ON A PLANCHEREL FORMULA FOR CERTAIN DISCRETE, FINITELY GENERATED, TORSION-FREE NILPOTENT GROUPS

CAROLYN PFEFFER JOHNSTON

We prove a Plancherel formula for elementarily exponentiable, discrete, finitely generated, torsion-free nilpotent groups.

1. Introduction. Let Γ be a discrete, finitely generated, torsionfree, nilpotent Lie group. If $\Gamma^{(k)}$ denotes its descending central series, we will call Γ *n*-step nilpotent if $\Gamma^{(n)} \neq \{1\}$ but $\Gamma^{(n+1)} = \{1\}$. Malcev has shown that any Γ of this type may be embedded as a discrete cocompact subgroup of a simply connected, connected nilpotent Lie group (see [1], Chapter 1); thus we may utilize all that is known about uniform subgroups of these groups, which is summarized beautifully in ([3], Secs. 5.1 and 5.2).

This work extends the pioneering work of R. Howe on the representation theory of groups of this type, and uses much of the machinery he developed (see [5]). The techniques used to prove the Plancherel formula for Γ are essentially those used in [4] to prove a similar Plancherel formula for discrete groups which are the rational points of a nilpotent Lie group. The corresponding result for Γ follows easily once we observe that, for a certain type of character $\{\tilde{\lambda}\}$ in the Pontryagin dual of the center of Γ , the Γ -orbit of any extension λ of $\tilde{\lambda}$ to a character on the Lie algebra \mathcal{L} of Γ is dense in the set $\lambda + z(\mathcal{L})^{\perp} \subset \hat{\mathcal{L}}$ (Proposition 2.5).

Let $\mathcal{L}_{\mathbb{R}}$ be a real finite-dimensional *r*-step nilpotent Lie algebra, and let $\mathcal{L} \subseteq \mathcal{L}_{\mathbb{R}}$ be a discrete additive subgroup of $\mathcal{L}_{\mathbb{R}}$. A calculation with the Campbell-Baker-Hausdorff formula shows that if \mathcal{L} is

- 1. an additive discrete subgroup of $\mathcal{L}_{\mathbb{R}}$, not necessarily of cofinite volume, and
- 2. \mathcal{L} satisfies $[\mathcal{L}, \mathcal{L}] \subseteq r! \mathcal{L}$,

then $\Gamma = \exp \mathcal{L}$ forms a discrete subgroup of the connected, simply connected nilpotent Lie group $N = \exp \mathcal{L}_{\mathbb{R}}$. If \mathcal{L} satisfies condition 1, we will refer to \mathcal{L} as a *lattice*. If \mathcal{L} satisfies both conditions we will say that \mathcal{L} , and $\Gamma = \exp \mathcal{L}$, are *elementarily exponentiable*, or *e.e.* for short. If \mathcal{L} is *e.e.*, and *i* is an *e.e.* lattice contained in \mathcal{L} which is closed under the bracket operation, we will call *i* an *ideal* of \mathcal{L} if *i* is $\operatorname{Ad}^*(\mathcal{L})$ -invariant. Note that for *i* to be *e.e.*, we must have $[i, i] \subseteq r!i$, where *r* is the length of $\mathcal{L}_{\mathbb{R}}$. We assume throughout this paper that the Γ under consideration are *e.e.*.

We define the rising central series of ideals of \mathcal{L} as follows; set $\mathcal{L}_{(0)} = (0)$, and define $\pi_n \colon \mathcal{L} \longrightarrow \mathcal{L} \setminus \mathcal{L}_{(n-1)}$ to be the natural quotient map for each $n \geq 1$. Then $\mathcal{L}_{(n)}$ is defined to be the preimage under π_n of the center of $\mathcal{L} \setminus \mathcal{L}_{(n-1)}$. Thus $\mathcal{L}_{(n)}$ is an increasing sequence of ideals of \mathcal{L} , satisfying $\mathcal{L}_{(r)} = \mathcal{L}$, since \mathcal{L} is *r*-step nilpotent.

We show in what follows that the $L_{(n)}$ are *e.e.*.

LEMMA 1.1.
$$\mathcal{L}_{(n)} = \mathcal{L} \cap (\mathcal{L}_{\mathbb{R}})_{(n)}, \text{ for } n \in 0, ..., r.$$

Proof. For n = 0, the result is trivial.

Suppose now that $\mathcal{L}_{(k)} = \mathcal{L} \cap (\mathcal{L}_{\mathbb{R}})_{(k)}$. By definition, $\mathcal{L}_{(k+1)} = \pi_k^{-1}(z(\mathcal{L} \setminus \mathcal{L}_{(k)}))$. We show:

(a). $\mathcal{L}_{(k+1)} \subseteq \mathcal{L} \cap (\mathcal{L}_{\mathbb{R}})_{(k+1)}$.

For if $X \in \mathcal{L}_{(k+1)}$, $[X, Y] = Z \in \mathcal{L}_{(k)}$ for all $Y \in \mathcal{L}$. Let $\overline{\mathcal{L}}$ be the image of \mathcal{L} in $\mathcal{L}_{\mathbb{R}} \setminus \mathcal{L}_{\mathbb{R}(k)}$, and let \overline{X} be the image of X. It follows from Theorems 5.1.4 and 5.2.3 in [3] that $\overline{\mathcal{L}}$ is uniform in $\mathcal{L}_{\mathbb{R}} \setminus \mathcal{L}_{\mathbb{R}(k)}$. For $X \in \mathcal{L}_{(k+1)}$, \overline{X} commutes with all $\overline{Y} \in \overline{L}$. We apply Theorem 5.1.5 from [3] to see that $\overline{X} \in z(\mathcal{L}_{\mathbb{R}} \setminus \mathcal{L}_{\mathbb{R}(k)})$. It follows that $X \in \mathcal{L}_{\mathbb{R}(k+1)}$.

(b). $\mathcal{L} \cap \mathcal{L}_{\mathbb{R}^{k+1}} \subseteq \mathcal{L}_{(k+1)}$.

If $X \in \mathcal{L} \cap \mathcal{L}_{\mathbb{R}(k+1)}$, then $[X, Y] = Z \in \mathcal{L} \cap \mathcal{L}_{\mathbb{R}(k)} = \mathcal{L}_{(k)}$. This completes the proof of the lemma.

It now follows easily that $\mathcal{L}_{(k)}$ is *e.e.* for all k; suppose $Z = [X, Y] \in [\mathcal{L}_{(k)}, \mathcal{L}_{(k)}]$. Then since \mathcal{L} is *e.e*, Z = r!X for some $X \in \mathcal{L}$. By definition, $[\mathcal{L}_{(k)}, \mathcal{L}_{(k)}] \subseteq [\mathcal{L}_{(k)}, \mathcal{L}] \subseteq \mathcal{L}_{(k-1)} \subseteq \mathcal{L}_{(k)} = \mathcal{L}_{\mathbb{R}(k)} \cap \mathcal{L}$; so $Z \in \mathcal{L}_{\mathbb{R}(k)}$, hence $X \in \mathcal{L}_{\mathbb{R}(k)}$. Thus $X \in \mathcal{L}_{(k)}$, and so $Z \in r!\mathcal{L}_{(k)}$. Therefore, $\mathcal{L}_{(k)}$ is *e.e.*.

We will refer to a subgroup $\Gamma' \subseteq \Gamma$ (or a subalgebra $\mathcal{L}' \subseteq \mathcal{L}$) as saturated if $x^n \in \Gamma'$ implies $x \in \Gamma'$ ($kX \in \mathcal{L}'$ implies $X \in \mathcal{L}'$).

I am grateful to the referee of this paper for suggestions which greatly improved the presentation of these results.

2. Generic coadjoint orbits. Let \mathcal{L} be an *e.e.*lattice in a real nilpotent Lie algebra $\mathcal{L}_{\mathbb{R}}$, so that $\Gamma = \exp(\mathcal{L}_{\mathbb{R}})$ is uniform in $N = \exp(\mathcal{L}_{\mathbb{R}})$. We assume throughout this section that a strong Malcev basis $\{X_1, X_2, ..., X_n\}$ for $\mathcal{L}_{\mathbb{R}}$ through its ascending central series has been chosen so that it satisfies:

1. The \mathbb{Z} -span of $\{X_1, ..., X_n\}$ is the lattice \mathcal{L} in $\mathcal{L}_{\mathbb{R}}$:

2. The real span of $\{X_1, ..., X_i\}$ forms an ideal of $\mathcal{L}_{\mathbb{R}}$, and in particular the real span of $\{X_1, ..., X_k\}$ is the center of $\mathcal{L}_{\mathbb{R}}$ (we will also regard $\mathcal{L}_{\mathbb{R}}$ as having the inner product defined by setting $\langle X_i, X_j \rangle = \delta_{i,j}$);

3. $\Gamma = \exp(\mathbb{Z}X_1) \exp(\mathbb{Z}X_2) \dots \exp(\mathbb{Z}X_n)$. Thus we may coordinatize Γ as follows: $\gamma \leftrightarrow (x_1, \dots, x_n) \in \mathbb{Z}^n$ whenever $\gamma = \exp x_1 X_1 \cdot \dots \cdot \exp x_n X_n$.

That a basis for $\mathcal{L}_{\mathbb{R}}$ may be chosen satisfying all these conditions is shown in Section 5.1 of [3], and as part of the proof of Proposition 5.4.11 in [3].

We think of \mathcal{L} as the Lie algebra of Γ ; as an abelian group it is isomorphic to \mathbb{Z}^n via the map

$$\Psi \colon \mathbb{Z}^n \longrightarrow \mathcal{L}$$
$$(a_1, ..., a_n) \longmapsto a_1 X_1 + ... + a_n X_n.$$

Thus the natural Pontryagin dual of \mathcal{L} is $T^n \cong (\mathbb{R} \setminus \mathbb{Z})^n$ via the map

$$\Phi \colon T^n \longrightarrow \widehat{\mathcal{L}}$$
$$(\overline{\lambda}_1, ..., \overline{\lambda}_n) \longmapsto \lambda$$

where $\lambda(a_1, ..., a_n) = \exp(2\pi i(\lambda_1 a_1 + ... + \lambda_n a_n))$, for any choice $\{\lambda_i\}$ of representatives for the elements $\bar{\lambda}_i$ of $\mathbb{R}\setminus\mathbb{Z}$.

Let $z(\mathcal{L})$ denote the center of the Lie algebra \mathcal{L} ; if $z(\mathcal{L}_{\mathbb{R}})$ is the center of the real Lie algebra $\mathcal{L}_{\mathbb{R}}$, then $z(\mathcal{L}) = \mathcal{L} \cap z(\mathcal{L}_{\mathbb{R}})$ (Lemma 5.1.5 in [3]). Hence $z(\mathcal{L})$ is a saturated subalgebra of \mathcal{L} .

For a fixed $\lambda \in \widehat{\mathcal{L}}$, let \mathbf{i}_{λ} be the largest ideal of \mathcal{L} contained in the subalgebra $\mathbf{r}_{\lambda} = \{X \in \mathcal{L} : \lambda[X, Y] = 1 \text{ for all } Y \in \mathcal{L}\}$. Then $R_{\lambda} = \exp(\mathbf{r}_{\lambda})$ is the isotropy subgroup of λ under the Ad^{*}-action of Γ ; in particular it is shown in Lemma 2 of [5] that \mathbf{r}_{λ} is an *e.e.*lattice in \mathcal{L} . Furthermore, $\mathbf{i}_{\lambda} = \bigcap_{\gamma \in \Gamma} \operatorname{Ad}(\gamma) \mathbf{r}_{\lambda}$ is an *e.e.*ideal of \mathcal{L} (the intersection of *e.e.* subalgebras is *e.e.*, and the $\operatorname{Ad}(\gamma)\mathbf{r}_{\lambda}$ are each *e.e.*, being the images of an *e.e.* subalgebra under a Lie algebra automorphism). It follows that $\exp(\mathbf{i}_{\lambda}) = I_{\lambda} \subseteq R_{\lambda}$ is a normal subgroup of \mathcal{L} which always contains $\exp(z(\mathcal{L})) = z(\Gamma)$. Let $r: \widehat{\mathcal{L}} \longrightarrow \widehat{z(\mathcal{L})}$ send an element $\lambda \in \widehat{\mathcal{L}}$ to its restriction to $z(\mathcal{L})$. In what follows, we will show that for all $\widetilde{\lambda} \in \widehat{z(\mathcal{L})}$ except those in a set of Haar measure zero, the elements of $r^{-1}(\widetilde{\lambda})$ satisfy $\mathbf{i}_{\lambda} = z(\mathcal{L})$.

LEMMA 2.1. Suppose $\lambda = \Phi(\bar{\lambda}_1, ..., \bar{\lambda}_n)$ where $\bar{\lambda}_i \in \mathbb{R} \setminus \mathbb{Z}$. Then λ has trivial kernel in \mathcal{L} if and only if for some choice of representatives $\lambda_i \in \mathbb{R}$ of $\bar{\lambda}_i \in \mathbb{R} \setminus \mathbb{Z}$, the set $\{\lambda_1, ..., \lambda_n, 1\}$ is linearly independent over \mathbb{Q} .

Proof. Suppose λ has trivial kernel, and suppose that for some elements $q_1, \ldots, q_n, q \in \mathbb{Q}$, we have

$$\lambda_1 q_1 + \dots + \lambda_n q_n + q = 0$$

for some choice of representatives $\{\lambda_i\}$ for $\{\bar{\lambda}_i\}$. After multiplication of this equation by some integer, we have $\lambda_1 a_1 + \ldots + \lambda_n a_n + a = 0$ for some integers $\{a_i\}$. Then $\lambda_1 a_1 + \ldots + \lambda_n a_n = -a$, so $(a_1, \ldots, a_n) \in$ kernel (λ) . Thus $(a_1, \ldots, a_n) = 0$. It follows immediately that $q_i = 0$ for each $i = 1, \ldots, n$, and q = 0.

Conversely, suppose that λ has a nontrivial kernel, and that $(a_1, ..., a_n) \neq 0$ is an element of the kernel of λ . Let $\{\lambda_i\}$ be any choice of representatives for the elements $\{\bar{\lambda}_i\}$ which determine λ ; then $a_1\lambda_1 + ... + a_n\lambda_n = k$ for some element $k \in \mathbb{Z}$. The set $\{\lambda_1, ..., \lambda_n, 1\}$ is thus a linearly dependent set over \mathbb{Q} .

LEMMA 2.2. Let *i* be an e.e.ideal of the lattice \mathcal{L} . Let $\mathcal{L}_{(n)}$ be the rising central series of \mathcal{L} . Suppose $i \supseteq z(\mathcal{L}), i \neq z(\mathcal{L})$. Then $i \cap (\mathcal{L}_{(2)} - z(\mathcal{L}))$ is nonempty.

Proof. Since everything in sight is e.e., and since $I = \exp(i)$ is normal, we prove the result on the group level. Let \overline{I} denote the image of I in $\overline{G} = G \setminus z(\Gamma)$. Then since \overline{I} is a nontrivial normal subgroup of \overline{G} , its intersection with the center of \overline{G} is nontrivial. It follows that $I \cap (\Gamma_{(2)} - z(\Gamma))$ is nonempty, and so the result on the algebra level follows. LEMMA 2.3. For $\lambda \in \widehat{\mathcal{L}}$, $\mathbf{i}_{\lambda} = z(\mathcal{L})$ if and only if there exists no element $X \in \mathcal{L}_{(2)}$ such that $\operatorname{ad}(X)$ maps \mathcal{L} into the kernel of $\tilde{\lambda}$, where $\tilde{\lambda} = \lambda|_{z(\mathcal{L})}$.

Proof. Suppose $X \in \mathcal{L}_{(2)} - z(\mathcal{L})$, and ad(X) maps \mathcal{L} into the kernel of $\tilde{\lambda}$. Take K to be the additive subgroup in \mathcal{L} generated by X and the elements of $z(\mathcal{L})$. Then K is an ideal of \mathcal{L} , since $[K, \mathcal{L}] \subseteq z(\mathcal{L})$, and clearly $K \subseteq \mathbf{r}_{\lambda}$. Therefore $\mathbf{i}_{\lambda} \neq z(\mathcal{L})$.

Conversely, suppose $\mathbf{i}_{\lambda} \neq z(\mathcal{L})$. Then \mathbf{i}_{λ} properly contains $z(\mathcal{L})$. By the result of Lemma 2.2, we may choose $X \in \mathcal{L}_{(2)} - z(\mathcal{L})$ such that $X \in \mathbf{i}_{\lambda}$; then $\operatorname{ad}(X)$ maps \mathcal{L} into the kernel of $\tilde{\lambda}$. This completes the proof of Lemma 2.3.

Throughout the rest of this paper, λ will denote an element of $\hat{\mathcal{L}}$, and $\tilde{\lambda}$ will denote its restriction to $z(\mathcal{L})$.

COROLLARY. If $\mathbf{i}_{\lambda} = z(\mathcal{L})$, then for all $\phi \in r^{-1}(\tilde{\lambda})$, $i_{\phi} = z(\mathcal{L})$. Therefore, if ker $\tilde{\lambda} \subseteq z(\mathcal{L})$ is trivial, $\mathbf{i}_{\lambda} = z(\mathcal{L})$.

PROPOSITION 2.4. For a set $\{\tilde{\lambda}\} \subseteq \widehat{z(\mathcal{L})}$ of full Haar measure in $\widehat{z(\mathcal{L})}$, ker $\tilde{\lambda}$ is trivial.

Proof. Suppose $\tilde{\lambda}$ corresponds to the element $(\bar{\lambda}_1, ..., \bar{\lambda}_k) \in T^k$, and that for some set of representatives in \mathbb{R} of the $\bar{\lambda}_i$, the set $\{\lambda_1, ..., \lambda_k, 1\}$ is linearly dependent over \mathbb{Q} . Then for some set of integers $a_1, ..., a_k, a \in \mathbb{Z}$, not all zero, we have that $a_1\lambda_1 + ... + a_k\lambda_k =$ a. If we choose some other set of representatives for the $\bar{\lambda}_i$, the previous expression changes only by an integral constant.

It follows that the preimage in \mathbb{R}^k of the set of elements $\{\lambda_i\}$ satisfying this linear dependence condition consists of the union of hyperplanes of the form

$$a_1x_1 + a_2x_2 + \dots + a_kx_k = a,$$

where a_i , a vary over the elements of \mathbb{Z} . These are of measure zero in \mathbb{R}^k individually, hence their (countable) union is of measure zero. The corresponding set in T^n is therefore of measure zero, and thus the elements $(\bar{\lambda}_1, ..., \bar{\lambda}_k) \in T^n$ which satisfy the linear independence condition of Lemma 2.1 are of full measure in T^n . This completes the proof of Proposition 2.4. We finish this section by proving

PROPOSITION 2.5. If ker $\hat{\lambda}$ is trivial, then the closure of $\operatorname{Ad}^*(\Gamma)\lambda$ is $\lambda + z(\mathcal{L})^{\perp}$.

Suppose that $\gamma \in \Gamma$, and λ has coordinates $(\lambda_1, ..., \lambda_n) \in T^n$ via the map Φ . Then $\operatorname{Ad}^*(\gamma) = (\lambda_1, ..., \lambda_k, p_{k+1}(\gamma : \lambda), ..., p_n(\gamma : \lambda)$, where each $p_i(\gamma : \lambda)$ is a polynomial in the coordinates of γ (with respect to the map Ψ), with coefficients from the Q-span of $\{\lambda_1, ..., \lambda_n\}$.

In $\widehat{\mathcal{L}}$, $z(\mathcal{L})^{\perp}$ consists of all elements of the form $(0, ..., 0, \lambda_{k+1}, ..., \lambda_n)$, for $\lambda_i \in \mathbb{R} \setminus \mathbb{Z}$.

We wish to show that if $\lambda_1, ..., \lambda_k$ satisfy the equivalent conditions of Lemma 2.1 (where $z(\mathcal{L})$ plays the role of \mathcal{L}), then the set $\{\mathrm{Ad}^*(\gamma)\lambda - \lambda : \gamma \in \Gamma\}$ is dense in $z(\mathcal{L})^{\perp}$. In what follows, λ of this type will be called "generic", as will coadjoint orbits of the form $\mathcal{O}_{\lambda} = \lambda + z(\mathcal{L})^{\perp}$ where λ is generic.

We may regard the polynomials $p_i(\gamma; \lambda)$ as polynomials in $\{x_1, ..., x_n\}, x_i \in \mathbb{Z}$, by identifying γ with $(x_1, ..., x_n)$ via Ψ .

LEMMA 2.6. (H. Weyl, [2]). Suppose that $\{p_i\}_{i=1}^n$ is a set of polynomials in one integer variable, with coefficients in $\mathbb{R}\setminus\mathbb{Z}$. If for each set of integers $a_1, ..., a_n$, not all zero, the polynomial $a_1p_1 + ... + a_np_n$ has an irrational coefficient, then the set of points $\{(p_1(k), ..., p_n(k)): k \in \mathbb{Z}\}$ is dense in $(\mathbb{R}\setminus\mathbb{Z})^n$.

Now let $T = (t_1, ..., t_s) \in N^s$, and let $X^T = x_1^{t_1} ... x_s^{t_s}$ be a multinomial in s integer variables.

LEMMA 2.7. Suppose $\{X^{T_i}\}_{i=1}^r$ is a set of distinct multinomials in s integer variables. Then there is $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}^s$ so that $X^{T_i} \circ \phi$ are monomials and are distinct.

Proof. We put a lexicographic order on N^s as follows: let $i \in 1, ..., s$ be the greatest integer with $m_i \neq m'_i$; then $(m_1, ..., m_s) > (m'_1, ..., m'_n)$ if $m_i > m'_i$. A simple induction argument shows that for the finite set $\{T_i\} \subseteq N^s$ there is $N \in N^s$, $N = (N_1, ..., N_s)$, so that if $T_i > T_j$ in the ordering on N^s , then $N \cdot T_i > N \cdot T_j$ $(N \cdot T)$ denotes the usual dot product).

Now define $\phi(x) = (x^{N_1}, ..., x^{N_s})$; then we have $X^{T_i} \circ \phi = x^{T_i \cdot N}$, and so the monomials $X^{T_i} \circ \phi$ remain distinct.

LEMMA 2.8. Suppose $\{p_i\}_{i=1}^n$ is a set of polynomials in s integer variables, with coefficients in $\mathbb{R}\setminus\mathbb{Z}$. If for all integers $a_1, ..., a_n$, not all zero, $p = a_1p_1 + ... + a_np_n$ has an irrational coefficient, then the image of \mathbb{Z}^s under $(p_1, ..., p_n)$ is dense in $(\mathbb{R}\setminus\mathbb{Z})^n$.

Proof. Let $\{X^{T_i}\}$ be the set of monomials which appear in the polynomials p_i , and let ϕ be as in Lemma 2.7. We note that the monomials in $a_1p_1 + \ldots + a_np_n$ are a subset of the $\{X^{T_i}\}$, so that they remain distinct if composed with ϕ ; and so for all a_1, \ldots, a_n , not all zero, $a_1p_1 \circ \phi + \ldots + a_np_n \circ \phi$ has an irrational coefficient. We invoke Lemma 2.6, and the result follows.

Thus we will have proven Proposition 2.5 if we can show that whenever λ is generic, the polynomial

$$P(x:\lambda) = a_{k+1}p_{k+1}(x:\lambda) + \dots + a_np_n(x:\lambda)$$

(where $a_{k+1}, ..., a_n$ are integers, not all zero) has an irrational coefficient.

Assume λ is generic. We begin by writing $\operatorname{Ad}^*(\gamma) = \operatorname{Ad}^*(x_1, ..., x_n)$ as a matrix with respect to the coordinates $(\lambda_1, ..., \lambda_n)$ of λ given by the map Φ . The condition $[\mathcal{L}, \mathcal{L}] \subseteq r!\mathcal{L}$ implies that the entries of the matrix $\operatorname{Ad}^*(x_1, ..., x_n)$ are elements of $\mathbb{Z}[x_1, ..., x_n]$.

Therefore $\operatorname{Ad}^{\star}(\gamma)(\lambda_1, ..., \lambda_k, ..., \lambda_n) = (\lambda_1, ..., \lambda_k, p_{k+1}(\gamma : \lambda), ..., p_n(\gamma : \lambda))$. Ad^{*}(γ) is given by the matrix

/ 1	0	0		0	0	0	• • •	0\
0	1	0	• • •	0	0	0	• • •	0]
0	0	1	•••	0	0	0	• • •	0
:	÷	÷	۰.	÷	÷	÷		:
0	0	0		1	0	0		0
$p_{k+1,1}$	$p_{k+1,2}$	$p_{k+1,3}$	• • •	$p_{k+1,k}$	1	0	•••	0
$p_{k+2,1}$	$p_{k+2,2}$	$p_{k+2,3}$	•••	$p_{k+2,k}$	$p_{k+2,k+1}$	1	• • •	0
$p_{k+3,1}$	$p_{k+3,2}$	$p_{k+3,3}$	• • •	$p_{k+3,k}$	$p_{k+3,k+1}$	$p_{k+3,k+2}$		0
:	÷	÷		÷	÷	÷		:
$p_{n,1}$	$p_{n,2}$	$p_{n,3}$	• • •	$p_{n,k}$	$p_{n,k=1}$	$p_{n,k+2}$	• • •	1/

with each $p_{i,j} \in \mathbb{Z}[x_1, ..., x_n]$.

We break the problem down as follows.

1. $p_i(\gamma, \lambda) = p_{i,1}(\gamma)\lambda_1 + p_{i,2}(\gamma)\lambda_2 + \dots + p_{i,k}(\gamma)\lambda_k + \dots + p_{i,i-1}(\gamma)\lambda_{i-1} + \lambda_i$, for $i=k+1,\dots,n$.

2. Let $\{a_{k+1}, ..., a_n\}$ be any set of integers, not all zero. Define

$$p(\gamma, \lambda) = a_{k+1}p_{k+1}(\gamma, \lambda) + \dots + a_n p_n(\gamma, \lambda)$$
$$= \sum_{i=k+1}^n a_i \left\{ \sum_{t=1}^{i-1} \lambda_t p_{i,t}(\gamma) + \lambda_i \right\}$$
$$= \sum_{t=1}^k \lambda_t \left\{ \sum_{i=k+1}^n a_i p_{i,t} \right\} + \sum_{t=k+1}^n \lambda_t \left\{ \sum_{i=t}^n a_i p_{i,t} \right\}$$

We note that $p_{i,i} = 1$ for all *i*. Let $A = (0, ..., 0, a_{k+1}, ..., a_n) \in \mathcal{L}$. If we write $\operatorname{Ad}(\gamma^{-1})A = (\Phi_1, ..., \Phi_n)$, then we have $p(\gamma, \lambda) = \sum_{i=1}^n \lambda_i \Phi_i$. We write $p(\gamma, \lambda) = p_c(\gamma, \lambda) + p_n(\gamma, \lambda)$ where $p_c = \sum_{i=1}^k \lambda_i \Phi_i$ and $p_n = \sum_{i=k+1}^n \lambda_i \Phi_i$.

We first show that if $\{\lambda_1, ..., \lambda_k\}$ are as in lemma 2.1, then the polynomial p_c has a nontrivial irrational coefficient. Since the Φ_i , i = 1, ..., k, consist of polynomials with integral coefficients and $\{\lambda_1, ..., \lambda_k\}$ are linearly independent over \mathbb{Q} , all the coefficients of the polynomial p_c are irrational. Therefore, we need only show that p_c is not a constant polynomial, or equivalently that some Φ_i , i = 1, ..., k, is not constant.

These are the central components of the vector giving $\operatorname{Ad}(\gamma^{-1})A$, where not all of the entries a_i are zero. Therefore the orbit described is that of a non-central element of \mathcal{L} , and so it will suffice to show that for any non-central element T of \mathcal{L} , $\operatorname{Ad}(\Gamma)(T)$ has nondegenerate orthogonal projection onto the center of $\mathcal{L}_{\mathbb{R}}$.

LEMMA 2.9. Let $\{X_1, ..., X_n\}$ be as before, and let P_z be projection onto the real span of $\{X_1, ..., X_k\}$ with \mathbb{R} – span $\{X_{k+1}, ..., X_n\}$ as kernel. Then if T is a non-central element of $\mathcal{L}_{\mathbb{R}}$, $P_z(\mathrm{Ad}(\Gamma)T - T)$ is not identically zero.

Proof. It suffices to show that $P_z(\operatorname{Ad}(N)T - T)$ is not identically zero, where $N = \exp(\mathcal{L}_{\mathbb{R}})$. Let $\{t_1, ..., t_s\}$ be a subset of \mathbb{R} and $\{Y_1, ..., Y_s\}$ be a subset of $\mathcal{L}_{\mathbb{R}}$.

If we use the formula $\operatorname{Ad}(\exp Y)T = \exp(\operatorname{ad}(Y)T)$ to write $\operatorname{Ad}(\exp t_1Y_1 \cdot \exp t_2Y_2 \cdot \ldots \cdot \exp t_sY_s)T - T$ as a polynomial expression in $\{t_1, \ldots, t_s\}$ with coefficients in $\mathcal{L}_{\mathbb{R}}$, we see that the coefficient of the monomial $t_1t_2\ldots t_s$ is a rational multiple of $[Y_1, [Y_2, [\ldots$ $[Y_s, T]]\ldots]]$. Now suppose that $P_z(\operatorname{Ad}(N)T - T) = 0$; then we must have $[Y_1, [Y_2, [...[Y_s, T]...]]] = 0$. However, since T is not central, there exists a sequence of elements $\{Y_1, ..., Y_s\} \subseteq \mathcal{L}_{\mathbb{R}}$ such that $W = [Y_1, [Y_2, [...[Y_s, T]...]]] \in z(\mathcal{L}), W \neq 0$. Then $P_z(W) = W$ is nonzero, giving a contradiction, and completing the proof of Lemma 2.9.

LEMMA 2.10. The polynomial $p(\gamma, \lambda)$ has an irrational coefficient (of a nontrivial monomial) whenever λ is generic.

Proof. Suppose that $p(\gamma, \lambda)$ has entirely rational coefficients. Then since $p_c(\gamma, \lambda)$ is nontrivial, $p_n(\gamma, \lambda) = p_r(\gamma, \lambda) - p_c(\gamma, \lambda)$, where $p_r(\gamma, \lambda)$ has rational coefficients. Since we have $p_n(\gamma, \lambda) = \sum_{i=k+1}^n \lambda_i \Phi_i$, where the Φ_i have integer coefficients, we must have some subset $\{\lambda_{\sigma(t)}\}_{t=1}^l$ of coefficients which are from the Q-span of $\{\lambda_1, ..., \lambda_k\}$, and the rest must be rational. Thus we have

$$\sum_{i=1}^{k} \lambda_i \Phi_i + \sum_{t=1}^{l} \lambda_{\sigma(t)} \Phi_{\sigma(t)} = K,$$

where K is some real constant. However, the $\lambda_{\sigma(t)}$, t = 1, ..., l, satisfy $\lambda_{\sigma(t)} = \sum_{i=1}^{k} q_{t,i}\lambda_i$, where the $q_{t,i}$ are rational. Therefore we may write the equation above as

$$\sum_{i=1}^{k} \lambda_i \Phi_i + \sum_{t=1}^{l} \left\{ \sum_{s=1}^{k} q_{s,t} \lambda_s \right\} \Phi_{\sigma(t)} = K.$$

Since the λ_i are linearly independent over \mathbb{Q} , we must have, for each i, that

$$\Phi_i + \sum_{t=1}^l q_{t,i} \Phi_{\sigma(t)} = K_i,$$

for some real constant K_i . Let $v_i = X_i + \sum_{t=1}^l q_{i,t} X_{\sigma(t)} \in \mathcal{L}_{\mathbb{R}}$, for i = 1, ..., k. The above implies that the function $\gamma \longmapsto \langle v_i, \mathrm{Ad}(\gamma)A \rangle$ is a constant function, and so that the projection of $\mathrm{Ad}(N)A$ onto the subspace $W = \mathbb{R}$ -span $\{v_i\}$ is degenerate. We will show that this is impossible, giving a contradiction.

LEMMA 2.11. Let \mathcal{O} be a non-trivial Ad-orbit of N. Then $P_W(\mathcal{O})$ is nondegenerate, i.e., $P_W(\operatorname{Ad}(\Gamma)A - A)$ is nonzero.

Proof. Let $\{Y_1, ..., Y_s\}$ be as in the proof of Lemma 2.9., such that $[Y_1, [...[Y_{s-1}, [Y_s, A]]...]]$ is a nonzero element of $z(\mathcal{L})$. Then if

we express $\operatorname{Ad}(\exp t_1Y_1 \cdot \ldots \cdot \exp t_sY_s)A$ as a polynomial in t_1, \ldots, t_s taking on values in $\mathcal{L}_{\mathbb{R}}$, we see that the monomial $t_1 \ldots t_s$ appears as a coefficient only of central elements $\{X_1, \ldots, X_k\}$. Let $i \leq k$ be such that $[Y_1, [\ldots[Y_s, A] \ldots]]$ has a nontrivial X_i -component. Then $\langle v_i, \operatorname{Ad}(\exp t_1Y_1 \ldots \exp t_sY_s)A \rangle$ is a polynomial with a nonzero coefficient of $t_1 \ldots t_s$, so it is nontrivial, and so $P_W(\mathcal{O})$ is nondegenerate.

This completes the proof of Lemma 2.10; taken together with Lemma 2.8, this completes the proof of Proposition 2.5. \Box

3. Traceable factor representations associated with generic coadjoint orbits. Suppose now that λ is a generic element of $\hat{\mathcal{L}}$, with $\operatorname{Ad}^*(\Gamma)$ - orbit closure \mathcal{O}_{λ} . We define τ_{λ} to be the representation of Γ induced from the restriction of λ to $z(\mathcal{L})$, regarded as a character on $z(\Gamma)$ (this is possible because $z(\mathcal{L}) = z(\mathcal{L}_{\mathbb{R}}) \cap \mathcal{L}$ by Theorem 5.1.5 in [3], and because $\exp z(\mathcal{L}) = z(\Gamma)$); τ_{λ} is defined on the Hilbert space

$$H_{\lambda} = \left\{ f \colon \Gamma \longrightarrow \mathbb{C} | \int_{\Gamma \setminus z(\Gamma)} |f|^2 dx < \infty f(z\gamma) = \lambda(z) f(\gamma), \\ z \in z(\Gamma), \gamma \in \Gamma \right\},$$

with inner product $\langle f, g \rangle = \int_{\Gamma \setminus z(\Gamma)} f \cdot \overline{g} \, dx$. Since elements in \mathcal{O}_{λ} agree on the center of \mathcal{L} , τ_{λ} depends only upon the coadjoint orbit closure \mathcal{O}_{λ} . Recall that τ_{λ} is a factor representation if $CR(\tau_{\lambda}) = \tau_{\lambda}(\Gamma)' \cap \tau_{\lambda}(\Gamma)'' = \mathbb{C}I$ (in general, A' denotes the commutator of the set A). In what follows, we will show that if \mathcal{O}_{λ} is a generic coadjoint orbit closure in $\widehat{\mathcal{L}}$, then τ_{λ} is a factor representation.

LEMMA 3.1. (Lemma 1, [4]). Let $U \in \tau_{\lambda}(\Gamma)'$, and let H_{λ} be the Mackey space as defined above for the representation τ_{λ} . Then U is entirely determined by its value on the function $\delta_1 \in H_{\lambda}$ defined by

$$\delta_1(\gamma) = egin{cases} 0 & \gamma \notin z(\Gamma) \ \lambda(\gamma) & \gamma \in z(\Gamma) \end{cases}.$$

LEMMA 3.2. (Lemma 2, [4]). If $U \in CR(\tau_{\lambda})$, then U is convolution by an element of H_{λ} which is constant on conjugacy classes.

Furthermore, if $f \in H_{\lambda}$ is constant on conjugacy classes in Γ , and if convolution by f is a bounded operator on H_{λ} , then convolution by f is in $CR(\tau_{\lambda})$.

By Lemma 3.2, to show that τ_{λ} is a factor it suffices to show that the only element of H_{λ} which is constant on conjugacy classes of Γ is δ_1 ; for convolution by δ_1 is the identity map on H_{λ} , and so all elements of $CR(\tau_{\lambda})$ are multiples of the identity.

THEOREM 3.3. If λ is a generic element of $\widehat{\mathcal{L}}$, then τ_{λ} is a factor representation.

Proof. Let $\Gamma^{(i)}$ denote the *i*-th element of the rising central series of Γ , and let $\gamma \in \Gamma$, $\gamma \notin \Gamma^{(2)}$. We will show that a function constant on the conjugacy class $C(\gamma)$ cannot be in H_{λ} unless it is zero there.

Let I_{γ} denote the isotropy subgroup in Γ of the element $\gamma z(\Gamma)$, where Γ acts on $\Gamma \setminus z(\Gamma)$ by conjugation. If $\gamma \notin \Gamma^{(2)}$, then I_{γ} is a proper subgroup of Γ . The cosets of $z(\Gamma)$ intersected by the conjugacy class $C(\gamma)$ are in bijective correspondence with $\Gamma \setminus I_{\gamma}$; therefore, if I_{γ} were also a saturated subgroup, the number of cosets intersected by the conjugacy class of γ would be infinite, and so a function in H_{λ} which is constant on conjugacy classes would have to be zero on $C(\gamma)$.

Therefore we prove

LEMMA 3.4. If $\gamma \in \Gamma$, and $\gamma \notin \Gamma^{(2)}$, then I_{γ} is a saturated subgroup of Γ .

Proof. Let $\gamma = \exp T$, $x = \exp X$, for $T, X \in \mathcal{L}$. If $x^n \in I_{\gamma}$ for some *n*, then we have $x^n \gamma x^{-n} \gamma^{-1} \in z(\Gamma)$. By the Campbell-Baker-Hausdorff formula,

$$x^{n}\gamma x^{-n}\gamma^{-1} = \exp nX \exp T \exp -nX \exp -T$$

= $\exp \left\{ n[X,T] + \frac{1}{2}(n^{2}[X,[X,T]] - n[T,[X,T]]) + \dots \right\}$
= $\exp P(n) \in z(\Gamma),$

where successive terms involve brackets of increasing order. Clearly the polynomial P(n) is in $z(\mathcal{L})$, and since I_{γ} is a subgroup of Γ , $P(kn) \in z(\mathcal{L})$ as well for each $k \in \mathbb{Z}$. Therefore each individual term of P(nk), viewed as a polynomial in k, is in $z(\mathcal{L})$. Using the Campbell-Baker-Hausdorff formula again, we rewrite the above as

$$\begin{split} &\exp nkX(\exp T \exp -nkX \exp -T) \\ &= \exp nkX \exp -(\operatorname{Ad}(\exp T)nkX) \\ &= \exp \left(nkX - \operatorname{Ad}(\exp T)nkX - \frac{1}{2}[nkX, \operatorname{Ad}(\exp T)nkX] - \ldots\right), \end{split}$$

where successive terms involve powers of k which are higher than 2. It follows that $n\{X - \operatorname{Ad}(\exp T)X\} \in z(\mathcal{L})$, and therefore, since $z(\mathcal{L})$ is saturated, $X - \operatorname{Ad}(\exp T)X$ is in $z(\mathcal{L})$. We have

Ad
$$(\exp T)X - X = [T, X] + \frac{1}{2}[T, [T, X]] + \frac{1}{6}[T, [T, [T, X]]] + \dots$$

and we wish to see that $[T, X] \in z(\mathcal{L})$. We expand [T, X] in terms of a strong malcev basis $\{X_i\}$ through the lower central series of \mathcal{L} ; then we may write $[T, X] = a_1X_1 + \ldots + a_sX_s$, where $a_s \neq 0$. Since [T, [T, X]] and subsequent terms belong to ideals which are further down in the lower central series, X_s will be absent from basis expansions of these terms and so we must have $X_s \in z(\mathcal{L})$, and therefore $[T, X] \in z(\mathcal{L})$. Therefore $x\gamma x^{-1}\gamma^{-1} \in z(\Gamma)$, and so I_{γ} is saturated.

Now we suppose that $x \in \Gamma^{(2)}$, $x \notin z(\Gamma)$. The conjugacy class of x is thus a nontrivial subset of the coset $xz(\Gamma)$. Since λ is a generic character, the kernel of $\tilde{\lambda}$ in $z(\Gamma)$ is trivial; therefore a function in H_{λ} , with left $z(\Gamma)$ -covariance, could not possibly be constant on C(x) unless it were zero on C(x).

Therefore, we see that a function in H_{λ} which is constant on conjugacy classes is supported only upon $z(\Gamma)$, and hence must be a multiple of δ_1 . This completes the proof of Theorem 3.3.

What follows is proved in Section 3 in [4], and applies here with $I_{\lambda} = z(\Gamma)$.

THEOREM 3.5. (Theorem 3, [4]). If λ is generic, τ_{λ} is a traceable factor representation, with trace (for $f \in \mathcal{L}^1(\Gamma)$)

$$\Theta_{\lambda}(f) = \sum_{u \in z(\Gamma)} \lambda(u) f(u) = < f, \delta_1 >,$$

where

$$\delta_1(u) = egin{cases} \lambda(u) & ext{if } u \in z(\Gamma) \ 0 & ext{if } u
otin z(\Gamma). \end{cases}$$

Furthermore, we have the orbital trace formula

$$\Theta_{\lambda}(f) = \int_{\bar{\mathcal{O}}_{\lambda}} F^{\wedge}(\chi) d\chi,$$

where $d\chi$ is the lift of Haar measure on $z(\mathcal{L})^{\perp}$ to the closure $\lambda + z(\mathcal{L})^{\perp}$ of \mathcal{O}_{λ} , and $F = f \circ \exp \in L^{1}(\mathcal{L})$. $F^{\wedge}(\chi)$ denotes the usual Fourier transform of F.

These are the same traces R. Howe found as elements of dual cones of primitive ideals in the primitive ideal space of Γ (see Proposition 3 of [5]).

Now let $F \in C_c(\mathcal{L})$, so that $f = F \circ \log \in C_c(\Gamma)$. If $\{X_1, ..., X_n\}$ is our chosen basis, we can define an inclusion $i: z(\hat{\mathcal{L}}) \longrightarrow \hat{\mathcal{L}}$ as follows: $\tilde{\lambda} \longmapsto \lambda$ if

$$\lambda(a_1X_1 + \dots + a_nX_n) = \tilde{\lambda}(a_1X_1 + \dots + a_kX_k)$$

for all $\vec{a} \in \mathbb{Z}^n$. Then by Fourier inversion on the abelian group \mathcal{L} ,

$$f(e) = F(0) = \int_{\widehat{\mathcal{L}}} F^{\wedge}(\xi) d\xi = \int_{\widehat{z(\mathcal{L})}} \left\{ \int_{z(\mathcal{L})^{\perp}} F^{\wedge}(\lambda + \chi) d\chi \right\} d\lambda,$$

where Haar measures are normalized so that their supports have measure 1.

We let $d_{\lambda}(\chi)$ be the lift of normalized Haar measure on $z(\mathcal{L})^{\perp}$ to $\lambda + z(\mathcal{L})^{\perp}$; if λ is generic, then this is the measure on the closure of \mathcal{O}_{λ} which appears in the orbital trace formula for τ_{λ} . Since *a.a.* $\tilde{\lambda} \in \widehat{z(\mathcal{L})}$ are generic, the above becomes

$$\int_{\widehat{z(\mathcal{L})}} \left\{ \int_{z(\mathcal{L})^{\perp}} F^{\wedge}(\lambda + \chi) d\chi \right\} d\lambda$$
$$= \int_{\widehat{z(\mathcal{L})}} \left\{ \int_{\bar{\mathcal{O}}_{\lambda}} F^{\wedge}(\chi) d_{\lambda}(\chi) \right\} d\lambda = \int_{\widehat{z(\mathcal{L})}} \Theta_{\lambda}(f) d\lambda$$

We have proven

THEOREM 3.6. (Plancherel Formula). Suppose $f \in C_c(\Gamma)$, and that for generic $\lambda \in \widehat{\mathcal{L}}$, Θ_{λ} is the trace associated with the factor representation τ_{λ} induced from $\tilde{\lambda}$ on $z(\mathcal{L})$. Then $\tilde{\lambda} \mapsto \Theta_{\lambda}(f)$ is defined for a.a. λ , is integrable on $\widehat{z(\mathcal{L})}$, and we have

$$f(e) = \int_{\widehat{z(\mathcal{L})}} \Theta_{\lambda}(f) d\mu(\lambda),$$

where μ is Haar meaasure on $\widehat{z(\mathcal{L})}$, normalized so that $\mu(\widehat{z(\mathcal{L})}) = 1$.

References

- L. Auslander, L. Green and F. Hahn, *Flows on Homogeneous Spaces*, Annals of Math. Studies, Vol. 53, Princeton University Press, Princeton, N.J., 1963.
- [2] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957.
- [3] L. Corwin and F. Greenleaf, Representations of Nilpotent Lie Groups and their Applications, Part I, Basic Theory and Examples, Cambridge University Press, Cambridge, 1990.
- [4] L. Corwin and C. Pfeffer, On factor representations of discrete rational nilpotent groups and the Plancherel formula, Pacific. J. Math., 162 (1994), 261-175.
- R. Howe, On representations of discrete, finitely generated, torsion-free, nilpotent groups, Pacific J. Math., 73, No. 2 (1977), 281-306.

Received July 28, 1992 and in revised form December 22, 1992. Research partially supported by NSF grant DMS-9203136.

FLORIDA ATLANTIC UNIVERSITY BOCA RATON, FL 33431-0991