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POSITIVE 2-SPHERES IN 4-MANIFOLDS
OF SIGNATURE (1, ή)

KAZUNORI KIKUCHI

We sharpen Donaldson's theorem on the standardness of definite
intersection forms of smooth 4-manifolds in the same sense as Ker-
vaire and Milnor sharpened Rohlin's signature theorem. We then
apply the result thus obtained to show that the homology classes of
rational surfaces with b^ < 9 which can be represented by smoothly
embedded 2-spheres S with S S > 0 are up to diίfeomorphism rep-
resented by smooth rational curves. Furthermore, we not only extend
part of the application to the case where b^ > 9, but also give an
algorithm to see whether or not a given homology class of rational
surfaces with b^ < 9 can be represented by a smoothly embedded
2-sphere.

1. Introduction. Let AT be a closed oriented smooth 4-manifold.
One of the most important facts in 4-dimensional differential topology
is the following:

THEOREM R (Rohlin 's signature theorem [13]). If the second Stiefel-
Whitney class w2(M) vanishes, then the signature σ(M) is congruent
to 0 modulo 16.

Performing the topological blowing up/down operations and ap-
plying Theorem R, Kervaire and Milnor [6] extended Theorem R to
deduce the following:

THEOREM KM. If an integral homology class ξ of M, dual to
W2(M), is represented by a smoothly embedded 2-sphere in M, then
the self-intersection number ξ ζ must be congruent to σ(M) modulo
16.

Note that, although used in their proof of Theorem KM, Theorem
R can be regarded as a special case of Theorem KM with ξ = 0.

The primary purpose of this paper is to sharpen the following in
the same sense as Kervaire and Milnor sharpened Theorem R:

THEOREM D (Donaldson [2]). If the intersection form of M is
negative-definite (bj = 0), then it is equivalent over the integers to
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We thus work through in the DIFF category. When the integral
homology group H2(M) has torsion, we arbitrarily fix a splitting of
H2(M), and accordingly of ξ e H2{M), into free and torsion parts:

= F2(M)®T2(M),

where F2ζ e F2{M), T2ξ e T2(M). We then regard (F2(M), •) as
the intersection form of M. We say that ξ e H2(M) is represented
by S2 if it is represented by an embedded 2-sphere.

The primary result of this paper is then the following:

THEOREM 1. Let M be a closed oriented smooth 4-manifoίd with
b+ = 1, fc" = n > 1, and ξ a class in H2(M) with ζ ζ = s > 0. //
ζ is represented by S2, then either of the following holds:

(i) there exist ζ\ 9 ... , ζn in F2{M) such that

with respect to the basis {η ζ\, . . . , ζn), where F2ξ = 2η
(ii) there exist η, ζ\, . . . , ζn_\ in F2(M) such that

(F2{M),.)=

with respect to the basis (F2ξ, η ζ\, ... , ζn-\)

Note that Theorem D can be regarded as a special case of Theorem
1 with

M = CP2#N, ξ = [a quadric on C P 2 ] ,

where TV is a closed oriented 4-manifold with b^iN) = 0. We remark
that Theorem 1 is an improvement over Lemma (2.1) of the author's
previous paper [7], in which he, with relevance to the 11/8-conjecture,
also proved another theorem (Theorem (1.3)) which implies Donald-
son's theorem on even intersection forms of 4-manifolds.

The secondary purpose of this paper is to apply Theorem 1 to the
problem of representing homology classes of complex rational surfaces
by embedded 2-spheres.

Our results for this purpose are the following.
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THEOREM 2. Let M be either S2 x S2 or CP2#nCP2,0<n<9,
and ξ a class in H2(M) with ξ ξ = s > 0. ξ is represented by S2 if
and only if either of the following diffeomorphisms f exists:

(i) / : CPHnCP2 -* M such that f([CPι] or 2[CP1]) = ξ,

(ii) / : Σs#(n - l)CP2 -> M such that f{[Zs}) = ξ,

where CPι is a line on CP2, and Zs is the "zero section" (= CPι)
on the s-th Hirzebruch surface Σs with Zs Zs = s.

This reinterprets and improves all the known facts about that prob-
lem [15, 9, 10, 12, 7]. For Hirzebruch surfaces, see (3.1).

THEOREM 3. Let M be CP2#nCP2 ,n>2, and ξ a class in H2(M)
with ξ -ξ > 0. Let (x0 * i , , x«), xz G Z, denote a class in H2(M)
with respect to the natural basis of H2(M). If ξ is represented by S2,
then ξ is in the orbit of one of

( 2 ; 0 , . . . , 0 ) , ( f c + l ; f c , 0 , . . . , 0 ) , (k + 1 k, 1, 0, . . . , 0)

under the action of the orthogonal group O(M) of (H2(M), •). Fur-
thermore, the converse also holds if n < 9.

This improves Theorem (1.1) of [7]. When n < 9, there is an
algorithm to ascertain whether a given ξ is in such an orbit or not:

THEOREM 4. Let M be CP2#nCP2,2<n<9, and ξ a class in
H2(M) with ξ ξ > 0. Then one can see whether ξ is represented by
S2 or not by using the following algorithm:

start 1

1

ξ

> 23 ξ

no

cannot

is represented by

be represented by

S2.

S2.

1. Set ξ = (XQ Xi, . . . , xn), x,: e Z, with respect to the natural
basis of H2(M).

2. Set η = (y0 yx, . . . , yn) = (|xo|;\x[\, ... , \x'n\) so that

{x{, ... ,x'n} = {xι, ... ,xn}, y\> >y»>0.

3. Does η satisfy yo > y\ + y2 + y-p.

4. Set

2(^0-^1-3 ; 2)(1; 1, 1), n = 2,

(yo-yι - j ; 2 - > ; 3 ) ( i ; i , i , i , o , . . . , 0 ) , 3 <n<9.
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5. Is η equalto (2; 0, ... , 0) , (k+l k, 0, ... , 0) or (k+l ; t , l ,

Note that if one goes around once along the loop in the algorithm,
one strictly reduces the absolute value \XQ\ of xo , so that one must go
down to step 5 after going around the loop finitely many times since
ξ ξ>o.

In §2 (resp. §3), we prove Theorem 1 (resp. Theorems 2-4); and
in §4, we conclude by making some remarks about a deduction from
Rohlin's genus theorem [14], a modification to a theorem of B. H. Li
[11], and a conjecture on rationality of complex surfaces.

2. Proof of Theorem 1. We first recall some facts, indispensable for
our proofs of Theorems 1-4, about Lorentzian spaces.

(2.1) Facts. Let (Λ, •) be Lorentzian (1, π)-space, i.e. the inner
product space over R of signature (1, ή), n > 1.

(1) (Reverse Cauchy-Schwarz' inequality.) If ξ G Λ is timelike
(ξ ζ > 0), then (ξ η)2 > (ξ ξ)(η η) for any vector η e Λ, where
equality holds if and only if η is parallel to ζ.

(2) If ξ, η e A are future-pointing with respect to a certain timelike
vector τ e A(ξ-ξ >0, η η > 0, ξ τ >0, ?/ τ > 0 , τ . τ > 0 ) ,
then ξ η > 0, where equality holds if and only if ξ, η are lightlike
(ξ ξ — η η = 0) and proportional.

We next show a lemma, which we need in (2.7) and in (3.8).

LEMMA (2.2). Let (Ξ, •) be an inner product space over Z of signa-
ture (1, n), n > 1, and ζ a vector in Ξ with ζ ξ = 5 > 2. Lef 7 6e
ί/ze subset of Ξ o/α// vectors η with ξ-η=\,η-η = O. If η E Y,
then

{η, ζ-η}, s = 2,

Proof, ξ and λ/ generate a subspace of (Ξ, •) with orthogonal com-
plement (Ω, •) negative-definite. Let η1 be another vector in Y.
Then

rf = xζ + yη + ζ,

where x, y eZ and £ e Ω. ξ /̂; = 1 and η'. ηf = 0 imply

sx + j ; = 1, sx2 + 2xy + ζ . ζ = 0; .-. 5X2 - 2x - ζ . ζ - 0.
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Let d be the discriminant of the last equation. Then

d/4= l+s(ζ ζ)>0.

Since s > 2 and (Ω, •) is negative-definite, we have ζ = 0 and

r (0,1) or ( 1 , - 1 ) , s = 2,

I (0, 1), s>3.

Now, we are ready to give the proof of Theorem 1, which is in fact
obtained by improving that of Lemma (2.1) of [7]. We divide the
proof into a series of steps: (2.3)-(2.7). Throughout the proof, for a
finite set E, we denote by #E the number of elements in E.

LEMMA (2.3). Let M,ξ be as in the hypothesis of Theorem 1. Let

For (η yi,... J 5 - I ) G Ω and (£; z u . . . , zs-χ)eΩ,

, Theorem D implies the following:
(1)
(2)

Proof. Suppose that ξ is represented by an embedded 2-sphere S
in M . "Blow up" (s—l) distinct points of S, and then "blow down"
the resulting "exceptional curve" of self-intersection + 1 , to construct
a closed oriented 4-manifold N with (b£ , b^) = (0, n + s - 1):

(M, 5 ) # ( J - 1)(CP2, CP 1) = (CP\CPι)#(N, 0),

where C P 1 (resp. C P 1 ) is a line on CP2 (resp. C P 2 ) . U n d e r the
identif ications

F2(M#(s- 1)CP2) = F2(M)®Zs-\ (F2(N), .) = (Ω, .),-

we see that Theorem D implies (1) and thus (2): for details, see

in a
L E M M A (2.4). Theorem 1 holds ifξ ξ = s=l.

Proof. By (2.3), there exist ζ\, ... ,ζne F2(M) such t h a t
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w i t h r e s p e c t t o t h e b a s i s {F2ξ', ζι, ... , ζn) • L e t η = F2ξ + ζn • T h e n

with respect to the basis (F2ξ, η ζx, ... , C«-i) E

LEMMA (2.5). Let ζ be as in the hypothesis of Theorem 1, and as-
sume ξ ξ = s > 2. Let Z be as in (2.3), and let

Z0 = { ( C ; 0 , . . . , 0 ) e Z } , ZX=Z-ZQ.

Choose and fix (ζ zx,..., zs_γ) e Zx (#ZX > 2(s - 1) > 2), and let

r = #{i;ZiJί0}, A = (ξ ζ)2-(ξ.ξ)(ζ.ζ).

Then, the following equalities hold:
(1) ξ'ζ = zί+ " + zs.ι=±r,
(2) ζ.ζ = z2

ι+ . + z*_ι-l=r-l,

Proof. We naturally embed (F2(M), •) into Lorentzian (1, rc)-space
(Λ, •). In light of (2.1)(1), we see Δ > 0. Note 1 < r < s - 1. We
then calculate as follows:

{s _ r)r < { s -

hence (2). Let r_ = #{/; zz = -1}. We further calculate:

0 < Δ = ( r - 2 r _ ) 2 - s ( r - l )

< (r - 2r_)2 - (r + l)(r — 1) = 1 — 4(r — r_)r_ < 1,

hence (1) and (3). D

LEMMA (2.6). Let Δ be as in (2.5). Then Theorem 1 holds if Δ = 0
(5 > 2): to 6e more precise, the case where Δ = 0 corresponds to case
(i) of Theorem 1.

Proo/. Note by (2.1)(1) that F2ξ, ζ are proportional. We thus ob-
serve that Δ = r2 - s(r - 1) = 0 implies

5 = 4, r = 2: £ C = ± 2 , ί ί = l , F2ξ = ±2ζ.
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Let η be either of ±ζ so that F2ζ = 2η. We then see

Z ! = { ± ( f / ; 0 , 1, l ) , ± f o ; 1,0, l ) , ± ( ι / ; 1, 1,0)}:

(1/2)#Z! = 3(= 5 - 1), ( l / 2 ) # Z 0 = n .

Note by (2.3) that, if (Co 0, 0, 0) is an element in Z o , then η-ζ0 = 0,
ζ0 - ζ0 = - 1 . The case where Δ = 0 therefore corresponds to case

LEMMA (2.7). Let Δ be as in (2.5). Γλen Theorem 1 Λo/ώ z/Δ = 1
(s>2): to be more precise, the case where Δ = 1 corresponds to case
(ii) of Theorem 1.

Proof. We first see that Δ = r 2 - s ( r - l ) = l implies either of the
following:

We next observe the following equivalence:

(ξ-ζ = s-l, (ξ (ξ-ζ)=U

\ζ.ζ = s-2, *>\(ζ-ζ)-(ζ-ζ) = O.

In either case, we can choose η e Fι{M) such that

f ί >/=l ,

I η η = O.

Then the equivalence above and the uniqueness (2.2) of η show

Zί={±(η; l , 0 , . . . , 0 ) , ± ( / / ; 0 , 1, 0, . . . , 0), . . . ,

( 1 / 2 ) # Z ! = J , (l/2)#Z 0 = / ί - l .

Note by (2.3) that, if (Co 0, ... , 0) € Z o , then

The case where Δ = 1 therefore corresponds to case (ii). D

We have completed the proof of Theorem 1.

3. Proofs of Theorems 2-4. To prove Theorem 2 and Theorem 3,
we recall some facts about complex rational surfaces.
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(3.1) Facts. Let Σk denote the /c-th Hirzebruch surface, i.e., the
total space of CP1-bundle over CPι whose "zero section" Zk (=
CP 1) and "fiber" Fk (=CPι) formabasis ([Zk], [Fk]) of (H2(Σk), •)
such that

J
(1) Σk is biholomorphic to Σ/ if and only if |/c| = |/|, while Σk is

diffeomorphic to Σ/ if and only \ϊ k = l (mod 2) in particular, Σ2^

(resp. Σ u + 1 ) is diffeomorphic to S2 x S2 (resp. CP2#CP2): see [1,
p. 141], [17, §1]. _ _

(2) If n > 2, then CP2#nCP2 is diffeomorphic to Σ^#(π - l)CP2

for an arbitrary integer k: see [17, §3].

(3) Let M be either CP2#nCP2 or Σ^#(n - 1)CP2 . If Λ < 9, then
any automorph in the orthogonal group O(M) of (H2(M), •) can be
represented by an orientation-preserving self-diffeomorphism of M:
see [17, §3].

(3.2) Proof of Theorem 2. The " i f part is clear. Thus suppose that
ξ is represented by S2. Then it follows from Theorem 1 that there
exists either of the following isomorphisms φ:

(i) φ: (H2(CP2#nCP2), .) -> (H2(M), . ) , Φ([CPι] or 2CCP1]) =

ξ\ _

(ii) 0: (H2(Σs#(n - l)CP2), .) - (# 2(Jl/), •), φ([Zs]) = ί.

However, such an isomorphism 0 is realized by an orientation-

preserving diίfeomorphism / because of (3.1)(2) and (3.1)(3). D

(3.3) Proof of Theorem 3. Let X{ξ) be the subset of H2(M) which
consists of those elements ξ' with ξ' ξf = ξ ξ such that ξ'/2 (resp.
ξf) can be the first base of a basis of {H2{M), •) of type (i) (resp. (ii))
in Theorem 1. Note that the orthogonal group O(M) of (H2(M), •)
transitively acts on X(ξ)9 and that

μ n n m / ί ( f c + l ; f c , 0 , . . . , 0 ) , c ? . ^ = 2 f c + l \
& = 2 ; 0 , . . . , 0 resp. ^

V I (fe + 1 k, 1, 0, . . . , 0), ξ ξ = 2/c /

can be a representative of X(£): namely, X{ξ) is the O(Λf )-orbit of
ξ*. The assertion follows from Theorem 1 and (3.1)(3), since £* can
be represented by a quadric on CP2 (resp. Zs on Σ 5 , s = ξ ξ (cf.

D

To prove Theorem 4, we need the following.
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LEMMA (3.4). Let (Ξ, .) = (+l )θ f t (- l ) , 2 < n < 9. Let ζ be an
element in Ξ denoted by (XQ X\, . . . , xn), xte Z, with

ξ-ξ>0, Xι > > Xn > 0, XQ > X\ + X2 + X3

(1) Suppose that (Ξ, •) is diagonalized as follows:

//Λ respect to (η\ ζ\, ... , ζn) > where η = ξ (resp. ξ/2). Then

ί = ( l ; 0 , . . . , 0 ) (rωp. (2; 0, . . . , 0)) .

(2) Suppose that ξ £ = s > 2,

iίA respwί to ( ί , η Ci, . . . , ζn-\) Then

ί = ( f c + l ; f c , 0 , . . . , 0 ) or (fc+1 fc, 1, 0, . . . , 0).

(3.5) Proof of Theorem 4 assuming (3.4). Note that operations 2,
4 in Theorem 4 are performed by automorphs in the orthogonal group
O(M) of (H2(M), . ) : see [16, 1.5, 1.6], [7, (2.2)]. Thus the assertion
immediately follows from Theorem 3 and (3.4). D

(3.6) Proof of (3 A) (I). Without loss of generality, we assume n = 9
and ζ ξ = 1. Since

0 < xl - (xι + x2 + X3)2 < *o " xϊ X9 = ι >

either x0 = 1, xx = = x9 = 0 (done); or XQ = Xi + X2 + ̂ 3 I n the
latter case, since

Q <{x] - xj) + - - + {x] - xl) < xl - x\ X9 = 1,

either (i) x 3 = = x 8 = 1, x 9 = 0 or (ii) χ3 = - = χ% = x9. In
case (i), ξ ξ = 1 implies

JC! =x2= 1: £ = (3; 1, 1, 1, 1, 1, 1, 1, 1,0).

However, this contradicts the diagonalizability of (Ξ, •), since the
orthogonal complement of ξ turns out to be isomorphic to (—E%) θ
(-1). In case (ii), ξ ξ = 1 yields

2(x2*3 + *3*i + X1X3 - 3x\) = 1,

a contradiction. D

To prove (3.4)(2), we need the following, which holds even if n > 9.
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SUBLEMMA (3.7). Let ξ, η be as in the hypothesis of (3Λ)(2).
(1) ζ, η are primitive and ordinary.
(2) ( χ o - l ) 2 < χ 2 + ... + χ 2 _

(3) {s - \){yl + 1) < x$, y0 > 0 if η = (y0 yx, ... , yn).
(4) (s - \)(yj - l ) < x f , X i y t > O ( i > l ) i f η = ( y o ; y ι , . . . , y n ) .

Proof. (1) Clear since n > 2.
(2) Let η = (y0 y\, ... , yn). It follows:

Since ξ η = 1 implies JΌ φ 0, hence the inequality: cf. [7, (2.3)(2)].
(3) Embed (Ξ, •) into Lorentzian (1, n)-space. Since

ξ ξ>0, x o > O , ζ>η=l, η η = O,

it follows from (2.1)(2) that y0 > 0. It also follows:

2 ••• + χnyn + i ) 2

(4) Embed (Ξ, •) into Lorentzian (1, n)-space. Assume / > 1 . Let

ζi — (-^0 ί x\ 5 ? xi-\ ? 1 5 -^/+1 5 > *w) J

»/i = (J^O J Ί ? > yι-\ >ι, Vi+\, - - - > yn) -

Note that ξi ξi > 0, and that 77/ ηt > 0 if y, ^ 0. Thus assume
y, ^ 0. Then, (2.1)(1) and (2.1)(2) imply

respectively, both of which are valid even if yι = 0. D

(3.8) Proof of (3 A) (2). Assuming n = 9 as in (3.6), we divide the
proof into a series of steps: (l)-(4).

Step (1). If x4 = 0, then x0 = *i + 1, *i < 1, ̂ 3 = 0 (done).

Proof. Note that ĉ  £ > 2 implies Xi + X2 + χ3 > 1 Thus by

x2 + X3 ~ I) 2 < (*o - ! ) 2 < A + ̂ 2 + X 3 '

l) + 2x j (x 2 - 1) + 1 < 0,
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and hence X3 = 0, x2 < 1, X\ > 1. Then by (3.7)(2) again,

0 < (Xo~ if ~x\ <*2 < *>

hence XQ = x\ + 1. D

(2). If x4 > 0, then x0 = X\ + 2x 4, x\ < x4 + 1, x2 = X3 =
X4 > 2 .

Proof. First assume XQ > *i + *2 + *3 + 1 By (3.7)(2),

(xx +x2 + X3)2 < (*o - ! ) 2 < ^ + ' + A >

.'. X\ = = Xg > 01 ζ = (XQ \ X\ 9 X\ 9 . . . , X\) .

Since ξ-ξ> 6x\ + 1 > 7, η is unique by (2.2). Since ξ is then fixed
by any permutation among {x\, . . . , x$}, so is ?/: namely,

However, η - η = 0 implies yo = ±3yi, which contradicts (3.7)(1):
hence XQ = x\ + x2 + x$. Then, by (3.7)(2) again,

(xι + x2 + x3 - I ) 2 = (*o - I ) 2 < ^? + ' * + A,
L:=2x2(x3- \)+2x3(x{ - \)+2xx(x2- \) + \<xl + -- + xl=:R.

Secondly, X\ > X4 + 2 implies

L > 2x4(x4 - 1) + 2JC4(JC4 + 1) + 2(JC4 + 2)(x4 - 1) + 1 > i?,

a contradiction, hence X\ < X4 + 1. Similarly, since x2 > X4 + 1
implies L > R, it follows X2 = *3 = -̂ 4

Lastly, to show x4 > 2, assume x 4 = 1. The inequality L =
2x\ - 1 < R < 6 implies ci < 3. If X\ = 1, then

Note by (3.7)(3) that, if η = {y0 ^ i , . . . , y9), then y0 = 1 or 2: this
is impossible since ξ-η=lyη-η = O, and 1 > x$ > > Xg > 0.
Thus assume X\ = 2 (resp. 3). Then

(resp. ( 5 ; 3 , 1, 1, l , ^ 5 , . . .

From (3.7)(3), (3.7)(4) and the uniqueness (2.2) of η, it follows:

y0 = 1 or 2 (resp. 1), yi = 0 or 1, y = 0 or 1.
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However, it is easily verified that each case contradicts either η η = 0
or ξ η = 1, which shows X4 > 2. D

Step (3). £ cannot be of form (3x x , x, x , x , x 5 , ... , x 9 ) , x >
2.

Proof. Suppose so. Since x > x^ contradicts (3.7)(2), it follows:

x5 — χ6 — x: ξ = (3χ x, x , x , x, x, x , χ 7 , x 8 , x 9 ) .

Note by (3.7)(1) that x9 < x - l , ί ί > 2 x - l > 3. η = (yo\ y\, ... ,
y$) is hence unique by (2.2), and thus fixed both by reflection 4 in The-
orem 4 (cf. [7, (2.2)]) and by any permutation among {y\ , . . . , y6} .
Thus

η = (3y y , y, y , y , j ; , y , yΊ , y 8 , j ; 9 ) .

However, η - η = 0 implies:

2 H + y\ y yi = y% = y* ( m °d 2 ) ?

which contradicts (3.7) (1). D

Step (4). ^ cannot be of form (3x-fl x+l, x , x, x, X5, ... , x 9 ) ,
x > 2 .

Proof. Suppose so. As in (3), it follows:

ξ = (3x + l : x + l , x , x , x , x , x , x , x , X 9 ) ,

?/ = (yj + 2y yλ, y, y, y , y , y, y, y, y 9 ),

. * . ( y 1 ? y , y 9 ) Ξ ( 0 , 1, 1) or (1 ,0 ,0) (mod 2).

However, the former congruence and η η = 0 imply

0 = 4y!y Ξ 3y2 + y\ = 4 (mod 8),

a contradiction, while the latter congruence and ζ - η — 1 also give

0 = x(2yj - y) + 2y - x9y9 = 1 (mod 2),

a contradiction. •

We have completed the proof of Theorem 4.

4. Concluding remarks. We conclude by making some remarks
about Theorem 1 and Theorem 2.
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(4.1) Let M9ξ be as in the hypothesis of Theorem 1. Assume
H\(M) = 0 and ξ divisible. Then, it follows from Rohlin's genus
theorem [14] that ξ = 2η for some η e H2{M) with η η = 1, which
is only a part of Theorem 1. Note that in our proof of Theorem 1 we
have applied only Theorem D (in (2.3)) without using Rohlin's genus
theorem, and that the latter is theoretically level with the Atiyah-Singer
index theorem on which the former partially depends about the cal-
culation of the "virtual dimension" of the moduli space of instantons
[2].

(4.2) Let M be as in the hypothesis of Theorem 1. Let η be a class
in H2(M) with η η = 0, F2η being primitive. It is of great interest
to compare with Theorem 1 the following slight generalization of a
theorem of B. H. Li [11]: if η is represented by S2 , then there exist
ξ, ζ{, . . . , ζn-ι e F2(M) such that

with respect to the basis (ξ, F2η ζ\, . . . , ζn-\) I n particular, con-
sider the case where M = S2 x S2 or CP2#nCP2, 1 < n < 9. What
corresponds to Theorem 2 is, then, the proposition that η is rep-
resented by S2 if and only if, for some integer k, there exists a
diffeomorphism / such that

f:Σk#(n-l)CP2->M, M[Fk]) = η (cf. (3.1)).

(4.3) Let M be a compact complex surface. One of the necessary
and sufficient conditions for M to be rational is that M contains a
smooth rational curve C with C C > 0 [1, p. 142]. We wish to con-
jecture that the phrase "smooth rational curve" might be substituted
by "smoothly embedded 2-sphere". In fact, the following irrational
surfaces have been proved not to contain any "positive 2-sρhere" (2-
sphere S with [S]. [S] > 0):

(1) irrational ruled surfaces and their blown-ups [3],
(2) Dolgachev surfaces S(p, q) and their blown-ups [4],
(3) simply connected projective surfaces with pg > 1 [8].

We can now cite other instances: namely, generalized Dolgachev sur-
faces S(p, q) with (/?, q) = (p + q)/(p9 ί ) = 0 (mod 2) (e.g., En-
riques surfaces) cannot contain any "positive 2-sphere" by Theorem
1, since b£ = 1, b^ = 9 and their intersection forms are even, al-
though they are not spin [5].
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