY52]). Since G is semisimple, G = (G, G) so any character of
G is trivial. Therefore for any G-module, ChG(F) = VG. This
implies ChG{WH) C ChH(WH) for / = 1, . . . , n. Therefore V =
WHX Θ θ WH satisfies the conclusion of the lemma. D

LEMMA 2.5. Let G be a connected reductive group. There exists
a G-module V such that for any connected subgroup H of G, //
Ch//(F) = Ch G (F), then KerX(G) c H.

Proof. We first note that since G is reductive, RU(G) is trivial.
Therefore KerX(G) = (G,G). Let G = (G,G)-T where T is a
central torus. Let π: G —• G/R(G) be the canonical projection and
H a connected subgroup of G such that π(H) = π(G). We claim
that KerX(G) = (G, G) c i/ . To see this let y = ytfiy^y^1 - We
write yi = h\C\, y2 = ^2^2? h\, hi ^ H, c\, c^^T. Since the c,
are central y = h^h^h^1 e H, so (G, G) c H.

To construct F , note that GjR{G) is semisimple. Let F be the
G/R(G) module (and, a fortiori, a G-module) guaranteed to exist by
Lemma 2.4. By the above remarks, for any connected subgroup H
of G we have that either π(H) is a proper subgroup of G/R(G) or
KerX(G) = (G, G) c H. Therefore if H is a connected subgroup
of G and Ch#(K) = Ch G (F) , then π(H) = G/R(G) so KerX(G) c
H. ή

LEMMA 2.6. Let G be a connected linear algebraic group. There
exists a G-module V such that if H is a closed connected subgroup of
G with RU{H) C RU(G) then ChG(F) C ChH(V).
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Proof. First assume that the unipotent radical of G is of the form
Cn , i.e., the n-fold product of the additive group of the field. Let P
be a Levi factor of G and write G as a semidirect product of Cn

and P, G — Cn x P. Using this decomposition, we can define an
action of G on Cn as follows. Each element p of P induces an
automorphism of Cn via conjugation. For each g — (c, p) e G and
Co € C", we let c^ = c + pcop~ι. This defines a group action and so
induces an automorphism of C[Cn] = C[x\, . . . , xn] that preserves
the degrees of polynomials in this ring. Let W be the polynomials of
degree at most 1 in this ring and let V be the exterior algebra of W.
We claim that V satisfies the conclusion of the lemma. To see this,
let H be a connected subgroup of G such that RU(H) c RU(G). We
wish to show ChG(F) C ChH(V). If H{ = gHg~ι for some g e G,
then ChHι(V) = gChH(V). Therefore it is enough to show ChG(V) C
Chj^ (V) for some conjugate H\ of H. In this way we may replace H
by a conjugate and so write H = Ru(H)χ\PH where PH is a Levi factor
of // and PH c P. Since RU{H) C RU(G), there exist homogeneous
linear polynomials f\9 ... , fm € W such that RU(H) is the set of
zeros of f\, ... 9 fm and such that the span of f\, ... 9 fm is invariant
under the action of / / but not of (?. Therefore /iΛ Λ / m G Λ m ^
spans an //-invariant line that is not G-invariant. We shall show that
A Λ Λ fm is not in Ch G (F) . Since ChG(F) = φJLj ChG(Λz ^ )
it is enough to show that f\Λ--Λfm $ ChG:(/\w ίF) . By Lemma
2.2 ChG(Λm W7) = (Λm W)KerX(G). Since ΛM(C?) C KerX(G), it is
therefore enough to show fλ Λ Λ fm $ (f\m W)Ru^ .

If X\, ... , xn are indeterminates, then W has a basis of the form
x0 = 1, xx, . . . , xn . I claim that (Λm W0*M(G) is the span V of
{lΛx/2Λ Λx/w|0 < Ϊ2 < < im} To see this, let £ = (c\, . . . , cn) G
C" =2RU(G). "We then have g(l Λ xt Λ Λ x/ ) = 1 Λ x, Λ Λ
A:/ and, if 0 < zΊ < < im, then g(xi Λ Λi/ ) = i/ Λ Λ
χim + Σ L i t - i y - ^ / O Λ xi{ Λ Λ Jc, . Λ Λ x/m). Therefore F c
(Λm W)R»(°). Now let v e (Λm ί F ) ^ ( G ) and assume v £ V. We
may assume ^ = ^ c / ^ Λ Λ XfJ where the sum is over all / =
(i\, . . . , im) with 0 < i\ < < im . We wish to show cj = 0 for all
such / . If not, we may assume without loss of generality that c\ Φ 0
for some / of the form (1, i2, . . . , im) Letting g = (1, 0, ... , 0)
then

gv =v + Y^ Cjί 1 Λ Xi Λ Λ Xi ) .

7=(l , i 2 , . . . ,/J
I<ί2< <ίm
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Since gv = υ , we must have cj = 0 for all / of the form (1, /2 , . . . ,
im) , a contradiction. Therefore Ύ = (/\m W)R«W .

To show that fx A •• A fm £ (/\m W)*«(G) it suffices to note that
/i A Λ fm — V} CjXt Λ Λii where the sum is only over / of the

1 tn

form (i\, . . . , im), 0 < z*i < < /m , and so f A • Λ fm cannot be
in V.

We now remove the assumption that RU(G) = Cn and consider the
general case. We may assume that RU(G) is not trivial, otherwise the
lemma becomes trivial. Any maximal subgroup of RU{G) has codi-
mension 1 in RU(G) and so contains the commutator of RU(G). Let
F be the intersection of all maximal subgroups of RU(G). F is a
characteristic subgroup of RU(G) and is therefore normal in G. Fur-
thermore, RU(G)/F is commutative and unipotent, so is isomorphic
to Cn for some n > 1. Therefore G/F has unipotent radical of the
form Cn and we can use the above to find a G/F-modu\e satisfying
the conclusion of the lemma. This gives the required (/-module. D

PROPOSITION 2.7. Let G be a linear algebraic group with G° be-
ing the connected component of the identity. There exists a faithful
G-module V such that for any closed connected subgroup H of G,
KerX(G°) c H if and only if ChGo(K) - ChH{V).

Proof. Since G°/RU(G°) is connected and reductive, let V\ be the
G°/RU(G°) module guaranteed to exist by Lemma 2.5. Let Vι be the
G°-module guaranteed to exist by Lemma 2.6. Let F3 be any faithful
G° module and let W = Vx θ V2 Θ V3. Let g{ = id, g2, ... , gm be
coset representatives in G/G° and let V = g\ W θ θ gm W be the
induced G-module. We will show that V satisfies the conclusion of
the proposition.

First note that if KevX(G°) c H then Lemma 2.3 implies that
ChGo(F) = ChH(V). Now assume ChGo(K) = ChH(V). Since W
is G°-invariant, we also have ChG°(W) — C\\H{W) . We shall show
from this assumption that KerX(G°) c f f . To do this, Lemma 2.1
implies that it is enough to show RU(G°) c H and (P, P) c H, for
some Levi factor P of G°. Let π: G° -> G°/RU(G°) be the canonical
projection. Since C h ^ F O = Ch#(Fi) and G=^G°/RU(G°) is reduc-
tive, Lemma 2.5 implies that (G, G) = KerX(G) c π(H). Therefore
π(H) is reductive. This implies that RU(H) c Kerπ = RU(G°). Since
ChGo(F2) = Ch//(F2), Lemma 2.6 implies that RU(H) = i?w(G°). Let
P// be a Levi factor of H and P ô a Levi factor of G° containing
PH. We may identify PG with π(G°) - G and / ^ with π(//). Since
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(G,G)c π(H), we have (PG, PG) c PH c H. Therefore Lemma 2.1
implies KerX(G°)c/7. D

The above result implies that if RU(GΌ) = R(GΌ), then there ex-
ists a G-module V such that for any connected proper subgroup
H of G, ChGo(F) C ChH{V). This follows from the fact that if
RU(G°) = R(G°) then any Levi factor P is semisimple so P = (P, P).
Therefore G° = Λ(G°) P = i?w(G°) (P, P) so G° = KerX(G°). If
one removes the condition that RU(G°) = R(G°) then this conclusion
will not hold. For example, if G is a torus then any representation
of G is diagonalizable so for any G-module V and subgroup //,
V = Ch(7(F) = Ch/y(K). In fact, one cannot hope to use invari-
ant subspaces to uniformly distinguish a group from its subgroups.
To see this let T = (C*) r be a torus of dimension r > 1 and V
be any Γ-module. T is diagonalizable so V = VXχ@ •- @VXn for
distinct characters χ i , . . . , χn of T. For integers Π\, . . . , nr, let
Tnx,...,nr = {(fli, . . . , αr) G Γ| Π^^ /̂2' = 0 Since any character / of
Γ is of the form χ(αi, ... , ar) = Π/=i α Γ' ^ 0 Γ s o m e w, € Z, we
can find π i , . . . , nr such that the χ\, ...,/« are distinct characters
of Tni9mmm9nr. For such a subgroup, any invariant subspace W will
be of the form W\® -- ®Wn where W[ c J^ and so will also be
Γ-invariant.

To handle proper subgroups of G that are not connected, we will
need the following lemma. This, in turn, depends heavily on the fol-
lowing theorem of Jordan: Let C be an algebraically closed field of
characteristic zero. There exists an integer valued function J(n)9

depending only on n, such that every finite subgroup of GL(n, C)
contains an abelian normal subgroup of finite index at most J(n)
(this is shown in [CR62, p. 285], where it is also shown that J(n) <
(VSn + I) 2 " 2 - (y/8n - I ) 2 " 2 ) . The following result is closely related
to Proposition 2.2 of [SI81].

LEMMA 2.8. Let C be an algebraically closed field of characteristic
zero. There exists an integer valued function N(n), depending only
on n, such that if G is a subgroup of GL(rc, C) and H is a normal
subgroup of G of finite index then there is a normal subgroup Hf of
G such that H c H'9 [G : Hf] < N(n), and ChH>(Cn) = ChH{Cn).

Proof. We proceed by induction on n . There are only a finite num-
ber of χ -spaces for H. Let V\, . . . , Vk be these spaces corresponding
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to χ\, . . . , Xk . Let m = max{dim V{\ . We distinguish between two
cases: m — n and m < n.

If m — n, then k = 1 and V\ — Cn. In this case 7/ is a sub-
group of Cn, the group of scalar matrices. Let PGL(n - 1, C) =
GL(rc, C J / C . Note that

PGL(/2 - 1, C) = SL(n, C)/(SL(/2, C) n C ) .

Let <£: GL(n, C)->PGL(w-l, C) and yr. SL(w, C)-+PGL(rc-l, C)
be the canonical homomorphisms. The kernel of φ contains H.
Therefore, (/>(G) is finite and so ψ~ιφ(G) is a finite subgroup of
SL(n, C) . Jordan's Theorem implies that there exists an abelian nor-
mal subgroup K of ψ~ιφ{G) of index <J(n). Let H1 = φ~ιψ(K).
Some power of each element in Hf is diagonal and Hf is abelian, so
we can simultaneously diagonalize all elements of Hr. Therefore, Cn

is the character module of Hι and H1 is normal in G.
We now turn to the case of m < n. Since H is normal in G, G

permutes the elements of {Vγ, . . . , Vk} and we get a homomorphism
of G into the symemtric group on k elements. Let K be the kernel
of this homomorphism. Each Vi is a Λ>module and H c K. Since
d i m ^ < n, there are subgroups /// of i£ such that [K : / / / ] <
JV(AZ — 1), H c //",- and F/ is contained in the character submodule
of Hi in F . Let Ή = [\Ht. We then have [K : Ή] < U[K : Hi] <
nN(n - 1) and C h ^ F ) = C h F ( F ) . Since [G: K]<n\, we have
[G : Ή] < n{n\)N(n - 1). Let G act on G/Ή by multiplication. This
induces a map from G to a permutation group. Let H' be the kernel
of this map. H1 is normal in G and [G : //'] < (n(n\)N(n - 1))!.
Since # c H' c /7, we have C h ^ ( F ) = Ch#(K). D

From these considerations, we see that N(n) can be defined induc-
tively by N(n) = max{/(n), (n(n\)N(n - 1))!}. We now generalize
Proposition 2.7 to deal with nonconnected subgroups H.

PROPOSITION 2.9. Lei G be a linear algebraic group with G° the
connected component of the identity. There exists a faithful G-module
W such that for any closed subgroup H of G, KerX(G°) c H if and

Proof. If KeτX(G°) c # , then Lemma 2.3 implies that for any
G-module W, ChGo(W) = ChHnGo(W).

To prove the converse, let V be the G-module of Proposition 2.7.
Let V have dimension n and let W = φf^)Si(V) where S^V) is
the zth symmetric power of V and N(n) is as in Lemma 2.8. We
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will show that this choice of W satisfies the conclusion of Proposition
2.9.

Let H be a closed subgroup of G and assume KerX(G°) is not
a subgroup of H. Applying Lemma 2.8 to H° c G° n //, we have
that there is a normal subgroup //' of G° Γ\H such that C h ^ F ) =
ChffoiV) and [G° n //: //'] < N(n). Since KerX(G°) is not a sub-
group of H, Proposition 2.7 implies that we have a v e Ch#°(K) =
Ch^(K) that spans an //'-invariant subspace that is not in ChG°(F)
Let h\ = id, . . . , hm be coset representatives of G° n /////' and let
w = ΠELi */(*>) e S m (K) . Since m < N(n), w e W. We will now
show that w eChHnGo(W) but w $ ChGo(W).

For any h e HnG°, we have λ(w) = Π™ i *(*/(*>)) = Uti WW1"))
where A, G //'. Since, for each / we have hi(v) = C[V for some c; e
C, Λ(ιx ) = c Π ^ i Λ/(w) = cw so w e ChHnGo(W). To see that w $
ChGo(W), Lemma 2.2 implies that it suffices to show w £ w K e r *( G °) .
Assume, to the contrary that g(w) — w for all g e KerX(G°). Since
the symmetric algebra S(W) of W is a unique factorization domain,
we must have that for each / there is a j and a cι e C such that
g(hi(v)) — Cihj(v). Therefore each g permutes the lines spanned by
the hi(v). For each /, the set of g e KerX(G°) such that g leaves
the line spanned by hi(υ) fixed is a closed subgroup of finite index
in KerX(G°). Since KeτX(G°) is connected (Lemma 2.1), we have
this subgroup is all of KerX(G°). In particular, h\ — id so for any
g E KerX(G°) there is a cg e C such that g(v) = cgv. The map
sending g to cg is a character so Lemma 2.1 implies all cg = 1.
Therefore v e F K e r ^ G °) = ChGo(F), a contradiction. α

b. Differential Galois theory. The basic reference for differential Ga-
lois theory is [KO73] (see also [KA57] and [SI89]). Here we recall some
facts to be used in this paper. Let F be a differential field of character-
istic zero. The subfield of constants C of F is the set of c in F such
that d = 0. If F c K are differential fields and y\, . . . , yn are ele-
ments of K, then F{yx, . . . , yn} and F(y\, . . . , yn) are the differ-
ential ring and differential field, respectively, generated by y\, . . . , yn

over F. If C is algebraically closed and L(y) = 0 is an nth order
homogeneous linear differential equation with coefficients in F, there
exists an extension K of F such that K and F have the same sub-
field C of constants and K = F(y\, . . . , yn) where y\9 ... ,yn are
solutions of L(y) = 0, linearly independent over the constants (such
a set is called a fundamental set of solutions of L(y) = 0). Such a
field is unique up to a differential isomorphism that is the identity
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on F and is called the Picard-Vessiot extension of F associated with
L(y) = 0. A differential automorphism σ of K leaving F fixed
takes each yt to some constant linear combination of y\, . . . , yn.
The group of these differential automorphisms is called the Galois
group of L(y) = 0 (or the Galois group of K over F) and is de-
noted by Gal(L) or Gdλ(K/F). It can be identified with a subgroup
of GL(n, C) . It is known that this group is a Zariski closed subgroup
of GL{n, C) and so is a linear algebraic group. There is a differential
Galois theory that identifies a closed subgroup H of Gal(L) with the
intermediate field E, F c E c K, of elements left fixed by all mem-
bers ofH. In particular an element z e ^ is in F if and only if
σ(z) = z for all <τ e Gal(L). Furthermore, if H is a closed normal
subgroup of Gal(L), then the field E of elements left fixed by H is
also a Picard-Vessiot extension of F with Galois group isomorphic to
Gdl{L)/H. Finally, the transcendence degree of K over F equals the
dimension of G. We shall also use the fact that elements z\, . . . , zm

of a differential field are linearly dependent over the constant subfield
if and only if Wr(zi, . . . , zm) = 0 where Wr is the Wronskian deter-
minant ([KA57], p. 21). This also implies that if L(y) has order n,
the dimension of the solution space of L(y) = 0 is at most n. The
following lemma will be used several times.

LEMMA 2.10. Let F be a differential field of characteristic zero with
algebraically closed field of constants C and let K be a Picard-Vessiot
extension of F. Let H be a closed subgroup of Gal(K/F) and E the
fixed field of H.

(i) If V c K is a finite dimensional vector space over C, then V
is the solution space of a homogeneous linear differential equation with
coefficients in E if and only if V is left invariant under the action of
H.

(ii) Let L{y) = 0 be a homogeneous linear differential equation
with coefficients in F and with solution space W in K. Let WQ be
a subspace of W left invariant by H. Then there exist homogeneous
linear differential equations L\{y) and L0(y) with coefficients in E
and with LQ monic such that Wo is the solution space of Lo(y) = 0

(iii) For z e K, z' j z e E if and only if there is a C-valued char-
acter χ of GsΛ(K/E) such that σ{z) = χ(σ)z for all σ e Ga\(K/E).

(iv) An element z e K is algebraic over F if and only if z is
left fixed by Gal(K/F)°, the connected component of the identity of
G?λ{K/F).
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Proof, (i) If V is the solution space of L(y) — 0, then since
H = Gal(K/E) takes solutions of L(y) = 0 to solutions of the
same equation, V is left invariant by GB\(K/E) . If V is left in-
variant by Ga\(K/E), let y\, . . . , yn be a basis of F . If L(y) =
Wr(y, y\, . . . , y«)/Wr(y!, . . . , yΛ) and σ e Ga\(K/E), then if we
apply σ to the coefficients of L(y), we get

I*(y) = Wr(j/, σ{yx),..., σ(yn))/Wτ(σ(y{), . . . , σ ( ^ ) )

= d e t ( σ ) W r ( y , y i , . . . , y r t ) / d e t ( σ ) W r ( y i , . . . , y n )

= Wτ(y9yl9...9yn)/Wτ(yl9...9yn).

Therefore, the coefficients of L(y) are left fixed by Gal(K/E) and so
lie in E.

(ii) By (i), there is a homogeneous linear differential equation Lo(y)
with coefficients in E whose solution space is WQ . We may write
L(y) = Lι(L0(y)) + R(y) where L\(y) and R(y) are homogeneous
linear differential equations with coefficients in E and the order of
R is less than the order of L0(y) ([POO60]). Since R(y) = 0 for
all elements of Wo and dim Wo is larger than the order of R(y), we
must have R = 0.

(iii) If z'/z = u G E, then L(z) = z' - uz — 0, so z spans
a one dimensional space invariant under the action of G2\(K/E).
Conversely if σ(z) = χ(σ)z for all σ e Gal(AyJE), then σ(z7z) =
z'/z9 so z 7 ^ = W G J E .

(iv) If z is left fixed by Gal(Λ7F)0 then z lies in the field £ fixed
by this group. Since Gal(K/F)° is of finite index in Ga\(K/F), E
has finite degree over F and so is an algebraic extension ([KA57], p.
18). Conversely, if z is algebraic over F, then the set of σ e G such
that σ(s) — z is of finite index in Gal(K/F) and so must contain

. D

c. Singular points. Let L(y) = an{x)yW H \-ao(x)y G Sf{n, m),
αw(x) 7̂  0. If an(a) = 0, we say that a is a singular point of
L(y) = 0. It is known that L(y) = 0 has a fundamental set of formal
solutions of the form

Vi = (* -

i = 1, . . . , n where £ = (x - a) 1 /" 1 , P/ is a polynomial without
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constant term, st < n and bij(t) £ C[[t]] and such that for each /,
some bij(O) φ 0 ([LEV75], [MAL79]). If all the P{ are 0, a is said to
be a regular singular point; otherwise it is called an irregular singular
point. If

y = (x- α ) ^ W ) T fe, (/)(log(x - a)J

as above, is a solution of L(y) = 0, then for some /, p = pt and
P = Pi. Such a P is called a determining factor at a and /? is
called an exponent at a. P\, . . . , Pr will be the determining factors
of L(y) = 0 at a if and only if Lt{y) = eΛO/Oj^-^U/Oy) has an
indicial polynomial at a of degree d[ > 0 and d\ + - - + dt = «
(the indicial polynomial /(r) is the coefficient of the term of low-
est degree when L((x — a)r) is expanded in powers of x — a where
r is an indeterminate ([IN56], p. 160)). p is an exponent at a if
and only if, for some /, p is the root of the indicial polynomial at
a of Li(y). We note that the indicial polynomial of Lt(y) has co-
efficients that are rational functions of the coefficients of Pι and the
coefficients of the a\. We define the local data 2$a at a to be the set
{p\ , . . . , / ? „ , Pi(x), . . . , Pn(x)} We define the weak local data Ψa

at a to be a set {p\, ... , pn} where the pi are the exponents in 2Ja .
Note that if a is not a singular point, then there exists a fundamental
set of solutions at a of the form yt = (x — ay~ιbι(x), / = 1, . . . , n ,
where bι(x) e C[[x - a]] and 6/(0) φ 0. At such a point 0 is the only
determining factor and the exponents are {0 , . . . ,« — 1}. Therefore
we define the local data at a to be {0, . . . , n — 1}. One can make
similar definitions for the point at infinity by letting x = \ and con-
sidering z — 0 in the transformed equation. Let 2 be a finite set
{/?i, . . . , /?r, Pi, . . . , Ps} where the ρt e C and the P/ are polynomi-
als without constant terms. We say 3ί is local data for L e £?(n , m)
if ^ α c 2f for all α e C U {oc} . Since any L e Jz?(n, m) has only
finitely many singular points, there is always some 21 such that 31 is
local data for L. Similarly, a finite set W is weak local data for L if
WadW for all αGCU{oo}. We say that a real number 5 is a local
bound for L if there is a ^ that is weak local data for L such that
|Re/?| < B for all p eW. Note that the definition of a local bound
only refers to the exponents and not the determining factors. We will
need a bound on the degrees of the determining factors as well. It
is known ([LEV75], [MA79]) that such a bound can be expressed in
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terms of the orders at singular points of the coefficient αz in L and
n. These orders can be bounded by m and so the degrees of the
determining factors can be a priori bounded in terms of m and n
(in fact, mn\ will be such a bound). For fixed 2$ (resp. W\ B) we
let &(n9m92f) (resp. J?{n,m,W)\ S?(n, m, B)) denote the set
of L G Sf{m, n) with the local data 2! (resp. weak local data W
local bound B). For any 2! (resp. W) there exists a B such that
&{n9m,3r) c &{n,m,B) ( r e s p . &{n, m , 3 Γ ) c & { n , m , B ) )
so having a local bound is weaker than having local data. The follow-
ing lemma shows that by knowing a local bound B for LeJϊf{n, m)
we can bound in terms of n, m, 5 , the degrees of the numerators and

denominators of rational functions y and u such that y or eJ u are
solutions of L(y) = 0. If we furthermore know local data for L, then
we can determine the coefficients in the partial fraction decomposition
of a u up to some finite set of possibilities.

PROPOSITION 2.11. (i) Let L G J5f(n, ra, B). There exists an inte-
ger N, depending only on n, m and B such that if y G C(x), y Φ 0,
αfttff L(}>) = 0 then y is the quotient of two polynomials of degree

(ii) Let L G S*{n9 m9 B). There exists an integer M depending

only on n, m and B such that if u G C(x) and L(eJ u) = 0 then u
is the quotient of polynomials of degree < N.

(iii) Let L G <S?{n, m, 2f). There exists a finite set S? and an
integer M, both depending only on n, m and 2 such that if u G C(x)

and L(elu) = 0 then

(2.11.1) u =
i = l

where s, ί < M , rii < M for i — 1 , . . . , / αA2ύf ̂ αcΛ α / ; α«ύf bj ES^ .

Proof, (i) Let y = | where p, # G C[x], (/?,#) = 1 and <? =
Y\(x - ai)n>. Each α, must be a singular point of L(y) and each
Ί%i is an exponent at α z . Since there are at most m finite singular
points, degg = X) Λ, < mB. At infinity deg^ - deg/? is an exponent
so deg/? < deg^ + B < (m + \)B.

(ii) and (iii) Let L G JS?(n, m) and let u be as in (2.11.1). For any

oίi, we have el u = (x — α/)α/iexp(/ Σ/L2 r~LLy)Φ(χ) where φ(x) is
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in C[[x-ai]]. Therefore,

is the derivative of a determining factor at α/ and α/i is an exponent
at at. If α, is not a singular point, we have that rt\ = 1 and α/i
is a positive integer. At oo, bsx

s + - - + bo is the derivative of a
determining factor and - £ ^ = 1 α/i is an exponent. Therefore if L e
J?(ra, n, B), each Λ/ can be bounded in terms of n and m and
I Σ ί =iReα, i| < £ . If we write Σ/=i */i = Σ / e ^ α / i + Σ / e ^ π w h e r e

J?7 = {i\aj is a singular point} and & = {/|α/ is not a singular point},

then we see that | Σ / G ^ R e α π I - ^ + Σ/e5* l R e α π I - B + m ^ s i n c e

each an in the first sum is a positive integer, we can bound the size
of & and therefore bound t. Similarly, s can be determined from
the degree of a determining factor at infinity and so can be bounded
in terms of m and n. Therefore the degrees of the numerator and
denominator of u can be bounded in terms of n, m and B.

If L eJϊ?(n, m93f)9 we can determine for each α/ that is a sin-
gularity of L the cLij from the exponents and determining factors.
Therefore the an are determined up to some finite set of possibili-
ties from 3J. Similarly the bj and s can be determined from the
determining factors at oo and so from 31. Note that - ( Σ z e ^ α / i +
Σ / G ^ " ai\) i s a n exponent at infinity and that we know the an in the
first sum up to some finite set of possibilities. Since the an in the
second sum are positive integers, we can determine these up to a finite
set of possibilities. D

We close this section by noting that weak local data W is an an-
alytic invariant of a differential equation, that is, at any point a if
7 = f(t) is an analytic change of coordinates with /'(α) φ 0, then
W will continue to contain the exponents of I . In contrast, the
determining factors themselves need not be preserved under analytic
change of coordinates. This is why we show, whenever possible, that
our results depend only on knowing weak local data or a local bound
B. This is true for most of our results in §3 (up to Lemma 3.10) but
is, regrettably, not true for all our results (see the discussions following
to Lemma 3.10 and before Lemma 3.15).

We shall need the following generalization of Fuchs' relation due to
Bertrand and Beukers [BB85]. A set of real numbers {ra\, . . . , ran) is
din admissible set of exponents for L at a if there exists a fundamental
system of solutions whose exponents pi satisfy Re pi > rai for / =
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1, . . . , n . L has rank q = ^ at α ; if the degree of any determining
factor is < p Bertrand and Beukers show the following result ([BB85],
Theorem 3):

LEMMA 2.12. Let S? be a finite set of points on the Riemann Sphere
containing the singular points and oo. For each a e S? let the set of
real numbers {ra\, . . . , ran} be an admissible set of exponents at a
and let L have rank qa at a. Then

In subsequent sections we will start with a set of linear differential
equations and construct new equations. For example, given L\(y)
and L2(y) we will construct the equation whose solutions are sums of
solutions of L\(y) = 0 and L2(y) = 0. These new equations will have
singular points that can be determined from the given set of equations
and possibly new apparent singularities (singularities where all solu-
tions are analytic). The exponents at the non-apparent singularities
will be of the form p + n where p can be determined from the ex-
ponents of the given set of equations and n is a positive integer. We
will need to be able to bound such an n as well as the exponents at
apparent singularities (which will be nonnegative integers).

LEMMA 2.13. Let L e Jϊ?(n ,m),S? the set of all singular points of
L and R a non-negative real number. Assume that at each singular
point a the determining factors of L have degree <n\R and that the
exponents {ρai} cire of the form pai = p^i + nai where R e ^ z > -R
and naι is a nonnegative integer. Then

n«i - (m + ι)(nR(R + ιMn + i ) / 2 ) ~n{n-\).
1=1

In particular there are only a finite number of possibilities for naι and
these are all less than a bound that depends only on n, m and R.

Proof. {-R + nai}i=\ is an admissible system of exponents at a
and L has rank < R at α. Therefore Lemma 2.12 implies

)
/ = l /

The result follows by noting that S? has at most m + 1 elements. D
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3. Constructible sets of differential equations.

(a) Basic definitions. Let C c C be fields of characteristic 0 and
assume that C is algebraically closed. We start this section by recall-
ing the following definition (cf., [MUM76], p. 37). A subset 5? of
C is C-constructible if it is a union T\ U U 7^ where each 7/ is
of the form {c e ~Cn\fu(c) = = /m/(c) = 0, gi(c) φ 0} for some
fji, gi in C[xi, ... , xn]. The C-constructible sets are precisely the
elements of the Boolean algebra generated by the Zariski closed sets,
defined over C. It is known that if S? c Cn x Cm = Cn m is a
C-constructible set and p2: C % C w -» C m is the projection onto the
second factor, then / ^ ί ^ ) is a C-constructible set ([MUM76], p. 37).
This fact is very useful in showing that certain sets are constructible
and will be used repeatedly in what follows. For example, one can
identify the set of polynomial in m variables of degree n with coef-
ficients in C with the space C of coefficients, where N = ( n + m ) .
The set of such polynomials that have a factor of degree I < n with
coefficients in C forms a C-constructible set. This implies that the
set of polynomials of degree m in n variables with coefficients in
C that are irreducible over C forms a C-constructible set for any
C c C. We shall also need the fact that if a C-constructible subset
S? of Cn is nonempty and F is any algebraically closed field con-
taining C, then <¥ contains a point with coefficients in F. This is an
immediate consequence of the Hubert Nullstellensatz. In particular,
if a C-constructible set contains a point in some algebraically closed
field containing C, then it has a point in the algebraic closure of C.

Let Jz^(n, m) be the set of homogeneous linear differential equa-
tions as in (1) above. As we have noted, Jϊf(n, m) may be identified
with c(" + 1 ) ( m + 1 ) . Let C be a subfield of C. A set S? c &{n , m) of
homogeneous linear differential equations is said to be C-constructible
if it forms a C-constructible subset of c ( " + 1 ) ( m + 1 ) under the above
identification. For example if we fix integers n and m and local data
2 defined over C then Jΐ?(n, m, <Sr) is a C-constructible set. To
see this, note that L € £f{n, m, 2) if and only if for each zero a of
the leading coefficient of L (and oo) there is a set of determining fac-
tors Pi,...,Pne3f such that, for / = 1, . . . , n , ep^L{e'pM)y)t,
t = (x - α) 1 /" 1 , has an indicial equation fa of degree da > 0 where
Σda = n and the roots of each fa lie in 21. Similarly for fixed n , m
and weak local data W, ^{n.m.W) is C-constructible. Note that
Jϊ?(ny m, B) is not a C-constructible set (although it is a real semi-
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algebraic set when we identify C with R2 (cf. [BCR87]). Given any
set X c <S?{n, m) we say that Y c X is a C-constructible subset of
X if Y = X Π Z where Z is a C-constructible subset of <Sf(n , m).
We will show various sets are C-constructible. To do this we need a
more general notion of constructible which we now describe.

Let F b e a differential field and F{Yι, ... , Yn} the ring of differ-
ential polynomials with coefficients in F. There exists a differential
field K, F c K, such that for any P\, ... , pm, Q in ^{^1 , ... ,Yn},
iΐ Pi = '- = Pm = 0, Q φ 0 has a solution in some extension
of F, then it has a solution in K ([KO74]). Further K and F
have the same field of constants. Kolchin shows that any Picard-
Vessiot extension of F is isomorphic to a unique subfield of K.
We therefore may assume that all Picard-Vessiot extensions we con-
sider are subfields of K. We say a subset S? of Kn is differen-
tially F-constructible if it is the union T\ U U Ty. where each 7/
is of the form {y e Kn\pu(y) = ••• = p w ι (j7) - 0, ^(y) Φ 0} for
some /?//, q\ in i 7 ! ^ , ... , Yn}. The differentially F-constructible
sets are precisely the elements of the Boolean algebra generated by
the differentially Zariski closed sets, defined over F. It is known
that if S? c Kn x Kn = Kn+m is a differentially F-constructible set
and /?2 Kn x Km -* ΛΓm is the projection onto the second factor,
then p2(^) is a differentially F-constructible set ([SE56], [SA72], p.
295, and [GR89]). We shall refer to this fact as Seidenberg's prin-
ciple and use it frequently in the sequel to show that certain sets
are C-constructible. For example, if one fixes an integer N, then
the set of L(y) e<2?(n, m) satisfying the following conditions is C-
constructible: there exists a non-zero solution y of L(y) = 0 such that
u = y1 jy satisfies p(x, u) = 0 where p is a polynomial in x and u
of degree < N. To see this, let p(x, ύ) = Y^j^bijXιuι and write

L(y) = Σ?=o Σ lo fly^>(/) L e t ^ b e t h e s e t o f (au > bu >χ>y>u)
such that aΊj = b[j = 0, bη not all zero, x' = 1, y 7̂  0 satisfies
L(y) = 0 for some L(y) e <S?(n, m, B), uy — y' and /?(x, w) = 0.
This is a differentially C-constructible set. If we project this set onto
the {μij), Seidenberg's principle tells us that the set of such (α ί ;) is
again differentially C-constructible. Since the α / ; are also constants,
we may replace any occurrence of a derivative of α/7 by 0. Therefore
a differentially constructible set of constants is constructible and so
the set S* is a C-constructible subset of J5f(n, m).

(b) Bounds on orders, degrees and exponents. In this subsection
we fix a field C c C and show that if we start with elements in
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S?(n , m, B) or S?(n , m , 2J) then we can calculate m', n', B' and
31' such that certain associated linear differential equations must lie
in Jΐf(nf, m', B') or i?(rc' , m', Sf1) . The results here strengthen re-
sults appearing in [SI80] and [SI81] which in turn rely on ideas from
[SCH68].

LEMMA 3.1. (i) Let AX — 0 be a system of r equations in s un-
knowns where s > r and A has entries in C[x], C a field. If the
degree of each entry in A is at most N, then AX — 0 has a non-zero
solution in C[x]s whose entries have degree at most rN.

(ii) Let AX — D be a system of r equations in s unknowns where
A and D have entries in C[x], C afield. If the degree of each entry
in A and D is at most N and AX = D has a solution in C(x)s then
it has a solution whose entries have numerators and denominators of
degree at most rN.

Proof, (i) By replacing AX — 0 by a smaller system of equations,
we may assume that A = [α/;] has rank r. Let B — [^ij]\<ij<r> a n <3
we assume, without loss of generality, that det B φ 0. Set each Xj = 1
for j > r and rewrite the system AX — 0 as BX — D, for some r x 1
matrix D. Using Cramer's rule, we have xj — det(Bj)/det(B) for
1 <ί j < T where Bj is formed by replacing the y'th column of B
by D. One sees that the degrees of det(57) and det(5) are bounded
by rN and that Xj = det(Bj) for 1 < j < r and x7 = det(5) for
r + 1 < j < s forms a solution of AX = 0.

(ii) An application of Cramer's Rule as above yields this result. D

LEMMA 3.2. Given integers n and m one can find integers n' and
m! such that for any Lx and L2 in J2?(n, m) there exist L 3 , L4

and L5 in &{ri, m') such that Soln(L3) = {yx +y2\y\ e Soln(Li),
y2 E Soln(L2)}, Soln(L4) is spanned by {y{ -^l^i E Soh^Lj), y2 G
Soln(L2)} and Soln(L5) = {y'\y e Soln(L!)}. Furthermore, given
local data 2 (resp. a local bound B) there exists local data 2' (resp.
a local bound Br) depending only on n, m and 2$ (resp. B) such
that if Lx and L2 e £?{n , m, 2!) (resp. 5f(n , m, B)) then L 3 , L4

and L5 e S?{nf, rri, 3f') (resp. ^(nf, mf, Bf)).

Proof. We will prove the existence of L3 the other cases are proved
in a similar manner (see [SI80]). Let L\{y) — any^ + + a$y and
L2(y) = bny

w H h boy with aι,bι e C[x]. We will furthermore
assume that anbn Φ 0; easy modifications can be made if an = 0



MODULI OF LINEAR DIFFERENTIAL EQUATIONS 365

or if bn = 0. Let Y\ and Y2 be differential variables, and formally

differentiate Y\ + Y2 2n times. Using the relation L\{Y\) — 0 and

its derivatives, we can replace occurrences of Y^ , / > n , with C(x)-

linear combinations of γ[^ , 0 < j < n-1. A similar replacement can

be made for Y^ . In this way we get 2n + 1 expressions EQ , . . . , E2n

in the In variables γ[j), Y^J), 0 < j < n - 1. Let ri be the smallest

integer such that there exist CQ , . . . , cn<, in C[x], not all zero such

that Σ,ίoCi(Y\ + Y2)(i) = 0. Clearly any solutions yx, y2 of Lx{y) = 0

and L2(y) = 0 respectively yield a solution J Ί +y 2 of Σ " = o

 c ^ ( / ) = ^

As in [SI80] one can also show that all solutions of Σ / L o ^ ^ ~ ^

are of this form.
The C( satisfy a system of 2n + 1 linear homogeneous (algebraic)

equations whose coefficients involve the aι and bj and their deriva-
tives. The degree of the coefficients can be explicitly bounded in terms
of the degrees of the at and the b[ (that is, in terms of m). There-
fore, by Lemma 3.1, there is a number m! such that we can find c, ,
not all zero, with the degrees of the c/ less than mf.

We have therefore shown that y\ + y 2 satisfies an equation L3(y) =
0 with L${y) in S?{n!, mf) such that every solution of this equation
is the sum of a solution of L\(y) = 0 and a solution of L2OΌ — 0 •
Fix some local data ^ and assume that L 1 , L 2 E ^ 7 ( ^ , m , < S r ) .
At any point, the determining factors are either those of L\ or of
L 2 and therefore are in 2 . The exponents are of the form p + t
where p is an exponent of L\ or L 2 and £ is a positive integer
(the presence of t is due to the fact that terms may cancel in the
sum of solutions of L\{y) = 0 and L2(y) = 0; this explains why
new apparent singularities may enter in L 3 ) . If B is a local bound
for L\ and L2 then Lemma 2.13 implies that there are only a finite
number of possibilities for these non-negative integers and that these
only depend on n, m and B (or «Sr). This allows us to construct,
from n, m and 3t (resp. B) local data 28' (resp. J5 ;) such that
L3 e5?{n,m,3f') (resp. &{n', m', B')).

For L 4 , the determining factors will be of the form P\ + P2 where
P\ is a determining factor of L\ and P2 is a determining factor of
L2. The exponents will be of the form p\ + p2 + t where p\ is an
exponent of L\ and p2 is an exponent of L2 and Ms a non-negative
integer. For L5 the determining factors are the same as those of L\.
The exponents are of the form p - (deg P)(l/n!) - 1 + ί where p is
an exponent of L\, P is a determining factor of Lj and t is a non-
negative integer. For both L4 and L5 we now proceed as above. D
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LEMMA 3.3. Let n and m be integers, Si local data and B > 0.

(i) Let P(Y\, ... 9Yt) be a differential polynomial in

C{x){Yu...,Yt}.

One can find integers nf, m1 such that if Lx, . . . , Lt G <Sf{n , m) then
there exists an LP G <Sf{nr, m1) having the property that if yι sat-
isfies Li{y{) = 0, / = 1, . . . , t, then P{y\, . . . , yt) is a solution of
Lp(y) = 0. Furthermore, one can find local data 2)1 {resp. a local
bound Bf) depending only on P, n, m and 2 {resp. B) such that if
Li G &(n9m92) {resp, £>?{n, m, &)) then LP can be chosen to
be in Sf{n', m', 3f') {resp. ^{nf, m1, 381)).

(ii) Let

P{Y\, . . . , Yn , C\, . . . ,

e C{x){Yι ,...9Yn9 ^

One can find integers nf and mf such that for any L e ~ ? ( π , m)
there exists LP e ^{n', mf) having the property that if y\, ... , yn

forms a fundamental set of solutions of L{y) = 0 and c\, ... , cN are
constants then P{y\, ... , yn, c\, ... , CN) is a solution of LP{Y) =
0. Furthermore, one can find local data 2$' {resp. a local bound Bf)
depending only on P, n, m and 2$ {resp. n, m and B) such that if
L e <2?{n, m, 3f) {resp. S*{n , m, B)) then LP can be chosen to be
in 5?{n', mf, 3f') {resp. ^{n1, m', Br)).

Proof, (i) follows from Lemma 3.2 by induction.
(ii) Let L{y) e J5f{n, m, Sf) let y\, . . . , yn be a basis for the

solution space of L(y) = 0 and let Wr denote the Wronskian deter-
minant det(y z

ω). If L{y) = an(x)yW + + ao{x)y, then Wr'/Wr =
—an-\jan so (Wr)"1 satisfies LWr-\{y) = 0 where LWr-i G c ? ( l , m).
Part (i) of this lemma now implies that there exist n', m ; such that
P(yι, ... 9yn, C\, ... , cN) satisfies LP{y) = 0 for some LP e

Now assume L e Jϊ?{n, m, S r ) . Part (i) implies that 3n', mf, 2f

such that y = Wr satisfies L(y) = 0 for some L G ̂ ( ^ ; , m ;, ^ ' ) .
Therefore (Wr)"1 has exponents of the form —p and determining'
factors -P for p9 Pe2#'. This implies that (Wr)"1 satisfies LWr-i(j;)
= 0 for LWr-i e y ( l , m , 3Jn) where 2)" = -3)'. If all we know
is that L G c2?(n, m, 5) then a similar argument shows that L G
£?{n!, m7, 50 for some Bf so LWr-i G ^ ( 1 , m, Bf). α
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LEMMA 3.4. Let L e Jΐ?(n, m, B) and let r be a positive integer.
There exist integers N\ and N2 depending only on r,n,m and B
such that:

(i) ify satisfies L(y) = 0 and y is algebraic of degree r over C(x)
with minimal polynomial yr + br-\yr~x Λ h B$, b; e C(x), then the
degrees of the numerator and denominator of each bi are < N\.

(ii) If y satisfies L(y) = 0 and u — y'jy is algebraic of degree r
over C(x) with minimal polynomial ur+br-\ur~ι H hδo> bi E C(x),
then the degrees of the numerator and denominator of each bi are
<N2.

Proof, (i) Since f(y) = yr + br-\yr~ι + + bo is the minimal
polynomial of y9 any solution of f(y) = 0 is also a solution of
L(y) = 0. Therefore each bi is a known symmetric polynomial
of solutions U\9 ... 9un of L(y) — 0. Lemma 3.3(i) implies the
existence of nι, m!, Br s.t. each bi satisfies Li(bi) = 0 for some
Li € J5?{n', m', 2?') and Proposition 2.11 (i) implies that there exists
an integer N\ such that the degrees of the numerators and denomi-
nators of each bi are < N\.

(ii) Since g(u) = ur + br-\Ur~ι H hZ?o is irreducible any solution
Ui of g(u) = 0 is of the form t// = y'Jyi for some solution yt of
L(y) = 0. Note that br.{ = - ( M l + + κΓ) = (11^)7(11^) e C(x).
Let P = Γi Yr. Lemma 3.3(i) implies the existence of π 7, m', 5 ;

depending only on P, n, m and 5 such that P(^i , . . . , yr) satisfies
Lp(y) = 0 for some L P e ^ ( Λ ' , m', B'). Since

Proposition 2.11 (ii) implies that there exists an M such that the
degrees of the numerator and denominator of £r_ I < M. We fur-
thermore have that P(y\9 . . . , yr) satisfies L[y) = 0 for some L €
^ ( 1 , M, 5')^Therefore (Π^/)" 1 = l/Pίyi, . . . ,yr) satisfies ϊ (y) =
0 for some L e J?(l, M, Bf). Each bi9 0 < / < r - 1, is of the
form Pi{yx ? . . . ? yΓ)(Π J/)" 1 where Pt e C{Y{ 9...9Yr}. Therefore
Lemma 3.3(i) and Proposition 2.11 (ii) imply there exists an integer
N2 such that the degrees of the numerators and denominators of the
bi <N2. •

LEMMA 3.5. Let L e Jΐ?(n, m, B) and r be an integer. There exist
integers nf, mf such that if y is a solution of L(y) — 0 and y1 /y is
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algebraic of degree < r over C(x) then y~ι satisfies L(y~ι) = 0 for
some L e <2?{n', m!, B).

Proof. It is enough to prove this lemma assuming that y1 jy has
degree = r. Let K be the Picard-Vessiot extension of L over C(x).
Lemma 3.4 implies that there exists an N, depending only on r, n ,
m, and B such that u = y1 jy satisfies f(u) = ur + br_\Ur~ι + +
&o = 0 where the degrees of the numerators and denominators of the
bi < N. Let U\—u, U2, ... , ur be the conjugates of u. Each ut is
of the form y\jyi for some solution j ; z of L(y) = 0. The Galois group
of ^ over C(x) acts transitively on the Uι and permutes them. Let
v{ = — ̂  ? . . . ? yr = — ur. These elements are all conjugate and the
minimal polynomial is g(υ) = (—l)rvr + (— \)r~xbr-\Vr~x + + b$ .
Let z/ = efv> - y" 1 for / - 1, . . . , r. If σ e Gal(#/C(x)) then

σ(eJ v') = cσeJ v°^ for some constant cσ . Therefore the C-span V
of z\, . . . , z r is left invariant by Gal(7^/C(x)) and so is the solution
space of some linear differential equation L with coefficients in C(x).
We will now find n', m' such that Z e ^{n1, m r, B).

Note that z- = ^/Z/, z^ = {v[ + υf)zi9 . . . , z | j ) = Pj(vι)Zi where
P / ^ ) = (Pj-\)' + v, P/-i, Po = 1 Using g(v) = 0, we see that
there exists an Λf depending only on the degrees of the />/ so that
each Pj(v) may be written as Pj(v) = αr_i jvr~ι + + #o,y where
each α, j is the quotient of polynomials of degree < M. Let ^ be
the smallest integer such that there exist CQ , . . . , ct in C[x], not all
zero with Σfj=QCjPj{v) = 0. Each zz will then be a solution of

Z(z) = Ylj=0CjZ^ = 0. As in [SI80] one can also show that the
zι span Soln(L). The cj satisfy a homogeneous system of linear
(algebraic) equations whose coefficients are polynomials of degree <
M. Therefore Lemma 3.1 implies that there is an M' depending only
on M s.t. we can find c, , not all zero, with deg cz < M1. Therefore
Z G £?{r, Mf). To find a local bound for Z , note that at any point a,
each Ui has an expansion u\ — Σ J > 7 a>ijV , t = (z - α ) 1 / π ! , αZ7 e C.

Therefore each yt = t^ep^φi{t) where 0, e C[[t]], φt(0) + 0 and
so zz j= Γp*e-pWψj(i), ψi(t) e C[[t]], ψi(0) Φ 0. Since the zz span
Soln(L), we have L e &{r, Mf, 5 ) . D

In Lemma 3.6 we shall deal with the adjoint of a linear differ-
ential equation L(y) = anyW + + a$y. The adjoint is defined
to be L*(y) = (~l)n(any)^ + (-l)(*-1)(art__ij>)n-1 + + aoy. If
{y\ 9 5 y^} form a fundamental set of solutions of L(y) = 0 then
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{z\, . . . , zn} forms a fundamental set of solutions of L*(y) = 0
where z, = ( - l ^ W r ^ , . . . ,yh . . . 9yn)/Wτ(yl9 ...,yn) ([SCH68],
Vol. I, p. 64). Furthermore, if L(y) = Li(L20>)) then L*{y) =

LEMMA 3.6. G/vefl «, m αm/ B, there exists a Bf such that if L e
n,m9B), then L* e&{n9m,B').

Proof. Lemma 3.3(ii) and Lemma 3.2 imply that there exist nf, m!
and B1 such that if {y\, . . . , yn} is a fundamental set of solutions of
L(y) = 0 then there exists an Z e &{ri, m', £') such that Z(z/) = 0
for / = 1, . . . , n. Therefore any solution of L*(z) — 0 is a solution
of Z(z) = 0 and so L* e ^ ( / ι 9 m 9 B ' ) .

LEMMA 3.7. Gr/vew s9n9m and B, £/zere exwtt αw integer N sat-
isfying the following: if L(y) = 0 /s α monic differential equation, with
coefficients in C(x), such that a-Le £?(n, m, B) for some a e C[x]
then if L(y) = L2(Lι(y)) where L\(y) and Liiy) are monic linear
differential equations with coefficients in an algebraic extension of C(x)
of degree s, then each coefficient of L2 and L\ satisfies a monic poly-
nomial of degree < s whose coefficients are quotients of polynomials
of degree < N. If s = \ then there exists a d e C[x] such that
d - Li e £?{n9N9B). Furthermore, if a L e &{n 9m92) then

Proof. It is enough to prove this lemma assuming that L\(y) has
some fixed order k < n. If Lχ(y) = y^k) + bk_xy^k~^ + - + b0,
then bk^i = (Wr(yi, . . . , yk)Y/Vfr(yι, . . . , y^) for some solutions
y\9 ... 9yk of L(y) = 0. Lemma 3.3 implies that there exist n\
m\ B' s.t. Wr(yi, . . . , yit) satisfies Lk_{(y) = 0 for some Lk_x e
£?{n', m!' 9 B'). Since bjc_ϊ is algebraic of degree < s, Lemma 3.4
implies that there exists an N such that bk_{ satisfies a polynomial of
degree < s with coefficients in C(x) whose numerators and denom-
inators have ^ϊegree < N. Furthermore, Lemma 3.5 implies there
exist h, fh,B such that y = 1/Wr()>i, . . . , y^) satisfies L(y) = 0
for some L e Jΐf{h 9fh9B). Each bt is of the form Pi{y\, . . . , yk)
(l/Wr(jΊ , . . . , yk)) so Lemma 3.2 implies there exist n", m / ;, i?"
such that each 6/ satisfies Li(y) = 0 for some L£ G . ^ (Λ 7 7 , m", 5 / ; ) .
Each bi is algebraic of deg < 5 so Lemma 3.4 implies there exists an
M such that each bi satisfies an irreducible polynomial of degree < s
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with coefficients in C(x) whose numerators and denominators are of
degree < M .

Let L2(y) = y^~k"> + an_k_ιy{n~k-{) + + aoy . To handle the
coefficients of Li, we consider the adjoint operator L* = L^L^iy)).
Applying the above considerations and Lemma 3.6 to L* we see that
there exist n1", m"1, B"1 such that each coefficient αz of L\ satisfies
Li(y) = 0 for some U e &{n"', m1", B"f). Since L2 = (L*)* we see
that each at = P/(α*, . . . , a*_k__x) for some Pt e C{Yr, . . . , Yn-k-\)
that depends only on n — k and /. Therefore Lemma 3.3 implies that
there exist h, m, B (depending only on k, s, n, m and B) such
that di satisfies Li(y) = 0 for some Lt e £?{n, m, B). Since each
αz is algebraic of degree < s, Lemma 3.4 implies there exists an M
depending only on k, s, n, m, B, such that each αz satisfies an ir-
reducible polynomial whose coefficients have numerators and denom-
inators of degree < M. Letting k vary from 1 to n — \ yields the
result.

If s = 1, then the bound N actually bounds the degrees of the
numerators and denominators of the coefficients of L\(y). Let d be
the least common multiple of the denominators of these coefficients.
Any solution of L\{y) — 0 is a solution of L(y) = 0 so if L e
^{n, m,B) (resp. Le^(n, N,3f)) then d L{ e&(n, 2N, B)
(resp. d-Le^{n,2N,£f)). π

In Proposition 3.9 below we show that a Picard-Vessiot extension Â
of C(JC) contains a copy of any finite dimensional G-module, where
G is the Galois group of K over C(x). Before proving this we need
some preliminary facts. Let G be a linear algebraic group defined
over a field C and let F be a faithful finite dimensional G-module
defined over C. In [WA79], p. 25, it is shown that every finite dimen-
sional G-module defined over C can be constructed from V by the
process of forming tensor products, direct sums, subrepresentations,
quotients and duals. If the dimension of V is n, we may think of
G c GL(fl, C) and consider the one dimensional representation given
by l/det(g). Let W be the associated one dimension G-module. As
noted on p. 26 of [WA79], we do not need duals in the above process
if we start with both V and W.

We shall also need an observation due to Ritt. Let k be a differ-
ential field and Z\, . . . , Zn differential indeterminates. The order
of a differential polynomial P G k{Z\, . . . , Zn} is defined to be the
smallest integer r such that P E f c [ Z 1 } . . . , Z n , . . . 5 z[r), . . . , Z{

n

r)].
On page 35 of [RI66], Ritt shows the following:
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LEMMA 3.8. Let k be a differential field of characteristic 0 contain-
ing an element x with x1 = 1, let Z\, . . . , Zn be differential ίnde-
terminates and let P(Z\, . . . , Zn) e k{Z\, . . . , Zn} have order r. If
P{Z\, ... , Zn) Φ 0, there exists dtj eQ, 1 < / < n, 1 <j < r, such

that P(Σr

j=0

 dυχj > > Σ ; = O dnjχ
j) Φ o.

PROPOSITION 3.9. Let C be an algebraically closed subfield of 'C, G
a linear algebraic group defined over C, V\ a faithful G-module of di-
mension n\, and V2 a G-module of dimension n2i V\ and V2 defined
over C. There exist integers m2 and N and elements P\, . . . , Pni e

C(x){Yι, . . . , Ynχ, ( d e t ί ^ ) ) - 1 , d , . . . , CAT}, W Λ ^ ^ , . . . , 7 Λ l ,
Ci, . . . , CAT are differential indeterminants, satisfying the following:
for any L\ eJ*f(n\, m\) whose Galois group Gal(Li) is a C-subgroup
of G and with Soln(Li) Ga\(Lι)-isomorphic to V\ and any basis
y\9 ... ,yn of Soln(L!), there exist constants c\, . . . , CM such that
P\(y\> ->ynλ,C\9...9cN)9...9 Pn(yχ, . . . , yΆχ, c{, . . . , cN) form
the basis of a Gal(Li) module C-isomorphic to V2. Furthermore
given mi and 2\ {resp. m\ and B\) one can find m2 and
!~$2 (resp. m2 and B2) such that if L\ e £?(n\, m\, 21 \) (resp.
L G ^f(nl9 muB{)) then P\(yx, . . . , yΆχ, cx, . . . , cN), . . . ,
Pn2(y\, . . . , yΆχ, c\, , cN) form the basis of Soln(L2) for some
L2 e S?(n2, m2, 3f2) (resp. L e £?(n2, m2, B2).

Proof. As noted above, V2 can be identified with a G-module
formed from V\ and (detFi)" 1 by taking submodules, direct sums,
tensor products and quotients. We shall show that if L\ is as above
then this construction can be carried out inside the Picard-Vessiot
extension associated with L\(y) — 0 and that this can be done in
a way that is independent of Gal(Li) c G. We shall proceed by
induction on the number of these operations required to construct
V2. We shall assume that L\ e S?(n\, m\, 2f\) (the proof when
L\ € -S^(ΛI , m\, B\) is similar). We will start with the operation of
taking submodules and prove the following:

Let W be a G-module of dimension v, 2! local data, N and m
integers. Assume there exist

wl9...9wueC(x){Yl9...9Ynι9(det(YίJ))rι

9Cl9...9CN}

such that if Lχ(y) e 3*{rt\ 9m\,2f\) then for any basis y{, . . . , ynχ

of Soln(Li), there exist constants C\9...,CN in C such that

W i C V i > ••• > y n t , c \ 9 . . . 9 c N ) 9 . . . , W v ( y ι 9 . . . , y n ι , c ι 9 . . . , c N ) i s a
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basis of a Gal(Li)-module isomorphic to W and W that is the so-

lution space of some L G Sf{v , μ, 2!). Let ^ b e a sub-G-module

of W_of dimension v . Then there exist integers N and μ and local

data 3! and differential polynomials

such that if L\ G o?(πi , m i , <@i) then for any basis y , . . . , yU]

of Soln(L!) there exist constant C\,...,c~ in C , such that

Pι(y\9 ••• , y « l } Q , ••• , Cfi), . . . 9Pϋ(y\, . . . j « l 5 c i , . . . , c-) is a

basis of a Gal(Li)-module isomorphic to W7 that is the solution space

of some L e J?(z>, μ, D).

To see that this is true, let (Ay) be a i / x ί matrix of new indeter-

minates and define P\9 ... , po by letting

If yx, . . . , yΆχ, c\, . . . , cN are chosen so that w\, . . . , wv is a basis

of W, then there exist constants dtJ in C so that

will be a basis for W7. Lemma 2.10(ii) implies that W = Soln(L)

where Li(y) = aL(L(y)) with L and L monic and having coef-

ficients in C(x). Lemma 3.7 (with s — 1) implies that there ex-

ists an integer μ and d e C(x) such that d L(y) G ^ ( z > , /i, 2).

To satisfy the conclusion of the above, we let N = v - v + N and

We now consider the operations of taking direct sums, tensor prod-

ucts and quotients and show the following:

Let W\ and W^ be G-modules of dimensions v\ and v^, 5$ \

and 2#2 l° cal data, N, μ{ , and //2 integers. Assume that there exist

i ^ ) ) - 1 , d , . . . , cN}

such that if L\(y) G «5^(wi , W i , ^ i ) then, for any basis y\, . . . , yΠ]

of the solution space of L\(y) there are constants c\, . . . , cN in C

such that

i . ( y i , . . . , y Π i , c i , . . . , c N )
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is the basis of the solution space (isomorphic to W\) of some L\(y) G
μ\9Wχ) and

\,..., ynχ ,c\,..., cN),..., w2v2(y\,..., j \ , cx,..., cN)

is a basis for the solution space (isomorphic to W2) of some L2(y) G
- ^ ( ^ > /*2 9 &i) Then there exist integers ra and TV', and local data
2 and differential polynomials q\, . . . , qVx+v2 >

 r i ? -> rvx*v2

 a n ( i
j ! , . . . , ^ ^ in C ( x ) { 7 1 ? . . . 5 r M ? ( d e t ( y /

ω ) j - 1 , C 1 ? . . . ? C ^ } such
that if L\(y) G y ( « i , m i , ^ ) , then for any basis yi, . . . , yn^ of
Soln(Li) there are constants c\, . . . , cN> in C such that:

(i)

is a basis of a Gal(Li)-module, C-isomorphic to Wχ@W2, that is the

solution space of some L$(y) G <2f(u\ +v2,Jή,

(ϋ)

is a basis of a Gal(Li)-module, C-isomoφhic to WX®W2, that is the
solution space of some L4(y) e Jΐ? (vι -v2,Ίn,

(iii)

is a basis of a Gal(Li)-module, C-isomorphic to W\jW2, that is the
solution space of some L5 G J?(V\ -v2,m, <Sr) (assuming that W2 c

We begin by proving (i). Of course, we would like to claim that
W\9 ... 9 W\v , w2χ 9 ... 9 w2v will be a basis of W\@W2, but this is
not necessarily true. We will remedy this by shifting the w2ι. Let
Z\9 ... 9Zv<ι be differential indeterminates and let y\, . . . , yHι be a
basis for the solution space of some L\(y) G <S?{n\, πi\, 31 \) for
which there are constants such that

w π =wn(yι, ...9ynι9cΪ9...9cN)
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(resp.

w2\ =w2ι{yι, ... ,yn,,cx, ... ,cN)

, ... , cN))

are linearly independent solutions of some L\(y) € £?{v\, μ\, 2\)
(resp. L2(y) € S'iyi, μ2, &i)) • Consider the differential polynomial

P(ZΪ9...9ZUι)

This is a non-zero polynomial since {^7 )\<ij<p is nonsingular
and Wr(wιι, . . . , W\p , Z\, . . . , Zp ) is non-zero. Therefore Lemma
3.9 implies that, for some M > 0 and dij G Q,

M

7=0

Note that M can be chosen to be any integer bigger than or equal to
the order of P{Zχ, ... , Zv) and this order can be bounded in terms
of v\ and v2. Letting

qι=wn,...,gv=wι ,

('•-»)

M

f=l \7=0

and Cyy+i = Du, ... , CN = DvM gives us the desired elements of

C{x){Yι ,...,Ynι, (detiY^))-1^ ,..., CN>} since the vector space
spanned by qUi+\, ... , Qvx+v2 is Gal(Li)-isomorphic to W2 . Lemma
3.3(b) implies that one can find integers n', m', local data ϋ?' and
L 9 ι e Jϊf(ri, m ' , 2 ' ) f o r i = \ , ... , v x + v 2 s u c h t h a t

Lqfaiyi, ... ,yn,cι, ... ,cN )) = 0.
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Lemma 3.2 implies that one can find integers n", m" local data 3!"
a n d L e £ ? ( n " , m " , 3f") s u c h t h a t L { q i { y x , ... , y n , cΪ9 ... 9 cN*)) =
0 for / = 1, . . . , v\ + v2. Since q\9 ... 9 Qvγ+v2 span a Gal(Li)-
invariant subspace of the solution space of L(y) — 0, we may write
L{y) — a-L2(L\(y)) where L\{y) and Z2OO are monic and q\, . . . ,
ίi/j+i/j span the solution space of Li(y) = 0. If c? is the least common
multiple of the denominators of L\{y), then Lemma 3.8 guarantees
that one can find rn and a local data 3! such that ^ ( y ) = d L\(y) e

+v2>m> £$) - This satisfies (i) above.
To prove (ii), let W\ι, . . . , W\u , t&2i, . . , ^iv be as above. Let

w«-ι)

Since P is a non-zero polynomial, there exists an M and d\j G
such that

I M M \

ηΣV ΣVh40-
Letting

and C v̂+i = D\\, . . . , Ĉ y — Dv M gives us the desired elements.
Lemma 3.2, Lemma 3.3 and Lemma 3.7 guarantee the existence of
the desired L4(y) as above.

To prove (iii), we may assume that v2 > v\ and w2\ = Wu, ... ,

w2Vi = w\v . Let W\\, . . . , w\v be as above. We know that there is

some L\ e 3?{y\ 9 μ\93^\) such that L\{w\\) = = L\{w\v) = 0

and an L2 e^f(u2, μ2, 3ί2) such that L2{wn) — •• = L2(wiv2) — 0.

Since every solution of L2(y) = 0 is a solution of Li( y) = 0, there

is a linear operator L 3 , with coefficients in C(x) such that L\(y) —

L$(L2(y)). Therefore L2{w\v + 1 ) , . . . , L2{w\v ) forms a basis of a
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Gal(Li)-module isomorphic to Wχ/W2. We can therefore let

\

Setting CV+i = Doo, . . . , C#' — ΐ>v-μ , we can apply Lemmas 3.2, 3.3

and 3.7 to conclude that the S[ satisfy (iii). D

LEMMA 3.10. Let n, m be integers, 2 local data, and P\, . . . , Pt e

C{YX, . . . , Yn, Q , . . . , CN, d e t ( y /

ω ) - 1 } OΛ^ ĉ A2 >iwrf an integer

M, depending only on n, m, 2# and P\, ... , Pt satisfying the fol-

lowing:

For any L(y) e Sf{n, m, 3f), Ci, . . . , cN e C am/ {yi, . . . , yn),

a fundamental set of solutions of L(y) = 0 such that

,cι,..., cN))'/Pi(yι, ... ,yn, cΪ9 ... , cN) e C(x),

for i = 1, ... , r, we have that

,...9 Pr(y\, ... ,yn,cι9...9cN)

are algebraically dependent over C(x) if and only if there exist integers

m\9 ... 9mr, not all zero, with |m, | < Af such that

where R(x) e C(x) and deg(R(x)) < M.

Proof. If Uri=ι(pi(yι ,...,yn,cϊ9...9 cN))m> = R(x) as above,

then the Pj(y\9 ... 9yn9 Cχ9 ... 9 c^) are algebraically dependent. Con-

v e r s e l y , i f P ι ( y l 9 . . . 9 y n 9 c i 9 . . . , c N ) , . . . , P r ( y u . . . 9 y n , c X 9 . . . , c N )

are algebraically dependent over C(x), then the Kolchin-Ostrowski

Theorem [KO68] implies that there exist integers m\9 ... 9 mr not all

zero such that

(3.9.1) Π O P / C v i , . . . ,yn, cl9 . . . , cN))m.=R(x)
ι=\

for some rational function R(x) E C(x). Lemma 3.2 and Lemma

2.10(ii) imply that we can find s, t, nt and a finite set S? depending

only on n, m, ^ and ^ , . . . , Pt such that

1=1 y = l
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for / = 1, . . . , r where aijU bsl e S*. Let R(x) = Π?=i(* ~ yt)W'
Taking the logarithmic derivative of (3.9.1), we have

L + bslx> + ---

Comparing positive powers of x, we have

(3.9.3)
1=1

for / = 1, . . . , r. Let β\, . . . , βq be the distinct elements among
the αf / and y7. Fix some /?/, say β\ . Comparing coefficients of
(Λ: — ̂ I ) " 1 , we have

(3-9-4) Σ Σ

where y, = β\. Comparing coefficients of (x - β\ )~-*, j > 1, we have
for each such j

(3.9.5)

We get similar equations for each βι. Note that the formation of
the equations (3.9.3), (3.9.4) and (3.9.5) depends firstly only on the
partition of the elements α/7 and y£ (according to which are equal)
and not on the particular values of the /?/ and secondly on a choice of
the Uiji and bμ from the finite set S?. Furthermore, any choice of
integers mz and mz (not all zero) satisfying these equations will yield
a solution of (3.9.1) (for a particular choice of aij and y/). Since
there are only a finite number of partitions and only a finite number
of choices for the aijΊ and btji, we can find an integer M such that
if there exist mf satisfying (3.9.1) for some R(x), then there exist
such rrii with |m, | < Af. D

We note that, unlike the previous lemmas and propositions,
the hypotheses in Lemma 3.10 cannot be weakened to assume L e
S?(n, m, B) for some local bound B . An example showing that we
need to know the exponents is yf - (a/x)y = 0. Let r = 1, P\ — y.
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Letting a = (l/m) shows that as a —• 0 we must let m —• oo to
guarantee ym G C(JC) . An example showing that we need to know
the determining factors and not just a bound on their degrees is given
by y" - (a\ + oc2)yf + {θLXa2)y = 0, a\ Φ a2 G C. The solutions are
yx = eaιx, y2 = ea2x, so a\X are determining factors at oo. Letting
P\=y\9 Pi=y2, and a2 = (l/n)a{, then P{Pζ e C(x) with n -> oo
and a suitable choice of the coefficient of the determining factors.

(c) Main Theorem. In this section we show that certain sets of linear
differential equations are constructible. Throughout this section C c
C is a fixed algebraically closed field.

PROPOSITION 3.11. Let n and m be integers and B > 0 a real
number.

(i) Let G be a linear algebraic group and V a faithful G-module
of dimension n both defined over C. The set of L e Jΐ?(n, m, B)
such that Gal(L) c G and Soln(L) is Gal(L)-isomorphic over C to
V is a C-constructible subset of <2f(n, m, B).

(ii) If G is a finite group and V a faithful G-module, then
J?(n, m, B ,G,V) is C'-constructible subset of £?{n, m,B). There-
fore, for any weak local data W', J5?(n, m,W, G,V) is a C-con-
structible set.

Proof, (i) We start with some notation. Let f\, . . . , ft G

C[x\\, ... , Xnn] generate the ideal of polynomials vanishing on G.

If we select enough generators, we may assume that the C-span W

of / i , . . . , / ί is G-invariant under λg(f) = f((g)~ι (*//)) and

that G = {g e GL(n,C)\λgW = W). Let Y = (Y^j)) and s =

(Sij) where the Y^ and the Sij are variables. For r = 1, ... , t,

let Fr(Y^\sij) = M(Y~ι s)ij). For L(y) e ^(n^m^B) and

y\, . . . , yn a fundamental set of solutions of L(y) = 0, let Y — [yψ)

and Fr(Sij) = Fr(y^, %) for r = 1 , . . . , / . Note that the action of

g G G on Ϋ is given by g(Ϋ) = Ϋ (gij) for some (&•;) € GL(n, C).

We first note that Fr{y\j)) = /r(id) = 0, r = l , . . . , ί , where id is
the identity matrix. Secondly, any g G Gal(L) acts on the coefficients
of Fr(Sij) via

F*{Sij) = g(Fr(sU)) = fr(g((y\j)rl) (Jy)) = W r i ^ ) " 1 ' (%)) -

Therefore, F/(y|Λ) = fr{g~x). We claim that the C-span V of

{Fi, . . . , Ft} is left invariant by Gal(L) if and only if Gal(L) c G.
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To see this first assume that Gal(L) c G. For each g e Gal(L), we
have

F*{Sij) = λgfr{{y{p)-χ (SiJ)) = Σcϊkfk{{y\j)yx . (SlJ))
k

for some cf in C, since the span of the // is left invariant by G.

Therefore Fr

g(Sij) = Σk cfkFk(Sij). Now assume that V is left invari-

ant by Gal(L). This implies that Fr

g(Sij) = ΣkcfkFfc(sij) f° r some

constants cf.. Therefore F/(y | ; ) ) = 0, so fr{g~ι) — 0 and g is in

G.
Therefore, to reach the desired conclusion we must show that the

property "the C-span V of {F\, . . . , Ft} is left invariant by Gal(L)"
is C-constructible. To see this we consider each Fr(Y^\ %) as a
polynomial in the % with coefficients in C(Y^). In such a polyno-
mial the coefficient of each power product of the Sij is of the form
(det(Y^))~Nq(Y^), where q is a polynomial. Therefore we may
multiply the Fr by a sufficiently high power of det(Y"/7)) and assume
that these coefficients are differential polynomials in C{Y\, . . . , Yn} .
Assume that there are at most M power products of the Sjj in
each Fr and order these products in some manner. We may identify
each Fr with its vector of coefficients {Prι)\<ι<M > where each Prί e
C{Yι,...,Yn}. Let prl = Prι{yx, . . . , yn). Note (prl) is the vector
of coefficients of Fr. Let P be the t x M matrix formed by these
rows. Assume that the rank of P is t\ and let Q = (<?/;) be the
t\ x M matrix formed by using a maximal set of independent rows
of P. Clearly V is left invariant by Gal(L) if and only if for any
g e Gal(L) there is an Ag e GL(t\, C) such that gQ = Ag . Q. We
shall show that this latter condition is C-constructible.

First note that Lemma 3.2 and Lemma 3.3 imply that there exist
integers n and m and a local bound B (depending only on n, m
and B) and an element L e Jϊ?(ny rn, B) such that L(#//) = 0 for
all entries qtj of Q. Let a be a point that is not a singular point of L
(i.e. a is not a zero of the leading coefficient of L), let Vj — (j - 1 )n
and let R = T,f=\(x ~aTJQj w h e r e Qj is the 7th column of Q. We
claim that the entries of R are linearly independent over C. To see
this, assume that we have cx e C, / = 1, . . . , t\, such that

', / M \ M ί tλ

0 = Σ «\ Σ(* - «yj«ij }= Σ(* - «r> Σ w
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For each j , Σ/Li cι#ϋ" *s a solution of L(j>) = 0 analytic at a which
vanishes at a to order at most Έ — 1. Therefore the order of each
non-zero term (x - α ) ^ ( ^ [ ^ 1 C/#//) is between (7 - l)n and jn-l.

Since the sum of these terms is zero we must have each 5Z/=i c/#o = 0
Since the rows of Q are linearly independent, we must have that each

We will now show that the statement that for any g e Gal(L) there
is an Ag e GL(t\, C) such that gQ = Ag Q is equivalent to the
following:

(a) The entries of R form a basis for the solution space of some L
in 3*(n, m, B) where h, m, B depend only on n , m and S.

(b) Q = WZ where W = (R,R\..., Rίh-V) and Z is a ^ x M
matrix with entries that are rational functions (whose degrees can be
a priori bounded in terms of n, m and B).

Once we have shown this equivalence we will be done since Seiden-
berg's principle implies that (a) and (b) define C-constructible sets.

Let us start by assuming that for each g e G there is an Ag e
GL(ίi, C) such that gQ = Ag . Q. Since R = Q - X where X =
((x — ayi, . . . , (x-α)^i ) τ we see that the entries of R span a Gal(L)
invariant space. Since these entries are linearly independent, Lemma
2.10(i), Lemma 3.2, Lemma 3.3, and Lemma 3.7 imply that there exist
integers h and fh and a local bound B (depending only on n, m and
B) such that these entries form a basis of the solution space of some
Z e<Sf{h,fh,B). Therefore (a) holds.

To see that (b) holds, let g e Gal(L). Since gR = g(Q-X) = AgR,
we have gW = AgW. Since W is the Wronskian matrix of the
entries of i?, W is invertible. Therefore Z = W~ιQ is left invariant
by Gal(L) and its entries so must lie in C(x). Lemma 3.2, Lemma 3.3
and Proposition 2.11 (i) imply that we can a priori bound the degrees
of Z in terms of n, m and B so (b) holds.

Conversely assume that (a) and (b) hold, (a) implies that for any
g e Gal(L) there exists an Ag e GL(tχ, C) such that gR = AgR.
From (b) we deduce that gQ = AgQ.

(ii) Let G be a finite group and H{, . . . , Ht all the subgroups of
G. We then have that

G, V) = {Le^f{n, m,£)|Gal(L) c G}
t

- (J{L G &{n, m, 5)|Gal(L) c Ht} .
/=!
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Since C-constructible sets form a boolean algebra, this latter set is a
C-constructible subset of S*{n, m•, B). D

Of course if L e J?(n9 m, B9 G9 V) for a finite group G, all
solutions of L(y) = 0 will be algebraic so L will have only regular
singular points and rational exponents.

PROPOSITION 3.12. Let n and m be integers and B a real number.
Let G be a linear algebraic group with G° the connected component
of the identity and V a faithful G-module of dimension n, all defined
over C. The set of L in <Sf{n, m, B) such that

(i) Gal(L) C G and Soln(L) is isomorphic to V over C as
Gd\{L)-modules.

(ii) The map π: G —• G/G° is surjective when restricted to Gal(L)
is a C-constructible subset of 2f{n9 m, B).

Proof. Let W be a faithful Gr/G°-module. By Proposition 3.9 there
exist Pl9...,Pt e C(x){Yx, . . . , Yn, ( d e t ^ ) ) " 1 , Cx, ... , CN}
such that if L e&{n ,m,B) and Gal(L) c G/G° with Soln(L) iso-
morphic to W as a Gal(L)-module then for any basis {y\9 ... ,yn}
of Soln(L), there exist constants c\, . . . , c^ such that

.. , ynχ, c\, . . . , cN), . . . , Pt{yx, . . . , yΆχ, c\, . . . , cN)

generate a Gal(L)-module isomorphic to W. Furthermore, there ex-
ist nf, m', Bf depending only on n, m, B and the Pf such that PF =
Soln(L;) for some U e ^ ( w ' , m!, 5 ) . Therefore (ii) is equivalent to:
(ii7) there exists a basis {yΪ9 . . . , yw} and constants c\, . . . , c^ such
that Pi(}>i, . . . , ynχ, q , . . . , cN), . . . , Pt(yx, . . . , yΆχ, cx, . . . , cN) is
a basis of Soln(L') for some V e ^{n', m', B', G/G°, W). Propo-
sition 3.12(i) implies that (i) above defines a C-constructible subset
of J&(n9 m, B). Proposition 3.12(ii) implies that (ii') defines a C-
constructible subset of <5f(n, m, B). Therefore Seidenberg's princi-
ple implies that the set defined in the proposition is a C-constructible
set of Jg^(Λ, m, B). n

PROPOSITION 3.13. Let n and m be integers and B a real number.
Let G be a linear algebraic group, G° its connected component of the
identity and V a faithful G-module of dimension n, all defined over
C. The set of Le Jϊ?(n9m,B) such that

(i) Gal(L) c G and Soln(L) is isomorphic to V over C as
Gal(L)-modules.
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(ii) KerX(G°) c Gal(L)
is a C-constructible subset of Jΐf(n, m, B).

Proof. Proposition 3.11 implies that (i) defines a C-constructible
subset of y ( π , m , ΰ ) so we only need to show that under the as-
sumption that (i) is true, condition (ii) defines a C-constructible sub-
set of &{n,m,B). To see this, let W be the faithful G-module
guaranteed to exist by Proposition 2.9. Let k = dim W, r —
dim(ChGo(^)), and let s = [G:G0]. Let Vx = V and V2 = W and
let n2, m2, B2 and Λ , . . . , Pk e C(x){Y{ ,...,Yk, (det(r/ i ) ))- 1 ,
C\, . . . , CJV} be the elements guaranteed to exist by Proposition 3.9.
We will show that (assuming (i) holds) (ii) is equivalent to the follow-
ing condition and that this condition defines a C-constructible subset
of &(n,m,B):

(ii') There exists a basis {y\, . . . , yn} of Soln(L) and constants
C\, . . . , CM such that

{ΛCFi, . . . , JΉ, cΪ9 . . . , cN)9 . . . , ̂ ( y i , . . . J Λ [ , Ci, ... , c^)}

forms the basis of Soln(L2) for some L2 e ^f{n2 , m2 , 52) with
(a) L2{y) = Lk_r(Lr{y)) where L^_r(y) and Lr(y) have coeffi-

cients in an algebraic extension of C(x) of degree < s.
(b) If L2(y) = 0 and y'/y is algebraic over C(x) of degree < s,

then Lr(y) = 0.
Assume (i) and (ii) hold so KεrX(G°) c Gal(L). Proposition

2.9 implies that Ch G o(^) = C h G a l ( L ) n G o ( ^ ) . C h G a l ( L ) n G o ( ^ ) is a

Gal(L) Π G0 invariant subspace of W of dimension r so Lemma
2.10(ii) implies that L2(y) = Lk_r(Lr(y)) where

and L/<-_r and Lr have coefficients in the fixed field of Gal(L) Π G° .
Since [Gal(L): Gal(L) ΓΊ G°] < [G : G°], this fixed field is an algebraic
extension of C(x) of degree at most 5. Therefore (a) is true. If
L2{y) = 0 and y'/y is algebraic over C(x), then y'/y is left fixed
by Gal(L) 0. Since KerX(G°) c Gal(L)0 we have ChGal{L)ΰ(W) =
ChGo(fF) = ChGal{L)n(f(W). Therefore y e ChGal{L)nGo(W) so Lr(y)
= 0.

Now assume (i) and (ii') hold. We will show ChGal(L)nGo(W/) =

Ch^iW) so by Proposition 2.9, KerX(G°) c Gal(L). Let / =
dimChGal(L)nί7o(W/) and let {yu ... ,yt} be a basis of ChGaX{L)n(f{W)

where each j), spans a Gal(L) n G:0-invariant subspace of W. For
each i, y'Jyi will be Gal(L) n <j°-invariant and so be algebraic over
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C(x) of degree at most s. Therefore (b) implies that each yt sat-
isfies LrCFi) = 0. This implies t < r. Since Gal(L) Π G° c G°,
we have ChGo(W) c ChGal/LNnGo(fF) so we must have t = r and

( )

Therefore, assuming (i), (ii) and (ii') are equivalent. To see that
(ii') is a C-constructible subset o f - ? ( « , m , f i ) note that Lemma 3.7
implies that there exists an M depending only on n^, m-i and 52
(and so only on N, m and B) such that the coefficients of Lk_r and
L r satisfy irreducible polynomials over C(x) whose coefficients are
quotients of polynomials of degree < M. Furthermore Lemma 3.4(ii)
implies that there exists an M such that if y is as in (b) then y'jy
will satisfy an irreducible polynomial whose coefficients are quotients
of polynomials of degree < M. Using Seidenberg's principle we see
that (ii') defines a C-constructible set. D

THEOREM 3.14. Let n and m be integers and B a real number.
Let G be a linear algebraic group, G° its connected component of the
identity and V a faithful G-module of dimension ny all defined over
C. The set of Le&(n,m,B) such that

(i) Gal(L) c G and Soln(L) is isomorphic to V over C as
Gal(L)-modules.

(ii) n: G —• G/G° is surjective when restricted to Gal(L).
(iii) KerX(G°)cGal(L)

is a C-constructible subset of Jϊ?(n, m, B). Therefore, if G° -
KerX(G°) and W is weak local data, then the set of L e

, m, W, G, V) is a C-constructible set.

Proof. The first statement follows from Propositions 3.12 and 3.13.
To prove the second statement, note that if KerX(G°) = G°, then
conditions (i), (ii), (iii) imply that Gal(L) = G. £f(n, m,W) is
always C-constructible so the conclusion follows. D

We note that the condition KerX(G°) = G°, is equivalent to the
condition that RU(G°) = R(G°). To see this note that Lemma 2.4
implies that KεrX(G°) = RU(G) x (P, P) for some Levi factor P
of G°. Therefore if G° = KerX(G°) then G°/RU(G°) is semisim-
ple so RU(G°) = R(G°). Conversely, assume RU(G°) = R(G°).
Any character χ of G° is trivial on RU(G°) so becomes a charac-
ter on G°/RU(GO). Since RU(G°) = R(G°), G°/RU(G°) is semisim-
ple so χ is trivial on G°/RU(G°) as well. Therefore any character
of G° is trivial, i.e., G° = KerZ(G°). Examples of groups satisfying
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RU(G°) = R(G°) are finite groups and groups where G° is semisimple
or unipotent.

We also note that £?{n , m, B) is a real semi-algebraic set when we
identify C with R 2 . Therefore the set defined by (i), (ii) and (iii) in
Proposition 3.13 is a real semi-algebraic set.

Finally we note here that the last part of Theorem 3.14 is not true in
general without some assumption on G. The following example (due
to Deligne) shows that for G = C* x (Z/2Z) there is a G-module V,
integers n and m and local data 2! such that Jϊ?(n9 m,2$, G, V)
is not constructible. This example is constructed by first constructing
a differential equation on a torus (with differential Galois group C*)
and then projecting onto the Riemann Sphere.

Let E be an elliptic curve. Given any two points p and q on
E, there exists a holomorphic 1-form ω with poles only at p and
q and at these points the poles are simple with residues - 1 and +1
respectively ([FO81], Corollary 18.12, p. 152). Any two such 1-forms
differ by a holomorphic 1-form, so there is a one-parameter family of
such forms. If we fix p to be O, the identity element in the group
structure of E and let q be a variable point, we get a two parameter
family of forms ω(q, t).

Consider the family of differential equations

(3.14.1) ^

parameterized by q and t. Assume that for some fixed q G E and t G
C this has a solution Z = z(x) algebraic over C(E), the function field
of E. Since z'/z will be in C(E), the Kolchin-Ostrowski Theorem
[KO68] implies that zN e C(E) for some N G Z-{0} . The divisor of
zN will be -N-O+N-q . Abel's Theorem implies that such a divisor is
the divisor of a meromorphic function if and only if -N -O + N -q =
O where + is now interpreted as addition on E ([FO81], 20.8, p.
165). Therefore, if equation (3.14.1) has a solution, algebraic over
C(E), for some t, then q must be a point of finite order in E.
Conversely, if q is a point of order N in E, let w e C(E) be a
function whose divisor is -N - O + N - q and let z = ^ΰ7. One
sees that z is a solution of (3.14.1) for some (unique) value of t.
Therefore the set A of (q, t) G E x C such that (3.14.1) has an
algebraic solution is not a constructible set since the points of finite
order on E are not constructible. If (q, t) φ A , then a solution z of
(3.14.1) is transcendental over C(E). Since such a solution satisfies
z'/z G C(2s), the Galois group is C*. Furthermore note that (3.14.1)
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has only regular singular points and that the exponents of (3.14.1) are
{±1} independent of q and t. We therefore have an example of a
parameterized family of equations on E, with regular singular points
and fixed exponents, which for almost all parameters has Galois group
C* but such that the set of parameters corresponding to equations with
Galois group C* is not constructible.

One can project this example down to the Riemann Sphere. If one
considers E as a two sheeted cover of P1 then the Galois group of
C(E) over C(x) is Z/2Z. Let σ be a generator of this group and

Zχ =elω be a multivalued solution of (3.14.1). Let z2 = e<fσ{ω). We
then have that L(Y) = Wr(Γ, z\, z2)/Wr(z!, z2) is a parameterized
family of second order linear differential equations with coefficients
that are meromorphic functions on the Riemann Sphere (i.e., rational
functions). L(Y) is parameterized by the projection π{q) and t. Its
Galois group will generically be C* x Z/2Z and will be finite (for some
value of t) if and only if π(q) lies under a point of finite order. This
family will have regular singular points with fixed exponents 3f and
so the set i ? ( 2 , m, 31, C* x Z/2Z, C2) is not C-constructible.

Note that in the above example the action of Z/2Z on C* is
not trivial. We show in Theorem 3.16 that if the action of G/G°
on G°/KeτX(G°) is trivial, one can indeed extend Theorem 3.14
and show that for fixed n, m and local data 3f, the set
J&(n, m, 31, G, V) is C-constructible. We note that it is not enough
to fix a local bound B or weak local data W but rather one must fix
local data 31 to make this result true. To see this consider again the
example La(y) = y1 - (a/x)y = 0, α e C . For any B, the set of a
such that |Reα| < B and Gal(Lα) = C* is not a constructible set of
the parameter space. Even if we fix the exponents, one must know the
determining factors and not just a bound on their degrees. To see this
consider again Laχ ^2(y) = y" ~ (<*i + a2)y' + a{a2y, a\, Φ a2 e C.
Gal(Lα i ? α 2) = C* x C* if and only if αi and a2 are linearly inde-
pendent over Q but the only singular points is infinity and there the
determining factors have degree 1.

To prove Theorem 3.16 we need the following technical lemma.
Let G be a linear algebraic group. KevX(G°) is not only a normal
subgroup of G°, but it is also normal in G. We therefore have the
following exact sequence

1 -> G°/KtrX(G°) -> G/KerX(G°) -> G/G° -> 1.

Since Cro/KerX((jr0) is abelian, this sequence defines an action of
G/G° on G°/KerX(G°).
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LEMMA 3.15. (i) Let

be an exact sequence of linear algebraic groups where K is abelian and
Q is finite. If the action of Q on K is trivial, then G = H K where
H is a finite normal subgroup of G.

(ii) If G is a linear algebraic group and G/G° acts trivially on
G/K.eτX(G°) then there is a surjective map φ: G —» T where T is a
torus and dim T = dim G°/Ker X(G).

Proof (i) G = H G° for some finite subgroup H of G ([WE73],
p. 142). Since Q is finite, G° c K so G = H -K as well. Since the
action of Q on K is trivial, K is central so H is normal.

(ii) Write G/KerX(G°) as H - K, K = G°/KeτX{G°) and H is
finite and normal. Let ψ: G/KerX(G°) -* H K/H = K/KnH. Note
that Ay AT Π ΛΓ = Γ is a torus and, since Ker ψ is finite, dim T =
dimG°/KerX(G°). Let 0 - ^ o π where π: G -> G/KerX(G°) is
the canonical projection. D

T H E O R E M 3.16. L^ί n and m be integers and 2 local data defined
over C. Let G be a linear algebraic group, G° its connected compo-
nent of the identity and V a faithful G-module, all defined over C.
IfG/G° acts trivially on G/KerX(G°), then &(n, m,3f ,G,V) is
C-constructible.

Proof. Let ψ: G -> T be the map defined in Lemma 3.15(ii).
Let dim T = k and let / = (χ\, . . . , χt) be an isomorphism of
T with (C*)^. Note that the χι are multiplicatively independent
characters of G. Proposition 3.9 gives us polynomials P\, ... , Pt

i n C(x){Yx 9...,Yn, ( d e t ί ^ ) ) " 1 ,Cl9...,CN} s u c h t h a t i f
Gal(L) c G and {yΪ9 . . . , yn} is a basis for Soln(L) then there
exist constants c\, . . . , c^ such that for each /, / = 1, ... , t,
Pi{y\ 5 5 y« 5 C\, . . . , C v) spans a one dimensional Gal(L) module
corresponding to χt. Let S? be the set of L e ^(AZ , m, ^ ) such
that

(i) Gal(L) c G and Soln(L) is a Gal(L)-module isomorphic to
V.

(ii) KerZ(G°) c G
(iii) π:G^G/G° maps Gal(L) surjectively onto
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(iv) There exists a basis {y\, . . . , yn} of Soln(L) and constants
cΪ9...9cN such that p x = P{(y{, ... , yn , cx, ... , cN), ... , p t =
jPί()Ί ? > y« > <?i > > CN) a r e algebraically independent.

We claim that S* = &(n, m, ^ , G, F). If Le^(n, m, 3f9 (?, K)
then Gal(L) = G so (i), (ii) and (iii) obviously hold. Furthermore,
each Pi spans a one dimensional G-space corresponding to /,-. If the
Pi are algebraically dependent, then the Kolchin-Ostrowski Theorem
implies that p™1 p™' — 1 for some integers ra, not all zero. This
in turn implies χ™1 χ™' — 1, contradicting the multiplicative
independence of the χι.

Conversely, assume (i), (ii), (iii) and (iv) hold. For g e Gal(L),
g{pi) = Xι{g)Pi. Therefore each pt is in the fixed field KQ of
KerX(G°) (which is a subgroup of Gal(L) by (ii)). The Galois group
of KQ over C(z) is Gal(L)/KerZ(G°). Since the pi are algebraically
independent, tr.deg.c(z)i£o > t, so dimc(Gal(L)/KerX(G0)) > t.
Since Gal(L)0 c G° and dimc(G°/KerX(G0)) = t, we have Gal(L)0

= G°. By (iii) we have Gal(L) = G.
All that remains is to show that (i)-(iv) define a C-constructible

set. Theorem 3.14 implies that (i)—(iii) define a constructible set. To
see that in addition (iv) defines a C-constructible set first note that
since (i) holds, each pz spans a one dimensional //-space so p'JPi €
C(x). Proposition 3.11 implies that there exists an M depending
only on ft, m and 3! such that the p, are algebraically dependent
if and only if Π ^ i ^ Γ ' = ^ ( χ ) ^Oΐ s o m e integers m / ? not all zero,
with \rrii\ < M and rational function R(x) that is the quotient of
polynomials of degrees at most M. This implies that "the /?/ are
algebraically dependent" is a C-constructible condition. Seidenberg's
principle implies that £?(n, m, 31, G, V) is C-constructible. D

Note that if G/G° does not act trivially on G°/KerX(G°) then
we can still produce p\, . . . , pt in the Picard-Vessiot extension of
C(x) corresponding to L such that each p'Jpt is left fixed by G°
(but not necessarily by G). As Deligne's example shows, Proposition
3.11 is no longer true if C(x) is replaced by an algebraic extension
of C(x). Therefore, we are forced to have some hypothesis on G
in Theorem 3.16 because for a non-trivial algebraic extension K of
C(x) the condition "p'jpi G K for / = 1, ... , t and p\, . . . , pt are
algebraically independent" is no longer constructible.

Theorem 3.16 implies that if G is connected then
n, m, 31, G, V) is a C-constructible set. Deligne's example again
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shows that this result does not extend when we consider differential
equations over Riemann surfaces of genus > 1 instead of the Rie-
mann sphere. The reason is the same as above.

4. Applications.

α. Finite Galois groups. In this section we show how our results
combined with results of Katz and Dwork imply that if G is a finite
group then the dimension of the set linear differential equations of
order n with k distinct regular singular points, fixed exponents and
Galois group G is a constructible set of dimension at most k. We
shall show that if one furthermore fixes the singular points as well,
then this set is finite. We thank B. Dwork for pointing out how the
arguments of [DW90b] can be used to prove this result.

We first review some facts about differential operators in character-
istic p (cf. [KA70], [HO81], [DW90]). Let K be a field of character-
istic p and let L = Dn + an-\Dn~l H h#o be a differential operator
with coefficients in K{x), D = ^ . We say that L has nilpotent p-
curvature if Dpμ e K(x)[D]L for some positive integer μ. One can
define regular singular points and exponents as in the characteristic 0
case (using Fuchs' criteria). It is known ([KA70], [HO81]) that if L
has nilpotent p-curvature then it has only regular singular points and
its exponents are in ¥p = Z/pZ. Fix integers n and k and consider
the set Vβ of operators having order n, k + 1 regular singular points
(including oo) and nilpotent p-curvature. Note that Fuchs' relation
implies that there is a bound m, depending on n and k, such that
the coefficients of L are quotients of polynomials of degrees < m.
We denote a point in V£ by (y, v) where γ is the vector of k finite
singular points and v is the vector of remaining parameters. Dwork
[DW90] showed that V^ is a constructible set and that if (γ, v) e V? ,
then v is integral over Wp[γ],

Finally, we need the following facts. Let F be a number field and
L a differential operator with coefficients in F(x). For almost all
primes p of F we can reduce the coefficients of L modp and get an
operator Lp with coefficients in Fp(x), where Fp is the residue field
of p . It is known (cf. [KA70], [HO81]) that if L(y) = 0 has n linearly
independent solutions algebraic over F(x), then for almost all primes
p, Lp(y) = 0 has n linearly independent solutions in Fp(x) and that
this implies that Lp has nilpotent p-curvature.

To prove our assertion, we may assume that one of the singular
points is always oo. Let SF be the set of linear differential equa-
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tions of order n with k + 1 distinct regular singular points (including
oo), fixed exponents, and Galois group G. We will show that the
dimension of & is at most k. We may further assume that the
representation of G is fixed, since G has only a finite number of in-
equivalent representations of any finite dimension. Therefore & is a
constructible subset of ^f(m, n, S, G, V) for some m, S and V.
As in the characteristic p case, we associate an element Le^ with
{y,v) where γ is the vector of k finite singular points and refer to
L as -£7,1/. Let (γ, 1/) be a generic point of some irreducible compo-
nents of &. We shall show that there is a constructible set V defined
over Q with (γ, v) G F such that, for almost all primes /?, Vp, the
mod/? reduction of F , lies in V^ . Since for almost all p , the dimen-
sion of Vp is the same as the dimension of V, the result of Dwork
quoted above shows that v is algebraic over Q[γ], so d i m ^ < k.
Furthermore, if the singular points are fixed, there can be only finitely
many such v.

To produce the desired constructible set V we first consider the
following set For fixed m, n and M, let Vn^m^M be the set of
elements (α, c) where a = (αy), c = (cί7/) such that

(i) for / = 1, . . . , n, ft| = Σf=oΣΪίocijiχjyl i s irreducible in
C[x,y] ,

(ii) My) = 0 implies that La(y) = Σ%o Σto "ij*!>ω = 0, and
(iii) There exist yi, . . . ,yΛ such that fj(yj) = O and Wr(yi, . . . ,yπ)

Vn,m,M is a Q-constructible set. Furthermore, there exists a Po
such that for any prime p > po we have (α, c) G (K«,W,M)/? the
mod/? reduction of f^,m,M if and only if conditions (i), (ii) and
(iii) hold over ¥p(ά, c)(x) (where C[x, y] is replaced by K[x, y], K
being the algebraic closure of ¥p(ά9c))9 that is, (a, c) e(VnjmfM)p if
and only if L%{y) = 0 has w independent solutions in some algebraic
extension of Wp(a, c)(x). For (α, c) G VnjmtM, define π(α, c) = β.
Let F = π ( ^ m Λ / ) . For sufficiently large /7, we have Vp , the mod/7
reduction of F , is the same as π((Vnym>M)p) Therefore any point in
^ corresponds to a linear differential equation having only algebraic
solutions and so, as noted above, it must have nilpotent /7-curvature.
Therefore Vp cV^ . Since ( y , i / ) e K , w e have produced the desired
constructible set V.

b. The inverse problem. In this section we show (Theorem 4.3)
that for any linear algebraic group G defined over an algebraically
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closed field C c C and a faithful ^-dimensional G-module V, there
exists an integer m and local data 21 defined over C such that
y ( / ι , m ,2$, G ,V) is not empty. In fact, we will select 2! hav-
ing no determining factors, so any L E ^(n , m, 2r, G, V) is of
fuchsian type, that is, will have only regular singular points. When
G has the property that G/G° acts trivially on G°/KerX(G°), The-
orem 3.16 implies that Jΐf(n, m, 21, G, V) is a C-constructible set
and the Hubert Nullstellensatz implies that £f{n , m, 5*, G, V) con-
tains a point with coefficients in C. This allows us to show that for
any algebraically closed field C of characteristic zero and connected
linear algebraic group defined over C, there is a Picard-Vessiot exten-
sion of C{x) having G as its Galois group (Theorem 4.4).

The proof of Theorem 4.3 follows ideas presented in [TT79]. In that
paper the authors show that any linear algebraic group G c GL(w , C)
is the Galois group of a Picard-Vessiot extension of C(x). To do
this, they select a finitely generated Zariski dense subgroup G* of
G and use the solution of Hubert's Twenty-First Problem [KAT79]
to conclude that there is a homogeneous linear differential equation
L(y) = 0 of fuchsian type whose monodromy group is given by G*.
For equations of fuchsian type, the monodromy group is Zariski dense
in the Galois group, so the Galois group must be G [TT79]. Since their
proof relies heavily on analytic techniques, it does not immediately
apply to fields of the form C(x), where C is any algebraically closed
field of characteristic zero, but the machinery developed above will
allow us to transfer their result to such fields. The following two
lemmas allow us to modify the argument of [TT79] to insure that the
differential equation produced via the solution of Hubert's Twenty-
First Problem has exponents in a designated field C.

LEMMA 4.1. Let G c GL(n, C) be a connected solvable linear al-
gebraic group defined over an algebraically closed field C c C. There
exists a finite set X = {gx, . . . , gt} c G, such that

(i) The subgroup generated by X is Zariski dense in G,

(ii) Πί=i *« = ! .
(iii) For any geX, the eigenvalues of g are of the form e2πιl> with

ζeC.

Proof. Since G is connected and solvable, we may assume that
the elements of G have been simultaneously triangularized and that
G = T U, where T is a maximal torus and U is unipotent. All
elements of U satisfy (iii). Inductively choose g\, gι, G U such
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that the Zariski closure of the group generated by g\, ... , gi has di-
mension / < dimension of U. In this way we can find g\ , ... 9 gs

that generate a group that is Zariski dense in U. We next consider
T C D(n, C), the group of diagonal elements of GL(rc, C). As-
sume T has dimension r. Let #,- be the character on D(n, C)
that picks out the /th diagonal element. There exist ([HUM81], p.

104) characters ψj = ΓΠLi*/1'7* w ^ h w// £ z a n c * J = 1, ••• > f
such that Φ = (^!, ... , φr) maps T isomorphically onto (C*) r. Let
Ci, . . . , ζr G Q be linearly independent over Q. We then have that
a = (e2πι^ , . . . , ^2π/ίr) generates a Zariski dense subgroup of (C*) r,
since χ(a) Φ 1 for any character on (C*) r. Therefore, gs+\ =Φ~ι(a)
is an element of T satisfying (iii) that generates a Zariski dense sub-
group of T. We have now constructed g\9 ... 9 gs, &+i satisfying
(i) and (iii) for G. Since we are assuming that the elements of G are
upper triangular matrices, one sees that h = (Π/ίί ft) a ^ s o satisfies
(iii). Therefore S = {g\, . . . , gs+\, &+2 = h~1} satisfies conditions
(i), (ii), and (iii). D

LEMMA 4.2. Let G c GL(n, C) be a linear algebraic group defined
over an algebraically closed field C c C. Then there exists a finite set
^ = {?h 5ft}cG, such that

(i) The subgroup generated by X is Zariski dense in G,

(ϋ) Π/=ift = l>
(iii) For any g eG, the eigenvalues of G are of the form elπι^ with

ζeC.

Proof. First assume G is connected. We claim there exist two Borel
subgroups B\ and B2 of B such that B\ U B2 generates a Zariski
dense subgroup of G. To see this let R(G) be the radical of G and
let π: G -> G/R(G). Let B be a Borel subgroup of G/R(G). By
([HUM81], p. 174), BuB~ is Zariski dense in G/R(G), where 5 "
is the opposite Borel subgroup of G. B\ = π~ι(B) and 2?2 = n~ι(B~)
satisfy the conclusion of our claim.

Lemma 4.1 now guarantees the existence of a set { # / , . . . , g}}
and {gf, . . . , g,2} satisfying (i), (ii), (iii) with respect to B\ and B2

respectively. X = {#/, . . . , g} , gf, ... , g}} satisfies the conclusion
of Lemma 4.2.

Now assume that G is not necessarily connected and let G° be
the connected component of the identity of G. We may write G =
H . G° for some finite subgroup H of G ([WE73], p. 142). For
any h € H, the eigenvalues of h are of the form e2πir for some
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Γ G Q . Let {<?i, . . . , qt] satisfy (i), (ii), (iii) with respect to G°.
X — {QX 9 - j Qt} U H satisfies (i), (ii) and (iii) with respect to G. D

The proof of the Theorem 4.3 depends on the solution of Hubert's
Twenty-First Problem for a multiply punctured sphere, (cf., [KAT76],
[TT79]). This result states that if z\, . . . , zs+\ are points on the Rie-
mann Sphere S2, then any representation of the fundamental group
τi\{S2 — {z\, . . . , zs+\}) in GL(n, C) can be obtained as the mon-
odromy representation of a fuchsian differential equation with coeffi-
cients in C(JC) (possibly having additional apparent singular points).
Note that τt\{S2 — {ZQ, . . . , zs}) is isomorphic to the free group on
s+1 generators γo, . . . , γs modulo the relation y0 ϊs = 1 There-
fore a representation of πι(S2-{z0, . . . , zs}) is defined once we have
specified s + 1 matrices go, -. , gs such that go gs = 1 •

THEOREM 4.3. Let G be a linear algebraic group and let V be
a faithful n-dimensional G-module all defined over an algebraically
closed field C c C . There exists an integer m and a finite set S c C
such that J5?(n, m, S, G, V) is not empty.

Proof. The action of G on V allows us to consider G as a subgroup
of GL(#, C). Let {gi, . . . , gt} be a subset of G satisfying Lemma
4.2 and let z\, . . . , zt be distinct points on S2. These allow us to
define a representation of π\ {S2 - {z\, . . . , zt}) into G c GL(π , C).
Using the solution of Hubert's Twenty-First Problem, there is a fuch-
sian differential equation L(y) = 0 having this as its monodromy
representation. Since {g\, . . . , gt} generates a dense subgroup of G,
the Galois group of L(y) = 0 is G and the solution space is isomor-
phic to V. Let S be the set of exponents of L(y). The singular points
of L(y) are either among the zz or are apparent singularities. At the
Z[ the exponents are (l/2πi) times the logarithms of eigenvalues of
gi and so lie in C. At the apparent singularities, the exponents are
integers. Therefore S c C. Let m be the maximum of the degrees
of the coefficients of L(y). We then have that Jΐf(n,m,S,G,V)is
nonempty. D

THEOREM 4.4. Let G be a linear algebraic group defined over an
algebraically closed field C of characteristic zero such that G/G° acts
trivially on G°/KerX(G°). There exists a fuchsian differential equa-
tion L(y) = 0 with coefficients in C{x) such that the Galois group of
L(y) is G.
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Proof. If the cardinality of C is at most the cardinality of C, we
can assume that C c C. Theorem 4.3, Theorem 3.14, Theorem 3.16
and Hubert's Nullstellensatz imply that there is a fuchsian linear dif-
ferential equation L(y) = 0 with coefficients in C(x) such that the
Galois group of L(y) over C(x) is G. Since C is algebraically closed,
the Picard-Vessiot extension Ko of C(x) associated with L(y) = 0
is isomorphic to K ® c C, where K is the Picard-Vessiot extension of
C(x) associated with L[y) = 0. One then sees that the Galois group
of K over C(x) is G.

If the cardinality of C is larger than the cardinality of C, we can
assume that C c C and that G is defined over C. The preceding
paragraph shows that there is a Picard-Vessiot extension KQ of C(x),
associated with a fuchsian equation L(y) = 0, such that the Galois
group of KQ over C(x) is G. K = Λ̂o ®c C is the Picard-Vessiot
extension of C(x) associated with L(y) = 0 and its Galois group is
also G. D

As mentioned earlier, when C = C this result (for arbitrary G)
appears in [TT79]. Kovacic in [KOV69] and [KOV71] deals with the
general problem of when an algebraic group is the Galois group of
a differential field k. One of his results is that if G is a connected
solvable linear algebraic group defined over an algebraically closed
field C and k is a finitely generated proper differential extension of
C with constant field C, then there exists a Picard-Vessiot extension
of k having Galois group G. Ramis [RA88] has shown that any
semisimple connected linear algebraic group is the Galois group of a
linear differential equation with coefficients in C(x) with precisely one
regular singular point and one irregular singular point. These results
are not constructive and it should be noted that other authors have
shown that certain groups occur as Galois groups of linear differential
equations by explicitly calculating the Galois groups of certain classes
of equations ([BH87], [BBH88], [DM89], [KAT87], [KP87], [MI89])
and by showing that certain groups can be realized by specializing
generic equations ([GOL57], [MIL70]).
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