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ON A PLANCHEREL FORMULA FOR CERTAIN
DISCRETE, FINITELY GENERATED, TORSION-FREE

NILPOTENT GROUPS

CAROLYN PFEFFER JOHNSTON

We prove a Plancherel formula for elementarily expo-
nentiable, discrete, finitely generated, torsion-free nilpo-
tent groups.

1. Introduct ion. Let Γ be a discrete, finitely generated, torsion-
free, nilpotent Lie group. If Γ ^ denotes its descending central se-
ries, we will call Γ n-step nilpotent if Γ ^ φ {1} but Γ ^ 1 ) = {1}.
Malcev has shown that any Γ of this type may be embedded as
a discrete cocompact subgroup of a simply connected, connected
nilpotent Lie group (see [1], Chapter 1); thus we may utilize all
that is known about uniform subgroups of these groups, which is
summarized beautifully in ([3], Sees. 5.1 and 5.2).

This work extends the pioneering work of R. Howe on the rep-
resentation theory of groups of this type, and uses much of the
machinery he developed (see [5]). The techniques used to prove the
Plancherel formula for Γ are essentially those used in [4] to prove a
similar Plancherel formula for discrete groups which are the ratio-
nal points of a nilpotent Lie group. The corresponding result for Γ
follows easily once we observe that, for a certain type of character
{λ} in the Pontryagin dual of the center of Γ, the Γ-orbit of any
extension λ of λ to a character on the Lie algebra £ of Γ is dense
in the set λ + z(£)L C £ (Proposition 2.5).

Let Cu be a real finite-dimensional r-step nilpotent Lie algebra,
and let £ C £^ be a discrete additive subgroup of £ R . A calculation
with the Campbell-Baker-Hausdorff formula shows that if £ is

1. an additive discrete subgroup of £ R , not necessarily of cofinite
volume, and

2. £ satisfies [£,£] C r !£,
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then Γ = exp£ forms a discrete subgroup of the connected, simply
connected nilpotent Lie group N = exp£^. If £ satisfies condition
1, we will refer to £ as a lattice. If £ satisfies both conditions we
will say that £, and Γ = exp £, are elementarily exponentiable, or
e.e. for short. If £ is e.e., and i is an e.e. lattice contained in £
which is closed under the bracket operation, we will call i an ideal
of £ if i is Ad* (£)—invariant. Note that for i to be e.e., we must
have [z, i] C r!i, where r is the length of £R. We assume throughout
this paper that the Γ under consideration are e.e..

We define the rising central series of ideals of £ as follows; set
£(o) = (0), and define πn: £ —> £\£(n_i) to be the natural quotient
map for each n > 1. Then £(n) is defined to be the preimage under
πn of the center of £\£( n _i). Thus £(n) is an increasing sequence of
ideals of £, satisfying £(r) = £ , since £ is r-step nilpotent.

We show in what follows that the L(n) are e.e..

LEMMA 1.1. £{n) = £Γ)(£R){n), forn e 0, ...,r.

Proof. For n = 0, the result is trivial.

Suppose now that C^) = £ Π (JCR)^). By definition, £(A?+I) =
1 We show:

(a).

For if X e £(*+!), [X, y] = 2_e £(fc) for all Γ G £. Let Z be the
image of C in £R\£R(A;) , and let X be the image of X. It follows from
Theorems 5.1.4 and 5.2.3 in [3] that C is uniform in Cu\£^ky For
X G £(fc+i), X commutes with all Y e L. We apply Theorem 5.1.5
from [3] to see that X G z(£^\£^^). It follows that X G

(b). £ n £ R A . + 1 c

If X G £ Π £ R ( j b + 1 ) , then [X,F] = Z G £ ΓΊ £R(k) = £ ( j b ) . This
completes the proof of the lemma. D

It now follows easily that £^) is e.e. for all k; suppose Z —
[X, Y] G [£(*), £{k)]. Then since £ is e.e, Z = r!X for some X G £.

By definition, [£(*),£(*)] ^ [A*)'^l - ^(*-i) - A^) = ^ W n £>
so Z e £m(k), hence X G JCR^). Thus X G £(*), and so Z G rΊ£(fc).
Therefore, £^) is e.e..

We will refer to a subgroup Γ ' C Γ (or a subalgebra £' C £) as
saturated if xn G Γ implies ^ Γ ' (kX G £ ' implies X G £')•
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I am grateful to the referee of this paper for suggestions which
greatly improved the presentation of these results.

2. Generic coadjoint orbits. Let C be an e.e.lattice in a real
nilpotent Lie algebra JCR, SO that Γ = exp(£^) is uniform in N =
exp(£]κ). We assume throughout this section that a strong Malcev
basis {Xι, X*ι, •••, Xn} for £R through its ascending central series has
been chosen so that it satisfies:

1. The Z-span of {-XΊ,..., Xn} is the lattice C in CR:

2. The real span of {Xι,...,Xi} forms an ideal of £ R , and in
particular the real span of {Xi,..., Xk} is the center of C^ (we will
also regard £ ^ as having the inner product defined by setting <
Xi,Xj >=δij)i

3. Γ — exp(ZXi)exp(ZX2) exp(ZXn). Thus we may coordina-
tize Γ as follows: 7 o (xu ..., xn) G Z n whenever 7 = ex^XχXι ...
exp xnXn

That a basis for £ ^ may be chosen satisfying all these conditions is
shown in Section 5.1 of [3], and as part of the proof of Proposition
5.4.11 in [3].

We think of C as the Lie algebra of Γ; as an abelian group it is
isomorphic to Z n via the map

Φ: Z n — > £

(αi,..., an) 1—> aλXx + ... + anXn.

Thus the natural Pontryagin dual of C is Tn ^ (E\Z)n via the map

Φ:Tn —ϊίί

(λi,..., λ n ) 1 y λ

where λ(αi, ...,αn) = exp(2πz(λiαi + ... + λ n o n )), for any choice {λz }
of representatives for the elements λt of E\Z.

Let z(C) denote the center of the Lie algebra £; if z(C^) is the
center of the real Lie algebra £R, then z(C) = £ Π ^ ( ^ I R ) (Lemma
5.1.5 in [3]). Hence z(C) is a saturated subalgebra of £.

For a fixed λ G £, let iλ be the largest ideal of C contained in
the subalgebra r λ = {X G C: \[X,Y] = 1 for all Y G £} . Then
i?λ = exp(rλ) is the isotropy subgroup of λ under the Ad*-action
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of Γ; in particular it is shown in Lemma 2 of [5] that rχ is an
e.e.lattice in £. Furthermore, i λ = Π7erAd(7)rλ is an e.e.ideal
of £ (the intersection of e.e. subalgebras is e.e., and the Ad(7)i\\
are each e.e., being the images of an e.e. subalgebra under a Lie
algebra automorphism). It follows that exp(iλ) = Iχ C Rχ is a
normal subgroup of £ which always contains exp(z(£)) = z(Γ). Let
r: £ —> z(£) send an element λ G £ to its restriction to z(£). In
what follows, we will show that for all X e z(£) except those in a
set of Haar measure zero, the elements of r""1(λ) satisfy iλ = z(£).

LEMMA 2.1. Suppose X = Φ(Ai,...,An) where Xi G R\Z. Then
X has trivial kernel in £ if and only if for some choice of repre-
sentatives Xi G R of Xt G R\Z, the set {Ai,..., λn, 1} is linearly
independent over Q.

Proof. Suppose A has trivial kernel, and suppose that for some
elements </i,..., qn,q G Q, we have

λi<?i + ... + XnQn + q = 0

for some choice of representatives {Xi} for {λ^}. After multiplication
of this equation by some integer, we have Xxaχ + ... + Xnan + a — 0
for some integers {α^}. Then λiαi + ... + λ n α n = — α, so (αi,..., an) G
kernel (A). Thus (α l 5..., an) — 0. It follows immediately that gz = 0
for each i = 1,..., n, and q — 0.

Conversely, suppose that A has a nontrivial kernel, and that
(αχ,...,αn) Φ 0 is an element of the kernel of A. Let {A }̂ be
any choice of representatives for the elements {\} which determine
A; then a\X\ + ... + anXn = k for some element k G Z. The set
{Ai,..., λn, 1} is thus a linearly dependent set over Q. D

LEMMA 2.2. Let % be an e.e.ideal of the lattice £. Let £(n) be

the rising central series of £. Suppose i D z{£), i Φ z{£) Then

i Π {£(2) — z(£)) is nonempty.

Proof Since everything in sight is e.e., and since / = exp(z) is
normal, we prove the result on the group level. Let / denote the
image of / in G — G\z(T). Then since / is a nontrivial normal
subgroup of G, its intersection with the center of G is nontrivial. It
follows that / Π (Γ(2) — z(T)) is nonempty, and so the result on the
algebra level follows. D
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LEMMA 2.3. For X G £, \\ = z{£) if and only if there exists

no element X G £(2) such that ad(X) maps £ into the kernel of X,

where X = λ\z(c)-

Proof. Suppose X G £(2) — z(£), and ad(X) maps £ into the

kernel of A. Take K to be the additive subgroup in £ generated

by X and the elements of z(£). Then K is an ideal of £, since

[K,C] C z(C), and clearly K C r λ . Therefore i λ ^ z(£).

Conversely, suppose iλ φ z(£). Then iλ properly contains z{£).

By the result of Lemma 2.2, we may choose X G £(2) — z(£) such

that X G iλ; then ad(X) maps £ into the kernel of A. This completes

the proof of Lemma 2.3. D

Throughout the rest of this paper, A will denote an element of £,
and A will denote its restriction to z(£).

COROLLARY. 7/iλ = z{£), then for all φ e r~λ(X), iφ = z(£).
Therefore, z/ker A C z(£) is trivial, i\ = z(£).

PROPOSITION 2.4. For a set {A} C z(£) of full Haar measure in

z{£), kerλ is trivial.

Proof. Suppose A corresponds to the element (λi,...,λfc) G T*,
and that for some set of representatives in R of the Â , the set
{Ai,..., λjt, 1} is linearly dependent over Q. Then for some set of
integers αi,..., α*, a G Z, not all zero, we have that aιXι + ...+akXk =
a. If we choose some other set of representatives for the λ;, the
previous expression changes only by an integral constant.

It follows that the preimage in R^ of the set of elements {A*}
satisfying this linear dependence condition consists of the union of
hyperplanes of the form

where α̂ , a vary over the elements of Z. These are of measure zero
in M.k individually, hence their (countable) union is of measure zero.
The corresponding set in Tn is therefore of measure zero, and thus
the elements (λi,..., A*) G Tn which satisfy the linear independence
condition of Lemma 2.1 are of full measure in Tn. This completes
the proof of Proposition 2.4. D
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We finish this section by proving

PROPOSITION 2.5. IfkerX is trivial, then the closure o/Ad*(Γ)λ
is X + z(C)L.

Suppose that 7 G Γ, and λ has coordinates (λχ,...,λn) G Tn

via the map Φ. Then Ad*(7) = (Xu ...,Xk,pk+1(j : λ),...,pn(7 :
λ), where each pi(j : λ) is a polynomial in the coordinates of 7
(with respect to the map Φ), with coefficients from the Q—span of
{λi, ..^λn}.

In £, z(C)1- consists of all elements of the form (0,..., 0, A^+i,...,
λ n ), for \i G R\Z.

We wish to show that if λi,..., λ^ satisfy the equivalent condi-
tions of Lemma 2.1 (where z(C) plays the role of £), then the set
{Ad*(7)λ - λ: 7 G Γ} is dense in z(C)1-. In what follows, λ of this
type will be called "generic", as will coadjoint orbits of the form
Ό\ — X + z(C)1- where λ is generic.

We may regard the polynomials Pi{p/\ X) as polynomials in
{#!, ...,xn}, Xi G Z, by identifying 7 with (xx, ...,xn) via Φ.

LEMMA 2.6. (H. Weyl, [2]). Suppose that {pi}?=ι is a set of poly-
nomials in one integer variable, with coefficients in R\Z. If for each
set of integers a\, ...,an, not all zero, the polynomial a\p\ + ... + anpn

has an irrational coefficient, then the set of points {(pχ(A ), ...,
fceZ} is dense in

Now let T = (ίi,..., t5) e Ns , and let Xτ = x^...x\Λ be a multi-
nomial in s integer variables.

LEMMA 2.7. Suppose {XTi}r

i=1 is a set of distinct multinomials
in s integer variables. Then there is φ: Z —> Ί/ so that XTι o φ
are monomials and are distinct.

Proof. We put a lexicographic order on 7VS as follows: let i G
l,...,s be the greatest integer with mi Φ vn!{\ then (mi,...,m5) >
(m7!, ...,m^) if rrti > mj. A simple induction argument shows that
for the finite set {7*} C Ns there is N G Ns, N = (Nu ...,NS), so
that if Ti > Tj in the ordering on Ns, then N Γ< > N T̂  (N T
denotes the usual dot product).

Now define 0(α;) = (x^1, ...,x iV5); then we have XTi o φ — xTi'N',
and so the monomials X Γ ί o ^ remain distinct. D



ON A PLANCHEREL FORMULA FOR NILPOTENT GROUPS 319

LEMMA 2.8. Suppose {pi}™=i is a set of polynomials in s integer
variables, with coefficients in R\Z. If for all integers αi, . . .,α n, not
all zero, p = a\p\ + ... + anpn has an irrational coefficient, then the
image of Z 5 under (p1? ...,pn) is dense in (R\Z)n.

Proof. Let {XTί} be the set of monomials which appear in the
polynomials p^ and let φ be as in Lemma 2.7. We note that the
monomials in αχpi + .... + anpn are a subset of the {XTt}, so that
they remain distinct if composed with φ\ and so for all αi, ...,αn,
not all zero, a\p\ o ̂  + ... + α np n o ̂  has an irrational coefficient. We
invoke Lemma 2.6, and the result follows.

Thus we will have proven Proposition 2.5 if we can show that
whenever λ is generic, the polynomial

P(x: A) = ak+1pk+ΐ{x: A) + ... + anpn(x: A)

(where dk+u •• 5

β n are integers, not all zero) has an irrational coef-
ficient.

Assume λ is generic. We begin by writing Ad*(7) = Ad*(xχ,..., xn)
as a matrix with respect to the coordinates (Λx,.., λn) of λ given by
the map Φ. The condition [£, £] C r\C implies that the entries of
the matrix Ad*(:ri, ...,xn) are elements of ΊJ[X\, ...,xn]

Therefore Ad*(7)(λi,..., A*,..., \n) = (Ai,..., λk,pk+ϊ(j: A),...,
Pn{l'- A)). Ad*(7) is given by the matrix

1
0
0

0

Pk+i

Pk+2

Pk+3

0
1
0

0

,1 Pk+1

,1 Pk+2

1 Pk+3

0
0
1

0

,2 Pfc+X,3

,2 Pfc+2,3

2 Pfc+3 3

... o

... o

... o

1

• Pk+l,k

' ' Pk+2,k P

•'' Pk+3,k P

0
0
0

0

1

fc+2,fc+l

fc+3,fc+l

0
0
0

0
0

1
Pk+3 k-\-2

... o

... o

... o

... o

... o
0

k=l Pn,k+2

with each p^ G Z[x b ...,a:n].
We break the problem down as follows.

l P i ( 7 > λ ) = P i )

λt , for i=k+l,...,n.



320 CAROLYN B. PFEFFER JOHNSTON

2. Let {αfc+i,..., αn} be any set of integers, not all zero. Define

p(7, λ) = dk+iPk+ibf, λ) + ... + α np n(7, λ)

= Σ
= l

n

Σ W* + Σ λ η Σ α

ί=l [i=fc+l • J t=k+l li=t

We note that p2 j2 = 1 for all z. Let 4̂ = (0,..., 0,
£. If we write Ad(7~1)A = (Φi, .. .,Φ n), then we have p(y, λ) =
Σ?=i λiΦi, We write p( 7 , λ) = pc(η, \)+pn(j, λ) where p c = Σ?=i λ̂ Φ

We first show that if {λi,...,λ^} are as in lemma 2.1, then the
polynomial pc has a nontrivial irrational coefficient. Since the Φj,
z = 1,...,/:, consist of polynomials with integral coefficients and
{λi,...,λfc} are linearly independent over Q, all the coefficients of
the polynomial pc are irrational. Therefore, we need only show
that pc is not a constant polynomial, or equivalently that some Φ ,̂
i = 1,..., k, is not constant.

These are the central components of the vector giving Ad(7 - 1)A,
where not all of the entries α̂  are zero. Therefore the orbit de-
scribed is that of a non-central element of £, and so it will suffice
to show that for any non-central element T of £, Ad(Γ)(T) has
nondegenerate orthogonal projection onto the center of C^.

LEMMA 2.9. Let {X\,..., Xn} be as before, and let Pz be projection
onto the real span of {X\, ...,Xk} withR —span {X^+i,..., Xn} as
kernel. Then if T is a non-central element of £R, Pz(Ad(Γ)T — T)
is not identically zero.

Proof. It suffices to show that Pz(Ad(N)T - T) is not identically
zero, where N = exp(£^). Let {ίi,...,ts} be a subset of R and
{YΊ, ..., Ys} be a subset of C^

If we use the formula Ad(expF)T = exp (ad(F)T) to write
Ad(expίχFi exp^i^ ••• * exptsYs)T — T as a polynomial expres-
sion in {ίχ,...,ίs} with coefficients in £^, we see that the coeffi-
cient of the monomial ί^-. ίs is a rational multiple of [Yί, [Y2, [...
[Y5,Γ]]...]]. Now suppose that Pz(Ad(N)T - Γ) = 0; then we
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must have [Yί, [Y2, [...[YS,T]...]]] = 0. However, since T is not cen-
tral, there exists a sequence of elements {Yί,..., Ys} C £R such that
W = [YU[Y2,[...[YS,T]...}]\ e z(£), W φ 0. Then P,(W) = W is
nonzero, giving a contradiction, and completing the proof of Lemma
2.9.

LEMMA 2.10. The polynomialp(η, λ) /ms an irrational coefficient
{of a nontrivial monomial) whenever λ zs generic.

Proof. Suppose that p(7, λ) has entirely rational coefficients. Then
since pc(7, λ) is nontrivial, pn{j^) = Pr(7?λ) — Pc(7,λ), where
PΓ(7J λ) has rational coefficients. Since we have p n (7 5 λ) =
ΣίLib+i λiΦi, where the Φ̂  have integer coefficients, we must have
some subset {^σ(t)}t=i °f coefficients which are from the Q-span of
{λi,..., λ/b}, and the rest must be rational. Thus we have

2 = 1

where K is some real constant. However, the λσ(t), t = 1,...,/,
satisfy λσ(ί) = Σi=iQt,iλi, where the ςf̂ j are rational. Therefore we
may write the equation above as

t=l U=l

Since the λ̂  are linearly independent over Q, we must have, for each
z, that

for some real constant Ki. Let ^ = X{ + X)J=1 qiitXσ(t) £ A*, f° r * =
1, ...,A;. The above implies that the function 7 1— <̂ v^Ad^A >
is a constant function, and so that the projection of Ad(N)A onto
the subspace W = R-span {vi} is degenerate. We will show that
this is impossible, giving a contradiction.

LEMMA 2.11. Let O be a non-trivial Ad-orbit ofN. Then PwiP)
is nondegenerate, i.e., Pw{Ad(T)A — A) is nonzero.

Proof. Let {Yί,...,Y^} be as in the proof of Lemma 2.9., such
that [Yi, [...[Ys_i, [Ys,yl]]...]] is a nonzero element oΐ'z(C). Then if
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we express Ad(exptiYi ... exptsYs)A as a polynomial in ί1? ...,ί s

taking on values in £ R , we see that the monomial ίχ...ίs appears
as a coefficient only of central elements {Xi, ...,Xfc}. Let i < k
be such that [Yi, [...[3^, A]...]] has a nontrivial X2-component. Then
< Vi, Ad(expίili... exptsYs)A > is a polynomial with a nonzero co-
efficient of tι...ts, so it is nontrivial, and so P\γ(O) is nondegenerate.

This completes the proof of Lemma 2.10; taken together with
Lemma 2.8, this completes the proof of Proposition 2.5. D

3. Traceable factor representations associated with gene-
ric coadjoint orbits. Suppose now that λ is a generic element of
£, with Ad*(Γ)- orbit closure Oχ. We define τ\ to be the represen-
tation of Γ induced from the restriction of λ to z(C), regarded as
a character on z(T) (this is possible because z(£) = z(£^) Π C by
Theorem 5.1.5 in [3], and because expz(C) = z(Γ)); τ\ is defined
on the Hubert space

\f\2dx < oof{zΊ) =

with inner product < f,g > = Jr\z(r) f 'V dx Since elements in Oχ
agree on the center of £, τ λ depends only upon the coadjoint orbit
closure Oχ. Recall that τ λ is a factor representation if CR(rχ) =
τ λ(Γ)' Π τχ(Γ)" = C/ (in general, A7 denotes the commutator of
the set A). In what follows, we will show that if Oχ is a generic
coadjoint orbit closure in £, then Tx is a factor representation.

LEMMA 3.1. (Lemma 1, [4]). Let U e τχ(Γ)f, and let Hλ be the
Mackey space as defined above for the representation τ\. Then U is
entirely determined by its value on the function δι G Hx defined by

LEMMA 3.2. (Lemma 2, [4]). If U e CR(τλ), then U is convo-
lution by an element of Hx which is constant on conjugacy classes.
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Furthermore, if f G Hχ is constant on conjugacy classes in Γ, and
if convolution by f is a bounded operator on Hχ, then convolution
by f is in CR(τχ).

By Lemma 3.2, to show that τ λ is a factor it suffices to show that
the only element of Hχ which is constant on conjugacy classes of Γ
is δι] for convolution by δι is the identity map on Hχ, and so all
elements of CR(τχ) are multiples of the identity.

THEOREM 3.3. If λ is a generic element of C, then rχ is a factor
representation.

Proof Let Γ ^ denote the z-th element of the rising central series
of Γ, and let 7 G Γ, 7 ^ Γ^2\ We will show that a function constant
on the conjugacy class C(j) cannot be in Hχ unless it is zero there.

Let IΊ denote the isotropy subgroup in Γ of the element 72(Γ),
where Γ acts on Γ\z(Γ) by conjugation. If 7 ^ Y^2\ then IΊ is a
proper subgroup of Γ. The cosets of z(T) intersected by the conju-
gacy class C(j) are in bijective correspondence with Γ\/7; therefore,
if IΊ were also a saturated subgroup, the number of cosets intersected
by the conjugacy class of 7 would be infinite, and so a function in
Hχ which is constant on conjugacy classes would have to be zero on

C{Ί).
Therefore we prove

LEMMA 3.4. // 7 G Γ, and 7 φ Γ ( 2 ), then IΊ is a saturated
subgroup ofT.

Proof. Let 7 = expΓ, x = expX, for Γ,X G C. If xn G IΊ for
some n, then we have xnηx~nη~ι G z(Γ). By the Campbell-Baker-
Hausdorff formula,

xnηx~nη~ι — exp nX exp T exp —nX exp —T

= exp {n[X, Γ] + ^(n2[X, [X, T}} - n[Γ, [X, T]]) + ...}

= expP(n) G

where successive terms involve brackets of increasing order. Clearly
the polynomial P(n) is in z(C), and since IΊ is a subgroup of Γ,
P(kn) G z(£) as well for each k G Z. Therefore each individual



324 CAROLYN B. PFEFFER JOHNSTON

term of P(nk), viewed as a polynomial in /c, is in z(£). Using the
Campbell-Baker-Hausdorff formula again, we rewrite the above as

exp nkX(exp T exp —nkX exp —Γ)

= expnA Xexp — (Ad(expT)nkX)

= exp (nkX - Ad(expT)nkX - -[nhX, Ad(expT)nkX] - ...

where successive terms involve powers of k which are higher than
2. It follows that n{X — Ad(expΓ)X) G z(C), and therefore, since
z(C) is saturated, X - Ad(expΓ)X is in z(C). We have

Ad(expT)X - X = [T,X] + \[T, [T,X]] + ±[T, [T, [T,X]]] + ...

and we wish to see that [T,X] 6 z(C). We expand [T,X] in terms
of a strong malcev basis [Xi] through the lower central series of
£; then we may write [Γ, X] = a\X\ + ... + asXs, where as φ 0.
Since [T, [T, X}] and subsequent terms belong to ideals which are
further down in the lower central series, Xs will be absent from
basis expansions of these terms and so we must have Xs G z(£),
and therefore [T,X) G z(£). Therefore xjx'1^'1 G z(Γ), and so IΊ

is saturated.

Now we suppose that x G Γ^2\ x £ z(Γ). The conjugacy class of
x is thus a nontrivial subset of the coset xz{T). Since λ is a generic
character, the kernel of λ in z(T) is trivial; therefore a function in
iϊλ, with left z(Γ)-covariance, could not possibly be constant on
C(x) unless it were zero on C(x).

Therefore, we see that a function in H\ which is constant on
conjugacy classes is supported only upon z(Γ), and hence must be
a multiple of δ\. This completes the proof of Theorem 3.3. D

What follows is proved in Section 3 in [4], and applies here with

h = z{T).

THEOREM 3.5. (Theorem 3, [4]). If X is generic, τ\ is a traceable
factor representation, with trace (for f G Ĉ1

θλ(/)=
u€*(Γ)
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where

δ () = ίχ(-u) ifu e

U } \θ %fuiz{T).

Furthermore, we have the orbital trace formula

θ λ (/) = / . FA(χ)dχ,

where dχ is the lift of Haar measure on z(C)1- to the closure A +
z{C)L of Oχ, and F — f o exp G Lι{C). FA(χ) denotes the usual
Fourier transform of F.

These are the same traces R. Howe found as elements of dual cones
of primitive ideals in the primitive ideal space of Γ (see Proposition
3 of [5]).

Now let F G C c(£), so that / - F o log G CC(Γ). If {Xu ..., Xn}

is our chosen basis, we can define an inclusion i: z(C) —> C as

follows: λ i—> A if

ι + ... + anXn) = X(aιXι + ... + akXk),

for all α G Zn. Then by Fourier inversion on the abelian group

where Haar measures are normalized so that their supports have
measure 1.

We let dχ(χ) be the lift of normalized Haar measure on z(C)1- to
λ + z^C)1-] if A is generic, then this is the measure on the closure
of Oλjvhich appears in the orbital trace formula for r λ . Since a. a.
A G z(C) are generic, the above becomes

z(C) [Jz(

We have proven

= U{[. F*(χ)dχ(χ)\dλ= [ Θx(f)dλ.
Jz(C) Uθχ ) Jz(C)

THEOREM 3.6. (Plancherel Formula). Suppose f G CC(Y), and
that for generic A G C, θ\ is the trace associated with the factor
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representation τ\ induced from λ on z(£). Then λ ι—> θλ(/) is

defined for a.a. \, is integrable on z(C), and we have

f(e)= I' θχ(f)dμ(λ),
Jz C)lz(C)

where μ is Haar meaasure on z(C), normalized so that μ(z(£)) = 1.
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