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PERIODIC POINTS ON NILMANIFOLDS
AND SOLVMANIFOLDS

E D W A R D CHARLES K E P P E L M A N N

Let M be a compact manifold and f:M->M a self map on
M. For any natural number n, the «th iterate of / is the ft-fold
composition fn: M -+ M. The fixed point set of / is fix(/) =
{x € M: f(x) = x} . We say that x e M is a periodic point of / if
x is a fixed point of some fn and we denote the set of all periodic
points of / by per(/) = (j^i fix(/w) • A periodic point x of /
is said to have minimal period k provided that k is the smallest
integer for which x e fix(/*). We say that per(/) is homotopically
finite, denoted per(/) ~ finite, iff there is a g homotopic to / such
that per(g) is finite. When M is a torus B. Halpern has shown that
per(/) ~ finite iff the sequence of Nielsen numbers {N(P)}^λ is
bounded. The main objective of this work is to extend these results to
all nilmanifolds and to consider to what extent they can be extended
for compact solvmanifolds. A compact nilmanifold is a coset space
of the form M = G/T where G is a connected, simply connected
nilpotent Lie group and Γ is a discrete torsion free uniform subgroup.
For these spaces we have the additional result that when the homotopy
can be accomplished, the resulting g satisfies |fix(#n)| = N(fn)
for all n with N{fn) φ 0 and if {N(fn)}Zι = {0} then we can
choose g to be periodic point free. Also, when / is induced by
a homomorphism JF : G —> G, then we can write g — ufv where
u and v are isotopic to the identity. This form for the homotopy
is used to find sufficient conditions for per(/) ~ finite when M
is a solvmanifold. We then present a model for a specific class of
solvmanifolds where these conditions can be considered. This allows
us to prove the general result in a variety of low dimensional examples.

Consider two self maps / and g on M. Classical Nielsen fixed
point theory concerns itself with the study of how fix(/) and fix(g)
are related when g is homotopic to / , written g ~ f. In particular,
the Nielsen number N(f) of / is a lower bound on the number of
fixed points of any map in the homotopy class of / . The Nielsen num-
ber N(f) is defined by partitioning fix(/) into equivalences classes
(called Nielsen classes) and assigning an integer index to each class.
Points x,y € fix(/) are said to be Nielsen equivalent, denoted x ~y y
provided that there is a path ω from x to y in which (rel endpoints)
ω ~ fω. For a smooth map and isolated fixed points the fixed point
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index of a Nielsen class is simply

sgn[det(A£-/)].

N(f), a homotopy invariant of / , is then the number of essential
Nielsen classes (i.e. those with nonzero index) of / [14]. A general
construction for finding a g ~ / with exactly N(f) fixed points is
available in many circumstances (see [6, 13]). N{f) can often be
calculated by various algebraic invariants of the map / (see [14]).

When g ~ f, then it follows that for any value of n, gn ~ fn . It
is not true, however, that if h , f:X—>X are such that hn ~ fn for
some n, that the homotopy can always be realized as a deformation
of h to g (unless of course n = 1). Thus, in general, for various
values of n , we have that

min{| fix(**)|: g ~ /} > min{| fix(A)|: Λ - fn} > N{fn).

There is a well developed Nielsen theory for periodic points [10, 11]
which concerns itself with determining, for a fixed n, the minimum
values for |fix(g Λ ) | and \{x e fix(gw): x has minimal period n}\ as
g varies over all maps homotopic to / . The nature of this work is
different, in two important ways, from these general studies. Here our
focus is completely on the class of compact solvmanifolds (of which
compact nilmanifolds are an important part), and we are concerned
with the size of per(g) for g ~ f. That is, we want to know as a
whole (for all iterates simultaneously), how the periodic point set of
a map can be changed under homotopy.

We begin our study with §1 where Halpern's results for tori are
reviewed and reformulated for our use. Section 2 is an extension of
Halpern's results to nilmanifolds. Section 3 is then an examination of
the most general extension of these methods to the class of compact
solvmanifolds. Finally, by specializing to a common class of special
solvmanifolds in §3.1 we can then remove the extra hypothesis of our
general results and prove theorems much like Halpern's in dimensions
3 or less.

1. Periodic points on tori. Let R denote the real numbers and Z the
integers and for a fixed natural number m consider the quotient space
R m / Z m . Now if the euclidean space Rm is given the usual additive
group structure then this quotient is the m-dimensional torus Tm . If,
however, Rm is thought of as a nilpotent Lie group (say a subgroup
of some multiplicative group of unit upper triangular matrices), then
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the quotient is a typical nilmanifold Mm . Finally, if Rm is endowed
with the structure of a solvable Lie group then we have an example of
a special solvmanifold Rm . (The general solvmanifold is the quotient
of a connected, simply connected, solvable Lie group by a uniform (not
necessarily discrete) subgroup [17].) We begin our study of periodic
points on this hierarchy of spaces by first considering the tori as was
done by Halpern in [8].

From the standard theory for aspherical spaces, we know that any
map f:Tm-+Tmis up to homotopy, covered by a linear map
F: Rm -> Rm whose matrix with respect to the standard basis of
Rm has integer entries. It can be shown that

THEOREM 1.1 [5, 8]. Suppose f:τ
m-+Tm is covered by a linear

map F: Rm —• R m . For every natural number n

m

N(fn) = \L(f»)\ = \dct(I-Fn)\ =

where the complex numbers a\, . . . , am are the eigenvalues, with mul-
tiplicity, of F. Furthermore, if \L{fn)\ Φ 0 then the fixed points of
fn are isolated and all belong to distinct Nielsen classes with the same
index. Thus |fix(/rt)| = N{fn).

We begin by considering a certain kind of homotopy which will be
of great use to us.

DEFINITION 1.2. Deformants and deformant homotopies. Suppose
f,g:X —• Y. We say that g is a deformant homotopy of / if
we can write g = ufv where u and v are isotopic to the identity
on I or 7 , u and v are called, respectively, the left and right
deformants. 2{X) will denote the set of all deformants on X. If
u = id this is a right-deformant homotopy whereas if v = id we call
this a left'deformant homotopy. The general situation with both u
and v nontrivial is called a bi-deformant of / . We use g ~D f to
denote that g is a deformant homotopy (left, right, or bi) of / . It is
not difficult to see that the relation of deformant homotopy between
self maps on a space X is an equivalence relation. The most common
example of a deformant for Halpern's results is that induced by a flow
{Ft:X->X}teR.

In what follows we assume as in Theorem 1.1 that f:τ
m—>Tm

is induced by a linear map F on R m . Because the eigenvalues of
F are those of a matrix with integer entries, Halpern [8] was able to
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show the following regarding the sequence of Nielsen numbers of the
iterates of / .

LEMMA 1.3. Let f: Tm -> Tm. As a function of n, N(fn) =
\L(fn)\ = Πί=i |1 — α?l is either identically zero (iffsome αf = 1) or is
not identically zero and is bounded iff V/ |α, | < 1. In the latter case,
each nonzero α/ is a root of unity.

Suppose that / : X -• X is such that some iterate fn of / is the
identity on X. Then clearly {N(fn)}^Lx will also be periodic and
hence bounded. In the case of the torus, it turns out that the ability to
deform certain periodic maps to have a finite periodic point set with
the desired properties allows one to do the same for all maps with a
bounded sequence of Nielsen numbers. The following result provides
us with a means of doing this.

THEOREM 1.4 [8]. Let Mm be a smooth compact manifold of dimen-
sion m > 2. Suppose f: Mm —> Mm is such that, for some N > 2,
fN = idMm . Then if f has a nonempty fixed point set and the subset
P of Mm consisting of those points with minimal period less than N
is finite, then there is a smooth g: Mm —• Mm such that g ~D f by
either a left or right deformant homotopy, g\Ψ = f\P, and P = per(#).
Furthermore, in the case of m = 1, we can allow Mι to be the circle
Sι and f to be either the identity or the standard map of degree - 1 .
In the former case a left deformant of f is periodic point free while in
the latter case a left deformant of f has exactly two periodic points,
both of which are fixed points.

This leads directly to our major result for tori. The main theorem is
from [8] but our observations about the role of deformant homotopies
is essential for later sections.

THEOREM 1.5 {Periodic points on tori). Suppose f;Tm^Tm is
such that {N(fn)}™=ί = {\L(fn)\}™=ι is bounded. Then there is a
g ~ f with ρer(g-) finite so that, for each n = 1 ,2. . . , L(fn) Φ
0 ^ |fix(^w)| = N{fn). If{N(fn)}™=ι = {0} then g is periodic point
free. If f is induced by a linear map on Rm then g ~D f by a left
deformant homotopy.

For our work the correct point of view for the proof of the above
theorem is illustrated by the following corollary. Recall that a partition
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of a positive integer m is a finite sequence si = m\, . . . , ra^ of
positive integers whose sum is m. J / induces a decomposition of
R m ( Γ m ) into a fc-fold product in which the /th factor is Rm/(Γm<).

COROLLARY 1.6. Suppose f: Tm -> Tm is induced by a linear map
F: Rm ->R m with {N(fn)}%L{ bounded. Let g be the result of apply-
ing Theorem 1.5 to / . Let r = dimKer(F). Let si = m\, . . . , ra^
6e α partition of m-r so that m, w ίλe number of eigenvalues of F,
listed by algebraic multiplicityf which are primitive bith roots of unity
where b\ <bι < - < b^. Then there are maps g\9 ... 9 gk> h with
gii Tm> -> Γm< α r̂f h:Tr -+Tr so that:

1. A w constant Thus per (A) w α singleton.
2. For each i, g\ is the result of applying Theorem 1.4 to a periodic

map on Tmi of period &/. Thus per(gϊ) is finite and all elements of
peτ(gi) have a minimal period which is less than bi and divides bj.

3. Modulo a period preserving change of coordinates conjugacy
per(g) = per(#i x x gk x h) and thus ρer(/) ~ finite.

4. if b\ = 1, ίΛ «̂ ρer(^i) = 0 $0 ρer(#) = 0 .

Using Corollary 1.6 we can now do our own analysis on the nature
of the periodic point set that results when Theorem 1.5 is applied to
a map. This analysis will be especially useful for our later work on
solvmanifolds. We will first introduce some terminology.

DEFINITION 1.7. Inessential periodic points. Suppose f:X—>X is
a map on a space where L(f) is defined. We say that x e ρer(/) is
an inessential periodic point of / provided that the minimal period
mx of x satisfies L(fmχ) = 0.

By Theorem 1.5 we know that any self map h on a torus with
L{h) = 0 can be deformed to be fixed point free. Thus we are using
the term inessential to mean that fm* can be deformed to remove (or
make empty) all the Nielsen classes of fm*. It is an open question of
some interest to decide in general if inessential really means that we
can deform / to remove all such periodic points. In the case of very
low dimensional tori we can indeed prove such a result from Corollary
1.6 merely by analyzing the possible eigenvalues which can occur in a
2 x 2 matrix with integer entries whose nonzero eigenvalues are roots
of unity.

COROLLARY 1.8. Suppose f: Tm -> Tm is induced by a linear map
F: Rm -> Rm and {N{fn)}™=ι is bounded. If m = 1 or 2, then
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the result of applying Theorem 1.5 to f is a map g ~ f with no
inessential periodic points.

It turns out that there are certain situations when for arbitrary m
and / : Tm -> Tm with {N(fn)}™=ι bounded we can say that the de-
formation of Theorem 1.5 produces a map with no inessential periodic
points. We now explore the theory which depicts these conditions.

DEFINITION 1.9. Toroidal divisor multiples. For two positive inte-
gers r and s let r\s denote that r divides s. Let £% = {d\, . . . , dp}
be a finite set of positive integers. A toroidal divisor multiple for 38 is
a set {Ii, . . . , lp} of positive integers such that for each / // divides
di and there is a dj which divides the least common multiple of έ%.

THEOREM 1.10. Suppose f\Tm-^Tm is induced by a linear map
F: Rm -+ Rm and {L(fn)}™={ is bounded Let 38 = {bu . . . , bk} be
the set arising from Corollary 1.6. If 1 e 38 or 38 has no toroidal
divisor multiples then we can assume that the deformation of Theorem
1.5 applied to f produces a map with no inessential periodic points.

Unlike the situation on Γ 2 , maps on Γ 3 can lead to toroidal divisor
multiples and, despite Halpern's methods, inessential periodic points.

2. Nilmanifolds. Our goal in this section is to extend Halpern's
results for tori to the case of nilmanifolds. We will start with a quick
overview of the definitions and basic properties of nilmanifolds. This
will allow us to see the analogies between nilmanifolds and tori as well
as the new features which these spaces have that set the scene for the
results which follow.

A nilmanifold is a smooth compact manifold on which a nilpotent
Lie group acts smoothly and transitively. The following result is a
fundamental characterization of nilmanifolds. Recall that a subgroup
Γ of a topological group G is called uniform provided that G/Γ is
compact.

THEOREM 2.1 [15]. Every nilmanifold Mm is equίvariantly home-
omorphic to a left coset space of the form G/Γ where G « Rm is
a connected, simply connected nilpotent Lie group and Γ « Zm is a
uniform discrete torsion free subgroup.

Thus Rm is the universal covering space of every nilmanifold of
dimension m. Furthermore, Mm is aspherical with π\(Mm) = Γ.
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A fundamental result [15, 7] shows that any endomorphism on Γ ex-
tends uniquely to a Lie group endomorphism on G. Thus as in the
case of the tori we see that the homotopy classes of self maps of a
nilmanifold Mm are in one-to-one correspondence with the set of
endomorphisms of G which are invariant on Γ. Thus, up to homo-
topy, we can assume that any self map / : Mm —• Mm is induced by
a homomorphism F: G —> G. The descending central series for G is
given by Go = G and, for / > 0, Gi = [G, G;_i]. The nilpotence
of G means that, for some maximal value of k, G^ Φ 0. We let
G = Gfr. It is then clear that G is an abelian F invariant subgroup
of G so the following can be proved:

THEOREM 2.2 [7, 2]. Suppose g: Mm = G/Γ -> Mm is a map
on a nilmanifold. (We assume that G is nonabelian so that Mm is
not a torus.) Then, up to homotopy\ g can be replaced by a map
f: Mm —• Mm which is induced by a homomorphism F: G -> G.
F induces homomorphisms FQ: G -> G, 7: G/G —• G/G, and, by
taking derivatives, Lie algebra homomorphisms F: & -+&, FQ: & —•
f, and f:W->W. ThusJF induces maps f0: G/f = Tr -+ Tr,
f: G/Γ = Mm -+Mm, and J: (G/G)/(Γ/Γ) = Bs ~> Bs which give a
fiber preserving map of the Fadell-Husseini fibration Tr c-> Mm —• Bs

of Mm. Here Bs is a nilmanifold of dimension s and Tr is a torus
of dimension r with m = s + r. For each n we have that

L(fn) = L(f»)L(fn) = det(J - Fo») det(/ - fn)

"βj) = det(/-F n)

where a\, ... , ar, β\, . . . , βs are the eigenvalues, listed with their
multiplicities, of F and FQ , respectively. Therefore, in regard to Niel-
sen numbers we have that

\L(f)\ = \L(fo)\ \L(f)\ = N(fo)N(f) = N(f).

Let F *-> E —> B be a Hurewicz fibration of compact manifolds
with projection π: E —• B. For x eB, Fx = π~ι(x) is the^ύ^r ov^r
x . If f: E -> E is a fiber preserving map then the map on the fiber
over x of / , denoted / c , is the restriction f\π~ι(x): Fx —> F-ί( ..
Hurewicz fibrations are equipped with a path lifting function. For
each path ω i n ΰ this gives rise to a fiber translation map τ ω : Fω(0) —•

The coset structure of our Fadell-Husseini fibration and the fact
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that / is induced by a homomorphism means that we can take our
lifting function to satisfy the following.

LEMMA 2.3. If f: Mm = G/T -• Mm is induced by a homomor-
phism F: G —• G then τjωf = fτω.

Anosov's original proof of the fact that \L(f)\ = N(f) on a nilman-
ifold was done independently of the Fadell-Husseini proof and did not
use the idea of the Fadell-Husseini fibration. Anosov's argument was
that all essential Nielsen classes have the same index ± 1 . The result
then follows from the Lefschetz index theorem once it is shown that
whenever L(f) = 0 then / is homotopic to a fixed point free map.
It is Anosov's proof of this last fact that gives us the following lemma
which we will exploit to make / periodic point free.

THEOREM 2.4 [2] (TheAnosov trick). Assume that f: Mm = G/Γ ->
Mm is a self map on a nilmanifold which is induced byji homo-
morphism F: G —• G. Furthermore, suppose 0 / 7 e f is such
that Y $ (F - I){&). For each t e R define ft: N -> N by
ft(x) = exp(ίr)/(jc). Then the set s/ = {t e R: fix(/*) φ 0} is
at most countable.

Periodic points on nilmanifolds. We can now extend Halpern's re-
sults to nilmanifolds. In doing so we will need the following easy
fact.

LEMMA 2.5 (Periodic points of compositions). Let XQ , . . . , Xp-\ be
topologicalspaces and fo, . . . , fp_\ be maps with f: X\ —• JΓ, + 1 (/+1
computed mod/?). Let, for j = 0, 1, . . . , p - 1, gj = /}_i fofp-\
• fj+ιfj: Xj —> Xj. Then for each j and k there is a 1-1 correspon-
dence between ρer(gy) and p e r ( ^ ) . In particular, if per (go) is finite
then so are all the per(&).

THEOREM 2.6 (Periodic points on nilmanifolds). Suppose f: Mm =
G/Γ^Mm is a map on a nilmanifold with {N(fn)}™=ι={\L(fn)\}™=ι

bounded. Then there is a g ~ f with per(#) finite so that, for each
n = 1, 2, . . . , L(f») φ 0 =• | f ix(^) | = N(f«). If {N(f»)}™={ = {0}
then g is periodic point free. If f is induced by a homomorphism
F: G —• G then we have that g ~D f -

Proof. The result is proved by induction on m. Since the only
nilmanifolds of dimensions 1 and 2 are the circle and 2-torus respec-
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tively, Theorem 1.5 gives us the result for these m. We now allow
m to be arbitrary and assume the theorem for all dimensions < m.
Assuming that / is induced by a homomorphism means from the defi-
nition of the Fadell-Husseini fibration that / is also induced by homo-
morphism. The setup of Theorem 2.2 thus applies with {Lζf1)}^
bounded. We show how to produce isotopies u and v of idM^ so
that ufv has the desired periodic point set by considering two cases
based on whether or not {i^(/w)}^=1 is bounded.

Case 1. {L(fn)}™={ bounded. If {L(fn)}™=ι is bounded then we
may use the induction hypothesis to get u, Ψ ~h id^ with peτ(ΰfv)
finite. Since homotopies in a fibration can be lifted using the fiber
translation maps induced from the Hurewicz lifting function, u and
v can thus be lifted to fiber-preserving deformants u and v over u
and ¥, respectively. Thus / ~£> ufυ and ufv will be fiber preserv-
ing with finitely many periodic fibers. Now if L(f) = L(f)L(fo) = 0
and it is because L(f) = 0 then we can assume u and v are chosen
so that per(ufv) = 0 so necessarily pcτ(ufv) — 0 and we are done.
Otherwise, we must show how to deform the maps on the periodic
fibers of ufv (using deformants) to obtain that the appropriate it-
erates of these maps on fibers each have a finite periodic point set.
These deformants of maps on fibers can then be combined and ex-
tended to a global deformant over id5* using the local triviality of
the fibration. Thus our resulting deformant homotopy of / will be a
fiber preserving map g with projection ufv . Thus no new periodic
fibers are introduced during these fiber map homotopies and g proves
our result.

The statement that for those n for which N(fn) φ 0 |fix(gn)| =
N(fn) follows from the Nielsen number product theorem for Fadell-
Husseini fibrations as well as the fact that our deformations of / and
the appropriate maps on fibers are chosen to satisfy these criteria.

Deforming the periodic fibers of ufv . Let the distinct points yo > >
yp-\ G per(w/ϋ) be a typical orbit with Ty. = π~ι(yi) and (ufv)yt =
(ufv)\Ty : Ty_ —> Ty (/ + 1 being calculated modulo p). The ori-
entability of the Fadell-Husseini fibration guarantees for n = 1, 2, . . .
that

m(ufυγ»h) = I ( [ W \ ) = L{[{ufv)yp_χ (ufv)yf).
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Since

L(Γ) = L((ufv)η = L((ufvr)L([(ufv)n)o)
m

is bounded as a function of n and L((ΰfv)n) = Π/=i(l ~~ βf) =

L{fn) ψ 0, Lemma 1.3 guarantees us that either V/ |α y | < 1 or some
aj = 1 so {L([(ufvγn]yo)}™=ι is bounded.

The deformation of the various (ufv)y, is done in two stages. First
we must show how to assume without loss that each such map and
hence the composition [(ufv)p]yo = (ufv)y _r..(ufv)yo: Tyo —> Tyo

is induced by a homomorphism. Then we can apply Theorem 1.5
to get a deformant hyo on Ty (which we extend to a deformant h
on Mm which is the identity on all other periodic fibers of ufv)
for which the composition [{hufv)p]yo = hyo(ufv)y _i (ufv)yo has
finitely many periodic points. Then Lemma 2.5 applies to show that
each [(hufυγ>]yt = {ufυ)yi_ι'"{ufv)yQhyo(ufv)yp_ι'"(ufv)yi has
finitely many periodic points. We then repeat this procedure on the
other periodic orbits of ufv to complete the proof.

In order to show that we can assume that each (ufv)y_ is induced
by a homomorphism we will use the fact that each fiber translation in
Mm is a deformant and localize our analysis to a set of locally trivial
product charts for a finite number of fibers in Mm .

For each i (0 < / < p) let wι, zf e Bs be such that v{yϊ) = wt,
f(Wi) = z, , and ϊ/(z;) = yi+ϊ. Define paths ω, from yz to Wj and
βi from Zi to yz+i by letting cofo) = vt(yi) and jS|-(i) = ut(zt) where
^ : id^ ~h v and Ϊ7/: id# ~h u are the stages in the deformants u and
v . The local triviality of the fibration means that we can find disjoint
open neighborhoods about each wt, yι, and z/ as well SLS XQ = Γ eBs

so that the points in Mm that lie above any of these points can be
written in the form (£, , δ) where & G {̂ /, yz,

 z/}f=o u ί ^o} a n d

Now in M m we can write that f(wj, δ) = (z/, /(i/;/, (5)) for some
function / : [{Wi}^ u {x0}] x Γ Γ - > Γ . As a function of J G Γ r ,

def

, <$) = fo(δ): Tr —• Γ r is induced by a homomorphism since
/ itself is induced by a homomorphism. For each / we let α/(ί)
be a path from tu/ to XQ . Then / α , (ί) is a path from z/ to XQ
and Lemma 2.3 justifies the following calculation (the γω translation
maps are induced from the τ ω on the principal fiber through the local
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trivialization identifications just indicated):

= fτai(Wi, (5) = f(x0,

= (*0,/(*0, ?

So γjaf(Wi, δ) = f(xo, 7α.(^)) Since the y translations are all
deformants, we have the following chain of deformant equivalences:
(as maps of Tr)

f(Wi, δ) ~ D yjaf(Wi, <5)

Thus finally, we conclude

and so the required maps between fibers are indeed deformant equiv-
alent to homomorphism induced maps as needed.

Case 2. {L(Jn)}™=ι unbounded. If {L(fn)}™=ι is unbounded then
by Lemma 1.3 since {L(fn)}™=1 is bounded it must mean that L(ffi)
= 0 = L{fn) so we must deform / to be periodic point free.

The deformation, (actually a left deformant homotopy), involves
applying the Anosov trick (Theorem 2.4) with an appropriately chosen
element Y e §? to each iterate of / . Because L(/o) = det(/ 0 - /) =
det(F - /) = 0 there is a Jordan chain X == {Yo, . . . , 17} associated
to the eigenvector 1 of F in which Yo e 2?. We note that the entire
chain, and hence also Y\, lies in &. This follows by induction since
if Ys G 3? but Yy+i φ §? then there would be a nontrivial kernel

to F - / forcing L(J) = 0 and so {£(7") }^ ! = {0} would not be
unbounded as we have assumed. We let Y = Yj.

Consider the iterates of exp(f7)/ on Mm. We see that by an
inductive calculation (using the fact that / is induced by the homo-
morphism F) that

(exp(tY)f)n(x) = exp(tY)exp(tFY)exp(tF2Y) - -.

= exp(ί(7 + FY + F2Y + + Fn~ι Y))fn(x).
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The last equality uses that all the FιY belong to # c Center(^).
We claim that for each n the vector Wn = Y + FY + > - + Fn~ιY

does not belong to (Fn - I)(&). Then the Anosov trick applies to
each iterate of / and we have that for each n, the set

sfn = {t: ήx(εxp(tWn)fn) = Άx((cxp(tY)f)n) φ 0}

is countable. Hence U ^ L i ^ is countable and a to must exist so
that per(exp(^oΓ)/) = 0 and we are done. (Notice that translation
of / by exp(^y) ~ exp(07) = 1^ has the desired left deformation
homotopy form we predicted.)

To prove the claim we note that Wn c span(^) and so by the
Jordan decomposition of S? into a collection of invariant subspaces
formed by the span of the various Jordan chains for F the result will
follow once we see that each Wn has a nonzero component in the
direction of Y/ This is true by an easy calculation which shows that

. . . , Yi_x}). u

3. Sob manifolds. We now embark on the next level of generaliza-
tion of nilmanifolds, the solvmanifolds. We will see that in analogy
to our previous work, there is a fibration for solvmanifolds (called the
Mostow fibration) which allows us to view a solvmanifold as being
composed of a nilmanifold and a torus. These fibrations allow us to
proceed in roughly the same way as we did for the nilmanifolds. There
is a principal difference, however, in that these fibrations in general are
nonorientable and hence have no Lefschetz number or Nielsen number
product theorem. This leads to a number of interesting complications
to our theory as well as some open questions for future study.

A solvmanifold Rm is a compact smooth transitive G-space where
G is a solvable Lie group. The following characterization of solvman-
ifolds was first discovered by Mostow [17].

THEOREM 3.1. Let Rm be a solvmanifold. Then Rm is equivari-
antly homeomorphic to a coset space of the form J/A where J is
a connected, simply connected solvable Lie group {homeomorphic to
some finite dimensional euclidean space), and Δ is a closed uniform
subgroup.

The principal difference seen here, between a solvmanifold and a
nilmanifold besides the solvability criterion for / , is the fact that we
cannot assume that Δ is discrete. We can only say that Δ has no
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subgroup normal in / which is not discrete. Rm is called a special
solvmanifold when Δ can be taken discrete in Mostow's representa-
tion. Since nilpotent groups are solvable, it is clear that all nilman-
ifolds are special solvmanifolds. After presenting a general theorem
for all solvmanifolds, we will specialize our study to a certain class of
low dimensional special solvmanifolds.

Using Mostow's representation we suppose that / is a connected,
simply connected, solvable Lie group and we let ΔQ be the connected
component of Δ which contains the identity. By analyzing the Lie al-
gebra y for / and the fact that it imbeds in some finite dimensional
solvable matrix Lie algebra of upper triangular matrices it is possible
to show that \f, ^\ and hence also [/, /] is nilpotent. Thus there
is a unique maximal connected, simply connected nilpotent subgroup
K of J which contains both [/, /] and ΔQ as normal subgroups.
We let Λj denote the set of all those connected simply connected
subgroups of K which contain both [/, /] and ΔQ . With Mj the
minimal element of Jίj the following can be proved.

THEOREM 3.2 [16, 17] (Mostow fibratioή). Suppose Rm = J/A as
in Theorem 3.1 is a solvmanifold. Then to each subgroup H of J
belonging to JVJ there is a Mostow fibration for Rm given by AH/A =
Ms ^ J/A = Rm -+ J/AH = Tr where Ms is a nilmanifold and Tr

a torus. Furthermore, for any f: Rm —• Rm we can, up to homotopy,
replace f by a fiber preserving map of the Mostow fibration for Rm

corresponding to Mj. The homotopy type of the base map f: Tr —• Tr

obtained in this way is unique.

We call the Mostow fibration for Rm corresponding to Mj the
minimal Mostow fibration for Rm.

Unlike the Fadell-Husseini fibration for nilmanifolds, McCord [16]
has observed that the Mostow fibrations of a non-nilmanifold solv-
manifold are never orientable. For a study of periodic points this
means that in general for a Mostow fiber preserving map / : Rm —• Rm

on a solvmanifold the self maps on fibers over different fixed points of
/ can have widely varying Lefschetz numbers and in general there is
no Lefschetz number or Nielsen number product theorem. Thus the
relationship between the sequences of Nielsen or Lefschetz numbers
of the iterates of / , / , and the maps {f£: x e fix(/w)} is much more
complicated than before. In order to begin to obtain an understand-
ing of these relationships, we must first understand the relationship
between the Nielsen classes of / , / and fx for x e fix(/). Suppose
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that x e fix(/). Then McCord [16] observed that in a Mostow fibra-
tion for points y, z e Ms

x we have that y ~f z iff y ~y z. This
allows one to prove

COROLLARY 3.3. Suppose f:Rm-+Rmis a fiber preserving map of
a Mostow fibration for Rm with base map f: Tr —> Tr. If {x\}, . . . ,
{xp} are distinct singleton essential Nielsen classes of f then the es-
sential Nielsen classes of each fx.: Ms

x -• Ms

x form a subset of the
essential Nielsen classes of f so Yfi=x N(fx.) < N(f).

McCord's [16] observations were used to prove that for maps
/ : Rm -> Rm on solvmanifolds \L(f)\ < N(f). When {N(fn)}™=ι

is unbounded, ρer(/) cannot be homotopically finite. Unlike the
situation for nilmanifolds, there are examples (e.g. see Halpern's
discussion of the Klein bottle [9]) of cases on solvmanifolds where
{L(fn)}™=\ is bounded but {Nif")}™^ is not. Thus here we will
conduct an examination of what circumstances, besides the bound-
edness of {N(fn)}™=ι, are needed to assure that ρer(/) is indeed
homotopically finite.

Homotopically finite periodicity. From Theorem 3.2 for a self map
/ on a solvmanifold the sequences {N(fn)}™=ι and {N(fn)}%L{ are
both homotopy invariants of / . In analogy with a portion of our proof
for nilmanifolds we present a general result for all solvmanifolds that
depicts when the boundedness of both {N(fn)}™=ι and {N(Jn)}™=ι

imply that per(/) is homotopically finite. For this work we will call on
the definitions and insight obtained in § 1 regarding the discussion for
the absence of inessential periodic points from Halpern's deformations
on tori.

As before, we will have need to deform various maps between fibers
of a fiber preserving / : Rm —• Rm. Since Mostow fibrations are
nonorientable the fiber translation functions are no longer necessar-
ily deformants. The next result circumvents this difficulty. The proof
is an easy consequence of a theorem in [1].

COROLLARY 3.4. Suppose that f:E—>E is a fiber preserving map
of the fibration F ^ E —• B covering f:B-+B. Further, assume
that yo > 9 yq are distinct points of B and that go, . . . , gq are maps
such that, for each i fyt: Fy. —> Fj, , is homotopic to gi. Let W c E

be a closed set not containing any yι. Then there is a fiber preserving
homotopy Ht\ f ~ g which is constant on W, has constant projection,
and restricts to a homotopy fy_ ~ gi over y\.
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THEOREM 3.5. Let f\Rm-*Rm be a fiber preserving map on the
minimal Mostow fibration for Rm covering f. Suppose that both
{W)}£° = i and {N(fn)}™=Lare bounded. If the g ~f obtained
by applying Theorem 1.5 to f has no inessential periodic points, then
ρer(/) is homotopically finite.

Proof. We first use the existing homotopy of / to g and lift this
to a fiberwise homotopy of / . Without loss then we can assume
that / covers ~g and has a finite number of periodic fibers. Con-
sider a periodic orbit y$9 ... 9yp-\ of distinct periodic points of ~g
with J(yi) = yt+\ (i + 1 calculated modulo p). The proof for this
orbit consists of two major steps. First, we must show that the com-
position (fp)y0 = fyp_x - fyo' Af*o -> M^ forms, with its iterates, a
bounded sequence of Nielsen (or Lefschetz) numbers. Then we can
use Theorem 2.6 to perform the individual fiberwise homotopies and
accomplish the result.

To prove that the iterates of {fp)yQ give a sequence of bound-
ed Nielsen numbers we use the fact that ~g has no inessential peri-
odic points. Hence since each yt has minimal period p under g,
mp) = ΓfciC1 ~ βf) Φ 0. Thus no βf is 1. By assumption
{IΠtiO - βfn)\}%*ι = {N(gpn)}Zι ^ bounded so Vi \βf\ < 1.
From Theorem 1.5 whenever 0 φ |L(F")I = N(Ipn) = I M F " ) ! it
means that each yz is its own essential Nielsen class for ~gpn . Thus by
Corollary 3.3, the values of n for which L(gpn) φ 0 give N((fl>)») <
N(pn). Thus the boundedness of {N(fn)}™=ι implies that, for these
n, N((fη$Q) is bounded. Thus if L((p)^) = Π/l i ί 1 - <*") then it

must mean that as a function of n ΠJUO - βfn)IΐJLι(ι - <*") i s

bounded. (This product is zero for those n with L(gpn) = 0.) Since
no βf = 1 Lemma 1.3 implies that either some α7 = 1 or else all the
aj satisfy |α/| < 1. Either way, we can conclude that {N((fp)% )}^= 1

is bounded as needed.
We can now use Corollary 3.4 to deform / in such a way that

each fyt is homotopied, with the correct identifications, to be in-
duced by a homomorphism. The deformation has ~g as a constant
projection throughout so no new periodic fibers are introduced during
the homotopy. We can also use Corollary 3.4 to guarantee that the
homotopy is constant in an open neighborhood of all other periodic
fibers besides the Af£ thus assuring that no previously performed fiber
homotopies are disturbed during the process. Thus the composition
(fp)y0' M^ —• My will be induced by a homomorphism. Then by
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using Theorem 2.6 we can find deformants UQ and t>o on M* so
that per((wo/

p^o)yo) will be finite. We then extend UQ and VQ to de-
formants u and v on Rm over idΓ ' which are equal to the identity
on all other fibers over points of ρer(^). Lemma 2.5 then guarantees
that the other per((wo//7^o)y/) are finite as well. D

REMARKS. (1) Note that the use of deformants on the (fp)yQ is
essential here since this map in general is a composition of fiber maps
of differing homotopy types and our proof requires us to minimize
periodic points by deforming / and hence these individual fiber maps
in the composition (fp)y0. However, in the original deformation of /
to ~g we do not need a deformant homotopy. As long as we guarantee
that ~g satisfies the two conditions that whenever L(gn) Φ 0 then
each element of &x(gn) belongs to its own essential Nielsen class
for ~gn and ~g has no inessential periodic points, the proof will work.
This paves the way for any future improvements of Halpern's methods
which might show that inessential periodic points can be eliminated.

(2) By Corollary 1.8 we know that if dim Tr = r = 1 or 2 then it
is enough to just have {N(fn)}%Lχ and {N(Jn)}™=ι bounded since
the no inessential periodic points criterion for ~g will be satisfed. The
analysis at the close of § 1 indicates how we might determine for other
tori and / whether this condition can be easily met.

(3) From Theorem 3.2 any / : Rm —> Rm is, up to homotopy, fiber
preserving on the minimal Mostow fibration for Rm . If it happens
that / is homotopic to a fiber preserving map of some other Mostow
fibration for Rm besides the minimal one, and the resulting base map
/ in this situation satisfies the hypotheses required on / , especially
the inessential periodic point condition, then the same proof will show
that ρer(/) is homotopically finite. Since the other Mostow fibrations
for Rm, in general, have a smaller dimensional torus in the base than
the minimal Mostow fibration and / is induced by a restriction of the
linear map inducing / , this observation could conceivably provide a
proof in some^ instances where the original hypotheses fail.

(4) If {N(fn)}™=ι = {0} then we can choose J with per(#) = 0
thus showing that per(/) is homotopically empty. We will also be
able to remove all the periodic points of / if every appropriate iterate
of the maps between fibers over periodic points of # has Lefschetz
number zero.

(5) We cannot assume that N{fn) = |fix(gw)| whenever N{fn) φ
0. The problem is that for a given n we may have N(gn) φ 0 but
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there may be x e fix(g n) for which N{(gn)x) = 0 but &x((gn)x) φ
0. (If then there are (gn)y for other y e fixQf") with nonzero
Nielsen numbers then N(gn) = N(fn) could be nonzero.)

(6) Notice that we cannot in general expect that g ~D f The prob-
lem is that since Mostow fibrations are nonorientable, not every fiber
translation map is a deformant. Thus it may not be possible to de-
form each fy_ to be homomorphism induced by using only deformant
homotopies. (See the proof of Theorem 2.6.)

3.1. An important class of solvmanifolds. In the last section we
proved that a map / : Rm —• Rm has per(/) homotopically finite
provided that both {N(fn)}™=ι and {N(fn)}™=ι are bounded and
that / can be deformed to have a finite number of periodic points
with the property that each occurs, at its minimal iterate, as a single-
ton essential Nielsen class. These, more or less, are conditions that
allow us to mimic a portion of our proof in the nilmanifold case.
Now we would like to undertake a deeper study of how the bound-
edness of {N(fn)}™=ι affects the boundedness of {N(fn)}™=ι. In
the nilmanifold situation you will recall that {N(fn)}™=ι bounded
implies that either {N(fn)}™=ι is bounded or else {Nif")}™^ is
unbounded and {N(fn)}(^=ι = {0}. The second case, by orientabil-
ity, is equivalent to the fact that the appropriate iterates of the maps
{fx : {χ} ίs a n essential Nielsen class of fn} all have Nielsen number
zero. Because the Mostow fibrations of a non-nilmanifold solvmani-
fold are nonorientable, so these maps in general have different Nielsen
numbers, which will thus often be nonzero, we would not expect this
second possibility to occur in the solvmanifold situation. Thus we
wonder if the boundedness of {N(fn)}^=ι does not, in at least some
solvmanifolds, imply that {N(fn)}™=ι must also be bounded. A first
step in justifying this intuition is a deeper study of how the maps on
the fibers {fx: x e Tr} are related.

LEMMA 3.6. Suppose that F <-* E Λ B is a Hurewicz fibration of
compact manifolds and f:E-+E is a fiber-preserving map over f.
Let xoeB be a basepointfor B and assume that ω is a path starting
at some x e B and ending at x0. Then fx: Fx -> Fj,χ) is homotopic
to the composition τjω-^fχ^ω

In the case of a Mostow fibration, the coset structure of our path
lifting function easily gives the following.
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LEMMA 3.7. Let ω: I —• / induce a path, also called ω, in Tr =
J/AH. If g e J is such that π{gA) = ω(O)AH then τω(gA) =
ω(l)ω(O)-ιgA.

In order to apply Lemma 3.6 to our periodic point problem we now
present a model for the specific structure of a broad class of solvman-
ifolds. It is a fact which we will shortly discuss, that the class of all
special solvmanifolds that arise from R3 (equipped with some solv-
able non-nilpotent Lie group structure) are all members of this class.
This will eventually allow us to see that in these dimension 3 examples
the boundedness of {iV(/rt)}^=1 is, alone, enough to guarantee that
per(/) is homotopically finite.

We will say that the solvmanifold Rm = J/A is a special NBA solv-
manifold (i.e. is nilpotent by abelian) provided that / is the semidi-
rect product / = G xφW where G « R5 is a nilpotent Lie group
and Rr is the standard abelian euclidean space Lie group formed
by componentwise addition. Thus the group operation for / is de-
fined in terms of the operations for G, Rr and φ: W —• Aut(G) by
(x, a)(y, b) = (xψaiy),a + b). We also require that Δ = Γ xΦ Ή
where Γ is a uniform discrete subgroup of G and φ is induced from
φ by restriction.

Since [/, /] C G xφ {0} = G, Rm will have a Mostow fibration
Ms = G/Γ *-+ J/A -+ W/Zr = J/AG. We will call this the canonical
Mostow fibration for Rm with respect to the decomposition in the
definition of a special NBA solvmanifold. Now if G is such that
this is the minimal Mostow fibration for Rm, i.e. if G = [/, J],
then any self map on Rm will be homotopic to a fiber preserving
map of this fibration and we can consider our periodic point question
for all such self maps. Otherwise, for this model, we must restrict
ourselves to maps / : Rm —• Rm which satisfy f${π\(Ms)) c π\(Ms).
By identifying π\(Ms) with Γ we see that this means that if / is
induced by a homomorphism F: J -> J', then we must have F(Γ) c
Γ.

Let Rm be an arbitrary special NBA solvmanifold and suppose that
/ : Rm -> Rm is a fiber preserving map of the canonical Mostow fibra-
tion for Rm covering f:Tr^Tr. We would like now to compute
a suitable description of the composition in Lemma 3.6 for the case
when x e fix(/). Since φ is a homomorphism φ~ι = φ-a- Since
π((w, α)Δ) = (w, a)AG = (1, a)AG we can use [a] to depict the
coset (w, ά)AG in Tr. Ms

a will then be used for M?, and fa for
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f[a] We denote the coset (w, α)Δ of Rm by (w)a so 7r((w)α) = [a].
We let [0] be the basepoint of Tr so that

Ms = MS

Q = π~ι([0]) = {(w)0: w e G} = G/T.

The next lemma gives us an obvious and important way to equate
the fundamental groups of the various

LEMMA 3.8. (w)a = (0)α <& <P-a(w) £ Γ so that the fundamental
group of each Ms

a can be identified with Γ after a rescaling by ψ-a.

With the help of Lemma 3.6 we can now perform a computation
on how the Lefschetz numbers of different maps on fibers over points
of fix(/) vary. Without loss in generality to the homotopy type of / ,
we assume that / : Tr —• Tr is induced by a linear map θ : Rr —* R r .
Thus [0] E fix(/). We let FQ : G -* G be the homomorphism inducing
a map on Jlig in the homotopy class of fo: M$ —> Mξ. Then the
Lie algebra of G is, as a vector space, isomorphic to Rs and the
derivative of Fo, Fo: Rs -* R^, is a Lie algebra homomorphism. The
correspondence assigning to a eW the derivative of φa 9 which we
denote by ΦQ, is a homomorphism Φ: RΓ —> Gly(R). Lemma 3.7
easily gives

LEMMA 3.9. Suppose [a] e fix(/). Lei ω be a path in Tr from [a]
to [0] induced by a path, also called ω, in J of the form (1, ω(ί))
from (1, α) to the identity (1 ,0) . Then a path lifting function can be
chosen so that τω amounts to left translation in J by (1, —α). Hence
rω((x)a) = (p-β(*))o Similarly, τjω-i((y>0) = <Pθ*ϋ>))α-

The following is our desired Lefschetz number calculation. In it we
let / stand for the rxr identity matrix. The proof uses Lemmas 3.6,
3.8, and 3.9 along with the standard properties for determinants.

LEMMA 3.10. // [a] e fix(7) then fa: Ms

a -+ Ms

a has Lefschetz
number

Ufa) = det[(Φ ( 2/- θ ) α - ^θ)Φ(θ-2/)α].

Thus if [αi], . . . , [ap] are distinct fixed points of f and L(f) =
det(θ — 7 ) ^ 0 then f has an essential Nielsen class contained in
each Ms

a , provided that

Mi d e t [ Φ ( 2 / _ θ ) α - Fo] φ 0.

In this case N(f) > p.
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3.2. 3-dimensional special solvmanifolds. Let / « R3 be a con-
nected, simply connected solvable Lie group and Δ c / a discrete
uniform subgroup. It is our goal in this section to study our periodic
point question for spaces of the form R3 = J/A. Of course if / is
nilpotent then R3 is a nilmanifold and Theorem 2.6 tells us all we
currently want to know. Thus we will assume throughout that / is
solvable but non-nilpotent. Appropriately, we begin our study with a
discussion of some results in [4] that tell us what kind of manifolds
arise in this fashion.

THEOREM 3.11 [4]. Suppose R3 = J/A is the coset space of a non-
nilpotent solvable Lie group J « R3 and a uniform discrete subgroup
A. Then J is isomorphic to a semidirect product of abelian factors
R2 xφ R for some one parameter subgroup φ of S12(R). Up to a simi-
larity transformation of φ and possible additional equivariant rescaling
homeomorphism we can assume that φ(t) is either the diagonal matrix
φ\ = diag(e^, e~ζt) (we call this exponential with real parameter ξ)
or

ζ _ Γ cos(2πζt) sin(2πξt) ]
Ψt [-ήn(2πξt) cos(2π£ί)J "

{We call this rotational with real parameter ξ.) In the case of the
exponential Lie group, which gives rise to what we call an exponential
solvmanifoldy the parameter ξ is such that 2 Φ e^ + e~ζ e Z. In
the case of the rotational group, which gives rise to what we call a
rotational solvmanifold, the parameter ξ = | where n £ Z and p e
{ 1 , 2 , 3 , 4 , 6 } . The only and hence the minimal Mostow fibration for
these solvmanifolds fibers R3 over a circle with fiber T2. Thus, up to
homotopy, we can always assume that any self map f: R3 -+ R3_is a
fiber-preserving map of this fibration and thus covers a self map f on
the circle.

We are now ready to present our principal result for iterates on
these solvmanifolds. The next lemma will allow us to remove the
extra hypotheses needed to prove the general result of Theorem 3.5.

LEMMA 3.12. Suppose that f: R3 —> R3 is a fiber preserving map of
the Mostow fibration for a rotational or exponential solvmanifold {as in
Theorem 3.11). If {N(fn)}™=ι is bounded, then so is 7
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Proof. Suppose that {N{fn)}(^Lι is unbounded. It will suffice to
prove that {N(fn)}™=ι must also be unbounded. Thus m = | deg(/)|
> 1. Without loss we may assume that deg(/) > 0 since if this is not
the case we can replace / by f2 (and hence / by f2) to make this
so.

The basic idea of the proof is that for each positive integer q we
must find an n so that Lemma 3.10 may be applied to fn and fn

to conclude that N(fn) > q. Throughout our argument we will as-
sume that / is induced by a homomorphism. This way, we will know
exactly what the fixed points of each fn are. In applying this corol-
lary we note that for our three dimensional solvmanifolds since each
automorphism φt is linear, it follows that Φt always has the same
matrix representation as φt. Replacing θ by multiplication by mn

we let An(a) = det(Φ(2_w")α - Fβ) so that by Lemma 3.10 for each
a e [0, 1) satisfying Jn{[ά\) = [a] (i.e. (mn - \)a e Z) we have that
N((fn)a) φ 0 iff Λπ(α) φ 0. For n = 1, 2, . . . let

c dny
For the exponential solvmanifold of parameter ξ

Λπ(α) = det/y + 1 - ane-ξ(2-m> - dne
ξ^2-m>.

Now we observe that, for each n, Λπ(α) is either constantly 0 as a
function of a or else is zero for at most two values of a. (This can be
verified by checking the number of zeroes of the derivative (w.r.t. a)
of each ΛΛ(α).) Since for a given n, fn has mn - 1 fixed points and
this is unbounded with increasing n, our result for the exponential
solvmanifolds will be verified once we check that it cannot be the case
that for some M > 0 we have that V/i > M Λw(α) = 0. [I.e. we
must prove that there are infinitely many n with Aπ(α) ψ 0 so that
for each of these n at least mn - 3 of the fixed points of fn are
suitable for use in Corollary 3.10.] We perform this check by noting
that if Λπ(α) = 0 = A2n(a) then an=dn = 0 = a2n= d2n so F2n = 0
and thus Λ2 π(α) = 1 (a contradiction).

For a rotational solvmanifold of parameter ξ

An(a) = det/j 2 + 1 - (an + dn) cos[2π£(2 - mn)a]

+ (cn-bn)sin[2πζ(2-mn)a].

Thus if ΛΛ(α) = 0 = A2n(a) then an + dn = a2n + d2n = 0 and
cn - bn = 0 = c2n - b2n so F^n = 0 and A2n{a) = 1 as before.
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Thus Λw(α) φ 0 for infinitely many n. For such n we can via
some trigonometric addition formulas show that for some numbers β
and γ

An(a) = 0 & cos[2π£(2 - mn)a + γ] = β

so the zeros of An occur for

_ i c o s " 1 ^ ) - γ k
a~ 2πζ(2-m») +ζ{2-mn)

with k E Z . Thus the zeros of An{a) come in two sets according to

whether we choose the + or - above. The elements of each set are

spaced by a distance of */mί_2) ^ e ^ x e c * P ° i n t s of / for α E [0, 1)

occur with a spacing of ^ - j - . Thus we can see that even if only every

yth (y = l , 2 , . . . ) fixed point of / is a root of An(ά) = 0 from one

of the two sets, then we must have -^^ = ξ(J>_2) for some d e Z .

But d = 7'̂ ffi_~j2^ is an integer for at most finitely many values of n.
Arguing this way for both sets we see that for any small ε > 0 we can
say that for all but a finite number of the n for which Λn(α) φ 0 less
than ε percent of the fixed points of / are roots of ΛΠ(α) = 0. Thus
as we consider increasing n it is clear that

\{a e [0, 1): [a] E fix(/") and An(a) φ 0}|

can be as large as desired. D

Thus our results on nilmanifolds and tori (see Corollary 1.8) along
with Theorems 3.11 and 3.5 give the following.

COROLLARY 3.13. Suppose J is a connected, simply connected solv-
able Lie group of dimension 3 or less and Ac J is a uniform discrete
subgroup. Suppose f:R3 = J/A -• R3. Then ρer(/) is homotopically
finite iff {N(fn)}^χ is bounded.

The Klein bottle, a nonspecial solvmanifold. In order to demonstrate
the extent of our techniques, we close the paper by considering a new
proof of known results for the Klein bottle.

Let / = CxpR with φ(t)(z) = e2πiΐz and Δ = {(n + iy, %)\n, me
Z, y E R}. In [3] it is observed that K = J/A is homeomorphic
to the Klein bottle and that K cannot be represented as a special
solvmanifold. However, other than the fact that Δ has the form Δ =
TxφZr with Γ not discrete, the form for K is like our model for NBA
solvmanifolds. The nondiscrete nature of Δ gives us a discrete group
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of fiber translation maps (in this case Z2) and we are able to prove
the needed relationship between the Nielsen numbers of the base and
fiber and obtain an alternate proof of the following fact already known
from [9].

T H E O R E M 3.14. Suppose that f:K -+ K is a map in which

{N{fn)}^Lχ is bounded. Then there is a g ~ f for which per(^)

is finite.

Proof. With the above description of K it is not hard to determine
the following facts:

1. The only Mostow fibration for K corresponds to the abelian
subgroup H = C of / which fibers K over the circle S1 with fibers
Sι.

2. By Theorem 3.5 and Remark 2 following that theorem it will
suffice for us to_show that if / : K —> K is fiber preserving over /
then when {N(fn)}^Lι is unbounded then the same must be true of

}£ 1
3. The base circle can be parametrized by elements of the form

4. With this representation the fiber over [a] S^ has the form
{(w, α): w e C}/ ~ where (w\, a) ~ {wι, a) iff the real parts of w\
and W2 differ by an integer. _

5. Suppose / is multiplication by d > 1. (If deg(/) < -1 just
replace / by / 2 . ) Choose a e [0, \) with da = α(mod^) and let
ω be the path in [0, j) from a to 0. Then from Lemma 3.7 ω
induces paths ω and fω~ι in the base and fiber translation maps
τω: S^ -> Sg given by τω(w, a) = (w, 0) and τyω-,: Sβ -> 5 ^
given by τjω-ι(w, ot) = (±ίi;, rfα) with the + or - depending on
whether 2(d - l)α G Z is even or odd, respectively.

6. The identification of S\a with ^ by right multiplication by
( 0 , ( 1 - d)a) e Δ carries (±w, rfα) to (±w, a). Therefore, for a
given degree d for / , deg(/α) = ±deg(/0) for /α on 5^ with the +
or - depending on whether a = 2(d-\) 0 < J < d - 1 has even or
odd /, respectively.

7. To consider iterates of / we replace d by dι I = 1, 2, ...
and note that |fix(/0l is unbounded. Now if deg(/0) = 0, then
V/deg(.$) = 0 so all the N((fι)a) for a e fix(/z) will contribute +1
to N{fι) so this will grow without bound as / increases. A similar
unboundedness will of course be true if |deg(./o)| > 1. Finally, if
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deg(/0) = ±1 then roughly half of the N((fι)a) will contribute +2
to N(fι) so this will grow without bound as well. D
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