A NOTE ON MORTON'S CONJECTURE CONCERNING THE LOWEST DEGREE OF A 2-VARIABLE KNOT POLYNOMIAL

Peter R. Cromwell

Abstract

This note is concerned with the behaviour of the 'HOMFLY' polynomial of oriented links, $P_{L}(v, z)$. In particular, we show that the gap between the two lowest powers of v can be made arbitrarily large. This casts doubt on whether Morton's conjecture on the least v-degree can be established in general by the kind of combinatorial approach that has been successfully applied to some special cases.

Introduction. The two-variable knot polynomial $P_{L}(v, z)$ of a link L, announced in [FYHLMO], [PT], can be written in the form

$$
P_{L}(v, z)=\sum_{i=e}^{E} a_{i}(z) v^{i}
$$

where $a_{i}(z)$ is a polynomial in z for each $i, a_{e}(z) \neq 0$, and $a_{E}(z) \neq$ 0 . Let $f\left(P_{L}\right)$ denote the least degree in v in the polynomial P_{L}. Say that $f\left(P_{L}\right)$ is the first degree of P_{L}. With the above formulation $f\left(P_{L}\right)=e$. Let $s\left(P_{L}\right)$ be the least $i>e$ such that $a_{i}(z) \neq 0$. Say that $s\left(P_{L}\right)$ is the second degree of P_{L}.

In [Mo3] H . Morton conjectured that

$$
f\left(P_{L}\right) \leq 1-\chi(L)
$$

for all links L where $\chi(L)$ is the maximum Euler characteristic over all orientable surfaces spanning L. In [$\mathbf{C r}$] I showed that the conjecture is satisfied by the homogeneous links (a class containing the positive and alternating links as special cases). A computer search for counterexamples in other classes of links showed up an interesting phenomenon: sometimes polynomials were produced where $s\left(P_{L}\right)-f\left(P_{L}\right)$ was quite large and $a_{e}(z)=1$. In these cases it was only the term v^{e}, isolated from the other non-zero terms in the polynomial, which saved the conjecture from being violated. This prompted the question of whether $s\left(P_{L}\right)-f\left(P_{L}\right)$ could be arbitrarily large. Here I provide examples to show that it can.

Figure 1
Examples. The simplest examples that I have found can be viewed as pretzel knots of the form $(3,-3,2 a)$ for any $a \in \mathbb{N}$ (see Figure $1)$. Writing the polynomial of this knot as $P(3,-3,2 a)$ we get

$$
\begin{aligned}
P(3,-3,2 a)= & v^{2} P(3,-3,2(a-1)) \\
& +v z P(\text { two component trivial link }) \\
= & v^{2} P(3,-3,2(a-1))-v^{2}+1 \\
= & v^{2 a}(P(3,-3,0)-1)+1
\end{aligned}
$$

Now $(3,-3,0)$ is a square or reef knot-the connected sum of a trefoil and its mirror image. Its polynomial is

$$
P(3,-3,0)=\left(-2-z^{2}\right) v^{-2}+\left(5+4 z^{2}+z^{4}\right)+\left(-2-z^{2}\right) v^{2}
$$

Letting K denote the pretzel knot $(3,-3,2 a)$ we obtain

$$
s\left(P_{K}\right)-f\left(P_{K}\right)= \begin{cases}2, & 0 \leq a \leq 2 \\ 2(a-1), & 2<a\end{cases}
$$

Thus $s\left(P_{K}\right)-f\left(P_{K}\right)$ can be made as large as we please.
Applying Seifert's algorithm to the standard diagram of the pretzel knot, K, shows that $1-\chi(K) \leq 6$. So whenever $a>4$, we have $s\left(P_{K}\right)>1-\chi(K)$ and the constant term in P_{K} is the only term which validates the conjecture. The difference $s\left(P_{K}\right)-(1-\chi(K))$ can also be made arbitrarily large. These examples suggest that it may be difficult to prove Morton's conjecture true in general using a combinatorial approach like that in $[\mathbf{C r}]$.

Figure 2

Figure 3
Many other examples are easily constructed. All that is required is a tangle t such that its numerator $N(t)$ is the trivial link with two components and its denominator $D(t)$ is a non-trivial knot (using Conway's notation for the closures of a tangle [C0]). Such tangles are easily constructed: take two discs embedded in the interior of a ball and connect each of them to the boundary of the ball by a ribbon. The ribbons may pass through the discs in ribbon singularities. An example is shown in Figure 2.

Inserting $2 a$ positive half-twists into $D(t)$, as shown in Figure 3, produces the same behaviour in the polynomial as before. That is

$$
P(D(t) \text { with } 2 a \text { half-twists })=v^{2 a}(P(D(t))-1)+1
$$

Substituting $v=1$ in this expression shows that all of the knots derived from $D(t)$ in this way have the same Conway polynomial. Thus the square knot, 8_{20}, and 10_{140} all have the same Conway polynomial since they are $(3,-3,0),(3,-3,2)$ and $(3,-3,4)$ respectively.

Figure 4
Remarks. Morton observed that the connected sum of two trefoils is a fibred knot and that the insertion of twists described above can be achieved by $(1, n)$ Dehn surgery about an unknotted untwisted curve in the fibre surface. Such a curve is shown in Figure 4. Hence there is an infinite family of fibred knots all having the same Alexander polynomial but which can be distinguished by $P(v, z)$. This provides further counterexamples to the conjecture (made in [Ne]) that at most finitely many fibred knots could have the same Alexander polynomial. It was Morton who showed that the conjecture is false [Mo1], [Mo2].

The referee drew attention to a related result of Akio Kawauchi [Ka] who has shown that a gap in the z-degree can also be made as large as desired. More specifically, he constructed a family of knots whose polynomials have the form

$$
P_{L}(v, z)=1+\sum_{i=m}^{M} b_{l}(v) z^{l}
$$

(where $b_{m}(v)$ and $b_{M}(v)$ are non-zero polynomials in v). The value of m can be made arbitrarily large.

References

[Co]
J. H. Conway, An enumeration of knots and links and some of therr related properties, Computational problems in abstract algebra, (1969). 329-358. P. R. Cromwell, Homogeneous links, J. London Math. Soc., (2) 39 (1989), 535-552.
[FYHLMO] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc., 12 (1985), 239-246.
[Ka] A. Kawauchi, Imitations of (3, 1)-dimensional manifold pairs, Sugaku. 40 (1988), 193-204 (in Japanese); Sugaku Expositions, 2 (1989), 141156 (in English).
[Mo1] H. R. Morton, Infinitely many fibred knots with the same Alexander polynomial, Topology, 17 (1978), 101-104.
[Mo2] _-, Fibred knots with a given Alexander polynomial, Noeuds, tresses et singularités, Plan-sur-Bex (1982) L'enseignement Math. monograph 31, 205-222.
[Mo3] _, Seifert circles and knot polynomials, Math. Proc. Cambridge Philosophical Soc., 99 (1986), 107-141.
[Ne] L. P. Neuwirth, The Status of Some Problems Related to Knot Groups. Lecture Note in Math. 375, Springer-Verlag, (1974), 209-230.
[PT] J. H. Prztycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math., 4 (1987), 115-139.

Received July 1, 1991 and in revised form August 24, 1992. The author was supported by a S.E.R.C. post-doctoral fellowship.

University College of North Wales
Dean Street, Bangor
Gwynedd, LL57 1UT
Current address: The University
PO Box 147
Liverpool, L69 3BX UK

