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A NOTE ON MORTON'S CONJECTURE
CONCERNING THE LOWEST DEGREE

OF A 2-VARIABLE KNOT POLYNOMIAL

PETER R. CROMWELL

This note is concerned with the behaviour of the ΉOMFLY' poly-
nomial of oriented links, PL(V , z). In particular, we show that the
gap between the two lowest powers of υ can be made arbitrarily
large. This casts doubt on whether Morton's conjecture on the least
v -degree can be established in general by the kind of combinatorial
approach that has been successfully applied to some special cases.

Introduction. The two-variable knot polynomial PL(V , z) of a link
L, announced in [FYHLMO], [PT], can be written in the form

where aι(z) is a polynomial in z for each /, ae(z) Φ 0, and CLE(Z) Φ
0. Let /(PL) denote the least degree in v in the polynomial Pi. Say
that /(PL) is the first degree of PL. With the above formulation
f(PL) = e. Let s{PL) be the least / > e such that at(z) φ 0. Say
that S(PL) is the second degree of PL .

In [Mo3] H. Morton conjectured that

f(PL)<ι-χ{L)

for all links L where χ{L) is the maximum Euler characteristic over
all orientable surfaces spanning L. In [Cr] I showed that the con-
jecture is satisfied by the homogeneous links (a class containing the
positive and alternating links as special cases). A computer search for
counterexamples in other classes of links showed up an interesting phe-
nomenon: sometimes polynomials were produced where s(Pi)-f(PL)
was quite large and ae(z) = 1. In these cases it was only the term
ve, isolated from the other non-zero terms in the polynomial, which
saved the conjecture from being violated. This prompted the question
of whether S(PL) - /(PL) could be arbitrarily large. Here I provide
examples to show that it can.
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( 3 , - 3 , 4 )

FIGURE 1

EXAMPLES. The simplest examples that I have found can be viewed
as pretzel knots of the form (3, - 3 , Id) for any a e N (see Figure
1). Writing the polynomial of this knot as P(3, - 3 , Id) we get

+ υzP (two component trivial link)

= v2P(3, - 3 , 2 ( α - l ) ) - v 2 + l

= v2a(P{3, —3, 0) — 1) H- 1.

Now ( 3 , - 3 , 0 ) is a square or reef knot—the connected sum of a
trefoil and its mirror image. Its polynomial is

P(3, - 3 , 0) = (-2 - z2)v~2 + (5 + 4z 2 + z4) + (-2 - z2)v2 .

Letting K denote the pretzel knot (3, - 3 , Id) we obtain

>, 0 < α < 2,

! ( f l - l ) , 2<a.

Thus s(P#) ~ f{Pκ) can be made as large as we please.
Applying Seifert's algorithm to the standard diagram of the pretzel

knot, K, shows that 1 - χ(K) < 6. So whenever a > 4, we have
s(Pχ) > 1 -χ{K) and the constant term in Pκ is the only term which
validates the conjecture. The difference s(Pχ) - (1 -χ(K)) can also be
made arbitrarily large. These examples suggest that it may be difficult
to prove Morton's conjecture true in general using a combinatorial
approach like that in [Cr].
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FIGURE 2

FIGURE 3

Many other examples are easily constructed. All that is required is
a tangle t such that its numerator N(t) is the trivial link with two
components and its denominator D(t) is a non-trivial knot (using
Conway's notation for the closures of a tangle [Co]). Such tangles are
easily constructed: take two discs embedded in the interior of a ball
and connect each of them to the boundary of the ball by a ribbon.
The ribbons may pass through the discs in ribbon singularities. An
example is shown in Figure 2.

Inserting 2a positive half-twists into D(t), as shown in Figure 3,
produces the same behaviour in the polynomial as before. That is

P(D(t) with 2a half-twists) - υ2a(P(D(ή) - 1) + 1.

Substituting v = 1 in this expression shows that all of the knots de-
rived from D(t) in this way have the same Conway polynomial. Thus
the square knot, 82o,and IOHO all have the same Conway polynomial
since they are (3, - 3 , 0), (3, - 3 , 2) and (3, - 3 , 4) respectively.
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FIGURE 4

REMARKS. Morton observed that the connected sum of two trefoils
is a fibred knot and that the insertion of twists described above can
be achieved by (1, ή) Dehn surgery about an unknotted untwisted
curve in the fibre surface. Such a curve is shown in Figure 4. Hence
there is an infinite family of fibred knots all having the same Alexander
polynomial but which can be distinguished by P(v , z) . This provides
further counterexamples to the conjecture (made in [Ne]) that at most
finitely many fibred knots could have the same Alexander polynomial.
It was Morton who showed that the conjecture is false [Mol], [Mo2].

The referee drew attention to a related result of Akio Kawauchi [Ka]
who has shown that a gap in the z-degree can also be made as large
as desired. More specifically, he constructed a family of knots whose
polynomials have the form

M

(where bm(v) and bj^iv) are non-zero polynomials in v). The value
of m can be made arbitrarily large.
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