ON A PLANCHEREL FORMULA FOR CERTAIN DISCRETE, FINITELY GENERATED, TORSION-FREE NILPOTENT GROUPS

Carolyn Pfeffer Johnston

> We prove a Plancherel formula for elementarily exponentiable, discrete, finitely generated, torsion-free nilpotent groups.

1. Introduction. Let Γ be a discrete, finitely generated, torsionfree, nilpotent Lie group. If $\Gamma^{(k)}$ denotes its descending central series, we will call Γn-step nilpotent if $\Gamma^{(n)} \neq\{1\}$ but $\Gamma^{(n+1)}=\{1\}$. Malcev has shown that any Γ of this type may be embedded as a discrete cocompact subgroup of a simply connected, connected nilpotent Lie group (see [1], Chapter 1); thus we may utilize all that is known about uniform subgroups of these groups, which is summarized beautifully in ([3], Secs. 5.1 and 5.2).

This work extends the pioneering work of R. Howe on the representation theory of groups of this type, and uses much of the machinery he developed (see [5]). The techniques used to prove the Plancherel formula for Γ are essentially those used in [4] to prove a similar Plancherel formula for discrete groups which are the rational points of a nilpotent Lie group. The corresponding result for Γ follows easily once we observe that, for a certain type of character $\{\tilde{\lambda}\}$ in the Pontryagin dual of the center of Γ, the Γ-orbit of any extension λ of $\tilde{\lambda}$ to a character on the Lie algebra \mathcal{L} of Γ is dense in the set $\lambda+z(\mathcal{L})^{\perp} \subseteq \widehat{\mathcal{L}}$ (Proposition 2.5).

Let $\mathcal{L}_{\mathbb{R}}$ be a real finite-dimensional r-step nilpotent Lie algebra, and let $\mathcal{L} \subseteq \mathcal{L}_{\mathbb{R}}$ be a discrete additive subgroup of $\mathcal{L}_{\mathbb{R}}$. A calculation with the Campbell-Baker-Hausdorff formula shows that if \mathcal{L} is

1. an additive discrete subgroup of $\mathcal{L}_{\mathbb{R}}$, not necessarily of cofinite volume, and
2. \mathcal{L} satisfies $[\mathcal{L}, \mathcal{L}] \subseteq r!\mathcal{L}$,
then $\Gamma=\exp \mathcal{L}$ forms a discrete subgroup of the connected, simply connected nilpotent Lie group $N=\exp \mathcal{L}_{\mathbb{R}}$. If \mathcal{L} satisfies condition 1 , we will refer to \mathcal{L} as a lattice. If \mathcal{L} satisfies both conditions we will say that \mathcal{L}, and $\Gamma=\exp \mathcal{L}$, are elementarily exponentiable, or e.e. for short. If \mathcal{L} is e.e., and i is an e.e. lattice contained in \mathcal{L} which is closed under the bracket operation, we will call i an ideal of \mathcal{L} if i is $\operatorname{Ad}^{\star}(\mathcal{L})$-invariant. Note that for i to be e.e., we must have $[i, i] \subseteq r!i$, where r is the length of $\mathcal{L}_{\mathbb{R}}$. We assume throughout this paper that the Γ under consideration are e.e..

We define the rising central series of ideals of \mathcal{L} as follows; set $\mathcal{L}_{(0)}=(0)$, and define $\pi_{n}: \mathcal{L} \longrightarrow \mathcal{L} \backslash \mathcal{L}_{(n-1)}$ to be the natural quotient map for each $n \geq 1$. Then $\mathcal{L}_{(n)}$ is defined to be the preimage under π_{n} of the center of $\mathcal{L} \backslash \mathcal{L}_{(n-1)}$. Thus $\mathcal{L}_{(n)}$ is an increasing sequence of ideals of \mathcal{L}, satisfying $\mathcal{L}_{(r)}=\mathcal{L}$, since \mathcal{L} is r-step nilpotent.

We show in what follows that the $L_{(n)}$ are e.e..
Lemma 1.1. $\mathcal{L}_{(n)}=\mathcal{L} \cap\left(\mathcal{L}_{\mathbb{R}}\right)_{(n)}$, for $n \in 0, \ldots, r$.
Proof. For $n=0$, the result is trivial.
Suppose now that $\mathcal{L}_{(k)}=\mathcal{L} \cap\left(\mathcal{L}_{\mathbb{R}}\right)_{(k)}$. By definition, $\mathcal{L}_{(k+1)}=$ $\pi_{k}^{-1}\left(z\left(\mathcal{L} \backslash \mathcal{L}_{(k)}\right)\right)$. We show:
(a). $\mathcal{L}_{(k+1)} \subseteq \mathcal{L} \cap\left(\mathcal{L}_{\mathbb{R}}\right)_{(k+1)}$.

For if $X \in \mathcal{L}_{(k+1)},[X, Y]=Z \in \mathcal{L}_{(k)}$ for all $Y \in \mathcal{L}$. Let $\overline{\mathcal{L}}$ be the image of \mathcal{L} in $\mathcal{L}_{\mathbb{R}} \backslash \mathcal{L}_{\mathbb{R}(k)}$, and let \bar{X} be the image of X. It follows from Theorems 5.1.4 and 5.2.3 in [3] that $\overline{\mathcal{L}}$ is uniform in $\mathcal{L}_{\mathbb{R}} \backslash \mathcal{L}_{\mathbb{R}(k)}$. For $X \in \mathcal{L}_{(k+1)}, \bar{X}$ commutes with all $\bar{Y} \in \bar{L}$. We apply Theorem 5.1.5 from [3] to see that $\bar{X} \in z\left(\mathcal{L}_{\mathbb{R}} \backslash \mathcal{L}_{\mathbb{R}(k)}\right)$. It follows that $X \in \mathcal{L}_{\mathbb{R}(k+1)}$. (b). $\mathcal{L} \cap \mathcal{L}_{\mathbb{R} k+1} \subseteq \mathcal{L}_{(k+1)}$.

If $X \in \mathcal{L} \cap \mathcal{L}_{\mathbb{R}(k+1)}$, then $[X, Y]=Z \in \mathcal{L} \cap \mathcal{L}_{\mathbb{R}(k)}=\mathcal{L}_{(k)}$. This completes the proof of the lemma.

It now follows easily that $\mathcal{L}_{(k)}$ is e.e. for all k; suppose $Z=$ $[X, Y] \in\left[\mathcal{L}_{(k)}, \mathcal{L}_{(k)}\right]$. Then since \mathcal{L} is e.e, $Z=r!X$ for some $X \in \mathcal{L}$. By definition, $\left[\mathcal{L}_{(k)}, \mathcal{L}_{(k)}\right] \subseteq\left[\mathcal{L}_{(k)}, \mathcal{L}\right] \subseteq \mathcal{L}_{(k-1)} \subseteq \mathcal{L}_{(k)}=\mathcal{L}_{\mathbb{R}(k)} \cap \mathcal{L}$; so $Z \in \mathcal{L}_{\mathbb{R}(k)}$, hence $X \in \mathcal{L}_{\mathbb{R}(k)}$. Thus $X \in \mathcal{L}_{(k)}$, and so $Z \in r!\mathcal{L}_{(k)}$. Therefore, $\mathcal{L}_{(k)}$ is e.e..
We will refer to a subgroup $\Gamma^{\prime} \subseteq \Gamma$ (or a subalgebra $\mathcal{L}^{\prime} \subseteq \mathcal{L}$) as saturated if $x^{n} \in \Gamma^{\prime}$ implies $x \in \Gamma^{\prime}\left(k X \in \mathcal{L}^{\prime}\right.$ implies $\left.X \in \mathcal{L}^{\prime}\right)$.

I am grateful to the referee of this paper for suggestions which greatly improved the presentation of these results.
2. Generic coadjoint orbits. Let \mathcal{L} be an e.e.lattice in a real nilpotent Lie algebra $\mathcal{L}_{\mathbb{R}}$, so that $\Gamma=\exp \left(\mathcal{L}_{\mathbb{R}}\right)$ is uniform in $N=$ $\exp \left(\mathcal{L}_{\mathbb{R}}\right)$. We assume throughout this section that a strong Malcev basis $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ for $\mathcal{L}_{\mathbb{R}}$ through its ascending central series has been chosen so that it satisfies:

1. The \mathbb{Z}-span of $\left\{X_{1}, \ldots, X_{n}\right\}$ is the lattice \mathcal{L} in $\mathcal{L}_{\mathbb{R}}$:
2. The real span of $\left\{X_{1}, \ldots, X_{i}\right\}$ forms an ideal of $\mathcal{L}_{\mathbb{R}}$, and in particular the real span of $\left\{X_{1}, \ldots, X_{k}\right\}$ is the center of $\mathcal{L}_{\mathbb{R}}$ (we will also regard $\mathcal{L}_{\mathbb{R}}$ as having the inner product defined by setting $<$ $\left.X_{i}, X_{j}>=\delta_{i, j}\right)$;
3. $\Gamma=\exp \left(\mathbb{Z} X_{1}\right) \exp \left(\mathbb{Z} X_{2}\right) \ldots \exp \left(\mathbb{Z} X_{n}\right)$. Thus we may coordinatize Γ as follows: $\gamma \leftrightarrow\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ whenever $\gamma=\exp x_{1} X_{1} \cdot \ldots$. $\exp x_{n} X_{n}$.
That a basis for $\mathcal{L}_{\mathbb{R}}$ may be chosen satisfying all these conditions is shown in Section 5.1 of [3], and as part of the proof of Proposition 5.4.11 in [3].

We think of \mathcal{L} as the Lie algebra of Γ; as an abelian group it is isomorphic to \mathbb{Z}^{n} via the map

$$
\begin{aligned}
\Psi: \mathbb{Z}^{n} & \longrightarrow \mathcal{L} \\
\left(a_{1}, \ldots, a_{n}\right) & \longmapsto a_{1} X_{1}+\ldots+a_{n} X_{n} .
\end{aligned}
$$

Thus the natural Pontryagin dual of \mathcal{L} is $T^{n} \cong(\mathbb{R} \backslash \mathbb{Z})^{n}$ via the map

$$
\begin{aligned}
\Phi: T^{n} & \longrightarrow \widehat{\mathcal{L}} \\
\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{n}\right) & \longmapsto \lambda
\end{aligned}
$$

where $\lambda\left(a_{1}, \ldots, a_{n}\right)=\exp \left(2 \pi i\left(\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n}\right)\right)$, for any choice $\left\{\lambda_{i}\right\}$ of representatives for the elements $\bar{\lambda}_{i}$ of $\mathbb{R} \backslash \mathbb{Z}$.

Let $z(\mathcal{L})$ denote the center of the Lie algebra \mathcal{L}; if $z\left(\mathcal{L}_{\mathbb{R}}\right)$ is the center of the real Lie algebra $\mathcal{L}_{\mathbb{R}}$, then $z(\mathcal{L})=\mathcal{L} \cap z\left(\mathcal{L}_{\mathbb{R}}\right)$ (Lemma 5.1.5 in [3]). Hence $z(\mathcal{L})$ is a saturated subalgebra of \mathcal{L}.

For a fixed $\lambda \in \widehat{\mathcal{L}}$, let \mathbf{i}_{λ} be the largest ideal of \mathcal{L} contained in the subalgebra $\mathbf{r}_{\lambda}=\{X \in \mathcal{L}: \lambda[X, Y]=1$ for all $Y \in \mathcal{L}\}$. Then $R_{\lambda}=\exp \left(\mathbf{r}_{\lambda}\right)$ is the isotropy subgroup of λ under the Ad^{\star}-action
of Γ; in particular it is shown in Lemma 2 of [5] that \mathbf{r}_{λ} is an e.e.lattice in \mathcal{L}. Furthermore, $\mathbf{i}_{\lambda}=\bigcap_{\gamma \in \Gamma} \operatorname{Ad}(\gamma) \mathbf{r}_{\lambda}$ is an e.e.ideal of \mathcal{L} (the intersection of e.e. subalgebras is e.e., and the $\operatorname{Ad}(\gamma) \mathbf{r}_{\lambda}$ are each e.e., being the images of an e.e. subalgebra under a Lie algebra automorphism). It follows that $\exp \left(\mathbf{i}_{\lambda}\right)=I_{\lambda} \subseteq R_{\lambda}$ is a normal subgroup of \mathcal{L} which always contains $\exp (z(\mathcal{L}))=z(\Gamma)$. Let $r: \widehat{\mathcal{L}} \longrightarrow \widehat{z(\mathcal{L})}$ send an element $\lambda \in \widehat{\mathcal{L}}$ to its restriction to $z(\mathcal{L})$. In what follows, we will show that for all $\tilde{\lambda} \in \widehat{(\underset{\sim}{\mathcal{L}})}$ except those in a set of Haar measure zero, the elements of $r^{-1}(\tilde{\lambda})$ satisfy $\mathbf{i}_{\lambda}=z(\mathcal{L})$.

Lemma 2.1. Suppose $\lambda=\Phi\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{n}\right)$ where $\bar{\lambda}_{i} \in \mathbb{R} \backslash \mathbb{Z}$. Then λ has trivial kernel in \mathcal{L} if and only if for some choice of representatives $\lambda_{i} \in \mathbb{R}$ of $\bar{\lambda}_{\imath} \in \mathbb{R} \backslash \mathbb{Z}$, the set $\left\{\lambda_{1}, \ldots, \lambda_{n}, 1\right\}$ is linearly independent over \mathbb{Q}.

Proof. Suppose λ has trivial kernel, and suppose that for some elements $q_{1}, \ldots, q_{n}, q \in \mathbb{Q}$, we have

$$
\lambda_{1} q_{1}+\ldots+\lambda_{n} q_{n}+q=0
$$

for some choice of representatives $\left\{\lambda_{i}\right\}$ for $\left\{\bar{\lambda}_{i}\right\}$. After multiplication of this equation by some integer, we have $\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n}+a=0$ for some integers $\left\{a_{i}\right\}$. Then $\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n}=-a$, so $\left(a_{1}, \ldots, a_{n}\right) \in$ kernel (λ). Thus $\left(a_{1}, \ldots, a_{n}\right)=0$. It follows immediately that $q_{i}=0$ for each $i=1, \ldots, n$, and $q=0$.

Conversely, suppose that λ has a nontrivial kernel, and that $\left(a_{1}, \ldots, a_{n}\right) \neq 0$ is an element of the kernel of λ. Let $\left\{\lambda_{i}\right\}$ be any choice of representatives for the elements $\left\{\bar{\lambda}_{i}\right\}$ which determine $\lambda ;$ then $a_{1} \lambda_{1}+\ldots+a_{n} \lambda_{n}=k$ for some element $k \in \mathbb{Z}$. The set $\left\{\lambda_{1}, \ldots, \lambda_{n}, 1\right\}$ is thus a linearly dependent set over \mathbb{Q}.

LEMMA 2.2. Let i be an e.e.ideal of the lattice \mathcal{L}. Let $\mathcal{L}_{(n)}$ be the rising central series of \mathcal{L}. Suppose $i \supseteq z(\mathcal{L}), i \neq z(\mathcal{L})$. Then $i \cap\left(\mathcal{L}_{(2)}-z(\mathcal{L})\right)$ is nonempty.

Proof. Since everything in sight is e.e., and since $I=\exp (i)$ is normal, we prove the result on the group level. Let \bar{I} denote the image of I in $\bar{G}=G \backslash z(\Gamma)$. Then since \bar{I} is a nontrivial normal subgroup of \bar{G}, its intersection with the center of \bar{G} is nontrivial. It follows that $I \cap\left(\Gamma_{(2)}-z(\Gamma)\right)$ is nonempty, and so the result on the algebra level follows.

Lemma 2.3. For $\lambda \in \hat{\mathcal{L}}, \mathbf{i}_{\lambda}=z(\mathcal{L})$ if and only if there exists no element $X \in \mathcal{L}_{(2)}$ such that $\operatorname{ad}(X)$ maps \mathcal{L} into the kernel of $\tilde{\lambda}$, where $\tilde{\lambda}=\left.\lambda\right|_{z(\mathcal{L})}$.

Proof. Suppose $X \in \mathcal{L}_{(2)}-z(\mathcal{L})$, and $\operatorname{ad}(X)$ maps \mathcal{L} into the kernel of $\tilde{\lambda}$. Take K to be the additive subgroup in \mathcal{L} generated by X and the elements of $z(\mathcal{L})$. Then K is an ideal of \mathcal{L}, since $[K, \mathcal{L}] \subseteq z(\mathcal{L})$, and clearly $K \subseteq \mathbf{r}_{\lambda}$. Therefore $\mathbf{i}_{\lambda} \neq z(\mathcal{L})$.

Conversely, suppose $\mathbf{i}_{\lambda} \neq z(\mathcal{L})$. Then \mathbf{i}_{λ} properly contains $z(\mathcal{L})$. By the result of Lemma 2.2, we may choose $X \in \mathcal{L}_{(2)}-z(\mathcal{L})$ such that $X \in \mathbf{i}_{\lambda} ;$ then $\operatorname{ad}(X)$ maps \mathcal{L} into the kernel of $\tilde{\lambda}$. This completes the proof of Lemma 2.3.

Throughout the rest of this paper, λ will denote an element of $\widehat{\mathcal{L}}$, and $\tilde{\lambda}$ will denote its restriction to $z(\mathcal{L})$.

Corollary. If $\mathbf{i}_{\lambda}=z(\mathcal{L})$, then for all $\phi \in r^{-1}(\tilde{\lambda}), i_{\phi}=z(\mathcal{L})$. Therefore, if $\operatorname{ker} \tilde{\lambda} \subseteq z(\mathcal{L})$ is trivial, $\mathbf{i}_{\lambda}=z(\mathcal{L})$.

Proposition 2.4. For a set $\{\tilde{\lambda}\} \subseteq \widehat{z(\mathcal{L})}$ of full Haar measure in $z \widehat{(\mathcal{L})}, \operatorname{ker} \tilde{\lambda}$ is trivial.

Proof. Suppose $\tilde{\lambda}$ corresponds to the element $\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{k}\right) \in T^{k}$, and that for some set of representatives in \mathbb{R} of the $\bar{\lambda}_{i}$, the set $\left\{\lambda_{1}, \ldots, \lambda_{k}, 1\right\}$ is linearly dependent over \mathbb{Q}. Then for some set of integers $a_{1}, \ldots, a_{k}, a \in \mathbb{Z}$, not all zero, we have that $a_{1} \lambda_{1}+\ldots+a_{k} \lambda_{k}=$ a. If we choose some other set of representatives for the $\bar{\lambda}_{i}$, the previous expression changes only by an integral constant.

It follows that the preimage in \mathbb{R}^{k} of the set of elements $\left\{\bar{\lambda}_{i}\right\}$ satisfying this linear dependence condition consists of the union of hyperplanes of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{k} x_{k}=a,
$$

where a_{i}, a vary over the elements of \mathbb{Z}. These are of measure zero in \mathbb{R}^{k} individually, hence their (countable) union is of measure zero. The corresponding set in T^{n} is therefore of measure zero, and thus the elements $\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{k}\right) \in T^{n}$ which satisfy the linear independence condition of Lemma 2.1 are of full measure in T^{n}. This completes the proof of Proposition 2.4.

We finish this section by proving
Proposition 2.5. If ker $\tilde{\lambda}$ is trivial, then the closure of $\operatorname{Ad}^{\star}(\Gamma) \lambda$ is $\lambda+z(\mathcal{L})^{\perp}$.

Suppose that $\gamma \in \Gamma$, and λ has coordinates $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in T^{n}$ via the map Φ. Then $\operatorname{Ad}^{\star}(\gamma)=\left(\lambda_{1}, \ldots, \lambda_{k}, p_{k+1}(\gamma: \lambda), \ldots, p_{n}(\gamma\right.$: λ), where each $p_{i}(\gamma: \lambda)$ is a polynomial in the coordinates of γ (with respect to the map Ψ), with coefficients from the \mathbb{Q}-span of $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.
In $\widehat{\mathcal{L}}, z(\mathcal{L})^{\perp}$ consists of all elements of the form $\left(0, \ldots, 0, \lambda_{k+1}, \ldots\right.$, λ_{n}), for $\lambda_{i} \in \mathbb{R} \backslash \mathbb{Z}$.

We wish to show that if $\lambda_{1}, \ldots, \lambda_{k}$ satisfy the equivalent conditions of Lemma 2.1 (where $z(\mathcal{L})$ plays the role of \mathcal{L}), then the set $\left\{\operatorname{Ad}^{\star}(\gamma) \lambda-\lambda: \gamma \in \Gamma\right\}$ is dense in $z(\mathcal{L})^{\perp}$. In what follows, λ of this type will be called "generic", as will coadjoint orbits of the form $\mathcal{O}_{\lambda}=\lambda+z(\mathcal{L})^{\perp}$ where λ is generic.

We may regard the polynomials $p_{i}(\gamma: \lambda)$ as polynomials in $\left\{x_{1}, \ldots, x_{n}\right\}, x_{i} \in \mathbb{Z}$, by identifying γ with $\left(x_{1}, \ldots, x_{n}\right)$ via Ψ.

Lemma 2.6. (H. Weyl, [2]). Suppose that $\left\{p_{i}\right\}_{i=1}^{n}$ is a set of polynomials in one integer variable, with coefficients in $\mathbb{R} \backslash \mathbb{Z}$. If for each set of integers a_{1}, \ldots, a_{n}, not all zero, the polynomial $a_{1} p_{1}+\ldots+a_{n} p_{n}$ has an irrational coefficient, then the set of points $\left\{\left(p_{1}(k), \ldots, p_{n}(k)\right)\right.$: $k \in \mathbb{Z}\}$ is dense in $(\mathbb{R} \backslash \mathbb{Z})^{n}$.

Now let $T=\left(t_{1}, \ldots, t_{s}\right) \in N^{s}$, and let $X^{T}=x_{1}^{t_{1}} \ldots x_{s}^{t_{s}}$ be a multinomial in s integer variables.

Lemma 2.7. Suppose $\left\{X^{T_{i}}\right\}_{i=1}^{r}$ is a set of distinct multinomials in s integer variables. Then there is $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}^{s}$ so that $X^{T_{i}} \circ \phi$ are monomials and are distinct.

Proof. We put a lexicographic order on N^{s} as follows: let $i \in$ $1, \ldots, s$ be the greatest integer with $m_{i} \neq m_{i}^{\prime}$; then $\left(m_{1}, \ldots, m_{s}\right)>$ ($m_{1}^{\prime}, \ldots, m_{n}^{\prime}$) if $m_{i}>m_{i}^{\prime}$. A simple induction argument shows that for the finite set $\left\{T_{i}\right\} \subseteq N^{s}$ there is $N \in N^{s}, N=\left(N_{1}, \ldots, N_{s}\right)$, so that if $T_{i}>T_{j}$ in the ordering on N^{s}, then $N \cdot T_{i}>N \cdot T_{j}(N \cdot T$ denotes the usual dot product).

Now define $\phi(x)=\left(x^{N_{1}}, \ldots, x^{N_{s}}\right)$; then we have $X^{T_{i}} \circ \phi=x^{T_{i} \cdot N}$, and so the monomials $X^{T_{i}} \circ \phi$ remain distinct.

Lemma 2.8. Suppose $\left\{p_{i}\right\}_{i=1}^{n}$ is a set of polynomials in s integer variables, with coefficients in $\mathbb{R} \backslash \mathbb{Z}$. If for all integers a_{1}, \ldots, a_{n}, not all zero, $p=a_{1} p_{1}+\ldots+a_{n} p_{n}$ has an irrational coefficient, then the image of \mathbb{Z}^{s} under $\left(p_{1}, \ldots, p_{n}\right)$ is dense in $(\mathbb{R} \backslash \mathbb{Z})^{n}$.

Proof. Let $\left\{X^{T_{i}}\right\}$ be the set of monomials which appear in the polynomials p_{i}, and let ϕ be as in Lemma 2.7. We note that the monomials in $a_{1} p_{1}+\ldots .+a_{n} p_{n}$ are a subset of the $\left\{X^{T_{i}}\right\}$, so that they remain distinct if composed with ϕ; and so for all a_{1}, \ldots, a_{n}, not all zero, $a_{1} p_{1} \circ \phi+\ldots+a_{n} p_{n} \circ \phi$ has an irrational coefficient. We invoke Lemma 2.6, and the result follows.

Thus we will have proven Proposition 2.5 if we can show that whenever λ is generic, the polynomial

$$
P(x: \lambda)=a_{k+1} p_{k+1}(x: \lambda)+\ldots+a_{n} p_{n}(x: \lambda)
$$

(where a_{k+1}, \ldots, a_{n} are integers, not all zero) has an irrational coefficient.

Assume λ is generic. We begin by writing $\operatorname{Ad}^{\star}(\gamma)=\operatorname{Ad}^{\star}\left(x_{1}, \ldots, x_{n}\right)$ as a matrix with respect to the coordinates $\left(\lambda_{1}, . ., \lambda_{n}\right)$ of λ given by the map Φ. The condition $[\mathcal{L}, \mathcal{L}] \subseteq r!\mathcal{L}$ implies that the entries of the matrix $\operatorname{Ad}^{\star}\left(x_{1}, \ldots, x_{n}\right)$ are elements of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.

Therefore $\operatorname{Ad}^{\star}(\gamma)\left(\lambda_{1}, \ldots, \lambda_{k}, \ldots, \lambda_{n}\right)=\left(\lambda_{1}, \ldots, \lambda_{k}, p_{k+1}(\gamma: \lambda), \ldots\right.$, $\left.p_{n}(\gamma: \lambda)\right) . \operatorname{Ad}^{\star}(\gamma)$ is given by the matrix

$$
\left(\begin{array}{ccccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
p_{k+1,1} & p_{k+1,2} & p_{k+1,3} & \cdots & p_{k+1, k} & 1 & 0 & \cdots & 0 \\
p_{k+2,1} & p_{k+2,2} & p_{k+2,3} & \cdots & p_{k+2, k} & p_{k+2, k+1} & 1 & \cdots & 0 \\
p_{k+3,1} & p_{k+3,2} & p_{k+3,3} & \cdots & p_{k+3, k} & p_{k+3, k+1} & p_{k+3, k+2} & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
p_{n, 1} & p_{n, 2} & p_{n, 3} & \cdots & p_{n, k} & p_{n, k=1} & p_{n, k+2} & \cdots & 1
\end{array}\right)
$$

with each $p_{i, j} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
We break the problem down as follows.

1. $p_{i}(\gamma, \lambda)=p_{i, 1}(\gamma) \lambda_{1}+p_{i, 2}(\gamma) \lambda_{2}+\ldots+p_{i, k}(\gamma) \lambda_{k}+\ldots+p_{i, i-1}(\gamma) \lambda_{i-1}+$ λ_{i}, for $\mathrm{i}=\mathrm{k}+1, \ldots, \mathrm{n}$.
2. Let $\left\{a_{k+1}, \ldots, a_{n}\right\}$ be any set of integers, not all zero. Define

$$
\begin{aligned}
p(\gamma, \lambda) & =a_{k+1} p_{k+1}(\gamma, \lambda)+\ldots+a_{n} p_{n}(\gamma, \lambda) \\
& =\sum_{i=k+1}^{n} a_{i}\left\{\sum_{t=1}^{i-1} \lambda_{t} p_{2, t}(\gamma)+\lambda_{i}\right\} \\
& =\sum_{t=1}^{k} \lambda_{t}\left\{\sum_{i=k+1}^{n} a_{i} p_{i, t}\right\}+\sum_{t=k+1}^{n} \lambda_{t}\left\{\sum_{i=t}^{n} a_{i} p_{i, t}\right\} .
\end{aligned}
$$

We note that $p_{i, i}=1$ for all i. Let $A=\left(0, \ldots, 0, a_{k+1}, \ldots, a_{n}\right) \in$ \mathcal{L}. If we write $\operatorname{Ad}\left(\gamma^{-1}\right) A=\left(\Phi_{1}, \ldots, \Phi_{n}\right)$, then we have $p(\gamma, \lambda)=$ $\sum_{i=1}^{n} \lambda_{i} \Phi_{i}$. We write $p(\gamma, \lambda)=p_{c}(\gamma, \lambda)+p_{n}(\gamma, \lambda)$ where $p_{c}=\sum_{i=1}^{k} \lambda_{i} \Phi_{i}$ and $p_{n}=\sum_{i=k+1}^{n} \lambda_{i} \Phi_{i}$.

We first show that if $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ are as in lemma 2.1 , then the polynomial p_{c} has a nontrivial irrational coefficient. Since the Φ_{i}, $i=1, \ldots, k$, consist of polynomials with integral coefficients and $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ are linearly independent over \mathbb{Q}, all the coefficients of the polynomial p_{c} are irrational. Therefore, we need only show that p_{c} is not a constant polynomial, or equivalently that some Φ_{i}, $i=1, \ldots, k$, is not constant.

These are the central components of the vector giving $\operatorname{Ad}\left(\gamma^{-1}\right) A$, where not all of the entries a_{i} are zero. Therefore the orbit described is that of a non-central element of \mathcal{L}, and so it will suffice to show that for any non-central element T of $\mathcal{L}, \operatorname{Ad}(\Gamma)(T)$ has nondegenerate orthogonal projection onto the center of $\mathcal{L}_{\mathbb{R}}$.

Lemma 2.9. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be as before, and let P_{z} be projection onto the real span of $\left\{X_{1}, \ldots, X_{k}\right\}$ with $\mathbb{R}-\operatorname{span}\left\{X_{k+1}, \ldots, X_{n}\right\}$ as kernel. Then if T is a non-central element of $\mathcal{L}_{\mathbb{R}}, P_{z}(\operatorname{Ad}(\Gamma) T-T)$ is not identically zero.

Proof. It suffices to show that $P_{z}(\operatorname{Ad}(N) T-T)$ is not identically zero, where $N=\exp \left(\mathcal{L}_{\mathbb{R}}\right)$. Let $\left\{t_{1}, \ldots, t_{s}\right\}$ be a subset of \mathbb{R} and $\left\{Y_{1}, \ldots, Y_{s}\right\}$ be a subset of $\mathcal{L}_{\mathbb{R}}$.

If we use the formula $\operatorname{Ad}(\exp Y) T=\exp (\operatorname{ad}(Y) T)$ to write $\operatorname{Ad}\left(\exp t_{1} Y_{1} \cdot \exp t_{2} Y_{2} \cdot \ldots \cdot \exp t_{s} Y_{s}\right) T-T$ as a polynomial expression in $\left\{t_{1}, \ldots, t_{s}\right\}$ with coefficients in $\mathcal{L}_{\mathbb{R}}$, we see that the coefficient of the monomial $t_{1} t_{2} \ldots t_{s}$ is a rational multiple of $\left[Y_{1},\left[Y_{2},[\ldots\right.\right.$ $\left.\left.\left.\left[Y_{s}, T\right]\right] \ldots\right]\right]$. Now suppose that $P_{z}(\operatorname{Ad}(N) T-T)=0$; then we
must have $\left[Y_{1},\left[Y_{2},\left[\ldots\left[Y_{s}, T\right] \ldots\right]\right]\right]=0$. However, since T is not central, there exists a sequence of elements $\left\{Y_{1}, \ldots, Y_{s}\right\} \subseteq \mathcal{L}_{\mathbb{R}}$ such that $W=\left[Y_{1},\left[Y_{2},\left[\ldots\left[Y_{s}, T\right] \ldots\right]\right]\right] \in z(\mathcal{L}), W \neq 0$. Then $P_{z}(W)=W$ is nonzero, giving a contradiction, and completing the proof of Lemma 2.9 .

Lemma 2.10. The polynomial $p(\gamma, \lambda)$ has an irrational coefficient (of a nontrivial monomial) whenever λ is generic.

Proof. Suppose that $p(\gamma, \lambda)$ has entirely rational coefficients. Then since $p_{c}(\gamma, \lambda)$ is nontrivial, $p_{n}(\gamma, \lambda)=p_{r}(\gamma, \lambda)-p_{c}(\gamma, \lambda)$, where $p_{r}(\gamma, \lambda)$ has rational coefficients. Since we have $p_{n}(\gamma, \lambda)=$ $\sum_{i=k+1}^{n} \lambda_{i} \Phi_{i}$, where the Φ_{i} have integer coefficients, we must have some subset $\left\{\lambda_{\sigma(t)}\right\}_{t=1}^{l}$ of coefficients which are from the \mathbb{Q}-span of $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$, and the rest must be rational. Thus we have

$$
\sum_{i=1}^{k} \lambda_{i} \Phi_{i}+\sum_{t=1}^{l} \lambda_{\sigma(t)} \Phi_{\sigma(t)}=K
$$

where K is some real constant. However, the $\lambda_{\sigma(t)}, t=1, \ldots, l$, satisfy $\lambda_{\sigma(t)}=\sum_{i=1}^{k} q_{t, i} \lambda_{i}$, where the $q_{t, i}$ are rational. Therefore we may write the equation above as

$$
\sum_{i=1}^{k} \lambda_{i} \Phi_{i}+\sum_{t=1}^{l}\left\{\sum_{s=1}^{k} q_{s, t} \lambda_{s}\right\} \Phi_{\sigma(t)}=K .
$$

Since the λ_{i} are linearly independent over \mathbb{Q}, we must have, for each i, that

$$
\Phi_{i}+\sum_{t=1}^{l} q_{t, i} \Phi_{\sigma(t)}=K_{i}
$$

for some real constant K_{i}. Let $v_{i}=X_{i}+\sum_{t=1}^{l} q_{i, t} X_{\sigma(t)} \in \mathcal{L}_{\mathbb{R}}$, for $i=$ $1, \ldots, k$. The above implies that the function $\gamma \longmapsto\left\langle v_{i}, \operatorname{Ad}(\gamma) A>\right.$ is a constant function, and so that the projection of $\operatorname{Ad}(N) A$ onto the subspace $W=\mathbb{R}$-span $\left\{v_{i}\right\}$ is degenerate. We will show that this is impossible, giving a contradiction.

Lemma 2.11. Let \mathcal{O} be a non-trivial Ad-orbit of N. Then $P_{W}(\mathcal{O})$ is nondegenerate, i.e., $P_{W}(\operatorname{Ad}(\Gamma) A-A)$ is nonzero.

Proof. Let $\left\{Y_{1}, \ldots, Y_{s}\right\}$ be as in the proof of Lemma 2.9., such that $\left[Y_{1},\left[\ldots\left[Y_{s-1},\left[Y_{s}, A\right]\right] \ldots\right]\right]$ is a nonzero element of $z(\mathcal{L})$. Then if
we express $\operatorname{Ad}\left(\exp t_{1} Y_{1} \cdot \ldots \cdot \exp t_{s} Y_{s}\right) A$ as a polynomial in t_{1}, \ldots, t_{s} taking on values in $\mathcal{L}_{\mathbb{R}}$, we see that the monomial $t_{1} \ldots t_{s}$ appears as a coefficient only of central elements $\left\{X_{1}, \ldots, X_{k}\right\}$. Let $i \leq k$ be such that $\left[Y_{1},\left[\ldots\left[Y_{s}, A\right] \ldots\right]\right]$ has a nontrivial X_{i}-component. Then $<v_{i}, \operatorname{Ad}\left(\exp t_{1} Y_{1} \ldots \exp t_{s} Y_{s}\right) A>$ is a polynomial with a nonzero coefficient of $t_{1} \ldots t_{s}$, so it is nontrivial, and so $P_{W}(\mathcal{O})$ is nondegenerate.

This completes the proof of Lemma 2.10; taken together with Lemma 2.8, this completes the proof of Proposition 2.5.
3. Traceable factor representations associated with generic coadjoint orbits. Suppose now that λ is a generic element of $\widehat{\mathcal{L}}$, with $\operatorname{Ad}^{\star}(\Gamma)$ - orbit closure \mathcal{O}_{λ}. We define τ_{λ} to be the representation of Γ induced from the restriction of λ to $z(\mathcal{L})$, regarded as a character on $z(\Gamma)$ (this is possible because $z(\mathcal{L})=z\left(\mathcal{L}_{\mathbb{R}}\right) \cap \mathcal{L}$ by Theorem 5.1.5 in [3], and because $\exp z(\mathcal{L})=z(\Gamma)) ; \tau_{\lambda}$ is defined on the Hilbert space

$$
\begin{aligned}
H_{\lambda}=\left\{f:\left.\Gamma \longrightarrow \mathbb{C}\left|\int_{\Gamma \backslash z(\Gamma)}\right| f\right|^{2} d x<\infty f(z \gamma)=\right. & \lambda(z) f(\gamma) \\
& z \in z(\Gamma), \gamma \in \Gamma\}
\end{aligned}
$$

with inner product $<f, g>=\int_{\Gamma \backslash z(\Gamma)} f \cdot \bar{g} d x$. Since elements in \mathcal{O}_{λ} agree on the center of $\mathcal{L}, \tau_{\lambda}$ depends only upon the coadjoint orbit closure \mathcal{O}_{λ}. Recall that τ_{λ} is a factor representation if $C R\left(\tau_{\lambda}\right)=$ $\tau_{\lambda}(\Gamma)^{\prime} \cap \tau_{\lambda}(\Gamma)^{\prime \prime}=\mathbb{C} I$ (in general, A^{\prime} denotes the commutator of the set A). In what follows, we will show that if \mathcal{O}_{λ} is a generic coadjoint orbit closure in $\widehat{\mathcal{L}}$, then τ_{λ} is a factor representation.

Lemma 3.1. (Lemma $1,[4])$. Let $U \in \tau_{\lambda}(\Gamma)^{\prime}$, and let H_{λ} be the Mackey space as defined above for the representation τ_{λ}. Then U is entirely determined by its value on the function $\delta_{1} \in H_{\lambda}$ defined by

$$
\delta_{1}(\gamma)= \begin{cases}0 & \gamma \notin z(\Gamma) \\ \lambda(\gamma) & \gamma \in z(\Gamma)\end{cases}
$$

Lemma 3.2. (Lemma 2, [4]). If $U \in C R\left(\tau_{\lambda}\right)$, then U is convolution by an element of H_{λ} which is constant on conjugacy classes.

Furthermore, if $f \in H_{\lambda}$ is constant on conjugacy classes in Γ, and if convolution by f is a bounded operator on H_{λ}, then convolution by f is in $C R\left(\tau_{\lambda}\right)$.

By Lemma 3.2, to show that τ_{λ} is a factor it suffices to show that the only element of H_{λ} which is constant on conjugacy classes of Γ is δ_{1}; for convolution by δ_{1} is the identity map on H_{λ}, and so all elements of $C R\left(\tau_{\lambda}\right)$ are multiples of the identity.

Theorem 3.3. If λ is a generic element of $\widehat{\mathcal{L}}$, then τ_{λ} is a factor representation.

Proof. Let $\Gamma^{(i)}$ denote the i-th element of the rising central series of Γ, and let $\gamma \in \Gamma, \gamma \notin \Gamma^{(2)}$. We will show that a function constant on the conjugacy class $C(\gamma)$ cannot be in H_{λ} unless it is zero there.

Let I_{γ} denote the isotropy subgroup in Γ of the element $\gamma z(\Gamma)$, where Γ acts on $\Gamma \backslash z(\Gamma)$ by conjugation. If $\gamma \notin \Gamma^{(2)}$, then I_{γ} is a proper subgroup of Γ. The cosets of $z(\Gamma)$ intersected by the conjugacy class $C(\gamma)$ are in bijective correspondence with $\Gamma \backslash I_{\gamma}$; therefore, if I_{γ} were also a saturated subgroup, the number of cosets intersected by the conjugacy class of γ would be infinite, and so a function in H_{λ} which is constant on conjugacy classes would have to be zero on $C(\gamma)$.

Therefore we prove
Lemma 3.4. If $\gamma \in \Gamma$, and $\gamma \notin \Gamma^{(2)}$, then I_{γ} is a saturated subgroup of Γ.

Proof. Let $\gamma=\exp T, x=\exp X$, for $T, X \in \mathcal{L}$. If $x^{n} \in I_{\gamma}$ for some n, then we have $x^{n} \gamma x^{-n} \gamma^{-1} \in z(\Gamma)$. By the Campbell-BakerHausdorff formula,

$$
\begin{aligned}
x^{n} \gamma x^{-n} \gamma^{-1} & =\exp n X \exp T \exp -n X \exp -T \\
& =\exp \left\{n[X, T]+\frac{1}{2}\left(n^{2}[X,[X, T]]-n[T,[X, T]]\right)+\ldots\right\} \\
& =\exp P(n) \in z(\Gamma),
\end{aligned}
$$

where successive terms involve brackets of increasing order. Clearly the polynomial $P(n)$ is in $z(\mathcal{L})$, and since I_{γ} is a subgroup of Γ, $P(k n) \in z(\mathcal{L})$ as well for each $k \in \mathbb{Z}$. Therefore each individual
term of $P(n k)$, viewed as a polynomial in k, is in $z(\mathcal{L})$. Using the Campbell-Baker-Hausdorff formula again, we rewrite the above as

$$
\begin{aligned}
& \exp n k X(\exp T \exp -n k X \exp -T) \\
& =\exp n k X \exp -(\operatorname{Ad}(\exp T) n k X) \\
& =\exp \left(n k X-\operatorname{Ad}(\exp T) n k X-\frac{1}{2}[n k X, \operatorname{Ad}(\exp T) n k X]-\ldots\right)
\end{aligned}
$$

where successive terms involve powers of k which are higher than 2. It follows that $n\{X-\operatorname{Ad}(\exp T) X\} \in z(\mathcal{L})$, and therefore, since $z(\mathcal{L})$ is saturated, $X-\operatorname{Ad}(\exp T) X$ is in $z(\mathcal{L})$. We have

$$
\operatorname{Ad}(\exp T) X-X=[T, X]+\frac{1}{2}[T,[T, X]]+\frac{1}{6}[T,[T,[T, X]]]+\ldots
$$

and we wish to see that $[T, X] \in z(\mathcal{L})$. We expand $[T, X]$ in terms of a strong malcev basis $\left\{X_{i}\right\}$ through the lower central series of \mathcal{L}; then we may write $[T, X]=a_{1} X_{1}+\ldots+a_{s} X_{s}$, where $a_{s} \neq 0$. Since $[T,[T, X]]$ and subsequent terms belong to ideals which are further down in the lower central series, X_{s} will be absent from basis expansions of these terms and so we must have $X_{s} \in z(\mathcal{L})$, and therefore $[T, X] \in z(\mathcal{L})$. Therefore $x \gamma x^{-1} \gamma^{-1} \in z(\Gamma)$, and so I_{γ} is saturated.

Now we suppose that $x \in \Gamma^{(2)}, x \notin z(\Gamma)$. The conjugacy class of x is thus a nontrivial subset of the coset $x z(\Gamma)$. Since λ is a generic character, the kernel of $\tilde{\lambda}$ in $z(\Gamma)$ is trivial; therefore a function in H_{λ}, with left $z(\Gamma)$-covariance, could not possibly be constant on $C(x)$ unless it were zero on $C(x)$.

Therefore, we see that a function in H_{λ} which is constant on conjugacy classes is supported only upon $z(\Gamma)$, and hence must be a multiple of δ_{1}. This completes the proof of Theorem 3.3.

What follows is proved in Section 3 in [4], and applies here with $I_{\lambda}=z(\Gamma)$.

Theorem 3.5. (Theorem 3, [4]). If λ is generic, τ_{λ} is a traceable factor representation, with trace (for $f \in \mathcal{L}^{1}(\Gamma)$)

$$
\Theta_{\lambda}(f)=\sum_{u \in z(\Gamma)} \lambda(u) f(u)=<f, \delta_{1}>
$$

where

$$
\delta_{1}(u)= \begin{cases}\lambda(u) & \text { if } u \in z(\Gamma) \\ 0 & \text { if } u \notin z(\Gamma) .\end{cases}
$$

Furthermore, we have the orbital trace formula

$$
\Theta_{\lambda}(f)=\int_{\overline{\mathcal{O}}_{\lambda}} F^{\wedge}(\chi) d \chi
$$

where $d \chi$ is the lift of Haar measure on $z(\mathcal{L})^{\perp}$ to the closure $\lambda+$ $z(\mathcal{L})^{\perp}$ of \mathcal{O}_{λ}, and $F=f \circ \exp \in L^{1}(\mathcal{L}) . F^{\wedge}(\chi)$ denotes the usual Fourier transform of F.

These are the same traces R. Howe found as elements of dual cones of primitive ideals in the primitive ideal space of Γ (see Proposition 3 of [5]).

Now let $F \in C_{c}(\mathcal{L})$, so that $f=F \circ \log \in C_{c}(\Gamma)$. If $\left\{X_{1}, \ldots, X_{n}\right\}$ is our chosen basis, we can define an inclusion $i: z(\hat{\mathcal{L}}) \longrightarrow \hat{\mathcal{L}}$ as follows: $\tilde{\lambda} \longmapsto \lambda$ if

$$
\lambda\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right)=\tilde{\lambda}\left(a_{1} X_{1}+\ldots+a_{k} X_{k}\right),
$$

for all $\vec{a} \in \mathbb{Z}^{n}$. Then by Fourier inversion on the abelian group \mathcal{L},

$$
f(e)=F(0)=\int_{\widehat{\mathcal{L}}} F^{\wedge}(\xi) d \xi=\int_{\widehat{z(\mathcal{L})}}\left\{\int_{z(\mathcal{L})^{\perp}} F^{\wedge}(\lambda+\chi) d \chi\right\} d \lambda,
$$

where Haar measures are normalized so that their supports have measure 1.

We let $d_{\lambda}(\chi)$ be the lift of normalized Haar measure on $z(\mathcal{L})^{\perp}$ to $\lambda+z(\mathcal{L})^{\perp}$; if λ is generic, then this is the measure on the closure of \mathcal{O}_{λ} which appears in the orbital trace formula for τ_{λ}. Since a.a. $\tilde{\lambda} \in \widehat{z(\mathcal{L})}$ are generic, the above becomes

$$
\begin{aligned}
\int_{\widehat{z(\mathcal{L})}}\left\{\int_{z(\mathcal{L})^{\perp}} F^{\wedge}(\lambda\right. & +\chi) d \chi\} d \lambda \\
& =\int_{\overline{z(\mathcal{L})}}\left\{\int_{\overline{\mathcal{O}}_{\lambda}} F^{\wedge}(\chi) d_{\lambda}(\chi)\right\} d \lambda=\int_{\overline{z(\mathcal{L})}} \Theta_{\lambda}(f) d \lambda .
\end{aligned}
$$

We have proven
Theorem 3.6. (Plancherel Formula). Suppose $f \in C_{c}(\Gamma)$, and that for generic $\lambda \in \widehat{\mathcal{L}}, \Theta_{\lambda}$ is the trace associated with the factor
representation τ_{λ} induced from $\tilde{\lambda}$ on $z(\mathcal{L})$. Then $\tilde{\lambda} \longmapsto \Theta_{\lambda}(f)$ is defined for a.a. λ, is integrable on $z \widehat{(\mathcal{L})}$, and we have

$$
f(e)=\int_{\overrightarrow{z(\mathcal{L})}} \Theta_{\lambda}(f) d \mu(\lambda),
$$

References

[1] L. Auslander, L. Green and F. Hahn, Flows on Homogeneous Spaces, Annals of Math. Studies, Vol. 53, Princeton University Press, Princeton, N.J., 1963.
[2] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957.
[3] L. Corwin and F. Greenleaf, Representations of Nilpotent Lie Groups and their Applications, Part I, Basic Theory and Examples, Cambridge University Press, Cambridge, 1990.
[4] L. Corwin and C. Pfeffer, On factor representations of discrete rational nilpotent groups and the Plancherel formula, Pacific. J. Math., 162 (1994), 261-175.
[5] R. Howe, On representations of discrete, finitely generated, torsion-free, nilpotent groups, Pacific J. Math., 73, No. 2 (1977), 281-306.

Received July 28, 1992 and in revised form December 22, 1992. Research partially supported by NSF grant DMS-9203136.

Florida Atlantic University
Boca Raton, FL 33431-0991

