POSITIVE 2-SPHERES IN 4-MANIFOLDS OF SIGNATURE (1, n)

KAZUNORI KIKUCHI

We sharpen Donaldson's theorem on the standardness of definite intersection forms of smooth 4-manifolds in the same sense as Kervaire and Milnor sharpened Rohlin's signature theorem. We then apply the result thus obtained to show that the homology classes of rational surfaces with $b_2^- \leq 9$ which can be represented by smoothly embedded 2-spheres S with $S \cdot S > 0$ are up to diffeomorphism represented by smooth rational curves. Furthermore, we not only extend part of the application to the case where $b_2^- > 9$, but also give an algorithm to see whether or not a given homology class of rational surfaces with $b_2^- \leq 9$ can be represented by a smoothly embedded 2-sphere.

1. Introduction. Let M be a closed oriented smooth 4-manifold. One of the most important facts in 4-dimensional differential topology is the following:

THEOREM R (Rohlin's signature theorem [13]). If the second Stiefel-Whitney class $w_2(M)$ vanishes, then the signature $\sigma(M)$ is congruent to 0 modulo 16.

Performing the topological blowing up/down operations and applying Theorem R, Kervaire and Milnor [6] extended Theorem R to deduce the following:

THEOREM KM. If an integral homology class ξ of M, dual to $w_2(M)$, is represented by a smoothly embedded 2-sphere in M, then the self-intersection number $\xi \cdot \xi$ must be congruent to $\sigma(M)$ modulo 16.

Note that, although used in their proof of Theorem KM, Theorem R can be regarded as a special case of Theorem KM with $\xi = 0$.

The primary purpose of this paper is to sharpen the following in the same sense as Kervaire and Milnor sharpened Theorem R:

THEOREM D (Donaldson [2]). If the intersection form of M is negative-definite $(b_2^+ = 0)$, then it is equivalent over the integers to $\bigoplus b_2^-(-1)$.

We thus work through in the DIFF category. When the integral homology group $H_2(M)$ has torsion, we arbitrarily fix a splitting of $H_2(M)$, and accordingly of $\xi \in H_2(M)$, into free and torsion parts:

$$H_2(M) = F_2(M) \oplus T_2(M),$$

$$\xi = F_2 \xi \oplus T_2 \xi,$$

where $F_2\xi \in F_2(M)$, $T_2\xi \in T_2(M)$. We then regard $(F_2(M), \cdot)$ as the intersection form of M. We say that $\xi \in H_2(M)$ is represented by S^2 if it is represented by an embedded 2-sphere.

The primary result of this paper is then the following:

THEOREM 1. Let M be a closed oriented smooth 4-manifold with $b_2^+ = 1$, $b_2^- = n \ge 1$, and ξ a class in $H_2(M)$ with $\xi \cdot \xi = s > 0$. If ξ is represented by S^2 , then either of the following holds:

(i) there exist ζ_1, \ldots, ζ_n in $F_2(M)$ such that

$$(F_2(M), \cdot) = (+1) \oplus n(-1)$$

with respect to the basis $\langle \eta; \zeta_1, \ldots, \zeta_n \rangle$, where $F_2 \xi = 2\eta$; (ii) there exist η , ζ_1 , ..., ζ_{n-1} in $F_2(M)$ such that

$$(F_2(M), \cdot) = \begin{pmatrix} s & 1 \\ 1 & 0 \end{pmatrix} \oplus (n-1)(-1)$$

with respect to the basis $\langle F_2 \xi, \eta; \zeta_1, \ldots, \zeta_{n-1} \rangle$.

Note that Theorem D can be regarded as a special case of Theorem 1 with

 $M = \mathbb{C}P^2 \# N$, $\xi = [a \text{ quadric on } \mathbb{C}P^2]$,

where N is a closed oriented 4-manifold with $b_2^+(N) = 0$. We remark that Theorem 1 is an improvement over Lemma (2.1) of the author's previous paper [7], in which he, with relevance to the 11/8-conjecture, also proved another theorem (Theorem (1.3)) which implies Donaldson's theorem on even intersection forms of 4-manifolds.

The secondary purpose of this paper is to apply Theorem 1 to the problem of representing homology classes of complex rational surfaces by embedded 2-spheres.

Our results for this purpose are the following.

THEOREM 2. Let M be either $S^2 \times S^2$ or $\mathbb{C}P^2 \# n \overline{\mathbb{C}P}^2$, $0 \le n \le 9$, and ξ a class in $H_2(M)$ with $\xi \cdot \xi = s > 0$. ξ is represented by S^2 if and only if either of the following diffeomorphisms f exists:

(i) $f: \mathbb{C}P^2 \# n \overline{\mathbb{C}P}^2 \to M$ such that $f_*([\mathbb{C}P^1] \text{ or } 2[\mathbb{C}P^1]) = \xi$,

(ii) $f: \Sigma_s \# (n-1)\overline{\mathbb{CP}}^2 \to M$ such that $f_*([Z_s]) = \xi$,

where $\mathbb{C}P^1$ is a line on $\mathbb{C}P^2$, and Z_s is the "zero section" ($\cong \mathbb{C}P^1$) on the s-th Hirzebruch surface Σ_s with $Z_s \cdot Z_s = s$.

This reinterprets and improves all the known facts about that problem [15, 9, 10, 12, 7]. For Hirzebruch surfaces, see (3.1).

THEOREM 3. Let M be $\mathbb{C}P^2 \# n \overline{\mathbb{C}P}^2$, $n \ge 2$, and ξ a class in $H_2(M)$ with $\xi \cdot \xi > 0$. Let $(x_0; x_1, \ldots, x_n)$, $x_i \in \mathbb{Z}$, denote a class in $H_2(M)$ with respect to the natural basis of $H_2(M)$. If ξ is represented by S^2 , then ξ is in the orbit of one of

 $(2; 0, \ldots, 0), (k+1; k, 0, \ldots, 0), (k+1; k, 1, 0, \ldots, 0)$

under the action of the orthogonal group O(M) of $(H_2(M), \cdot)$. Furthermore, the converse also holds if $n \leq 9$.

This improves Theorem (1.1) of [7]. When $n \le 9$, there is an algorithm to ascertain whether a given ξ is in such an orbit or not:

THEOREM 4. Let M be $\mathbb{C}P^2 \# n\overline{\mathbb{C}P}^2$, $2 \le n \le 9$, and ξ a class in $H_2(M)$ with $\xi \cdot \xi > 0$. Then one can see whether ξ is represented by S^2 or not by using the following algorithm:

1. Set $\xi = (x_0; x_1, ..., x_n)$, $x_i \in \mathbb{Z}$, with respect to the natural basis of $H_2(M)$.

2. Set $\eta = (y_0; y_1, \ldots, y_n) = (|x_0|; |x'_1|, \ldots, |x'_n|)$ so that

$$\{x'_1, \ldots, x'_n\} = \{x_1, \ldots, x_n\}, \quad y_1 \ge \cdots \ge y_n \ge 0.$$

- 3. Does η satisfy $y_0 \ge y_1 + y_2 + y_3$?
- 4. *Set*

$$\xi = \eta + \begin{cases} 2(y_0 - y_1 - y_2)(1; 1, 1), & n = 2, \\ (y_0 - y_1 - y_2 - y_3)(1; 1, 1, 1, 0, \dots, 0), & 3 \le n \le 9. \end{cases}$$

5. Is η equal to (2; 0, ..., 0), (k+1; k, 0, ..., 0) or (k+1; k, 1, 0, ..., 0)?

Note that if one goes around once along the loop in the algorithm, one strictly reduces the absolute value $|x_0|$ of x_0 , so that one must go down to step 5 after going around the loop finitely many times since $\xi \cdot \xi > 0$.

In $\S2$ (resp. $\S3$), we prove Theorem 1 (resp. Theorems 2-4); and in $\S4$, we conclude by making some remarks about a deduction from Rohlin's genus theorem [14], a modification to a theorem of B. H. Li [11], and a conjecture on rationality of complex surfaces.

2. Proof of Theorem 1. We first recall some facts, indispensable for our proofs of Theorems 1–4, about Lorentzian spaces.

(2.1) Facts. Let (Λ, \cdot) be Lorentzian (1, n)-space, i.e. the inner product space over **R** of signature $(1, n), n \ge 1$.

(1) (Reverse Cauchy-Schwarz' inequality.) If $\xi \in \Lambda$ is timelike $(\xi \cdot \xi > 0)$, then $(\xi \cdot \eta)^2 \ge (\xi \cdot \xi)(\eta \cdot \eta)$ for any vector $\eta \in \Lambda$, where equality holds if and only if η is parallel to ξ .

(2) If ξ , $\eta \in \Lambda$ are future-pointing with respect to a certain timelike vector $\tau \in \Lambda$ ($\xi \cdot \xi \ge 0$, $\eta \cdot \eta \ge 0$, $\xi \cdot \tau > 0$, $\eta \cdot \tau > 0$, $\tau \cdot \tau > 0$), then $\xi \cdot \eta \ge 0$, where equality holds if and only if ξ , η are lightlike ($\xi \cdot \xi = \eta \cdot \eta = 0$) and proportional.

We next show a lemma, which we need in (2.7) and in (3.8).

LEMMA (2.2). Let (Ξ, \cdot) be an inner product space over \mathbb{Z} of signature $(1, n), n \ge 1$, and ξ a vector in Ξ with $\xi \cdot \xi = s \ge 2$. Let Y be the subset of Ξ of all vectors η with $\xi \cdot \eta = 1, \eta \cdot \eta = 0$. If $\eta \in Y$, then

$$Y = \begin{cases} \{\eta, \xi - \eta\}, & s = 2, \\ \{\eta\}, & s \ge 3. \end{cases}$$

Proof. ξ and η generate a subspace of (Ξ, \cdot) with orthogonal complement (Ω, \cdot) negative-definite. Let η' be another vector in Y. Then

$$\eta' = x\xi + y\eta + \zeta \,,$$

where $x, y \in \mathbb{Z}$ and $\zeta \in \Omega$. $\xi \cdot \eta' = 1$ and $\eta' \cdot \eta' = 0$ imply

$$sx + y = 1$$
, $sx^2 + 2xy + \zeta \cdot \zeta = 0$; $\therefore sx^2 - 2x - \zeta \cdot \zeta = 0$.

Let d be the discriminant of the last equation. Then

$$d/4 = 1 + s(\zeta \cdot \zeta) \ge 0.$$

Since $s \ge 2$ and (Ω, \cdot) is negative-definite, we have $\zeta = 0$ and

$$(x, y) = \begin{cases} (0, 1) \text{ or } (1, -1), & s = 2, \\ (0, 1), & s \ge 3. \end{cases} \square$$

Now, we are ready to give the proof of Theorem 1, which is in fact obtained by improving that of Lemma (2.1) of [7]. We divide the proof into a series of steps: (2.3)-(2.7). Throughout the proof, for a finite set E, we denote by #E the number of elements in E.

LEMMA (2.3). Let
$$M$$
, ξ be as in the hypothesis of Theorem 1. Let

$$\Omega = \{(\zeta; z_1, \dots, z_{s-1}) \in F_2(M) \oplus \mathbb{Z}^{s-1}; \xi \cdot \zeta - z_1 - \dots - z_{s-1} = 0\},$$

$$Z = \{(\zeta; z_1, \dots, z_{s-1}) \in \Omega; \zeta \cdot \zeta - z_1^2 - \dots - z_{s-1}^2 = -1\}.$$
For $(\eta; y_1, \dots, y_{s-1}) \in \Omega$ and $(\zeta; z_1, \dots, z_{s-1}) \in \Omega$, define
 $(\eta; y_1, \dots, y_{s-1}) \cdot (\zeta; z_1, \dots, z_{s-1}) = \eta \cdot \zeta - y_1 z_1 - \dots - y_{s-1} z_{s-1}.$
Then, Theorem D implies the following:
(1) $(\Omega, \cdot) \cong \bigoplus (n + s - 1)(-1),$
(2) $(1/2)#Z = n + s - 1.$

Proof. Suppose that ξ is represented by an embedded 2-sphere S in M. "Blow up" (s-1) distinct points of S, and then "blow down" the resulting "exceptional curve" of self-intersection +1, to construct a closed oriented 4-manifold N with $(b_2^+, b_2^-) = (0, n+s-1)$:

$$(M, S)$$
$(s-1)(\overline{\mathbb{CP}}^2, \overline{\mathbb{CP}}^1) \cong (\mathbb{CP}^2, \mathbb{CP}^1)$ # $(N, \phi),$

where $\mathbb{C}P^1$ (resp. $\overline{\mathbb{C}P}^1$) is a line on $\mathbb{C}P^2$ (resp. $\overline{\mathbb{C}P}^2$). Under the identifications

$$F_2(M^{\#}(s-1)\overline{\mathbb{CP}}^2) = F_2(M) \oplus \mathbb{Z}^{s-1}, \quad (F_2(N), \cdot) = (\Omega, \cdot),$$

we see that Theorem D implies (1) and thus (2): for details, see [7]. \Box

LEMMA (2.4). Theorem 1 holds if $\xi \cdot \xi = s = 1$.

Proof. By (2.3), there exist $\zeta_1, \ldots, \zeta_n \in F_2(M)$ such that $(F_2(M), \cdot) = (+1) \oplus n(-1)$

with respect to the basis $\langle F_2\xi; \zeta_1, \ldots, \zeta_n \rangle$. Let $\eta = F_2\xi + \zeta_n$. Then

$$(F_2(M), \cdot) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \oplus (n-1)(-1)$$

with respect to the basis $\langle F_2\xi, \eta; \zeta_1, \ldots, \zeta_{n-1} \rangle$.

LEMMA (2.5). Let ξ be as in the hypothesis of Theorem 1, and assume $\xi \cdot \xi = s \ge 2$. Let Z be as in (2.3), and let

$$Z_0 = \{(\zeta; 0, \ldots, 0) \in Z\}, \quad Z_1 = Z - Z_0.$$

Choose and fix $(\zeta; z_1, ..., z_{s-1}) \in Z_1$ $(\#Z_1 \ge 2(s-1) \ge 2)$, and let

$$r = \#\{i; z_i \neq 0\}, \quad \Delta = (\xi \cdot \zeta)^2 - (\xi \cdot \xi)(\zeta \cdot \zeta).$$

Then, the following equalities hold:

(1) $\xi \cdot \zeta = z_1 + \dots + z_{s-1} = \pm r$, (2) $\zeta \cdot \zeta = z_1^2 + \dots + z_{s-1}^2 - 1 = r - 1$, (3) $\Delta(\Delta - 1) = 0$.

Proof. We naturally embed $(F_2(M), \cdot)$ into Lorentzian (1, n)-space (Λ, \cdot) . In light of (2.1)(1), we see $\Delta \ge 0$. Note $1 \le r \le s - 1$. We then calculate as follows:

$$0 \leq \Delta = \left(\sum z_i\right)^2 - s\left(\sum z_i^2 - 1\right)$$

$$\leq r\left(\sum z_i^2\right) - s\left(\sum z_i^2 - 1\right) = s - (s - r)\left(\sum z_i^2\right),$$

$$(s - r)r \leq (s - r)\left(\sum z_i^2\right) \leq s \leq (s - r)(r + 1),$$

$$\therefore 1 \leq r \leq \sum z_i^2 \leq r + 1,$$

hence (2). Let $r_{-} = \#\{i; z_{i} = -1\}$. We further calculate:

$$0 \le \Delta = (r - 2r_{-})^{2} - s(r - 1)$$

$$\le (r - 2r_{-})^{2} - (r + 1)(r - 1) = 1 - 4(r - r_{-})r_{-} \le 1,$$

hence (1) and (3).

LEMMA (2.6). Let Δ be as in (2.5). Then Theorem 1 holds if $\Delta = 0$ ($s \ge 2$): to be more precise, the case where $\Delta = 0$ corresponds to case (i) of Theorem 1.

Proof. Note by (2.1)(1) that $F_2\xi$, ζ are proportional. We thus observe that $\Delta = r^2 - s(r-1) = 0$ implies

$$s=4, r=2: \xi \cdot \zeta = \pm 2, \zeta \cdot \zeta = 1, F_2 \xi = \pm 2 \zeta.$$

)

Let η be either of $\pm \zeta$ so that $F_2\xi = 2\eta$. We then see

$$Z_1 = \{ \pm(\eta; 0, 1, 1), \pm(\eta; 1, 0, 1), \pm(\eta; 1, 1, 0) \}:$$

(1/2)#Z₁ = 3(= s - 1), (1/2)#Z₀ = n.

Note by (2.3) that, if $(\zeta_0; 0, 0, 0)$ is an element in Z_0 , then $\eta \cdot \zeta_0 = 0$, $\zeta_0 \cdot \zeta_0 = -1$. The case where $\Delta = 0$ therefore corresponds to case (i).

LEMMA (2.7). Let Δ be as in (2.5). Then Theorem 1 holds if $\Delta = 1$ ($s \geq 2$): to be more precise, the case where $\Delta = 1$ corresponds to case (ii) of Theorem 1.

Proof. We first see that $\Delta = r^2 - s(r-1) = 1$ implies either of the following:

$$r = 1: \begin{cases} \xi \cdot \zeta = \pm 1, \\ \zeta \cdot \zeta = 0, \end{cases}$$
$$r = s - 1: \begin{cases} \xi \cdot \zeta = \pm (s - 1), \\ \zeta \cdot \zeta = s - 2. \end{cases}$$

We next observe the following equivalence:

$$\begin{cases} \boldsymbol{\xi} \cdot \boldsymbol{\zeta} = s - 1, \\ \boldsymbol{\zeta} \cdot \boldsymbol{\zeta} = s - 2, \end{cases} \Leftrightarrow \begin{cases} \boldsymbol{\xi} \cdot (\boldsymbol{\xi} - \boldsymbol{\zeta}) = 1, \\ (\boldsymbol{\xi} - \boldsymbol{\zeta}) \cdot (\boldsymbol{\xi} - \boldsymbol{\zeta}) = 0. \end{cases}$$

In either case, we can choose $\eta \in F_2(M)$ such that

$$\begin{cases} \xi \cdot \eta = 1 \\ \eta \cdot \eta = 0 \end{cases}$$

Then the equivalence above and the uniqueness (2.2) of η show

$$Z_{1} = \{ \pm(\eta; 1, 0, \dots, 0), \pm(\eta; 0, 1, 0, \dots, 0), \dots, \\ \pm(\eta; 0, \dots, 0, 1), \pm((F_{2}\xi) - \eta; 1, 1, \dots, 1) \}: \\ (1/2) \# Z_{1} = s, \quad (1/2) \# Z_{0} = n - 1.$$

Note by (2.3) that, if $(\zeta_0; 0, ..., 0) \in Z_0$, then

$$\xi \cdot \zeta_0 = 0, \quad \eta \cdot \zeta_0 = 0, \quad \zeta_0 \cdot \zeta_0 = -1.$$

The case where $\Delta = 1$ therefore corresponds to case (ii).

We have completed the proof of Theorem 1.

3. Proofs of Theorems 2–4. To prove Theorem 2 and Theorem 3, we recall some facts about complex rational surfaces.

(3.1) Facts. Let Σ_k denote the k-th Hirzebruch surface, i.e., the total space of $\mathbb{C}P^1$ -bundle over $\mathbb{C}P^1$ whose "zero section" Z_k ($\cong \mathbb{C}P^1$) and "fiber" F_k ($\cong \mathbb{C}P^1$) form a basis $\langle [Z_k], [F_k] \rangle$ of $(H_2(\Sigma_k), \cdot)$ such that

$$(H_2(\Sigma_k), \cdot) = \begin{pmatrix} k & 1 \\ 1 & 0 \end{pmatrix}.$$

(1) Σ_k is biholomorphic to Σ_l if and only if |k| = |l|, while Σ_k is diffeomorphic to Σ_l if and only if $k \equiv l \pmod{2}$; in particular, Σ_{2k} (resp. Σ_{2k+1}) is diffeomorphic to $S^2 \times S^2$ (resp. $\mathbb{C}P^2 \# \overline{\mathbb{C}P}^2$): see [1, p. 141], [17, §1].

(2) If $n \ge 2$, then $\mathbb{C}P^2 \# n\overline{\mathbb{C}P}^2$ is diffeomorphic to $\Sigma_k \# (n-1)\overline{\mathbb{C}P}^2$ for an arbitrary integer k: see [17, §3].

(3) Let M be either $\mathbb{C}P^2 \# n \overline{\mathbb{C}P}^2$ or $\Sigma_k \# (n-1) \overline{\mathbb{C}P}^2$. If $n \leq 9$, then any automorph in the orthogonal group O(M) of $(H_2(M), \cdot)$ can be represented by an orientation-preserving self-diffeomorphism of M: see [17, §3].

(3.2) Proof of Theorem 2. The "if" part is clear. Thus suppose that ξ is represented by S^2 . Then it follows from Theorem 1 that there exists either of the following isomorphisms ϕ :

(i) $\phi: (H_2(\mathbb{C}P^2 \# n \overline{\mathbb{C}P}^2), \cdot) \to (H_2(M), \cdot), \phi([\mathbb{C}P^1] \text{ or } 2[\mathbb{C}P^1]) = \xi;$

(ii)
$$\phi: (H_2(\Sigma_s \# (n-1)\overline{\mathbb{CP}}^2), \cdot) \to (H_2(M), \cdot), \phi([Z_s]) = \xi.$$

However, such an isomorphism ϕ is realized by an orientationpreserving diffeomorphism f because of (3.1)(2) and (3.1)(3). \Box

(3.3) Proof of Theorem 3. Let $X(\xi)$ be the subset of $H_2(M)$ which consists of those elements ξ' with $\xi' \cdot \xi' = \xi \cdot \xi$ such that $\xi'/2$ (resp. ξ') can be the first base of a basis of $(H_2(M), \cdot)$ of type (i) (resp. (ii)) in Theorem 1. Note that the orthogonal group O(M) of $(H_2(M), \cdot)$ transitively acts on $X(\xi)$, and that

$$\xi_* = (2; 0, \dots, 0) \left(\text{resp.} \left\{ \begin{array}{l} (k+1; k, 0, \dots, 0), \xi \cdot \xi = 2k+1 \\ (k+1; k, 1, 0, \dots, 0), \xi \cdot \xi = 2k \end{array} \right) \right.$$

can be a representative of $X(\xi)$: namely, $X(\xi)$ is the O(M)-orbit of ξ_* . The assertion follows from Theorem 1 and (3.1)(3), since ξ_* can be represented by a quadric on $\mathbb{C}P^2$ (resp. Z_s on Σ_s , $s = \xi \cdot \xi$ (cf. (3.1)(2))).

To prove Theorem 4, we need the following.

LEMMA (3.4). Let $(\Xi, \cdot) = (+1) \oplus n(-1)$, $2 \le n \le 9$. Let ξ be an element in Ξ denoted by $(x_0; x_1, \ldots, x_n)$, $x_i \in \mathbb{Z}$, with

 $\xi \cdot \xi > 0$, $x_1 \ge \cdots \ge x_n \ge 0$, $x_0 \ge x_1 + x_2 + x_3$.

(1) Suppose that (Ξ, \cdot) is diagonalized as follows:

$$(\mathbf{\Xi}, \cdot) = (+1) \oplus n(-1)$$

with respect to $\langle \eta; \zeta_1, \ldots, \zeta_n \rangle$, where $\eta = \xi$ (resp. $\xi/2$). Then

 $\boldsymbol{\xi} = (1; 0, \dots, 0) \quad (resp. \ (2; 0, \dots, 0)).$

(2) Suppose that $\xi \cdot \xi = s \ge 2$, and that

$$(\Xi, \cdot) = \begin{pmatrix} s & 1 \\ 1 & 0 \end{pmatrix} \oplus (n-1)(-1)$$

with respect to $\langle \xi, \eta; \zeta_1, \ldots, \zeta_{n-1} \rangle$. Then

$$\boldsymbol{\xi} = (k+1; \, k \,, \, 0 \,, \, \dots \,, \, 0) \quad or \quad (k+1; \, k \,, \, 1 \,, \, 0 \,, \, \dots \,, \, 0) \,.$$

(3.5) Proof of Theorem 4 assuming (3.4). Note that operations 2, 4 in Theorem 4 are performed by automorphs in the orthogonal group O(M) of $(H_2(M), \cdot)$: see [16, 1.5, 1.6], [7, (2.2)]. Thus the assertion immediately follows from Theorem 3 and (3.4).

(3.6) *Proof of* (3.4)(1). Without loss of generality, we assume n = 9 and $\xi \cdot \xi = 1$. Since

$$0 \le x_0^2 - (x_1 + x_2 + x_3)^2 \le x_0^2 - x_1^2 - \dots - x_9^2 = 1,$$

either $x_0 = 1$, $x_1 = \cdots = x_9 = 0$ (done); or $x_0 = x_1 + x_2 + x_3$. In the latter case, since

$$0 \le (x_3^2 - x_4^2) + \dots + (x_3^2 - x_9^2) \le x_0^2 - x_1^2 - \dots - x_9^2 = 1,$$

either (i) $x_3 = \cdots = x_8 = 1$, $x_9 = 0$; or (ii) $x_3 = \cdots = x_8 = x_9$. In case (i), $\xi \cdot \xi = 1$ implies

$$x_1 = x_2 = 1$$
: $\xi = (3; 1, 1, 1, 1, 1, 1, 1, 1, 0)$.

However, this contradicts the diagonalizability of (Ξ, \cdot) , since the orthogonal complement of ξ turns out to be isomorphic to $(-E_8) \oplus (-1)$. In case (ii), $\xi \cdot \xi = 1$ yields

$$2(x_2x_3 + x_3x_1 + x_1x_3 - 3x_3^2) = 1,$$

a contradiction.

To prove (3.4)(2), we need the following, which holds even if n > 9.

SUBLEMMA (3.7). Let ξ , η be as in the hypothesis of (3.4)(2). (1) ξ , η are primitive and ordinary. (2) $(x_0 - 1)^2 \le x_1^2 + \dots + x_n^2$. (3) $(s - 1)(y_0^2 + 1) \le x_0^2$, $y_0 > 0$ if $\eta = (y_0; y_1, \dots, y_n)$. (4) $(s - 1)(y_i^2 - 1) \le x_i^2$, $x_i y_i \ge 0$ $(i \ge 1)$ if $\eta = (y_0; y_1, \dots, y_n)$. Proof. (1) Clear since $n \ge 2$. (2) Let $\eta = (y_0; y_1, \dots, y_n)$. It follows: $(x_0 - 1)^2 y_0^2 \le (x_0 y_0 - 1)^2$ $= (x_1 y_1 + \dots + x_n y_n)^2$ $\le (x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2)$ $= (x_1^2 + \dots + x_n^2)y_0^2$. Since $\xi \cdot \eta = 1$ implies $y_0 \ne 0$, hence the inequality: cf. [7, (2.3)(2)]. (3) Embed (Ξ, \cdot) into Lorentzian (1, n)-space. Since

 $\xi \cdot \xi > 0, \quad x_0 > 0, \quad \xi \cdot \eta = 1, \quad \eta \cdot \eta = 0,$

it follows from (2.1)(2) that $y_0 > 0$. It also follows:

$$(x_0y_0)^2 = (x_1y_1 + \dots + x_ny_n + 1)^2$$

$$\leq (x_0^2 - s + 1)(y_0^2 + 1),$$

$$\therefore (s - 1)(y_0^2 + 1) \leq x_0^2.$$

(4) Embed (Ξ, \cdot) into Lorentzian (1, n)-space. Assume $i \ge 1$. Let

$$\xi_i = (x_0; x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n), \eta_i = (y_0; y_1, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_n).$$

Note that $\xi_i \cdot \xi_i > 0$, and that $\eta_i \cdot \eta_i \ge 0$ if $y_i \ne 0$. Thus assume $y_i \ne 0$. Then, (2.1)(1) and (2.1)(2) imply

$$(s-1)(y_i^2-1) \le x_i^2, \quad x_i y_i \ge 0$$

respectively, both of which are valid even if $y_i = 0$.

(3.8) *Proof of* (3.4)(2). Assuming n = 9 as in (3.6), we divide the proof into a series of steps: (1)-(4).

Step (1). If $x_4 = 0$, then $x_0 = x_1 + 1$, $x_2 \le 1$, $x_3 = 0$ (done).

Proof. Note that $\xi \cdot \xi \ge 2$ implies $x_1 + x_2 + x_3 \ge 1$. Thus by (3.7)(2),

$$(x_1 + x_2 + x_3 - 1)^2 \le (x_0 - 1)^2 \le x_1^2 + x_2^2 + x_3^2,$$

$$2x_2(x_3 - 1) + 2x_3(x_1 - 1) + 2x_1(x_2 - 1) + 1 \le 0,$$

and hence $x_3 = 0$, $x_2 \le 1$, $x_1 \ge 1$. Then by (3.7)(2) again,

$$0 \le (x_0 - 1)^2 - x_1^2 \le x_2^2 \le 1,$$

hence $x_0 = x_1 + 1$.

Step (2). If $x_4 > 0$, then $x_0 = x_1 + 2x_4$, $x_1 \le x_4 + 1$, $x_2 = x_3 = x_4 \ge 2$.

Proof. First assume $x_0 \ge x_1 + x_2 + x_3 + 1$. By (3.7)(2),

$$(x_1 + x_2 + x_3)^2 \le (x_0 - 1)^2 \le x_1^2 + \dots + x_9^2,$$

$$\therefore x_1 = \dots = x_9 > 0; \quad \xi = (x_0; x_1, x_1, \dots, x_1)$$

Since $\xi \cdot \xi \ge 6x_1 + 1 \ge 7$, η is unique by (2.2). Since ξ is then fixed by any permutation among $\{x_1, \ldots, x_9\}$, so is η : namely,

 $\eta = (y_0; y_1, y_1, \dots, y_1).$

However, $\eta \cdot \eta = 0$ implies $y_0 = \pm 3y_1$, which contradicts (3.7)(1): hence $x_0 = x_1 + x_2 + x_3$. Then, by (3.7)(2) again,

$$(x_1 + x_2 + x_3 - 1)^2 = (x_0 - 1)^2 \le x_1^2 + \dots + x_9^2,$$

$$L := 2x_2(x_3 - 1) + 2x_3(x_1 - 1) + 2x_1(x_2 - 1) + 1 \le x_4^2 + \dots + x_9^2 =: R.$$

Secondly, $x_1 \ge x_4 + 2$ implies

$$L \ge 2x_4(x_4 - 1) + 2x_4(x_4 + 1) + 2(x_4 + 2)(x_4 - 1) + 1 > R,$$

a contradiction, hence $x_1 \le x_4 + 1$. Similarly, since $x_2 \ge x_4 + 1$ implies L > R, it follows $x_2 = x_3 = x_4$.

Lastly, to show $x_4 \ge 2$, assume $x_4 = 1$. The inequality $L = 2x_1 - 1 \le R \le 6$ implies $x_1 \le 3$. If $x_1 = 1$, then

$$\boldsymbol{\xi} = (\mathbf{3}; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{x}_5, \dots, \mathbf{x}_9).$$

Note by (3.7)(3) that, if $\eta = (y_0; y_1, \dots, y_9)$, then $y_0 = 1$ or 2: this is impossible since $\xi \cdot \eta = 1$, $\eta \cdot \eta = 0$, and $1 \ge x_5 \ge \dots \ge x_9 \ge 0$. Thus assume $x_1 = 2$ (resp. 3). Then

$$\xi = (4; 2, 1, 1, 1, x_5, \dots, x_9), \quad \xi \cdot \xi \ge 4$$

(resp. (5; 3, 1, 1, 1, x_5, \dots, x_9), \quad \xi \cdot \xi \ge 8)

From (3.7)(3), (3.7)(4) and the uniqueness (2.2) of η , it follows:

$$\eta = (y_0; y_1, y, y, y, y_5, \dots, y_9),$$

$$y_0 = 1 \text{ or } 2 \text{ (resp. 1)}, \quad y_1 = 0 \text{ or } 1, \quad y = 0 \text{ or } 1.$$

However, it is easily verified that each case contradicts either $\eta \cdot \eta = 0$ or $\xi \cdot \eta = 1$, which shows $x_4 \ge 2$.

Step (3). ξ cannot be of form $(3x; x, x, x, x, x, x_5, ..., x_9), x \ge 2$.

Proof. Suppose so. Since $x > x_6$ contradicts (3.7)(2), it follows:

$$x_5 = x_6 = x$$
: $\xi = (3x; x, x, x, x, x, x, x, x_7, x_8, x_9)$.

Note by (3.7)(1) that $x_9 \le x - 1$, $\xi \cdot \xi \ge 2x - 1 \ge 3$. $\eta = (y_0; y_1, \dots, y_9)$ is hence unique by (2.2), and thus fixed both by reflection 4 in Theorem 4 (cf. [7, (2.2)]) and by any permutation among $\{y_1, \dots, y_6\}$. Thus

$$\eta = (3y; y, y, y, y, y, y, y, y_7, y_8, y_9).$$

However, $\eta \cdot \eta = 0$ implies:

$$3y^2 = y_7^2 + y_8^2 + y_9^2$$
, $y \equiv y_7 \equiv y_8 \equiv y_9 \pmod{2}$,

which contradicts (3.7)(1).

Step (4). ξ cannot be of form $(3x+1; x+1, x, x, x, x_5, ..., x_9)$, $x \ge 2$.

Proof. Suppose so. As in (3), it follows:

$$\xi = (3x + 1: x + 1, x, x, x, x, x, x, x, x, x_{9}),$$

$$\eta = (y_{1} + 2y; y_{1}, y, y, y, y, y, y, y, y_{9}),$$

$$\eta \cdot \eta = 4y_{1}y - 3y^{2} - y_{9}^{2} = 0,$$

$$\therefore (y_{1}, y, y_{9}) \equiv (0, 1, 1) \text{ or } (1, 0, 0) \pmod{2}.$$

However, the former congruence and $\eta \cdot \eta = 0$ imply

$$0 \equiv 4y_1y \equiv 3y^2 + y_9^2 \equiv 4 \pmod{8},$$

a contradiction, while the latter congruence and $\xi \cdot \eta = 1$ also give

$$0 \equiv x(2y_1 - y) + 2y - x_9y_9 \equiv 1 \pmod{2},$$

a contradiction.

We have completed the proof of Theorem 4.

4. Concluding remarks. We conclude by making some remarks about Theorem 1 and Theorem 2.

256

 \Box

(4.1) Let M, ξ be as in the hypothesis of Theorem 1. Assume $H_1(M) = 0$ and ξ divisible. Then, it follows from Rohlin's genus theorem [14] that $\xi = 2\eta$ for some $\eta \in H_2(M)$ with $\eta \cdot \eta = 1$, which is only a part of Theorem 1. Note that in our proof of Theorem 1 we have applied only Theorem D (in (2.3)) without using Rohlin's genus theorem, and that the latter is theoretically level with the Atiyah-Singer index theorem on which the former partially depends about the calculation of the "virtual dimension" of the moduli space of instantons [2].

(4.2) Let M be as in the hypothesis of Theorem 1. Let η be a class in $H_2(M)$ with $\eta \cdot \eta = 0$, $F_2\eta$ being primitive. It is of great interest to compare with Theorem 1 the following slight generalization of a theorem of B. H. Li [11]: if η is represented by S^2 , then there exist $\xi, \zeta_1, \ldots, \zeta_{n-1} \in F_2(M)$ such that

$$(F_2(M), \cdot) = \begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \oplus (n-1)(-1)$$

with respect to the basis $\langle \xi, F_2\eta; \zeta_1, \ldots, \zeta_{n-1} \rangle$. In particular, consider the case where $M = S^2 \times S^2$ or $\mathbb{C}P^2 \# n \mathbb{C}P^2$, $1 \le n \le 9$. What corresponds to Theorem 2 is, then, the proposition that η is represented by S^2 if and only if, for some integer k, there exists a diffeomorphism f such that

$$f: \Sigma_k \# (n-1)\overline{\mathbb{CP}}^2 \to M, \quad f_*([F_k]) = \eta \quad (\text{cf. } (3.1)).$$

(4.3) Let M be a compact complex surface. One of the necessary and sufficient conditions for M to be rational is that M contains a smooth rational curve C with $C \cdot C > 0$ [1, p. 142]. We wish to conjecture that the phrase "smooth rational curve" might be substituted by "smoothly embedded 2-sphere". In fact, the following irrational surfaces have been proved not to contain any "positive 2-sphere" (2sphere S with $[S] \cdot [S] > 0$):

(1) irrational ruled surfaces and their blown-ups [3],

(2) Dolgachev surfaces S(p, q) and their blown-ups [4],

(3) simply connected projective surfaces with $p_g \ge 1$ [8].

We can now cite other instances: namely, generalized Dolgachev surfaces S(p, q) with $(p, q) \equiv (p+q)/(p, q) \equiv 0 \pmod{2}$ (e.g., Enriques surfaces) cannot contain any "positive 2-sphere" by Theorem 1, since $b_2^+ = 1$, $b_2^- = 9$ and their intersection forms are even, although they are not spin [5].

References

- [1] W. Barth, C. Peters and A. Van de Ven, *Compact Complex Surfaces*, Ergebnisse, Band 4, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.
- [2] S. K. Donaldson, *The orientation of Yang-Mills moduli spaces and 4-manifold topology*, J. Differential Geom., **26** (1987), 397–428.
- [3] R. Friedman and J. W. Morgan, Algebraic surfaces and 4-manifolds: some conjectures and speculations, Bull. Amer. Math. Soc. (N.S.), 18 (1988), 1-19.
- [4] ____, On the diffeomorphism types of certain algebraic surfaces I, J. Differential Geom., 27 (1988), 297–369.
- [5] I. Hambleton and M. Kreck, Smooth structures on algebraic surfaces with cyclic fundamental group, Invent. Math., 91 (1988), 53-59.
- [6] M. A. Kervaire and J. W. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 1651–1657.
- [7] K. Kikuchi, Representing positive homology classes of $CP^2 # 2\overline{CP}^2$ and $CP^2 # 3\overline{CP}^2$, Proc. Amer. Math. Soc., 117 (1993), 861–869.
- [8] P. B. Kronheimer and T. S. Mrowka, *Gauge theory for embedded surfaces*, I, preprint (1991).
- [9] K. Kuga, Representing homology classes of $S^2 \times S^2$, Topology, 23 (1984), 133–137.
- [10] T. Lawson, Representing homology classes of almost definite 4-manifolds, Michigan Math. J., 34 (1987), 85–91.
- B. H. Li, Embeddings of surfaces in 4-manifolds (I), Chinese Science Bull., 36 (1991), 2025–2029.
- [12] F. Luo, Representing homology classes of $\mathbb{C}P^2 \# \overline{\mathbb{C}P}^2$, Pacific J. Math., 133 (1988), 137-140.
- [13] V. A. Rohlin, New results in the theory of four-dimensional manifolds, Dokl. Akad. Nauk SSSR, 84 (1952), 221-224 (Russian).
- [14] ____, *Two-dimensional submanifolds of four-dimensional manifolds*, Functional Anal. Appl., **5** (1971), 39–48.
- [15] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc., 66 (1969), 251–264.
- [16] C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms II, J. Reine Angew. Math., 213 (1963), 122–136.
- [17] ____, Diffeomorphisms of 4-manifolds, J. London Math. Soc., **39** (1964), 131– 140.

Received February 5, 1992. The author is partially supported by JSPS Fellowships for Japanese Junior Scientists.

University of Tokyo Hongo, Tokyo 113, Japan