POSITIVE 2-SPHERES IN 4-MANIFOLDS OF SIGNATURE $(1, n)$

Kazunori Kikuchi

Abstract

We sharpen Donaldson's theorem on the standardness of definite intersection forms of smooth 4-manifolds in the same sense as Kervaire and Milnor sharpened Rohlin's signature theorem. We then apply the result thus obtained to show that the homology classes of rational surfaces with $b_{2}^{-} \leq 9$ which can be represented by smoothly embedded 2-spheres S with $S \cdot S>0$ are up to diffeomorphism represented by smooth rational curves. Furthermore, we not only extend part of the application to the case where $b_{2}^{-}>9$, but also give an algorithm to see whether or not a given homology class of rational surfaces with $b_{2}^{-} \leq 9$ can be represented by a smoothly embedded 2 -sphere.

1. Introduction. Let M be a closed oriented smooth 4-manifold. One of the most important facts in 4-dimensional differential topology is the following:

Theorem R (Rohlin's signature theorem [13]). If the second StiefelWhitney class $w_{2}(M)$ vanishes, then the signature $\sigma(M)$ is congruent to 0 modulo 16.

Performing the topological blowing up/down operations and applying Theorem R, Kervaire and Milnor [6] extended Theorem R to deduce the following:

Theorem KM. If an integral homology class ξ of M, dual to $w_{2}(M)$, is represented by a smoothly embedded 2 -sphere in M, then the self-intersection number $\xi \cdot \xi$ must be congruent to $\sigma(M)$ modulo 16.

Note that, although used in their proof of Theorem KM, Theorem R can be regarded as a special case of Theorem KM with $\xi=0$.

The primary purpose of this paper is to sharpen the following in the same sense as Kervaire and Milnor sharpened Theorem R:

Theorem D (Donaldson [2]). If the intersection form of M is negative-definite $\left(b_{2}^{+}=0\right)$, then it is equivalent over the integers to $\oplus b_{2}^{-}(-1)$.

We thus work through in the DIFF category. When the integral homology group $H_{2}(M)$ has torsion, we arbitrarily fix a splitting of $H_{2}(M)$, and accordingly of $\xi \in H_{2}(M)$, into free and torsion parts:

$$
\begin{aligned}
H_{2}(M) & =F_{2}(M) \oplus T_{2}(M), \\
\xi & =F_{2} \xi \oplus T_{2} \xi,
\end{aligned}
$$

where $F_{2} \xi \in F_{2}(M), T_{2} \xi \in T_{2}(M)$. We then regard $\left(F_{2}(M), \cdot\right)$ as the intersection form of M. We say that $\xi \in H_{2}(M)$ is represented by S^{2} if it is represented by an embedded 2 -sphere.

The primary result of this paper is then the following:
Theorem 1. Let M be a closed oriented smooth 4-manifold with $b_{2}^{+}=1, b_{2}^{-}=n \geq 1$, and ξ a class in $H_{2}(M)$ with $\xi \cdot \xi=s>0$. If ξ is represented by S^{2}, then either of the following holds:
(i) there exist $\zeta_{1}, \ldots, \zeta_{n}$ in $F_{2}(M)$ such that

$$
\left(F_{2}(M), \cdot\right)=(+1) \oplus n(-1)
$$

with respect to the basis $\left\langle\eta ; \zeta_{1}, \ldots, \zeta_{n}\right\rangle$, where $F_{2} \xi=2 \eta$;
(ii) there exist $\eta, \zeta_{1}, \ldots, \zeta_{n-1}$ in $F_{2}(M)$ such that

$$
\left(F_{2}(M), \cdot\right)=\left(\begin{array}{cc}
s & 1 \\
1 & 0
\end{array}\right) \oplus(n-1)(-1)
$$

with respect to the basis $\left\langle F_{2} \xi, \eta ; \zeta_{1}, \ldots, \zeta_{n-1}\right\rangle$.
Note that Theorem D can be regarded as a special case of Theorem 1 with

$$
M=\mathbf{C} P^{2} \# N, \quad \xi=\left[\text { a quadric on } \mathbf{C} P^{2}\right],
$$

where N is a closed oriented 4-manifold with $b_{2}^{+}(N)=0$. We remark that Theorem 1 is an improvement over Lemma (2.1) of the author's previous paper [7], in which he, with relevance to the $11 / 8$-conjecture, also proved another theorem (Theorem (1.3)) which implies Donaldson's theorem on even intersection forms of 4 -manifolds.

The secondary purpose of this paper is to apply Theorem 1 to the problem of representing homology classes of complex rational surfaces by embedded 2 -spheres.

Our results for this purpose are the following.

Theorem 2. Let M be either $S^{2} \times S^{2}$ or $\mathbf{C} P^{2} \# n \overline{\mathbf{C}}^{2}, 0 \leq n \leq 9$, and ξ a class in $H_{2}(M)$ with $\xi \cdot \xi=s>0$. ξ is represented by S^{2} if and only if either of the following diffeomorphisms f exists:
(i) $f: \mathbf{C} P^{2} \# n \overline{\mathbf{C P}}^{2} \rightarrow M$ such that $f_{*}\left(\left[\mathbf{C} P^{1}\right]\right.$ or $\left.2\left[\mathbf{C} P^{1}\right]\right)=\xi$,
(ii) $f: \Sigma_{s} \#(n-1) \overline{\mathbf{C P}}^{2} \rightarrow M$ such that $f_{*}\left(\left[Z_{s}\right]\right)=\xi$,
where $\mathbf{C} P^{1}$ is a line on $\mathbf{C} P^{2}$, and Z_{s} is the "zero section" $\left(\cong \mathbf{C} P^{1}\right)$ on the s-th Hirzebruch surface Σ_{s} with $Z_{s} \cdot Z_{s}=s$.

This reinterprets and improves all the known facts about that problem $[15,9,10,12,7]$. For Hirzebruch surfaces, see (3.1).

Theorem 3. Let M be $\mathbf{C} P^{2} \# n \overline{\mathbf{C P}}^{2}, n \geq 2$, and ξ a class in $H_{2}(M)$ with $\xi \cdot \xi>0$. Let $\left(x_{0} ; x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbf{Z}$, denote a class in $H_{2}(M)$ with respect to the natural basis of $H_{2}(M)$. If ξ is represented by S^{2}, then ξ is in the orbit of one of

$$
(2 ; 0, \ldots, 0), \quad(k+1 ; k, 0, \ldots, 0), \quad(k+1 ; k, 1,0, \ldots, 0)
$$

under the action of the orthogonal group $O(M)$ of $\left(H_{2}(M), \cdot\right)$. Furthermore, the converse also holds if $n \leq 9$.

This improves Theorem (1.1) of [7]. When $n \leq 9$, there is an algorithm to ascertain whether a given ξ is in such an orbit or not:

Theorem 4. Let M be $\mathbf{C} P^{2} \# n \overline{\mathbf{C P}}^{2}, 2 \leq n \leq 9$, and ξ a class in $H_{2}(M)$ with $\xi \cdot \xi>0$. Then one can see whether ξ is represented by S^{2} or not by using the following algorithm:

1. Set $\xi=\left(x_{0} ; x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbf{Z}$, with respect to the natural basis of $H_{2}(M)$.
2. Set $\eta=\left(y_{0} ; y_{1}, \ldots, y_{n}\right)=\left(\left|x_{0}\right| ;\left|x_{1}^{\prime}\right|, \ldots,\left|x_{n}^{\prime}\right|\right)$ so that

$$
\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}=\left\{x_{1}, \ldots, x_{n}\right\}, \quad y_{1} \geq \cdots \geq y_{n} \geq 0
$$

3. Does η satisfy $y_{0} \geq y_{1}+y_{2}+y_{3}$?
4. Set

$$
\xi=\eta+ \begin{cases}2\left(y_{0}-y_{1}-y_{2}\right)(1 ; 1,1), & n=2 \\ \left(y_{0}-y_{1}-y_{2}-y_{3}\right)(1 ; 1,1,1,0, \ldots, 0), & 3 \leq n \leq 9\end{cases}
$$

5. Is η equal to $(2 ; 0, \ldots, 0),(k+1 ; k, 0, \ldots, 0)$ or $(k+1 ; k, 1$, $0, \ldots, 0)$?

Note that if one goes around once along the loop in the algorithm, one strictly reduces the absolute value $\left|x_{0}\right|$ of x_{0}, so that one must go down to step 5 after going around the loop finitely many times since $\xi \cdot \xi>0$.

In $\S 2$ (resp. §3), we prove Theorem 1 (resp. Theorems 2-4); and in $\S 4$, we conclude by making some remarks about a deduction from Rohlin's genus theorem [14], a modification to a theorem of B. H. Li [11], and a conjecture on rationality of complex surfaces.
2. Proof of Theorem 1. We first recall some facts, indispensable for our proofs of Theorems 1-4, about Lorentzian spaces.
(2.1) Facts. Let (Λ, \cdot) be Lorentzian $(1, n)$-space, i.e. the inner product space over \mathbf{R} of signature $(1, n), n \geq 1$.
(1) (Reverse Cauchy-Schwarz' inequality.) If $\xi \in \Lambda$ is timelike $(\xi \cdot \xi>0)$, then $(\xi \cdot \eta)^{2} \geq(\xi \cdot \xi)(\eta \cdot \eta)$ for any vector $\eta \in \Lambda$, where equality holds if and only if η is parallel to ξ.
(2) If $\xi, \eta \in \Lambda$ are future-pointing with respect to a certain timelike vector $\tau \in \Lambda(\xi \cdot \xi \geq 0, \eta \cdot \eta \geq 0, \xi \cdot \tau>0, \eta \cdot \tau>0, \tau \cdot \tau>0)$, then $\xi \cdot \eta \geq 0$, where equality holds if and only if ξ, η are lightlike ($\xi \cdot \xi=\eta \cdot \eta=0$) and proportional.

We next show a lemma, which we need in (2.7) and in (3.8).
Lemma (2.2). Let (Ξ, \cdot) be an inner product space over \mathbf{Z} of signature $(1, n), n \geq 1$, and ξ a vector in Ξ with $\xi \cdot \xi=s \geq 2$. Let Y be the subset of Ξ of all vectors η with $\xi \cdot \eta=1, \eta \cdot \eta=0$. If $\eta \in Y$, then

$$
Y= \begin{cases}\{\eta, \xi-\eta\}, & s=2, \\ \{\eta\}, & s \geq 3 .\end{cases}
$$

Proof. ξ and η generate a subspace of (Ξ, \cdot) with orthogonal complement (Ω, \cdot) negative-definite. Let η^{\prime} be another vector in Y. Then

$$
\eta^{\prime}=x \xi+y \eta+\zeta,
$$

where $x, y \in \mathbf{Z}$ and $\zeta \in \Omega . \xi \cdot \eta^{\prime}=1$ and $\eta^{\prime} \cdot \eta^{\prime}=0$ imply

$$
s x+y=1, \quad s x^{2}+2 x y+\zeta \cdot \zeta=0 ; \quad \therefore s x^{2}-2 x-\zeta \cdot \zeta=0 .
$$

Let d be the discriminant of the last equation. Then

$$
d / 4=1+s(\zeta \cdot \zeta) \geq 0
$$

Since $s \geq 2$ and (Ω, \cdot) is negative-definite, we have $\zeta=0$ and

$$
(x, y)= \begin{cases}(0,1) \text { or }(1,-1), & s=2 \\ (0,1), & s \geq 3\end{cases}
$$

Now, we are ready to give the proof of Theorem 1, which is in fact obtained by improving that of Lemma (2.1) of [7]. We divide the proof into a series of steps: (2.3)-(2.7). Throughout the proof, for a finite set E, we denote by $\# E$ the number of elements in E.

Lemma (2.3). Let M, ξ be as in the hypothesis of Theorem 1. Let $\boldsymbol{\Omega}=\left\{\left(\zeta ; z_{1}, \ldots, z_{s-1}\right) \in F_{2}(M) \oplus \mathbf{Z}^{s-1} ; \xi \cdot \zeta-z_{1}-\cdots-z_{s-1}=0\right\}$, $Z=\left\{\left(\zeta ; z_{1}, \ldots, z_{s-1}\right) \in \Omega ; \zeta \cdot \zeta-z_{1}^{2}-\cdots-z_{s-1}^{2}=-1\right\}$.

For $\left(\eta ; y_{1}, \ldots, y_{s-1}\right) \in \Omega$ and $\left(\zeta ; z_{1}, \ldots, z_{s-1}\right) \in \Omega$, define $\left(\eta ; y_{1}, \ldots, y_{s-1}\right) \cdot\left(\zeta ; z_{1}, \ldots, z_{s-1}\right)=\eta \cdot \zeta-y_{1} z_{1}-\cdots-y_{s-1} z_{s-1}$.

Then, Theorem D implies the following:
(1) $(\Omega, \cdot) \cong \bigoplus(n+s-1)(-1)$,
(2) $(1 / 2) \# Z=n+s-1$.

Proof. Suppose that ξ is represented by an embedded 2-sphere S in M. "Blow up" $(s-1)$ distinct points of S, and then "blow down" the resulting "exceptional curve" of self-intersection +1 , to construct a closed oriented 4-manifold N with $\left(b_{2}^{+}, b_{2}^{-}\right)=(0, n+s-1)$:

$$
(M, S) \#(s-1)\left(\overline{\mathbf{C}}^{2}, \overline{\mathbf{C}}^{1}\right) \cong\left(\mathbf{C} P^{2}, \mathbf{C} P^{1}\right) \#(N, \phi)
$$

where $\mathbf{C} P^{1}\left(\right.$ resp. $\left.\overline{\mathbf{C P}}^{1}\right)$ is a line on $\mathbf{C} P^{2}\left(\right.$ resp. $\left.\overline{\mathbf{C P}}^{2}\right)$. Under the identifications

$$
F_{2}\left(M \#(s-1) \overline{\mathbf{C}}^{2}\right)=F_{2}(M) \oplus \mathbf{Z}^{s-1}, \quad\left(F_{2}(N), \cdot\right)=(\Omega, \cdot)
$$

we see that Theorem D implies (1) and thus (2): for details, see [7].

Lemma (2.4). Theorem 1 holds if $\xi \cdot \xi=s=1$.
Proof. By (2.3), there exist $\zeta_{1}, \ldots, \zeta_{n} \in F_{2}(M)$ such that

$$
\left(F_{2}(M), \cdot\right)=(+1) \oplus n(-1)
$$

with respect to the basis $\left\langle F_{2} \xi ; \zeta_{1}, \ldots, \zeta_{n}\right\rangle$. Let $\eta=F_{2} \xi+\zeta_{n}$. Then

$$
\left(F_{2}(M), \cdot\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \oplus(n-1)(-1)
$$

with respect to the basis $\left\langle F_{2} \xi, \eta ; \zeta_{1}, \ldots, \zeta_{n-1}\right\rangle$.
Lemma (2.5). Let ξ be as in the hypothesis of Theorem 1, and assume $\xi \cdot \xi=s \geq 2$. Let Z be as in (2.3), and let

$$
Z_{0}=\{(\zeta ; 0, \ldots, 0) \in Z\}, \quad Z_{1}=Z-Z_{0}
$$

Choose and fix $\left(\zeta ; z_{1}, \ldots, z_{s-1}\right) \in Z_{1} \quad\left(\# Z_{1} \geq 2(s-1) \geq 2\right)$, and let

$$
r=\#\left\{i ; z_{i} \neq 0\right\}, \quad \Delta=(\xi \cdot \zeta)^{2}-(\xi \cdot \xi)(\zeta \cdot \zeta)
$$

Then, the following equalities hold:
(1) $\xi \cdot \zeta=z_{1}+\cdots+z_{s-1}= \pm r$,
(2) $\zeta \cdot \zeta=z_{1}^{2}+\cdots+z_{s-1}^{2}-1=r-1$,
(3) $\Delta(\Delta-1)=0$.

Proof. We naturally embed $\left(F_{2}(M), \cdot\right)$ into Lorentzian $(1, n)$-space (Λ, \cdot). In light of (2.1)(1), we see $\Delta \geq 0$. Note $1 \leq r \leq s-1$. We then calculate as follows:

$$
\begin{gathered}
0 \leq \Delta=\left(\sum z_{i}\right)^{2}-s\left(\sum z_{i}^{2}-1\right) \\
\leq r\left(\sum z_{i}^{2}\right)-s\left(\sum z_{i}^{2}-1\right)=s-(s-r)\left(\sum z_{i}^{2}\right) \\
\quad(s-r) r \leq(s-r)\left(\sum z_{i}^{2}\right) \leq s \leq(s-r)(r+1) \\
\therefore 1 \leq r \leq \sum z_{i}^{2} \leq r+1
\end{gathered}
$$

hence (2). Let $r_{-}=\#\left\{i ; z_{i}=-1\right\}$. We further calculate:

$$
\begin{aligned}
0 & \leq \Delta=\left(r-2 r_{-}\right)^{2}-s(r-1) \\
& \leq\left(r-2 r_{-}\right)^{2}-(r+1)(r-1)=1-4\left(r-r_{-}\right) r_{-} \leq 1
\end{aligned}
$$

hence (1) and (3).
Lemma (2.6). Let Δ be as in (2.5). Then Theorem 1 holds if $\Delta=0$ $(s \geq 2)$: to be more precise, the case where $\Delta=0$ corresponds to case (i) of Theorem 1.

Proof. Note by $(2.1)(1)$ that $F_{2} \xi, \zeta$ are proportional. We thus observe that $\Delta=r^{2}-s(r-1)=0$ implies

$$
s=4, \quad r=2: \quad \xi \cdot \zeta= \pm 2, \quad \zeta \cdot \zeta=1, \quad F_{2} \xi= \pm 2 \zeta
$$

Let η be either of $\pm \zeta$ so that $F_{2} \xi=2 \eta$. We then see

$$
\begin{aligned}
Z_{1}= & \{ \pm(\eta ; 0,1,1), \pm(\eta ; 1,0,1), \pm(\eta ; 1,1,0)\}: \\
& (1 / 2) \# Z_{1}=3(=s-1), \quad(1 / 2) \# Z_{0}=n .
\end{aligned}
$$

Note by (2.3) that, if $\left(\zeta_{0} ; 0,0,0\right)$ is an element in Z_{0}, then $\eta \cdot \zeta_{0}=0$, $\zeta_{0} \cdot \zeta_{0}=-1$. The case where $\Delta=0$ therefore corresponds to case (i).

Lemma (2.7). Let Δ be as in (2.5). Then Theorem 1 holds if $\Delta=1$ $(s \geq 2)$: to be more precise, the case where $\Delta=1$ corresponds to case (ii) of Theorem 1.

Proof. We first see that $\Delta=r^{2}-s(r-1)=1$ implies either of the following:

$$
\begin{aligned}
& r=1:\left\{\begin{array}{l}
\xi \cdot \zeta= \pm 1, \\
\zeta \cdot \zeta=0,
\end{array}\right. \\
& r=s-1:\left\{\begin{array}{l}
\xi \cdot \zeta= \pm(s-1), \\
\zeta \cdot \zeta=s-2
\end{array}\right.
\end{aligned}
$$

We next observe the following equivalence:

$$
\left\{\begin{array} { l }
{ \xi \cdot \zeta = s - 1 , } \\
{ \zeta \cdot \zeta = s - 2 , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\xi \cdot(\xi-\zeta)=1, \\
(\xi-\zeta) \cdot(\xi-\zeta)=0 .
\end{array}\right.\right.
$$

In either case, we can choose $\eta \in F_{2}(M)$ such that

$$
\left\{\begin{array}{l}
\xi \cdot \eta=1, \\
\eta \cdot \eta=0 .
\end{array}\right.
$$

Then the equivalence above and the uniqueness (2.2) of η show

$$
\begin{gathered}
Z_{1}=\{ \pm(\eta ; 1,0, \ldots, 0), \pm(\eta ; 0,1,0, \ldots, 0), \ldots, \\
\left. \pm(\eta ; 0, \ldots, 0,1), \pm\left(\left(F_{2} \xi\right)-\eta ; 1,1, \ldots, 1\right)\right\}: \\
(1 / 2) \# Z_{1}=s, \quad(1 / 2) \# Z_{0}=n-1 .
\end{gathered}
$$

Note by (2.3) that, if $\left(\zeta_{0} ; 0, \ldots, 0\right) \in Z_{0}$, then

$$
\xi \cdot \zeta_{0}=0, \quad \eta \cdot \zeta_{0}=0, \quad \zeta_{0} \cdot \zeta_{0}=-1
$$

The case where $\Delta=1$ therefore corresponds to case (ii).
We have completed the proof of Theorem 1.
3. Proofs of Theorems 2-4. To prove Theorem 2 and Theorem 3, we recall some facts about complex rational surfaces.
(3.1) Facts. Let Σ_{k} denote the k-th Hirzebruch surface, i.e., the total space of $\mathbf{C} P^{1}$-bundle over $\mathbf{C} P^{1}$ whose "zero section" $Z_{k}(\cong$ $\mathbf{C} P^{1}$) and "fiber" $F_{k}\left(\cong \mathbf{C} P^{1}\right)$ form a basis $\left\langle\left[Z_{k}\right],\left[F_{k}\right]\right\rangle$ of $\left(H_{2}\left(\Sigma_{k}\right), \cdot\right)$ such that

$$
\left(H_{2}\left(\Sigma_{k}\right), \cdot\right)=\left(\begin{array}{cc}
k & 1 \\
1 & 0
\end{array}\right) .
$$

(1) Σ_{k} is biholomorphic to Σ_{l} if and only if $|k|=|l|$, while Σ_{k} is diffeomorphic to Σ_{l} if and only if $k \equiv l(\bmod 2)$; in particular, $\Sigma_{2 k}$ (resp. $\Sigma_{2 k+1}$) is diffeomorphic to $S^{2} \times S^{2}\left(\right.$ resp. $\left.\mathbf{C} P^{2} \# \overline{\mathbf{C}}^{2}\right)$: see [1, p. 141], [17, §1].
(2) If $n \geq 2$, then $\mathbf{C} P^{2} \# n \overline{\mathbf{C}}^{2}$ is diffeomorphic to $\Sigma_{k} \#(n-1) \overline{\mathbf{C}}^{2}$ for an arbitrary integer k : see [17, §3].
(3) Let M be either $\mathbf{C} P^{2} \# n \overline{\mathbf{C}}^{2}$ or $\Sigma_{k} \#(n-1){\overline{\mathbf{C}} \bar{P}^{2}}^{2}$. If $n \leq 9$, then any automorph in the orthogonal group $O(M)$ of $\left(H_{2}(M), \cdot\right)$ can be represented by an orientation-preserving self-diffeomorphism of M : see [17, §3].
(3.2) Proof of Theorem 2. The "if" part is clear. Thus suppose that ξ is represented by S^{2}. Then it follows from Theorem 1 that there exists either of the following isomorphisms ϕ :
(i) $\phi:\left(H_{2}\left(\mathbf{C} P^{2} \# n \overline{\mathbf{C P}}^{2}\right), \cdot\right) \rightarrow\left(H_{2}(M), \cdot\right), \phi\left(\left[\mathbf{C} P^{1}\right]\right.$ or $\left.2\left[\mathbf{C} P^{1}\right]\right)=$ ξ;
(ii) $\phi:\left(H_{2}\left(\Sigma_{s} \#(n-1) \overline{\mathbf{C}}^{2}\right), \cdot\right) \rightarrow\left(H_{2}(M), \cdot\right), \phi\left(\left[Z_{s}\right]\right)=\xi$.

However, such an isomorphism ϕ is realized by an orientationpreserving diffeomorphism f because of (3.1)(2) and (3.1)(3).
(3.3) Proof of Theorem 3. Let $X(\xi)$ be the subset of $H_{2}(M)$ which consists of those elements ξ^{\prime} with $\xi^{\prime} \cdot \xi^{\prime}=\xi \cdot \xi$ such that $\xi^{\prime} / 2$ (resp. ξ^{\prime}) can be the first base of a basis of ($\left.H_{2}(M), \cdot\right)$ of type (i) (resp. (ii)) in Theorem 1. Note that the orthogonal group $O(M)$ of $\left(H_{2}(M), \cdot\right)$ transitively acts on $X(\xi)$, and that

$$
\xi_{*}=(2 ; 0, \ldots, 0)\left(\text { resp. }\left\{\begin{array}{l}
(k+1 ; k, 0, \ldots, 0), \xi \cdot \xi=2 k+1 \\
(k+1 ; k, 1,0, \ldots, 0), \xi \cdot \xi=2 k
\end{array}\right)\right.
$$

can be a representative of $X(\xi)$: namely, $X(\xi)$ is the $O(M)$-orbit of ξ_{*}. The assertion follows from Theorem 1 and (3.1)(3), since ξ_{*} can be represented by a quadric on $\mathbf{C} P^{2}$ (resp. Z_{s} on $\Sigma_{s}, s=\xi \cdot \xi$ (cf. (3.1)(2))).

To prove Theorem 4, we need the following.

Lemma (3.4). Let $(\Xi, \cdot)=(+1) \oplus n(-1), 2 \leq n \leq 9$. Let ξ be an element in Ξ denoted by $\left(x_{0} ; x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbf{Z}$, with

$$
\xi \cdot \xi>0, \quad x_{1} \geq \cdots \geq x_{n} \geq 0, \quad x_{0} \geq x_{1}+x_{2}+x_{3}
$$

(1) Suppose that (Ξ, \cdot) is diagonalized as follows:

$$
(\Xi, \cdot)=(+1) \oplus n(-1)
$$

with respect to $\left\langle\eta ; \zeta_{1}, \ldots, \zeta_{n}\right\rangle$, where $\eta=\xi$ (resp. $\xi / 2$). Then

$$
\xi=(1 ; 0, \ldots, 0) \quad(\operatorname{resp} .(2 ; 0, \ldots, 0))
$$

(2) Suppose that $\xi \cdot \xi=s \geq 2$, and that

$$
(\Xi, \cdot)=\left(\begin{array}{ll}
s & 1 \\
1 & 0
\end{array}\right) \oplus(n-1)(-1)
$$

with respect to $\left\langle\xi, \eta ; \zeta_{1}, \ldots, \zeta_{n-1}\right\rangle$. Then

$$
\xi=(k+1 ; k, 0, \ldots, 0) \quad \text { or } \quad(k+1 ; k, 1,0, \ldots, 0)
$$

(3.5) Proof of Theorem 4 assuming (3.4). Note that operations 2, 4 in Theorem 4 are performed by automorphs in the orthogonal group $O(M)$ of $\left(H_{2}(M), \cdot\right):$ see $[16,1.5,1.6],[7,(2.2)]$. Thus the assertion immediately follows from Theorem 3 and (3.4).
(3.6) Proof of $(3.4)(1)$. Without loss of generality, we assume $n=9$ and $\xi \cdot \xi=1$. Since

$$
0 \leq x_{0}^{2}-\left(x_{1}+x_{2}+x_{3}\right)^{2} \leq x_{0}^{2}-x_{1}^{2}-\cdots-x_{9}^{2}=1
$$

either $x_{0}=1, x_{1}=\cdots=x_{9}=0$ (done); or $x_{0}=x_{1}+x_{2}+x_{3}$. In the latter case, since

$$
0 \leq\left(x_{3}^{2}-x_{4}^{2}\right)+\cdots+\left(x_{3}^{2}-x_{9}^{2}\right) \leq x_{0}^{2}-x_{1}^{2}-\cdots-x_{9}^{2}=1
$$

either (i) $x_{3}=\cdots=x_{8}=1, x_{9}=0$; or (ii) $x_{3}=\cdots=x_{8}=x_{9}$. In case (i), $\xi \cdot \xi=1$ implies

$$
x_{1}=x_{2}=1: \quad \xi=(3 ; 1,1,1,1,1,1,1,1,0)
$$

However, this contradicts the diagonalizability of (Ξ, \cdot), since the orthogonal complement of ξ turns out to be isomorphic to $\left(-E_{8}\right) \oplus$ (-1). In case (ii), $\xi \cdot \xi=1$ yields

$$
2\left(x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{3}-3 x_{3}^{2}\right)=1
$$

a contradiction.
To prove (3.4)(2), we need the following, which holds even if $n>9$.

Sublemma (3.7). Let ξ, η be as in the hypothesis of (3.4)(2).
(1) ξ, η are primitive and ordinary.
(2) $\left(x_{0}-1\right)^{2} \leq x_{1}^{2}+\cdots+x_{n}^{2}$.
(3) $(s-1)\left(y_{0}^{2}+1\right) \leq x_{0}^{2}, y_{0}>0$ if $\eta=\left(y_{0} ; y_{1}, \ldots, y_{n}\right)$.
(4) $(s-1)\left(y_{i}^{2}-1\right) \leq x_{i}^{2}, x_{i} y_{i} \geq 0(i \geq 1)$ if $\eta=\left(y_{0} ; y_{1}, \ldots, y_{n}\right)$.

Proof. (1) Clear since $n \geq 2$.
(2) Let $\eta=\left(y_{0} ; y_{1}, \ldots, y_{n}\right)$. It follows:

$$
\begin{aligned}
\left(x_{0}-1\right)^{2} y_{0}^{2} & \leq\left(x_{0} y_{0}-1\right)^{2} \\
& =\left(x_{1} y_{1}+\cdots+x_{n} y_{n}\right)^{2} \\
& \leq\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right) \\
& =\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) y_{0}^{2} .
\end{aligned}
$$

Since $\xi \cdot \eta=1$ implies $y_{0} \neq 0$, hence the inequality: cf. [7, (2.3)(2)].
(3) Embed (Ξ, \cdot) into Lorentzian ($1, n$)-space. Since

$$
\xi \cdot \xi>0, \quad x_{0}>0, \quad \xi \cdot \eta=1, \quad \eta \cdot \eta=0
$$

it follows from (2.1)(2) that $y_{0}>0$. It also follows:

$$
\begin{aligned}
\left(x_{0} y_{0}\right)^{2} & =\left(x_{1} y_{1}+\cdots+x_{n} y_{n}+1\right)^{2} \\
& \leq\left(x_{0}^{2}-s+1\right)\left(y_{0}^{2}+1\right), \\
& \therefore(s-1)\left(y_{0}^{2}+1\right) \leq x_{0}^{2} .
\end{aligned}
$$

(4) Embed (Ξ, \cdot) into Lorentzian ($1, n$)-space. Assume $i \geq 1$. Let

$$
\begin{aligned}
\xi_{i} & =\left(x_{0} ; x_{1}, \ldots, x_{i-1}, 1, x_{l+1}, \ldots, x_{n}\right), \\
\eta_{i} & =\left(y_{0} ; y_{1}, \ldots, y_{l-1}, 1, y_{i+1}, \ldots, y_{n}\right) .
\end{aligned}
$$

Note that $\xi_{i} \cdot \xi_{i}>0$, and that $\eta_{i} \cdot \eta_{i} \geq 0$ if $y_{l} \neq 0$. Thus assume $y_{i} \neq 0$. Then, (2.1)(1) and (2.1)(2) imply

$$
(s-1)\left(y_{i}^{2}-1\right) \leq x_{i}^{2}, \quad x_{i} y_{i} \geq 0
$$

respectively, both of which are valid even if $y_{l}=0$.
(3.8) Proof of (3.4)(2). Assuming $n=9$ as in (3.6), we divide the proof into a series of steps: (1)-(4).

Step (1). If $x_{4}=0$, then $x_{0}=x_{1}+1, x_{2} \leq 1, x_{3}=0$ (done).
Proof. Note that $\xi \cdot \xi \geq 2$ implies $x_{1}+x_{2}+x_{3} \geq 1$. Thus by (3.7)(2),

$$
\begin{gathered}
\left(x_{1}+x_{2}+x_{3}-1\right)^{2} \leq\left(x_{0}-1\right)^{2} \leq x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
2 x_{2}\left(x_{3}-1\right)+2 x_{3}\left(x_{1}-1\right)+2 x_{1}\left(x_{2}-1\right)+1 \leq 0
\end{gathered}
$$

and hence $x_{3}=0, x_{2} \leq 1, x_{1} \geq 1$. Then by (3.7)(2) again,

$$
0 \leq\left(x_{0}-1\right)^{2}-x_{1}^{2} \leq x_{2}^{2} \leq 1
$$

hence $x_{0}=x_{1}+1$.
Step (2). If $x_{4}>0$, then $x_{0}=x_{1}+2 x_{4}, x_{1} \leq x_{4}+1, x_{2}=x_{3}=$ $x_{4} \geq 2$.

Proof. First assume $x_{0} \geq x_{1}+x_{2}+x_{3}+1$. By (3.7)(2),

$$
\begin{gathered}
\left(x_{1}+x_{2}+x_{3}\right)^{2} \leq\left(x_{0}-1\right)^{2} \leq x_{1}^{2}+\cdots+x_{9}^{2} \\
\therefore x_{1}=\cdots=x_{9}>0: \quad \xi=\left(x_{0} ; x_{1}, x_{1}, \ldots, x_{1}\right) .
\end{gathered}
$$

Since $\xi \cdot \xi \geq 6 x_{1}+1 \geq 7, \eta$ is unique by (2.2). Since ξ is then fixed by any permutation among $\left\{x_{1}, \ldots, x_{9}\right\}$, so is η : namely,

$$
\eta=\left(y_{0} ; y_{1}, y_{1}, \ldots, y_{1}\right) .
$$

However, $\eta \cdot \eta=0$ implies $y_{0}= \pm 3 y_{1}$, which contradicts (3.7)(1): hence $x_{0}=x_{1}+x_{2}+x_{3}$. Then, by (3.7)(2) again,

$$
\begin{gathered}
\left(x_{1}+x_{2}+x_{3}-1\right)^{2}=\left(x_{0}-1\right)^{2} \leq x_{1}^{2}+\cdots+x_{9}^{2}, \\
L:=2 x_{2}\left(x_{3}-1\right)+2 x_{3}\left(x_{1}-1\right)+2 x_{1}\left(x_{2}-1\right)+1 \leq x_{4}^{2}+\cdots+x_{9}^{2}=: R .
\end{gathered}
$$

Secondly, $x_{1} \geq x_{4}+2$ implies

$$
L \geq 2 x_{4}\left(x_{4}-1\right)+2 x_{4}\left(x_{4}+1\right)+2\left(x_{4}+2\right)\left(x_{4}-1\right)+1>R,
$$

a contradiction, hence $x_{1} \leq x_{4}+1$. Similarly, since $x_{2} \geq x_{4}+1$ implies $L>R$, it follows $x_{2}=x_{3}=x_{4}$.

Lastly, to show $x_{4} \geq 2$, assume $x_{4}=1$. The inequality $L=$ $2 x_{1}-1 \leq R \leq 6$ implies $x_{1} \leq 3$. If $x_{1}=1$, then

$$
\xi=\left(3 ; 1,1,1,1, x_{5}, \ldots, x_{9}\right) .
$$

Note by (3.7)(3) that, if $\eta=\left(y_{0} ; y_{1}, \ldots, y_{9}\right)$, then $y_{0}=1$ or 2: this is impossible since $\xi \cdot \eta=1, \eta \cdot \eta=0$, and $1 \geq x_{5} \geq \cdots \geq x_{9} \geq 0$. Thus assume $x_{1}=2$ (resp. 3). Then

$$
\begin{aligned}
\xi=\left(4 ; 2,1,1,1, x_{5}, \ldots, x_{9}\right), & \xi \cdot \xi \geq 4 \\
\text { (resp. }\left(5 ; 3,1,1,1, x_{5}, \ldots, x_{9}\right), & \xi \cdot \xi \geq 8) .
\end{aligned}
$$

From (3.7)(3), (3.7)(4) and the uniqueness (2.2) of η, it follows:

$$
\begin{gathered}
\eta=\left(y_{0} ; y_{1}, y, y, y, y_{5}, \ldots, y_{9}\right) \\
y_{0}=1 \text { or } 2\left(\text { resp. 1) }, \quad y_{1}=0 \text { or } 1, \quad y=0 \text { or } 1 .\right.
\end{gathered}
$$

However, it is easily verified that each case contradicts either $\eta \cdot \eta=0$ or $\xi \cdot \eta=1$, which shows $x_{4} \geq 2$.

Step (3). ξ cannot be of form ($3 x ; x, x, x, x, x_{5}, \ldots, x_{9}$), $x \geq$ 2.

Proof. Suppose so. Since $x>x_{6}$ contradicts (3.7)(2), it follows:

$$
x_{5}=x_{6}=x: \quad \xi=\left(3 x ; x, x, x, x, x, x, x_{7}, x_{8}, x_{9}\right) .
$$

Note by (3.7)(1) that $x_{9} \leq x-1, \xi \cdot \xi \geq 2 x-1 \geq 3 . \eta=\left(y_{0} ; y_{1}, \ldots\right.$, y_{9}) is hence unique by (2.2), and thus fixed both by reflection 4 in Theorem 4 (cf. [7, (2.2)]) and by any permutation among $\left\{y_{1}, \ldots, y_{6}\right\}$. Thus

$$
\eta=\left(3 y ; y, y, y, y, y, y, y_{7}, y_{8}, y_{9}\right) .
$$

However, $\eta \cdot \eta=0$ implies:

$$
3 y^{2}=y_{7}^{2}+y_{8}^{2}+y_{9}^{2}, \quad y \equiv y_{7} \equiv y_{8} \equiv y_{9} \quad(\bmod 2),
$$

which contradicts (3.7)(1).
Step (4). ξ cannot be of form ($3 x+1 ; x+1, x, x, x, x_{5}, \ldots, x_{9}$), $x \geq 2$.

Proof. Suppose so. As in (3), it follows:

$$
\begin{aligned}
\xi & =\left(3 x+1: x+1, x, x, x, x, x, x, x, x_{9}\right) \\
\eta & =\left(y_{1}+2 y ; y_{1}, y, y, y, y, y, y, y, y_{9}\right) \\
\eta \cdot \eta & =4 y_{1} y-3 y^{2}-y_{9}^{2}=0 \\
& \therefore\left(y_{1}, y, y_{9}\right) \equiv(0,1,1) \text { or }(1,0,0)(\bmod 2) .
\end{aligned}
$$

However, the former congruence and $\eta \cdot \eta=0$ imply

$$
0 \equiv 4 y_{1} y \equiv 3 y^{2}+y_{9}^{2} \equiv 4 \quad(\bmod 8),
$$

a contradiction, while the latter congruence and $\xi \cdot \eta=1$ also give

$$
0 \equiv x\left(2 y_{1}-y\right)+2 y-x_{9} y_{9} \equiv 1 \quad(\bmod 2),
$$

a contradiction.
We have completed the proof of Theorem 4.
4. Concluding remarks. We conclude by making some remarks about Theorem 1 and Theorem 2.
(4.1) Let M, ξ be as in the hypothesis of Theorem 1. Assume $H_{1}(M)=0$ and ξ divisible. Then, it follows from Rohlin's genus theorem [14] that $\xi=2 \eta$ for some $\eta \in H_{2}(M)$ with $\eta \cdot \eta=1$, which is only a part of Theorem 1 . Note that in our proof of Theorem 1 we have applied only Theorem D (in (2.3)) without using Rohlin's genus theorem, and that the latter is theoretically level with the Atiyah-Singer index theorem on which the former partially depends about the calculation of the "virtual dimension" of the moduli space of instantons [2].
(4.2) Let M be as in the hypothesis of Theorem 1 . Let η be a class in $H_{2}(M)$ with $\eta \cdot \eta=0, F_{2} \eta$ being primitive. It is of great interest to compare with Theorem 1 the following slight generalization of a theorem of $\mathrm{B} . \mathrm{H} . \mathrm{Li}$ [11]: if η is represented by S^{2}, then there exist $\xi, \zeta_{1}, \ldots, \zeta_{n-1} \in F_{2}(M)$ such that

$$
\left(F_{2}(M), \cdot\right)=\left(\begin{array}{ll}
* & 1 \\
1 & 0
\end{array}\right) \oplus(n-1)(-1)
$$

with respect to the basis $\left\langle\xi, F_{2} \eta ; \zeta_{1}, \ldots, \zeta_{n-1}\right\rangle$. In particular, consider the case where $M=S^{2} \times S^{2}$ or $\mathbf{C} P^{2} \# n \overline{\mathbf{C P}}^{2}, 1 \leq n \leq 9$. What corresponds to Theorem 2 is, then, the proposition that η is represented by S^{2} if and only if, for some integer k, there exists a diffeomorphism f such that

$$
f: \Sigma_{k} \#(n-1) \overline{\mathbf{C}}^{2} \rightarrow M, \quad f_{*}\left(\left[F_{k}\right]\right)=\eta \quad(\mathrm{cf} .(3.1))
$$

(4.3) Let M be a compact complex surface. One of the necessary and sufficient conditions for M to be rational is that M contains a smooth rational curve C with $C \cdot C>0$ [1, p. 142]. We wish to conjecture that the phrase "smooth rational curve" might be substituted by "smoothly embedded 2 -sphere". In fact, the following irrational surfaces have been proved not to contain any "positive 2-sphere" (2sphere S with $[S] \cdot[S]>0)$:
(1) irrational ruled surfaces and their blown-ups [3],
(2) Dolgachev surfaces $S(p, q)$ and their blown-ups [4],
(3) simply connected projective surfaces with $p_{g} \geq 1$ [8].

We can now cite other instances: namely, generalized Dolgachev surfaces $S(p, q)$ with $(p, q) \equiv(p+q) /(p, q) \equiv 0(\bmod 2)$ (e.g., Enriques surfaces) cannot contain any "positive 2 -sphere" by Theorem 1 , since $b_{2}^{+}=1, b_{2}^{-}=9$ and their intersection forms are even, although they are not spin [5].

References

[1] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse, Band 4, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.
[2] S. K. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differential Geom., 26 (1987), 397-428.
[3] R. Friedman and J. W. Morgan, Algebraic surfaces and 4-manifolds: some conjectures and speculations, Bull. Amer. Math. Soc. (N.S.), 18 (1988), 1-19.
[4] __ On the diffeomorphism types of certain algebraic surfaces I, J. Differential Geom., 27 (1988), 297-369.
[5] I. Hambleton and M. Kreck, Smooth structures on algebraic surfaces with cyclic fundamental group, Invent. Math., 91 (1988), 53-59.
[6] M. A. Kervaire and J. W. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 1651-1657.
[7] K. Kikuchi, Representing positive homology classes of $\mathbf{C} P^{2} \# 2 \overline{\mathbf{C P}}^{2}$ and $\mathbf{C} P^{2} \# 3 \overline{\mathbf{C P}}^{2}$, Proc. Amer. Math. Soc., 117 (1993), 861-869.
[8] P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces, I, preprint (1991).
[9] K. Kuga, Representing homology classes of $S^{2} \times S^{2}$, Topology, 23 (1984), 133137.
[10] T. Lawson, Representing homology classes of almost definite 4-manifolds, Michigan Math. J., 34 (1987), 85-91.
[11] B. H. Li, Embeddings of surfaces in 4-manifolds (I), Chinese Science Bull., 36 (1991), 2025-2029.
[12] F. Luo, Representing homology classes of $\mathbf{C} P^{2} \# \overline{\mathbf{C}}^{2}$, Pacific J. Math., 133 (1988), 137-140.
[13] V. A. Rohlin, New results in the theory of four-dimensional manifolds, Dokl. Akad. Nauk SSSR, 84 (1952), 221-224 (Russian).
[14] _, Two-dimensional submanifolds of four-dimensional manifolds, Functional Anal. Appl., 5 (1971), 39-48.
[15] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc., 66 (1969), 251-264.
[16] C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms II, J. Reine Angew. Math., 213 (1963), 122-136.
[17] , Diffeomorphisms of 4-manifolds, J. London Math. Soc., 39 (1964), 131140.

Received February 5, 1992. The author is partially supported by JSPS Fellowships for Japanese Junior Scientists.

University of Tokyo
Hongo, Tokyo 113, Japan

