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PROJECTIONS OF MEASURES ON NILPOTENT ORBITS
AND ASYMPTOTIC MULTIPLICITIES OF X-TYPES IN

RINGS OF REGULAR FUNCTIONS I

DONALD R. KING

Let G be the adjoint group of a real semi-simple Lie algebra
g and let K b e a maximal compact subgroup of G. Kc, the
complexification of K, acts on p£, the complexified cotangent
space of G/K at eK. If O is a nilpotent KQ orbit inp£, we study
the asymptotic behavior of the K-types in the module ϋ[O],
the regular functions on the Zariski closure of O. We show
that in many cases this asymptotic behavior is determined
precisely by the canonical Liouville measure on a nilpotent G
orbit in g* which is naturally associated to O. We provide
evidence for a conjecture of Vogan stating that this relation-
ship is true in general. Vogan's conjecture is consistent with
the philosophy of the orbit method for representations of real
reductive groups.

1. Introduction.

Let G be the adjoint group of a semi-simple Lie algebra £, and let Gc be
the adjoint group of gQ, the complexification of g. If g = k © p is Cartan
decomposition of #, then a = k^ 0 p is the corresponding vector space

decomposition of g . K is the connected subgroup of G with Lie algebra k_.—o
Kc is the connected subgroup of Gc with Lie algebra UQ. if is a maximal

compact subgroup of G. T is a maximal torus in K with Lie algebra t.

g* = HomR(g,R). Define k* and t* similarly. Δ + = Δ+ is a positive system

of roots for the pair {k_c >tc) K i s *be corresponding set of dominant integral

weights (i.e. the set of equivalence classes of finite dimensional irreducible

K modules) and p =half the sum of the roots in Δ + . Using the Killing form,

identify g and g* and define the projection map J : g* —> k*.

Let Ω C g* be a nilpotent co-adjoint G orbit. Ω is a simplectic manifold

with canonical Liouville measure βςi which is G invariant. The distribution

), the pushforward of βςi to λf, is well defined by formula: J*(βn)(f) —

o J) if / e Cc°°(£*), because the set supp(/ o J) Π Ω is bounded. Let

O = c(Ω) be the Kc nilpotent orbit in p^, which is the Cayley transform

of Ω. (See Section 2.3 for the definition of c.) O is the Zariski closure of
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O. R[O], the co-ordinate ring of (9, is a completely reducible K module. If
μ G K, Vμ is the irreducible K module with highest weight μ, and ra(μ) =
the multiplicity of Vμ in R[O]. βμ is the canonical Liouville measure on
the orbit Ω(μ) = K {-i(μ + p)} in k*. If / E Cc°°(fc*) and t > 0, let
/,(*) = fit-'x), and /3μ(/) = JΩ ( μ ) //3μ.

Theorem 1. For every f e Cc

o o(fc*) Jlim t_ f o ot-d i m^σΣ;μ e*m(μ)
ea;is£ and is finite. Let M^ 6e £Λe distribution on k* whose value at f £
C^°(k*) is given by the previous limit. M^ is not identically zero.

M<2 is called the asymptotic multiplicity measure associated to R[O].

Theorem 2. Suppose that g is complex, so that Kc may be identified with
G.IfΩ is a Richardson nilpotent orbit, then there is a non-zero constant CQ
such that

Thus when g is complex, for many nilpotent orbits (all of them in case G =
SL(n, C)), M^ , which measures the asymptotic behavior of m, is determined
by the canonical Liouville measure on Ω.

Let Λ/"[p* ] denote the nilpotent cone in p* the complex dual of p . Now
suppose that O is a Kc orbit in λί\p^] which is the Cayley transform of the
G orbit Ω in Λf[g*] (the nilpotent cone in g*). Then we have:

Theorem 3. (g is real) If O is Kc nilpotent orbit in λί\p* ] which is even,

then there is a non-zero constant CQ such that J*(/3Q) = CQ M^ .

(O = Kc - e is said to be even if the semi-simple element in the normal
triple parametrizing O (see Section 2.3) has only even eigenvalues on g£.
For example, the Kc nilpotent orbits of maximal dimension are even.)

Theorem 2 and 3 and many other examples suggest the vailidity of the
following conjecture:

Conjecture (Vogan). If O is a Kc nilpotent orbit in Λf\p^], which is the
Cayley transform of the nilpotent G orbit Ω in λί[g*] then for some non-zero
constant cΩ, J*(βn) = CQ 1V%.

The author wishes to thank Professor David Vogan for suggesting the
investigation of the problems considered here, and for several very useful
conversations. I would also like to thank my colleagues Tom Sherman, Tony
Iarrobino and David Massey for their insights and assistance.

2. Preliminaries.

2.1. Notation and basic conventions, g is a real semisimple lie algebra,
and let fc,p, kciPc> ^> ̂  Gc and Kc be as in section 1. Let θ be the Cartan
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involution giving rise to the decomposition g = & Θp. Let σ be the conjuga-
tion of gc relative to g. If L is a Lie subgroup of Gχ>, then Lo will denote the
connected component of the identity of L. θ and σ extend to automorphisms
of Gc So Lθ and Lσ will denote fixed point sets of θ and σ in L. If L acts
on a vector space V, and v G F, then L v denotes the centralizer of υ in L.

B denotes the killing form of g. We fix a maximal torus t C fc, the
corresponding connected subgroup in K will be denoted by Γ. In general,
if V is a real vector space we write V* = Hom^(V,i?). But, we write
Vζ = Homc(Vc, C), the complex dual of the complexification of V.

We identify g* with g by means of B. We will make use of the projection
map J : g* —> k*. J is K equivariant. Since B is negative definite on k and
allows us to identify k_ and fc*, we define a positive definite bilinear form (,)
on k* by setting (7,^) = — B(7,i>),V7,t> G k*.

Let Δ c = Δ ^ , tc) denote the roots of the pair (fcc,£c), Δ+ = Δ+(fcc,£c)
will denote a choice of a set of positive roots, and |Δ+| = the cardinality of
Δj~. When there is no possibility of confusion, we will drop the subscript
on Δ+. For each a in Δc,Λα is the corresponding element of it under the
identification of t and ί* provided by the restriction of B to k. Όa is the
differential operator defined on t* by the formula: Όa(g)(x) = ^t(ΰ(x ~~
iαt))|t=0. Ίϊvet*- (0), and / G C c(f), then H,, = /0°° f(sv) ds. Hu is the
Heaviside distribution corresponding to v.

2.2. Measures and integral formulae. We choose Lebesgue measures
dX on k_ and dH on t. We will use the same notation for the corresponding
Lebesgue measures on λf and £*. Whenever a Lebesgue measure is defined
on a Lie subalgebra c of g we will choose the left invariant Haar measure
on the corresponding group C so that the Lebesgue measure and the Haar
measure correspond under the exponential map. We denote by v(T) the
integral Jτ 1 dt where dt is the Haar measure on T chosen according to the
aforementioned convention.

If ξ G #*, and Ω = Gξ is the corresponding co-adjoint orbit, we recall the
definition of the canonical Liouville measure ^ on Ω. 2ξ(Ω), the tangent
space to Ω at £, may be identified with gjφ. gjφ in turn may be identified
with its image g ξ = ad(g)(ξ) in g* under the injection u —> u £, where
u G g represents the coset u G g/g^ and u £ = — ξ o ad(u) is the co-adjoint
representation.

Now define the bilinear form bξ on g - ξ by the formula: b^(u ξ, υ
ξ) = ξ([u,ΐ;]). Then 6ξ is well-defined, skew-symmetric and non-degenerate.
dimRg £ = dimΛ(£/£ξ) = 2k. 6|, the wedge product of bξ with itself k
times, is a non zero 2k form. Since g ξ = Tξ(Ω), 6^ : ξ —>> 6| defines a
volume form on Ω which is G-invariant. We normalize the corresponding
G-invariant measure by multiplication with ((2π)kk\)~~ι to get the canonical
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measure /3Ω. We will often write dξ — dG/Gί in place of βG.ξ. Suppose that
/ € Cc(g*) and supp/ ΠG ξ and supp/ ΠG tξ are both compact. If we
set Lt(f)(x) = f(tx), then βG.ξ and /3G ^ are related as follows:

(2.2.1) tk f Lt(f)βG< = f fβG.ti
JGξ JGtξ

where we recall that k = |(dim#Ω).
Let k = ί + r where r is the orthogonal complement oft in k. Let W denote

the Weyl group of the pair (k,t). The dimension of r = ^ ( f c ^ , ^ ) ! and so is
even. If η £ **, let ^ be the two form on r defined by jη(X, Y) = η([X, Y]).
If η is regular with respect to fc, then the form j η is non-degenerate. Choose
a nonvanishing form μ of degree \A(k_c,tc)\ on r such that dX = \μ\ cLff.
Define a polynomial function π on t* by the formula:

JηΛjηΛ "ΛJη = τr{η)(\A+\)\μ.

( |Δ + | factors )

π is a VF skew-invariant polynomial function on t* depending on μ and is
proportional to π^ = ΠαGΔ+ <̂* From now on assume that μ is chosen so that
π(η) is a positive multiple of π+(iη) for η E t* and denote the corresponding
π by π + .

Normalize the if invariant measure dK/T so that if / G CC(K - ί*eg), we
have

/ f(X)dX= ί I \^(H)\2f(Ad(k)H)dκ/τ(k)dH.

We define a map ^4+ from Cc(k*) to Cc(t*) by the prescription:

(2'2 2)

Note that A+φ is W skew-invariant. A+ gives an isomorphism between
C™{k*)κ-[nv- and Cc°°(f ) H / - s k e w " i n v . {A+)\ the inverse of the transpose of
A+, gives an isomorphism between K invariant tempered distributions on
fc* and W skew-invariant distributions on ί* ([Sen2]).

We say that a K invariant measure υ on k* corresponds to a W skew
measure T on t* provided the following equation holds for all φ G C^°(k*):

(2.2.3) / φ(ζ) dυ(ζ) = / A+(φ)(ζ) dT(ξ).
Jk* Jt*

Example 2.2.4. Let λ G t* be regular and set ^ = βκ\ and 5 λ =
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δ\- βκ\ is the Liouville measure on K λ as defined above. Then we have

/ A+(φ)(ξ)dBx(ξ) = £ e(w)(wδx,A
+(φ))

e(w)A+(φ)(w\)
wew

π+(A)

(2τr)lΔ+

because K • w\ = K λ and π + is W skew-invariant. It can be shown that

-^W)'w^Lφ{k'λ)dk'

where cκ,τ is a non-zero constant that does not depend on λ. So B\ corre-

sponds to cκ,τβκ \ under map (A+)*.

Remark 2.2.5. It is well known that if λ is regular, fκχ 1 dβκ\ = C(iλ)

where C(i\) is the "dimension function": J J ? . Therefore, the con-

stant cKτ (in Example 2.2.4) = — A ^ Γ ^/•^J Λ ?I Δ +I (which is independent
' VOlίTj C/(ιλ)(2π)ι I

ofλGίr*eg.)
The Fourier transform on k* can be defined as follows.

(2.2.6) /(7) = / f{X)eiB^x) dX = /

In the same way, we define the Fourier transform on t*. We record the
following facts about the Fourier transforms of distributions on t* for use
later.

If / G Cc°°(f ),T is a distribution on ί*, and w eW, set fw(x) = f{w~lx)

and Tw(f) = T(/ u ; ). Then (f*>) = (/)^ and if T is tempered, we have

Tw = ( T ) ^ . (T is the Fourier transform of T. See Section 3.) Thus a

tempered distribution is W invariant (resp. skew invariant) if and only if its

Fourier transform is W invariant (resp. skew invariant). Lastly, it is easy to

verify that δ.iw{μ+p) = e

BW»+ri>Ί

2.3. Results on nilpotents. λί[g\ (respectively λί\pc]) will denote the set
of nilpotent elements of £ (respectively^). It is known that Λ/"̂ ] (respectively
λf\pc]) is a finite union of G (respectively Kc) orbits.
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An ordered triplet {Zx, Z2, Z3} of elements in g is said to be a triple if
the following commutation relations are satisfied: [Zl5 Z2] = 2Z2, [Z l5 Z3] =
—2Z3, and [Z2, Z3] = Zλ. Let us fix a triple {if, 2?, F} in g with the property
that Θ(H) = -i/, and 0(J5) = - F . A triple {H,E,F} in £ with these
properties will be called a g Cayley triple. Every nilpotent Ef in g is G
conjugate to a nilpotent £7 lying in such a triple. Now define a new triple
{c(H),c(E),c(F)}, which we will call the Cayley transform of {H,E,F},
as follows: c(H) = i(E - F),c(£) = (1/2) [fΓ - i(E + F)], and c(F) -
(l/2)[H + i(E + F)]. The triple {c(H), c{E), c(F)} is normal in the sense of
Kostant and Rallis [KR], i.e. c(H) E he, and c(J5),c(F) E pc

Let Ω = Ω[JB] be the G orbit of E in £ and (9 = O[c(E)] be the ΛΓC orbit
of c(E) in p . The assignment of Ω to O defines a bijective map c, also
called the Cayley transform, from the set of G conjugacy classes in M[g\ to
the set of Kc conjugacy classes in Λf\pc]. Proofs of this result can be found
in [Seel] and [Dj]. (Note that Ω[E] and O[c(E)] lie in the same Gc orbit.)

c" 1, the inverse of the Cayley transform, is obtained as follows. Let O[ef]
be a Kc conjugacy class in Λf\pc] Then O[e'] contains an element e which
lies in a normal triple {#, e,/} with the additional property that σ(e) = /.
A normal triple with these properties will be called a p Cayley triple. Now
define a triple {c~1(a:),c~1(e), c~ι(f)} in g with c~1(rr) = e + /,c - 1(e) =
(»/2)[e-/-ar] and cΓ^/) = (i/2)[e-f+ x}. (Then {C-

ι{x),c-ι{e),c-1U)}
is a g Cayley triple.) Thus c" 1 assigns O[e'] to Ω[c~1(e)].

3. Homogeneous distributions, group actions and differential
operators.

Let / G C™(Rn) and m E Cc

oo(i?n)/, the space of distributions. Then if t > 0,
define the functions ft as follows: ft(x) = t~nf(t~~ιx)(ίoτ all x E i?n). We
define /, the Fourier transform of / by f(η) = / β n /(x)e~^7)X^ dm(x). Here
( , •) = the scalar product on Rn and dm is Lebesgue measure on Rn. Under
appropriate hypotheses on /, the Fourier inversion theorem holds. That is,
f(x) = (2π)"n /Λ n /(7)e ί (a ;'7) dm(7). It is easy to show that (ft) = r n ( / ) t - i
or equivalently (/)t-i = t n / t .

S = S(Rn) is the Schwartz space of Rn. If m is tempered, we define m,
the Fourier transform of m, by m(/) = m(/) for all f € S.

A distribution M on Rn is said to be homogeneous of degree s if M(/^) =
t°M(f).
Remark 3.1.1. A homogeneous distribution on Rn is tempered. (See
[Do].)

Lemma 3.1.2. Let M be a distribution on Rn which is homogeneous of
degree s, then M, the Fourier transform of M, is homogeneous of degree
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—n — s.

Proof. This depends on the fact that M(/ f) = t*M(f) for / G S. D

Example 3.1.3(a). δ = δQ, the Dirac delta function at 0, is homogeneous of
degree —n. Its Fourier transform, a constant multiple of Lebesgue measure,
is homogeneous of degree 0 = —n — (—n).

Example 3.1.3(b). The Heaviside distribution H^, corresponding to a non-
zero vector υ € i?n, (see Section 2.1) is homogeneous of degree —n + 1.

Lemma 3.1.4. Let M be a homogeneous distribution on Rn of degree
s and let Ό be a constant coefficient, homogeneous differential operator of
order i then D M is homogeneous of degree s — ί. (Note that by definition

Proposition 3.1.5. Let T and S be homogeneous distributions on Rn of
degree k and ί respectively. //T * S (the convolution ofT and S) is defined
then T * S is homogeneous of degree k + l + n.

Proof. It suffices to show that T*S satisfies the Euler equation (k+ί+n)Φ =

Xj-—. This is done by computing y^Xj—~ς using (1) the fact that
j dxJ JΞΪ dxj
for each j , where 1 < j < n, we have the equality:

and (2) the homogeneity of T and S. Formula (3.1.6) follows by taking the
Fourier transform of both sides. D

Corollary 3.1.7. Let T t , i = 1,2,... , r, fte homogeneous distributions on

Rn such that degTi = k{. Assume that the convolution Ti * * T r is

defined. Then deg(Tx * * T r) = Σί=i ki + ir ~ ι)n-

Let us now consider the action of GL(n, R) (respectively O(n)) on func-
tions and constant coefficient differential operators (respectively distribu-
tions) on Rn.

Suppose / is a smooth function, D is a constant coefficient differential
operator, and T is a C°° distribution on Rn. Let α, b (Ξ GL(n, R) and
<?, s £ O(n). Then we define actions of GL(n, R) on functions and constant
coefficient differential operators as follows: (a f)(x) = f(a~1x)] and [(a
Ό)(f)](x) = [a-1 (Ό(a f))](x). One then checks that (ab) / = a (b /) ,
and (ab) D = a (b D). One also defines an action of O(n) on smooth
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distributions as follows: (q T)(f) = T(q~1 f), and one checks that (qs)-T =
q-(s T).

Now assume that D is homogeneous of degree d. Let us compute [q
(D T)](/). Well [q (D • T)](/) = [D • T ^ 1 • /) = ( - l ^ T p f e - 1 /)] =

= (-iy[q-T}{(q-i-Ό)(f)} = {(g-1 D) (ρ T)}(/).

We also need a result on the action of differential operators on families of
distributions depending on a parameter λ G Rn.

Remark 3.1.8. Let D be a homogeneous differential operator with
constant coefficients of degree d. Suppose a G GL(n, R) and a"1 D =
Cίo-^D where ((α"1) is a scalar. Then ΌλδaX = ( - l ^ O D δaX. (If
T λ is a family of distributions depending on a parameter λ G i?n, then
D λ T λ ( / ) is defined to be D applied to the expression T λ (/) where differen-
tiation is in the variable λ.) We argue as follows. First note that Όxδx —
(- l ) d D δx because (D λί λ,/> = (by definition) D λ « δ λ , / » - Dλ(/(λ)) =
(D/)(λ) = (δx,Ώf) = ((-l)dΌ δxJ). Similarly, ( D λ < W ) = Dλ(/(αλ)) =
DΛKα-1 /)(λ)] - {DKα-1 • /)]}(λ) = {α"1 [(α"1 • D)(/)]}(λ) = {α"1

D/> - aa-ηd-lYΌ . δaXJ). In general, ΌxδaX = (- l j^α" 1 D) δaX.
The following lemma will be used in Section 6.

Lemma 3.1.9. Let f G Cc°°(i?n),u, Vi, v2,... ,vm G Rn with all the v< ψ 0.
Then,

ί—>oo

Proof. If 77i = 1, the lemma asserts that

This is a consequence of the usual Euler Maclaurin expansion. (See Theorem
6 and formulas (6.18)-(6.21) in [W].) For m > 1, the lemma follows from the
multi-dimensional analog of the Euler Maclaurin expansion. (See formula
(1.6) in [Lyl] and formula (1.4) in [Ly2].)

Convolutions such as Ή.Vl * H υ 2 * * H V m in (3.1.9) will appear frequently
in formulas in sections 6 and 7. Here is an alternate description of this
convolution in these cases. D
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Proposition 3.1.10 (Theorem B4 in [GP]). Let R™ = {(su... , sm)\si >
0, for all i), be the positive orthant in jRm, V be the span of the set of non-
zero vectors {t>i,... , t>m} ; and let L : R™ —> V be the mapping which sends
(s i , . . . , sm) onto SχVι + + smvm. Suppose that in addition for some ξ
in real dual of V,ξ(υi) > 0 for all i. Then the mapping L is proper and the
convolution ΈίVl * ΈLV2 * * ΈLVm — L*(dsι... ds m ), the push forward of the
standard Lebesgue measure on R™.

4. The pushforward to k* of the measure defined on a nilpotent
orbit in £*.

Let E G £* be nilpotent and let Ω = Ω(E) denote the orbit G E. Let βΩ

denote the canonical Liouville measure on Ω. Then βςi is tempered. This is
true for any G orbit in £*. (See [Rao].) Moreover, βςi is a Radon measure on
g*. Since Ω is nilpotent, βn is homogeneous of degree (1/2) diniR Ω — dimΛ g.
(This fact about homogeneity follows from equation (5) in Theorem 1 in
[Rao].)

If / e Cc(g*), let/Ω(/) = /(/) be the integral fQf(g E) dβΩ. Recall
the projection map J : £* -> k*. We define the distribution J*(/?Ω), the
pushforward of βςi to fc*, as follows.

Definition 4.1.1. If / G C C (Γ), then (Λ(/?Ω),/) = / ( / o J ) .

Remark 4.1.2. The previous definition makes sense because if / G Cc(k*)

and we consider / G C(g*) defined by / = / o J then supp / Π Ω is bounded.

For we argue as follows. Define norms || | |i on fc* and || | |2 on p* by

\\Z\\\ = -B(Z,Z) and \\W\\2

2 = B(W,W) (where B is the Killing form on

£*). Then || ||i and || | |2 are K invariant, and since VF G g*,B(Y,Y) =

— ||ϊ*Jli 4- \\Yp\\l (where Y^ and Yp are the components of Y in k* and jp*), we

hwetheequύityB(EJE)=B(Ϊ.E,g.E) = -(\\(g E)^
Therefore —(\\{g E)^)2 + (\\(g E)p\\2)

2 is constant on Ω. Now suppose

that supp/ C {W G k* : | |W||i < C] where C is some positive constant,

and suppose that g E G supp /. Then J(g E) is in supp / which implies

that (||(0 E)k\\λ)
2 < C, and hence we have (\\(g E)^)2 + (\\(g E ) £ | | 2 ) 2 <

2C + B(£7, E). Therefore supp / Π Ω is bounded.
Note that J*(βn) is K invariant in the following sense. If / G Cc(fc*), and

for each x G K,Z G k*J*(Z) = f(x Z), then (J,(/3Ω), fx) = (Λ(Aι),/>.
This follows from the G invariance of / and the fact that if x G K, and g G G
then X'(gΈ)k=: (xg £?)*.

L e m m a 4.1.3. (a) J/u is an?/ homogeneous K invariant distribution of
degree d on Af, ίΛen (Λ4")^!?) 25 homogeneous of degree d + |Δ+ | on t*.
{See Section 2.2 /or definition of (A+Y). (b) //* Ω is nilpotent then the
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distribution J*(βn) is homogeneous of degree (l/2)dim#Ω —
and (A+y^+ίβn)) is homogeneous of degree — dimRt — |Δ+| + (1/2) diniR Ω.

Proof To prove (a), note that if φ G C%°(k*) and if ξ is regular, then
A*(Φt)(ξ) = *~|Δ|[^+(<£)]*(£)• τ l m s > o n t h e o n e h a n d w e h a v e (v,Φt) =
td(υ,φ) = tf((A+γ(υ),A+(φ)). But also

So the result follows.
To prove (b), suppose that / € Cc°°(£*), then ft = tdimR^(f)t. Hence

diniH Ω—di

D

Remark 4.1.4. Now note that if c(£?) G p^ denotes an element of the
Cayley transform of Ω, then we have that diτaRΩ,(E) = 2 dime ifc * c(E).
Thus J*(/3Q) is homogeneous of degree — dime Kc + dm\c Kc * c(E) =
-dimcK

c

c

{E).

5. Asymptotic multiplicity distributions.

5.1. Definitions and basic properties. Let TZ be a semi-simple K module
with finite K multiplicities. K denotes the set of equivalence classes of
irreducible representations of K. Let Δ + (£ c ,£ c ) = Δ "̂ be a fixed choice
of positive roots, and p = half the sum of the roots in ΔJ. If π G if, let
μ(π) denote the corresponding dominant integral weight relative to Δ+, Θμ(π)
denote the character of π and O(μ(π)) denote the orbit K-{—i(μ(π) + p)} in
k*- mϋM denotes the multiplicity of π in 1Z and d(μ(π)) is the dimension
of π. r will denote the rank of K.

Definition 5.1.1. We define m- ,̂ the multiplicity distribution (or formal
K measure) on k* associated to Έ, as follows. If / G C °̂(fc*), then

Here βμ^ is the canonical Liouville measure defined on the orbit O(μ(π)).
We will usually identify K with the set of dominant integral weights and
write m π = Σμekmπ(μ)βμ.
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Remark 5.1.2. m^ is clearly K invariant. Assume that it is tempered.
(This is true with mild restrictions on mπ{μ)> See Lemma 5.1.8 below.)
Recall {A+)1, the isomorphism between if-invariant tempered distributions
on k* and W skew-invariant tempered distributions on ί* defined in section
2.2. It follows from Example 2.2.4 that

(A+)'(mπ) = CJ^T ] Γ mn(μ) ] Γ e(w)δ_iw{μ+p)

(where δ-iw(μ+p) is the Dirac delta function at —iw(μ + p)). We will some-
times abuse notation and write

If 7Γ G if, and μ = μ(τr) then Θμ is a smooth function on if. If 0μ is the
lift of Θμ (see Theorem 3.1 in [BV3]), then it is a result of Harish Chandra
that θμ is a distribution on k whose Fourier transform is βκ.[^μ+p)} — βμ.
(In the notation of [BV3], we have θμ(X) = θβ(exp(X))ζ(X), where ξ(X)
is the square root of the Jacobian of exp : g —> G.) For this reason we define
two additional distributions related to m^.

Definition 5.1.3. The distribution Θ π = ]ζ eκ
mπ{μ)®μ ιs called the

formal if-character of Έ, on if, and its lift θn — Σ eχ
 rnn {β)θμ is called

the formal if-character of 11 on k.
For the proof of the following lemma, recall the definitions of the Fourier

transform on Af and t* in (2.2.6). Set vol(if/T) = \K,Ύ 1 dκ/τ(%)

Lemma 5.1.4 (Compare Theorem 3.8 in [Ch]). If f e C™(t*), and X is a
regular element in ΐlomR(it,R), then:

(5.1.5)

where C(X) = J feg
Proof. This is based on results of Harish Chandra in [HC]. We begin with
the following analog of Theorem 2 in [HC] which holds for all Z, Zf in t^:

(5.1.6) π(Z)π(Z') ί eW[B(Λd(x)(Z), Z')] dκ/τ(x)
JK/T

<w)exp{B(wZ,Z')}.
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Let Z = -t~x\ and multiply both sides of (5.1.6) by f(Z') where Z1 belongs
to t*. If we then integrate in variable Z' we obtain:

π(-r x λ) / dκ/τ(x) [ exp[B(Ad(x)(-t-1\),Z')]π(Zt)f(Zt) dZ1

JK/T Jt*

= vol(K/T) ( Yl (a,ρ) ) Σ e(w) I exp[B{-wΓι\,Z')]f(Z') dZ'.

Thus we have

(5.1.7) πί-t^λ) / (π
Jκ/τ

= vol(ϋΓ/Γ) Π Krf Σ
aeAt

If p E C~(ί*), then ρ(Z) = κg{—Z) where K is independent of g. If we
multiply both sides of (5.1.7) by t^^ and factor π(—λ) as ilΔί'π(iλ), we get

ζΓf)[Ad{x)(iΓι\)}dκ/τ{x)
K/T

e(w)f(-iwt~1λ).

Therefore,

*l T e(w)f(t-1(-iw\))

wew

ί ί / ί-'λ)] dκ/τ(x)
— h m ί 7

Kvol(JΓ/T)(Πα€Δ c + («,

Now (AΓ/)( T ) = [-β(α, )/Ί(7) and π(Z) = {-i)M\ Πα 6 Δ+ B(α,Z). It
follows that

{ ί Π A
and hence the desired limit equals
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where C(λ) = (if^-^K = TT ^ 4 •

Lemma 5.1.8. Suppose there is a constant c such that m^(μ) < cd(μ) for
all μ £ K, then (a) m^, Θπ and θn are tempered distributions, (b) m^ is
the Fourier transform of θn (if h and k* are identified).

Proof, (a) The fact that Θ π is a distribution on K follows from Lemme III.2.1
of [DHV]. Since K is compact, Θ π is tempered . (For example, suppose
that Θ π = Σμeχ d(μ)θμ, then the Plancherel theorem for K asserts that
®n is the Dirac delta function at the identity e G K.)

We know that (A+)t(mn) is a constant multiple of

mn(μ)
μek ti ew

and (A+Y(θn) is a constant multiple of Σμek ™π(μ) Σwew <w)
Because of the bound on m^(/i), we can find a positive integer s such
that Σμek

mπ(μ)(l + \\μ\\)~s < oo. It follows that for each w G W, both
Σlμeκmn(μ)^iw(μ+p) and Σμek

mn(μ)eB{w{μ+p)'') are tempered distribu-
tions. (See Part I, Section 3 of [SW] or Part II, Section 28 of [Do].) Thus
(A+Yfa-ji) and (AJt)t(θn) are tempered. Hence so are m-̂  and θn.

(b) follows from the fact that βμ is the Fourier transform of θμ. D

In the remainder of this section Έ, will usually be a finitely generated
S(p ) module with a compatible Kc action such that:

5.1.9(a). U is S(pc)
Kc finite (i.e., there is an ideal / C S(pc)

Kc with
finite codimension which annihilates 7£), and

5.1.9(b). TZ is Kc finite, and completely reducible as a Kc module.

Proposition 5.1.10. // TZ is a finitely generated S(pc) module with a
compatible Kc action satisfying conditions 5.1.9 (a) and 5.1.9 (b) then all
Kc multiplicities in TZ are finite and for some constant c = Cπ, we have
™>π{μ) < cd(μ) for all μ G K.

Proof By (5.1.9(a)), / = Ann(T )̂ Π S(pc)
Kc has finite codimension in

S(pc)
Kc. Here Ann(7£) is annihilator of TZ in 5 ^ ) . It follows that the ring

S[pn)
Kc

—=2 is Artinian. So / = f)T=i ^ where the Jk are the maximal ideals of
S{pc)

Kc which contain /. Therefore ΠΓ=i S(PC)' Jk Q S(pc) / C Ann(^).

It is clear that for each A;, ——~c has finite Kc multiplicities, since

5 ( E ) J



174 D.R. KING

. — is the ring of regular functions on a finite union of closures of
S(PC) • Jk

Kc orbits in p* [KR]. Suppose, O = Kc z is one of these orbits, and R[O]

(respectively i2[(9]) is the ring of regular functions on O (respectively 0,

the Zariski closure of Ό). Then for all μ G K, since R[Ό] C R[O], we have
rnn\δ]{μ) — mπ[o]{μ) — dime Vμ

κc (where Vμ

κc is the space of KQ invariants

in the irreducible module Vμ). Thus mn^(μ) < d(μ). So the multiplicity of μ
S(Pr)

 S^r)in — — is bounded by a constant times d(μ). Now T = -pr^ =^

has finite K multiplicities and for all μ G K,mτ(μ) < d(μ) because T is a

K submodule of the direct sumθ]™^——~c . Because we have a surjec-
S{pc) Jk

S(pr)tive map of (S(p^)^Kc) modules: T —> -—~r_. -> (0), the multiplicity
~G Ann(Tc)

of μ E ΛΓ in - — ~ c

 N is also bounded by a constant times dίμ). Finally
Ann(7£)

(5.1.9(b)) implies that 1Z is finitely generated over -—~^_ . Thus we can
Ann(7c)

find W, a finite dimensional i ί submodule of 7?,, such that the K module

map ——~c ® IV -* 7?,, defined by / 0 ^ —̂  /t^, is surjective. This implies
A.nn(yvJ

the desired bound on mn(μ). D

We can investigate the asymptotics of m ̂ (μ) by studying the behavior of

the following functions of the positive variable t, as t —> oo:

(5.1.11(a)) Nn(t)= ^ mn(μ) d(μ)

μβK

\\μ+p\\<t

™n(μ)d(μ).

μeκ
L{μ)<t

Here || || denotes the norm on it* coming from the Killing form, Ω^ is
the Casimir operator for fc, and Ω^(μ) is the value of the Casimir on Vμ.
L(μ) denotes the sum of the coefficients of the fundamental weights in the
representation of μ as a sum of fundamental weights.

is closely related to the Borho-Kraft multiplicity function [BK],
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defined as follows when TZ is also a ring:

(5.1.12(a)) F{TZ}{t) = ]Γ mn{μ).

L(μ)<t

For convenience when TZ is a ring write:

Fc{TZ}(t)=

μ£K

The function F{TZ} is a quasi-polynomial (in the sense of Definition 2.2 in
[Bo]) and so are the functions Nn,N^,N%, FB{TZ}, and FC{TZ). (Note that
the degree of the leading term of F{TZ}(t) is equal to the Krull dimension
of the ring ΊZ-*, where nk is the complex subalgebra of kg spanned by the
root spaces for Δ+ ([Bo]).)

We show below that N% and Nn each grow like a positive constant multi-
ple of td where d = Kdim7£, the Krull dimension of TZ as an S{pc) module.
We then use this fact to define a K invariant distribution on fc* which mea-
sures the asymptotic behavior of mηz{μ).

Proposition 5.1.13. Let TZ be a finitely generated S{pc) module with a
compatible Kc action satisfying 5.1.9(a) and 5.1.9(b). For each t > 0, let
TZ(t) denote the subspace of TZ spanned by eigenvectors of Ω^ with eigenvalue
< t2 so that N%{t) — dimc7£(t). Let d — Kdim7£ {the Krull dimension of
TZ as an S(p ) module). Then there are constants A and B {depending only
on g) and c{TZ) {depending on TZ) such that for t sufficiently large:

(5.1.14) A c{TZ) td < N%(t) < B c{TZ) td.

Proof. Modify the arguments of Proposition 5.4 and 5.5 in [Vo2] for TZ rather

than a Harish Chandra module. D

Corollary 5.1.15. Under the hypotheses of Proposition 5.1.13 there are
constants A' and B' {depending only on g) and c'{TZ) {depending on TZ) such
that for t sufficiently large:

(5.1.16) A' - c'{TZ) td < Nπ{t) < B' d{TZ) - td.
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Proof. It is clear that Nn and N^ have similar asymptotic behavior, so the
result follows from Proposition 5.1.13. D

Proposition 5.1.17. Let Έ, be a finitely generated S(p ) module with a
compatible Kc action satisfying 5.1.9(a) and 5.1.9(b). Let d be the Krull
dimension of TZ. Let p(mn) be the largest integer p such that (ί) for each
f E C^°(k*)y the following limit is finite and (ii) for some f E C£°(k*) it is
not equal to zero:

(5.1.18) Bm r*(m*)(Λ) = tof £ mn(μ)βμ(ft).

Then p(mπ) = d — diπiR k.

Proof We first show that limt^oot-
d+dimk(mn)(ft) exists (i.e. is finite) for

all f e C™(k*). For each such /, choose L > 0, so that supp/ C {x e k* :
(x,x) < L}, then snppft C {x 6 k* : (x^x) < tL}. So

= Σ mn(μ)βμ(ft) = ί"^ 4 Σ

||μ+p||<t^

Hence,

mπ(μ)vol(<9(μ))sup|/|

μ
\\μ+p\\<tL

where C depends on /. By (5.1.15), Nηι(tL) is bounded above by a constant
(depending on U) times Ldtd. So it is clear that l im^^ ί" d ' f d i m ^ |(m π )(/ ί ) |
exists, and so the limit in (5.1.18) exists when p — d — ά\mn k.

We next show that if p = d — dimπ fc, the limit in (5.1.18) is non zero for
some / E Cc°°(fc*).

Choose a function φ E C%°(k*) with the following properties: φ > 0, φ > 1
on {# E fc*| ||x|| < 1}, and φ is if invariant. Note that φt(x) > t - d i m ^ if
\\x\\ < t

t) = Σ mn(μ)βμ(φt) =

because of the K invariance of φ.
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It follows that,

Γpxnκ(φt) = r*-dim* Σ m^) d(μ)φ[-it-1(μ + p)]

>rp-dim4 J2 mn(μ)d(μ)

Since by (5.1.15), Nn(t) is bounded below by a positive constant times td,
we must have

t—¥OO

On the other hand if p > d — dimfc, then for all / G C£°(fc*), we have:

lim fp(mn)(ft) = lim f(-^ d - d i m «t<- d + d i m «(m π )(Λ) = 0.

So p(nVfc) = d — dimfe. D

Definition 5.1.19. Let TZ be a finitely generated S(pc) module with
a compatible Kc action satisfying 5.1.9(a) and 5.1.9(b). Let M π be the
distribution on k* defined by the limit in (5.1.18) for p = p(mn) — d —
dimπfc, i.e. Mn(f) = l im ί _ > o o r r f + d i m ^(m π )(/ t ) 5 for / E Cc°°(fc*). It is clear
that M-^ is K invariant and homogeneous of degree — d + dim-^ fc. M ^ will
called the asymptotic multiplicity measure of TZ.

Remark 5.1.20. Assume TZ satisfies the same conditions in Definition
5.1.19 then we can also define the C^, the asymptotic K character of 7£,
(in a similar way to Mπ): Cn(f) = lim^0+ tdθn(ft), for all / G Cc°°(fe*).
It is clear that Cn is also K invariant and homogeneous of degree d. Also
Mft = C^, the Fourier transform of C^. If we set TZ' = TZ ®c F > then
Mw = ( d i m c F ) M π . This is based on the fact that Θ π ' = ΘπΘF. This
allows us to prove that Cn> = (dime F)Cn, from which we obtain the desired
result for M^/. We omit the details.

Now suppose that V and S are {S(p ),Kc) submodules of TZ. Then it is
easy to establish the following facts concerning Nfi^N-p, and N$ which are
analogues of facts proven in [Bo] concerning F{TZ}, F{V}, andF{S}.

(5.1.21(a)) Nn/v=Nn-Nv

(5.1.21(b)) Nvns = NV + NS- Nv+S

We also have the analogue of Lemma 2.6 in [Bo].
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Proposition 5.1.22. Suppose TZ is an integral domain containing C (the
complex numbers) satisfying conditions 5.1.9(a) and 5.1.9(b), and S is a K
stable subring ofTZ containing C such that TZ is the integral closure of S (in
its field of fractions). Let Kdimft = d. Then as quasi-polynomials, Nn(t)
and Ns(t) have the same leading terms and degN<n/s < K dim ft.

Proof. We argue as in Lemma 2.6 of [Bo]. First since S C TZ, we have the
inequality Ns(t) < Nηι(t) for all t. Let Q(S) denote the field of fractions of
S. Since TZ is the integral closure of S in Q(S),TZ is finitely generated as
an S module. Consider the left 5-module TZ/S. Let / = kτms(TZ/S), the
annihilator of TZ/S in S. I Φ (0) because (1) for each r E TZ, there is an
s G S such that sr G S (since TZ C Q(S)) and (2) TZ/S is finitely generated
over S. Clearly / is a if submodule of S. Choose a highest weight vector
e € / . Let ω E ΐlomR(it,R) be the weight of e. We have the inclusion
eTZ C^S, and hence eft22* C 5 s * (since e G 7s*). It follows that for any
μ (zK, we have the inequality: πiηι(μ) < ms(μ + ω). Since ω is dominant,
d(μ + ω) > d(μ). This implies that: mn(μ) < rns(μ + ω)d(μ + ω). Hence,

(5.1.23) Nn(t) = Σ rnn(μ)d(μ)< JΓ ms(μ + ω)d(μ + ω)

ms(v)d(v)

\\v-ω+p\\<t

Σ ms(v)d{v)=Ns(t + \\ω\\).

We have established that Nn(t) < Ns(t + \\ω\\). Therefore since Ns(t) <
^π(^)? we conclude that Nn(t) and Ns(t) have the same leading terms.
This together with (5.1.21(a)) implies that degNn/s < K dim ft. D

Proposition 5.1.24. Assume the hypotheses of Proposition 5.1.22, then

Proof. Let d — Kdim<S. It follows from Proposition 5.1.22 that K dim TZ = d.
Suppose that M π — M 5 φ 0. Then since M^ — M 5 is K invariant, there
would exist a K invariant function φ G C%°(k*) such that {M^ — M.$}(φ) ψ
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0. If we assume that supp^ is contained in {x £ k* : (x, x) < L}, then

- ms](φt) = r d + d i m * £ (mn(μ) - ms(μ))βμ(φt)

= t~d Σ (mn(μ) ' ms(μ))d(μ)φ[-iΓι (μ + p))

(mΊl(μ)^ms(μ))d(μ)φ[-it-1(μ +

The last sum above must go to zero as t —» oo, because

μ€K
\\μ+p\\<*L

μ£K
\\μ+p\\<tL

is asymptotic to a constant times Ld td with d' < d. But this contradicts
0. D

Lemma 5.1.25. If Kdim(P) = Kdim(«S) > Kdim(P Π S), then

Proof. Apply (5.1.21(b)) and argue as in Prop. 5.1.24. D

5.2. Asymptotic multiplicity measures of Kc orbits inp*. If A is a
quasi-projective variety in pi, let R(A) denote the field of rational functions
on A. R[A] denotes the ring of everywhere regular rational functions on A.
Thus, if A is closed (in the Zariski topology on p^) and irreducible, R[A] is
the co-ordinate ring of A. In this case An denotes the normalization of A.

Let O be a Kc orbit in p*, Ό its Zariski closure and I(O) = the ideal
—o

of functions on £*, vanishing on O. Suppose that O is regular in p* i.e. of
maximal dimension among Kc orbits inp* Then I(O)Γ)S(pc)

Kc has finite
co-dimension in S(pc)

Kc (see Chapter II, of [KR]). It is then clear that R[O]
is a finitely generated S(pc) module which satisfies the conditions (5.1.9(a))
and (5.1.9(b)). If O is not regular, then O is contained in the closure of
a regular Kc orbit in p^ (by Theorem 9 of [KR] and the discussion which
precedes it). And again we can conclude that R[O] is a finitely generated
S(p ) module which satisfies the conditions (5.1.9(a)) and (5.1.9(b)).
Definition 5.2.1. If O is any Kc orbit inp^, define m^(μ) = m ^ f μ ) for
all μ E K. Then m^, the multiplicity distribution of 0, is the distribution
on k* defined from the multiplicity function TΠ-Q = Σ e^τ^'o(μ)βμ We of-
ten identify m^ with (A+)*(m^) =jKyτ Σ μ € £ w^/ i ) Σ ^ μ , c(tι;)ί_itl,(μ+,).
Similarly define Θ^ = ΘRM and θ° = ^
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We can now apply Definition 5.1.19 to 11 = ll\O]. Note that K dimR[O] =
dime O = dime O.

Definition 5.2.2. Let O and m^ be as above. Let 1V% = M^^.That is,
for / G C~(Γ),

]V%(/) = lim r d i m - σ + d ί m ^ ( m ^ ) ( Λ ) .
t—rOO

The degree of homogeneity of M^ is dim^ O — dim^ k. M^ will be called
the asymptotic multiplicity measure of O.

We will sometimes want to consider the W skew-distribution (A+ )*(M^-)
on t* in place of the K invariant distribution M ^ on k*. Note that for all

)

(5.2.3) Urn
[μeκ

By Lemma 4.1.3, the degree of homogeneity of (A+YCM-p) is dime O—|
r. We set p(<9) = dimc O - |Δ+| - r.

Example 5.2.4. Let us consider the case when C? = {0} in p^. Then O =
Ό, mo(μ) = 1 if μ = 0, and mo(μ) = 0 if μ ^ 0. Also dimc (9 = 0, so that
p(O) = - r - |Δ+|. We now apply the Lemma 5.1.4. Let φ E Cc°°(r), then

cκ,τ

= Urn ίr+"Δί" Σ e H U p ( Λ ) = < Π D* ) ' δ°

Now c~1((9) = Ω = {0} in g*. It is clear from another result of Harish
Chandra that (A+)ί(J3tc(^Ω)) is given by a constant multiple of the same
expression.

For by definition, (J*{βΩ),φ) = {δo,J*φ) = J*Φ(0) = φ(0) where φ G
C™(k_*)' Recall the definition of Harish Chandra's invariant integral on K:

(5.2.5) F*(Z) = π(Z) ί φ(Ad(x)(Z)) dκ/τ(x) (Z G f )
JK/T

where π(Z) = I\aeA+{ia,Z). By Harish Chandra, we know that up to a
constant we have the equation
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Since F^(Z) is a constant times A+(φ)(Z), we obtain the equation

(Mfo),Φ) = Km < Π D* I A+(Φ) > (H)
I \aeAt

= a constant multiple of ( J J Da I (50> ^
+ ( ^ ) )

Thus (i4+)*(J*(/?n)) is a constant multiple of (ΠαeΔ+^α) * ̂ o which is

equal to c^τ (A"1")*(Mo). It follows that J*(/?Ω) is a constant multiple of
Mo This is a special case of a conjecture of Vogan. (See (8.1.1).)

Remark 5.2.6. It is possible to define an asymptotic multiplicity mea-
sure for any Kc orbit O = Kc z, not just for O. Consider J?[(9], the
regular functions on O. R[O] is an (S(p ),Kc) module, which is com-
pletely reducible as a Kc module, and Kdimi?[(9] = dime O. If μ G K, set
mo(μ) = τnR[o\{μ) = dim^ V* (by Probenius reciprocity). Then R[O] satis-
fies the following asymptotic growth condition. For some positive constants
CQ and do, if t is sufficiently large:

(5.2.7) cot
άimc ° < NR[o](t) < dot

ά[mc °.

We then define Mo, the asymptotic multiplicity measure of 0, by:

Mo(/) = lim
t—¥OO

for / G C^°(k*). (The degree of homogeneity of Mo is dim^ O — dim.R k.)
Condition (5.2.7) holds for any Kc orbit O in p^ because the same sort

of growth conditions are satisfied by NRtt(t). For we can argue as follows.
Set No{t) = NR[o](t) and N^(t) = NR[^(t). Certainly, i % < No which

implies that No is bounded below by a positive multiple of td. On the other
hand, if m^o(μ) is the number of copies of Vμ inside R[O] whose highest
weight υμ does not belong to R[O], and N^o is the sum of all products
m^o{μ)d(μ) for ||μ + p\\ < ί, then No=-N-δ + N^o.

L e t {/i/<7i5 ifr/grj hr+x,... , hs} be a set of generators of R[O]-* chosen
so that / i , . . . ,/rjflij 5 r̂5 and /ι r + 1,... ,/ιs all belong to R[Oψ*. The
corresponding (dominant) weights are ^i, . . . , ξr? 7i, ? 7r, and ζ r + 1 , . . . , ζ5.
Suppose V̂  is inside R[O] and fμ does not belong to R[O). Since υμ is a
polynomial in the generators of JR[(9]-*>, for some i, 1 < i < r, a power
of fi/gi appears in υμ. Fix t > 0. For each i between 1 and r, let M^(i)
denote the largest power of UJ9ϊ which appears in a highest weight vector
υμ G R[O]/R[O] such that \\μ + p\\ < t. It is clear that for each i between 1
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and r, there is a dominant weight a;; such that ||a;< + Mi(t)(ξi — 7;) + p\\ < t.
It follows that Afi(t)||(& - 7i)|| = \\Mi(t)(ξi - 7<)|| < t. Hence there is a
constant ci5 independent of ί, such that M ^ ) ) ^ ) ! < c»ί.

Now let & = the product of all the powers &M<^ for all 1 < i < r and
set vt — the weight of gt == X)Mi(ί)7i. So if V̂  is inside R[O], υβ does not
belong to R\O] and ||μ + ρ\\ < t, then ^v μ G i?[(9]. Clearly we have the
inequalities:

mό\oi^) < mo(μ + vt) a n d rf(μ) < d(μ + vt)

for all μ such that rn<^σ(μ) 7̂  0 and ||μ + p\\ < t. But the inequalities:
IIA* + Pll ^ ' a n d Mi(ί)||7i|| < Cit (where C; is independent of t) imply that
for some constant K (independent of t) \\μ + ut + p\\ < td. It follows that
No\o(t) ^ No(κi) which implies that No(t) grows no faster than a positive
multiple of td.

Suppose that O = KQ e is a nilpotent orbit in p*. Let Ό denote
—c

the normalization of O. We may assume that Kc acts on O with finitely
many orbits, and the normalization map π : O —> O is Kc equivariant. (See
section 5.3 for a construction of On.) We can view βpΓ1] as a Kc submodule
of R[O], so that JRfO71] is a completely reducible Kc module. i?[0n] is then
a finitely generated S(p ) module which satisfies the conditions (5.1.9(a))
and (5.1.9(b)). M^n is therefore well defined.
Proposition 5.2.8. Let O be a nilpotent Kc orbit in p% then M ^ = M^n.

Proof. R[On] is the integral closure of R[O] in R(O). Now apply Proposition
5.1.24. D

If g is complex, then we may identify Kc with G and p* with g*. The
following results are useful in computations.

Corollary 5.2.9. Let g be a complex semi-simple Lie algebra and let O be
a nilpotent G orbit in g*. Then Mo = M^ .

Proof. Apply the Proposition 5.2.8 and note the R[O] = #[#"] since R[O]
is the integral closure of R\O] in R(Ό) (see Lemma 3.7 in [BK]). D

The following proposition will be useful later.

Proposition 5.2.10. Suppose X = Gc e Πp^ = Όλ U ... U Os {disjoint
union) where each Oι is a nilpotent Kc orbit in p* whose closure is a com-

Σi=1 λ%..ponent of X. Then Mx = Σ*i

Proof. We have R[X] = ΣUiR\Oj\ N o t e t h a t Kdimi?[X] = KdimR[Όi]
which exceeds K dim{i2[C?i] Π ϋ[C?j]} for all i ψ j , and apply the obvious
generalization of Lemma 5.1.25. D
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Remark 5.2.11. Let X be as in the preceding proposition and assume in
addition that Gc e does not contain a Gc orbit of co-dimension 2. Then
for each i,R[O™] = R[Oi], as we argued in Corollary 5.2.9, because each Kc

orbit in O{ has codimension at least 2 (since Gc orbits in Gc e are even
dimensional). Therefore, M#t. = M^? = M^.. Hence M^ = Σi=i M o r

Remark 5.2.12. (Orbit Covers) Let 0 = Kc e where e G | £ . Let
(#£)' be a subgroup of Λfσ such that (K%)o C (#£)' C ϋί£. Then the
quotient (5 = Kc/(Ke

c)' is a finite covering of O = Kc/Ke

c. D = Ke

c/{Ke

c)'
is the covering group and i2[O] = i?[(9]D. (The actions of i£c a n d D on
(!) commute. The D action is as follows: a x = xά, where ά = a{K^)o

and a; = x(ίί£)o. KG acts on the left.) This leads to the fact that Mg =
d M<9, where d = |D|. Essentially, this is a consequence of the fact that
deg(iVg - d - No) is less than dim^ O = dimc 0 . (See Lemma 2.7 in [Bo].)

5.3. Multiplicity formulas for rings of regular functions. Let {x, e, /}
be a p^ Cayley triple, with O = Kc e. In order to study ]V%, we will
consider X — X(e) a non-singular variety which is a desingularization of O
(see Definition 5.3.1 below). Set mx(μ) = the multiplicity of the K-type μ
in i?[X]. niχ is the corresponding multiplicity distribution, and Mx is the
corresponding asymptotic multiplicity measure. Using ideas of McGovern
[Me], we will show how to "approximate" mχ(μ) in order to compute Mχ

Recall that B denotes the Killing form of g. Let Be denote the Killing
form oΐg^. We want to make explicit the identification of g^ and g* provided

—G —G —G

by B o If z G g~, then let z» denote the element Be (2? *) i n ff^? ami if y G g*,
—G —G —G

let yb denote the element in o^ such that y = Bc(yb, •)• liw,y G g*, then
define [w,y] to be [wb,yb]K
Definition 5.3.1. (Construction of a desingularization of O.) Let g^c(x]j) —
{z G gl|[a;,z] = jz}, the j-eigenspace of x. Likewise define p*(x;j) and
f£(x;j) Set F = V(e) = Σ^^fe i ) ,

and Γ = Γ(e) = ̂ ( r r O). Let g,Z, and ?x denote respectively (q*Y, (Γ)b,
and (M*)b 2'-' a n ( ^ — m a y ^ e r eg a rded as subalgebras of # , so that g
is a parabolic subalgebra with Levi decomposition q = I® u- Let ζ),L,
and E/ be the connected subgroups of Gc with Lie algebras g,/, and u
respectively. It is well known that the morphism π : GCXQV —> Gc e,
defined by π([^,υ)] = ̂  υ is a desingularization of Gc e. By similar ar-
guments, if V = Σj> 2P^(^;i) = V* ̂ £ c ' *^ e n *^e ( r e s t r i c t i ° n ) mapping
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π : KQ x Qnκc V "~* Kc e is a desingularization (resolution of singularities)
of Kc - e in the sense of [Slo].

(Since ad(e) : q* -» V is surjective, ad(e) : g* Πk^, —)• V (Ίp^ is surjective.
This enables us to conclude that the orbit Q Π Kc e is dense in V\ The
remainder of the argument is essentially the same as the one establishing
that π : Gc X Q V —> Gc e is a desingularization of Gc e and may be
found at the beginning of the proof of Theorem 3.1 in [Me]. See Section 2
of [Sek2] for a discussion of the case when e is a principal nilpotent.)

Set X = X(e) = Kc XQΠKC ^ We also consider X as a vector bundle
over KC/QC\KC with projection map r : X -> KC/QΓ\KC. Ox will denote
the structure sheaf of X.

Throughout this section we will work with the fundamental Cartan sub-
algebra h = g- of g. Let h — t + a/ be the Cartan decomposition of h.
Let Δ = A(g , he) and let Δ C i ,Δ n c i ,Δ i m , and Acpιx denote the subsets
of Δ comprising respectively the compact imaginary, non-compact imag-
inary, imaginary and complex roots. Then Or, = kc + Pr, where kg —
ίc θ ΣaeAci CXa θ Σ« € Δ c p / , C(Xa + ΘXa) and pc = a' θ Σ*eAcplx C(Xa ~
ΘXa) φ ΣaeAnci CXa. Let Q be the set of non-zero weights of tc in pQ.
Then Q = Δ n c i U {α|tc : α G Δcp/X}, and each weight in Q has multiplicity
one.

If x and xb are as above, we define a positive system for Aim as follows.
First note that since {x,e,/} is a p% Cayley triple, xb 6 it. Let Aim(xb) =
{α G Δ i m |α(xb) = 0}. Then Δ ί m(xb) is a root system. Choose any positive
system (Δ im(zb))+ for Aim(xb). Set Δ+m = (Δ i m(zb))+ U {α G Δ i m |α(x b) >
0}. Δ ^ is a positive root system for Aim. Now choose an ordering on
the full set of non-zero tc weights in g which is compatible with Δ ^ .
This choice gives an order in Q which is consistent with A^ci = Δ ^ Π
Anci. Denote the resulting set of positive elements in Q by Q+. Write
Q+ = {μi, - ,μι,μι+i,... ,μs) where Δ+ci = {μ/+1,... , μ j . Δ+ = Δj"f U
{/ii,... ,/L̂ } is a positive root system for Δ(fcc,£c).

The action of tc on g^, is the co-adjoint action. That is, if w G g^c-,H G
£ c, and y € gς then we have: (iϊ w)(y) = -ty(fΓ y) = -w([H,y]) =
-Bc{w\ [H,y]) = Bc{[H,w%y). I t fol lows t h a t H w = [H*,w].

Now since ί ' D ^ i t i s clear that £*,Γ, and u* are tc modules. Suppose
that w G q* is of weight 7 for the action of tc. Then [a;,w] = xb tί; = y(xb)w.
It follows from the definition of q* that 7(2^) is a non-negative integer.
Define Δ ( Γ ( Ί ^ , ί c ) to be the set of non-zero tc weights of /* Π A£. Define
Δ(Γ Πp^,t c ), A(u* Πfc ,̂ t c ) and Δ(u* Πp^, t c ) analogously. It is clear that
Δ(Γ Πfc ,̂ t c ) (respectively Δ(Γ Πp*, έc)) consists of all β in Δ c (respectively

) (respectively A(u*Γ)p^,tc)Q) such that β(xb) = 0. Δ(?i*nfc^,ίc) (respectively A(u*Γ)p^,tc)) consists
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of all β in Δ+ (respectively Q+) such that β(xb) > 0.

Remark 5.3.2. It is clear that R[X] is a finitely generated (S(p ),ίίc)

module satisfying the conditions (5.1.9(a)) and (5.1.9(b)) and that

KdimΛfX] - KdimiϊfO] = dimc Ό.

Also, M x = M^, by Prop. 5.2.8, since X is a normalization of O.

Theorem 5.3.3. (McGovern [Me]) Let d = KdimJSpΓ] = a\mcX =

d i m c α LetS = χ(H(X,Ox)) = ΣLo(-l)iHi(X,Oχ)- Then:
(a) For each p,Hp(X,Ox) is a finitely generated (S(p ),Kc) module

satisfying conditions (5.1.9(a)) and 5.1.9(b)).

(b) Ifp>0, the support ofHp{X, Ox) is contained indΌ = Ό\O (the

boundary of O).

(c) Mx = Ms.

(d) As a K module, S is isomorphic to

(5.3.4) _ _

Proof. This is based on ideas in the proof of Theorem 3.1 in [Me].

We would like to express the K structure of R[X] in terms of more familiar

K modules. Since R[X] = Γ(X, Ox) = HΌ{X, Ox), we begin by investigat-

ing HP(X, Oχ) for arbitrary p. Since π : X -» O is proper, for each p > 0,

the higher direct image sheaf Rpπ*Ox is a coherent sheaf on O. In addition

by Theoreme 3.7.3 of [Grot2], there is a Leray spectral sequence:

(5.3.5) Hm{Ό,Rpπ*Ox) =» Hm+p(X,Ox).

Since O is afSne, the cohomology Hm(O,Rpπ*Ox) with m > 0 vanishes.

Hence by (5.3.5) there is an isomorphism: H°(Ό,Rpπ*Ox) ~ HP(X,OX).

Now since Rpπ*Ox is coherent on Ό,Γ(Ό,Rpπ*Ox) = fί 0 (O,β p π*Oχ) is

finitely generated over #[£)]. Thus HP(X, Ox) satifies (5.1.9(a)). (It satisfies

(5.1.9(b)) because of (5.3.8) below.)

Now let U = π-^C?) and Z = X\U. To prove (b), consider the exact

sequence of sheaves on X:

(5.3.6) 0 -> JKOxIc) -> Ox -> ή ( O χ | z ) -^ 0
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where i : Z —> X and j : U —> X are inclusions. By applying the higher

direct image functors Rpπ*, we obtain a long exact sequence:

(5.3.7) 0 -> π*(jι(Ox\u)) -> π*O x -> π,(z«,(Ox|z))

The mapping π\u : U -» O is affine. So by Cor. 1.3.2 of [Grotl], if p > 0,

then Rpπ*(j\(Ox\u)) = 0. From the long exact sequence in (5.3.7) it follows

that for all p > 0, we have 0 -> Rpπ*Ox -> i? p π*(ή(O x | z )) . Therefore

the support of the sheaf Rpπ*Ox is contained in the support of the sheaf

Rpπ*(i*(Oχ\z)) which is contained in π[Z}. It follows that H°(Ό,Rpπ*Ox)

and hence HP(X, Ox) has support in π[Z] =Ό\O.

We now prove (c). For each i > 0, K dimϋP(X, Oχ) < <i, since the support

of Hι(X, Ox) lies in Ό \ O which has dimension strictly less than d. So if

mi denotes the multiplicity distribution of Hτ(X, Oχ), Prop. 5.1.17 implies

that for all / G C™(k*), lim*^*, t " d + d i m * m ^ / J = 0. Now i?[X] - 5 =

Σ,t i (- ! )*#*(*> Oχ). Thus for all / 6 Cc°°(fc*),

5 ) ( / ) £ ( ) t ΛΛ) = 0.

Hence M x = M5.

To prove (d) note that the mapping r : X —> Kc/Q Π ifc> is &n afϊine

morphism of schemes with X noetherian. So by Chap. Ill, Cor. 1.3.3 of

[Grotl],

(5.3.8) Hp(X, Ox) ~ Hp(Kc/Q Π Kc, r,O x),

where τ*Ox is the direct image of Ox under r. So χ(H'(X, Oχ)), the Euler

characteristic of the cohomology groups H (X, Oχ), is equal to χ(ί ί ' (Kc/QΠ

KC:τ*Ox)), the Euler characteristic of the cohomology groups H (Kc/Q Π

ifc,r*Oχ). Furthermore, r*Oχ is the sheaf of sections of the bundle

7

So f?"(frσ/gnίΓc,τ.ox) = H* [κc/Qnκc,Kc *Qnκc R[V]) •
Let b = dime p*(x\ 1) Then we also have the following Koszul type reso-

lution of R[V] a s a Q Π Kc module:

(5.3.9)

0.
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(See Section 3.5 of [AJ].) We can obtain a resolution Kc XQΠKC Rty] by
replacing each term W of (5.3.9) by Kc XQΠKC W. Using this resolution of
Kc XQΠKC R[V] a n d the additivity of the Euler-Poincare characteristic we
conclude that:

(5.3.10) Σi-lYH1 (Kc/Q'Π Kc, τmθx).
i

= Σ(-!)J D " 1 ) ' ^ (Kc/Q
3 * ^

A%(x; 1)]).

This proves part (d) of the theorem since S =

iywix, ox) = Σi-lyH* (KC/Q n κc, τ*
i=0 i

D

Corollary 5.3.11 (Notation(5.3.3)). If e is even, ms{μ) is given by the

following formula:

(5.3.12) ms{μ) = ] £ e(w)p(w(μ + p) - p)
wew

where p is the Kostant partition function for A(u*Πp%,tc), that isp(v) = the

number of ways of expressing v as a non-negative integral linear combination

of weights in A(u* Πp* tc).

Proof. Since e is even, p^(x l) = 0 and V = u* Π p^. So that (5.3.10)

becomes:

(5.3.13) Σ ί - 1 ) ^ ' {Kc/QnKc,Kc xQnKc
i

The multiplicity formula (5.3.12) follows from (5.3.13) and the Bott-Borel-

Weil Theorem.
The multiplicity formula (5.3.12) can be used to show that (A+Y (M^) is

a sum of expressions of form ΣweW aww (D Y + ) where D is a homogeneous
differential operator with constant coefficients on Γ, Y is a convolution of
Heaviside functions and the aw are constants. (See Section 8.) D

Proposition 5.3.14. (Compare Theorem 7.2 in [BK].) Let g be a complex
semi-simple Lie algebra. Suppose that s_ = rn®w_ is a parabolic subalgebra,
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h G rn is a semisimple element, m = gh and w_ is the sum of the positive

eigenspaces of ad(/ι) acting on g. Let S, M and W be the corresponding

connected subgroups of G. Choose e G w_, so that G e = G w_, i.e. so

that e is a Richardson element for s. Let X = G x s w_, and d = dime X

Set £ = [Ge : Se], the degree of the moment map X —> G w_ {defined by

[{g,v)\ —> g υ). Then Nx and £N-Q^ have the same leading terms. {It is

clear from the proof that Nx > £NQ^.)

Proof. The moment map π : G x 5 i - > G w is proper and of degree I [BB].
Therefore π is finite (Exercise II.4.6 in [Ha]). Since π is finite, R[X] is finitely
generated as a module over π*R[G w\. Recall that nk is the nilradical of
kjQ which in this case is the same as g^. By Corollary 10 of [Gros], R[X}->*
is finitely generated over {π*R[G w])-fc. It follows that for some positive
integer s we can find highest weight vectors / ι l 5 . . . , hs G i?[X]-*> such that:

(5.3.15) R[X]*» = π*{R[G w])^hx + + π*{R[G w])^hs.

We may assume without loss of generality that each hi belongs to a single
weight space. Set λ̂  = the weight of h{. Since π has degree Z,R{X) is a
ί dimensional vector space over {R{G w)). So we can find highest weight
vectors gλ,... ,g£ G i?[X]-* constituting a basis for R{X) over π*{R{G -w)),
i.e., such that:

(5.3.16) R{X) = π*R{G w)gλ + + π*R{G w)ge.

Set ξi = weight of g{. Now consider each hi appearing on the right hand side
of (5.3.15). By (5.3.16) we can find functions / u , . . . ,fifi in π*(i?(G w))

such that hi = fi^gi H Vfi,tgt- But since the g/s are a basis for R{X) over
π*R{G-w), and /^ and all the ^ are n .̂ invariants, the functions /»,!,... , /i,£
must all belongs to (π*i?(G ^))- f c So by a lemma in [Ro], each of these
functions is a quotient of functions in {π*R[G w])-*. Therefore by taking
the product of the denominators of all the fitj (for 1 < i < s and 1 < j < £),
we can find a function b G (π*i?[G ?x;])-fc (belonging to a single weight space)
such that for all i, bh{ belongs to the sum:

w\)*-9l + "• + {π*R[G

We now see that (5.3.15) implies that:

(5.3.17)

bR[X]z» C (π*β[G u;]) 2 *^ + + (π'Λ[G

It is easy to deduce from (5.3.17) that Nx and ZNG.U have the same leading
terms as in the argument for Prop. 5.1.22. D
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Proposition 5.3.18. Assume the same hypotheses as in Prop. 5.3.14 and
the same notation as in the proof. Then as G modules:

R[X) ~ Σi-iy&iG/S, G x s R[w]) ~ lndG

M(1).

Proof. The first isomorphism is established as follows. Let ζ : X -» G/S be
the obvious projection mapping. (Note that X is the cotangent bundle of
G/S.) R[X] = Γ(X, Oχ) = H°(X, Ox). It is known that W(X, Ox) = 0 if
i > 0 (Lemma A2 in [BK]). So i?[X] is the Euler-Poincare characteristic of
H (X, Oχ). Since ζ is an affine morphism, for all i > 0,

xsR[w)).

Hence

The fact that ^ ( - ^ ( G / S ^ X s #[™]) ^ Ind^(l) follows from Lemma
2.1 of [Me]. D

Remark 5.3.19. It follows from (5.3.18) that if μ is an irreducible finite
dimensional representation of G on the space V̂ , then mx(μ) — dime V™
and this function is given by the Heckman-Kostant formula. (See Section
6.)

Remark 5.3.20 (Notation 5.3.14). Suppose that either (a) G-w is normal
and that Ge is connected or (b) Ge = Se\ then mc-wiv) — ̂ G e(M) —
^ G /I(M) = άimcVj^ for all μ G G. Explanation: If (a) holds then apply
Theorem 6.3 of [BK]; if (b) holds then apply Theorem Al of [BK].

6. Richardson orbits in complex semi-simple Lie algebras.

In this section, we will assume that £ is a complex semi-simple Lie algebra.
But we identify g with g* = TrLomn(g,R). k is now a compact real form of
g. As usual t is a maximal torus of k_. Let j be the centralizer of t in g and
let J be the Cartan subgroup of G corresponding to j . Kc can be identified
with G, and p* can be identified with g. Thus if Ω is a nilpotent G orbit in—o —

C), the Cayley transform of Ω will be identified with Ω.
Let us adopt the notation of Proposition 5.3.14 so that Ω = G e is the

Richardson nilpotent orbit for the parabolic subalgebra 5 = m φ w. (Recall
that 5, M and W are the connected subgroups of G corresponding to s, m
and w). We will also assume that j_Qrn. The main goal of this section is to
show that:
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Theorem 6.1.1. with assumptions as above There is. a nonzero constant
CQ, such that J*(/?Ω) = CQMQ. (Recall from (5.2.6) that M Ω = M -̂.)

Now A(kc,tc) = Δ(#,j). Assume that Z G t is regular and we de-
fine A+(kc,tc) = {φ e Δ{kc,tc)\Φ(iZ) > 0}. A(w,jJ = A(w,tc) C
A+{kc,tc). Set Δ ^ = Δ(m,£c) Π Δ+(£ c ,£ c ) . TV is, as usual, the Weyl
group of AQzjQitc)- ^m is the Weyl group of A(m,tc). W^ is the "standard
cross-section" to W^ in W. That is,

Wl = {σ G W|α G Δ + ( £ c , ί c ) and σ ^

implies a e A(w_Λc)}-

We will write AJt(kc,tc) = {φu... ,φn,φn+u... , ^ | Δ + | } where Δ ^ =
>!,... ,φn} and Δ(t^,ίc) = {φn+1,... ,Φ\A+\} Set Y+ = H_ i 0 1 * H_ i 0 2 *

• * ΐliφ Δ + (the convolution of the Heaviside functions of all the weights
iφ) Y^ = H _ # 1 * H_ i 0 2 * * H_ i 0 n , and Y+ = H_ i 0 n + 1 * H_ ΐ 0 n + 2 * *

Theorem 6.1.1 is a consequence of:

Theorem 6.1.2. (A+y(J*(βG.e)) and (A+Y(MG.e) are each a constant
multiple of

(6.1.3)

(Recall that D α is the directional derivative in the direction — ia.)

Remark 6.1.4. Before proving (6.1.2), we note that it is easy to show
that (a) T £ does not depend on the choice of coset representatives for
W/Wm; (b) T £ is W skew invariant; and (c) T £ has the right degree of
homogeneity, namely — r + \A(w_, tc)\ — |Δ+1. (According to Definition 5.2.2,
p(Ω) = dimc(Ω) - |Δ+(A;c,ίc)| - r = 2\A(w,tc)\ - \A+(kc,tc)\ - r =

Proof of (6.1.2). We first show that (A+)*(J*(/3Ω)) is a constant multiple of
T£. There are two main points in the calculation. The first is an unpublished
result of Harish Chandra that if / G C^°(g*), then (up to a constant) (yCfo, /)
is the "value" at 0 (actually a limit) of the function defined by applying

the differential operator (ΓLeΔ-1- ^ α ) to Ff. (This result has been greatly
generalized. See [BV1], [BV2] and [Gi].) Here, Ff is the invariant integral
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defined as follows:

Ff(Z)=πc(Z)ί f(Ad(x)(Z))dG/J(x) (Z e j* )
JG/J - r e g

where dG/j(i) is a G invariant measures on G/J.
(d>G/j is defined as follows. Let σ denote conjugation with respect to

the real form k of g. Then (X, Y)σ = -B(X, σ7) is scalar product on g.
Then define a Lebesgue measure d9 on g and £* such that the hypercube
determined by an orthonormal basis has unit volume. In the same way define
a canonical Lebesgue measure dj on j and j * . Now normalize dG/j by the
requirement that d9 = \πc(H)\2dG/j(x)djH.)

The second main ingredient in the calculation of (A+y(J*(βn)) is a result
of Sengupta ([Senl] and [Sen2]), which says that up to a constant multiple
independent of Z:

(6.1.5) (i4+)*(Λ(/9b.z)) = £ ε(w)w ( ί z * Y+).
wew

Here are the details of the computation of (A+)ι(J*(βn)). Note that the
"equations" appearing below will usually only be true up to multiplication
by non-zero constants which depend on such things as the normalization of
measures. Throughout the computation we will use results from section 3
on the actions of groups and differential operators on homogeneous distri-
butions.

Let D = (lL€Δ+ D α ) Suppose that φ e C£°(Λ*) and / = J*φ. Then
by definition (J*(βn),φ) — (/?Ω,/) = (by Harish Chandra) lim^o+ίD2

Ff)(tZ). By the chain rule and the homogeneity of D, we have that D |
{Ff(tZ)} = ί 2 | Δ ^ '(D 2 Ff)(tZ) (The subscript Z indicates differentiation in
that variable.) Rewrite this equality as (D2-Ff)(tZ) = Γ2^Ό%>{Ff{tZ)}.
Then

(6.1.6) (βΩJ) = l̂im r 2 | Δ i ' D | {Ff(tZ)}.

Since Z is regular, βG.z — Cπc(Z)dG/j where C depends on the connected
component of j * e containing Z. See [Senl]. By formula (2.2.1), Ff(tZ) —
{βG.tz-> f) (up to a constant independent of Z).

Thus (6.1.6) becomes limt^0+Γ2lA^Ό2

z{(βG.tz, /)} = (by (6.1.5))

(6.1.7) HmΓ 2 | Δ ^D 2

z j / £ ε(w)w (δtz * Y+), A+(φ)\\ =

lim Γ 2 ' ^ ' / Σ e(w)Ό% (w • (δtz * Y5

+)) , A+(φ)\ .
\w I\wew
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We can rewrite the sum appearing in (6.1.7).

(6.1.8)
llfff

wew

= ]ΓεM((D|(<ω)*™ Y9

+)
wew

(by Remark 3.1.8)

= Σ εH ( ( - l ) 2 1 ^ 2 1 ^ - 1 D 2) (δtwZ))
wew

ε(w)((w-1-Ό2)-(δtwZ))
wew

x °2) (w• V))

wew

Using the fact that W^ is a cross-section for W^, we rewrite (6.1.8) as:

(6.1.9.)

= ί2'Δ-'

e(r)r.\ £ ε(w')w' ((D2 Y+) * δtz)

ε(r)r.\ ^ φ / ) («,' (D2 Y^) * w' • δtz) \

Σ ^ ^ ( [ K ) " 1 D 2 ] [w' • Yp

+] * w'

since D is Wm_ skew

= t 2 | Δ ^' 5Z ε ( τ ) τ •

Now write Y+ = Y ^ * Y+ and observe that if w' G Wm, then w' Y+
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(it/ Y+) * Y+. So (6.1.9) becomes:

(6.1.10)

j Σ e(w')(Ό-[w'-Y^)*w'-δtz*Ό.γΛ
W J

Replace the sum in (6.1.7) by (6.1.10). It is clear that (βn, f) =

(6.1.11) lπα ( Σ e(τ)τ

Since D Y+ = δ0,

It follows that (6.1.11) equals (Στew^ Φ)τ [D ' YΆ A+(Φ)) τ h i s e s t a b "
lishes the first half of Theorem 6.1.2.

We will now compute (A+YCMQ) = (^4+)ί(MΩ) and show that it is a
constant multiple of T£. Set p = - r + | Δ ( ^ , ί c ) | - | Δ + J . Choose / G Cc°°(f).
By definition,

(6.1.12) (A+

It follows from Props. 5.3.14 that if X = Gx^tϋ, then M^ is a scalar multiple
of Mjy. So by Prop. 5.3.18 and Remark 5.3.19, we can replace m^(μ) in
(6.1.12) by some multiple, say K (which depends on Ω) of mx(μ) = dime V^M.
There is an explicit expression for dim^ V̂ M which is due to Heckman and
Kostant:

(6.1.13) dimc Vμ

M = Σ ε(σ)p(σ(v + P) ~ P)

where p is the Kostant partition function defined relative to Δ(i(;, tc). (See
Lemma 3.1 in [He].)
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Let Λ+ denote the lattice of dominant weights in t£, and let Q denote the
root lattice. Then

(6.1.14)

mx(β) Σ £(T)δ-ir(μ+p) ) (ft)
J

= Σ Σ Σ ε{τ)ε(σ)p{σ(μ + p) - ρ)ft(-iτ{μ + p))
τ€W μ

Σ Σ Σ ^)e(σ) Σ /* H ' 0* + P))
rβW σeW /zGΛ+ΠQ JfeαeZ+,α€Δ(t£)

= Σ Σ ΦM*) Σ /«(-^"x (p+Σ*.«))
rGiy σ€ίV ifeαGZ+,αGΔ(i£)

= Σ Σ eίrMσ-1) Σ Λ H ^ " 1 (P + Σ *««) )

Set ίi; = rσ" 1 and note that ε(^) = ε(τ)ε(σ~1). Then (6.1.14) becomes:

Σ Σ εM Σ /* (-*" (p+Σ *.«))

Let us now take advantage of the fact that W^ is a cross section for Wjn, to
write the previous sum as:

(6.1.15)

Σ *M Σ Σ Σ Φ>')Λ ("tW (p + Σ *««
4 σGV^ JbβGZ+,α€Δ(tfi) tu'eWm

= Σ Φ)Σ Σ Σ ε(w')(τ-i f)t(-iw'(p

Σ*««
= Σ Φ) Σ ]

reW^ kaeZ+,aEA(w) tu'€
p-fV^A;Λα is regular

This is clear because if for some σ in W^ σ~λ (p + Σ kaa) — p G Λ+ΠQ, then
P + Σ) kaa is regular. On the other hand if p + ]Γ fcαα is regular then for a
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unique σ in W, σ~x(p + Σ &<*α)"~~ P € Λ+. Furthermore, since σ~xp — p is a
sum of roots, σ"x(p + Σ kaa) — p must also lie in Q.

It now follows that the limit in (6.1.12)

(6.1.16) = K

(up to a constant multiple).

This last assertion follows from Lemma 3.1.9 and Lemma 5.1.4. The proof

of Theorem 6.1.2 is now complete. D

7. Even nilpotent orbits in real semisimple Lie algebras.

We again assume that g is real. In this section, {x, e, /} is an even p*
Cayley triple. The corresponding g* Cay ley triple is {Jϊ, 15, F}. (See Section
2.3.) O = Kc e and Ω = G E~so that Ό = c(Ω). Assume the notation
from section 5.3. In addition, set λ = — ix = E — F, and Φ = G λ. Recall
that we have chosen a positive root system Δ + = Δ+ for A(kCitc) such
that rcb = i\b is dominant Δ + . We will show:

Theorem 7.1.1 (with assumptions as above). There is a non-zero constant

CQ such that J*(/3Ω) =

Theorem 7.1.1 will follow from:

Theorem 7.1.2. (A+Y(M^) and (A+y{J*(βQ)) are each multiples of the

sum:

(7.1.3) T, Σ e(w)w(ΌLnK-Y+),
υ>eW/WLnκ
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where ΌLnK = UaeA+nκ

 D<* i^tnκ i s a positive system for Δ(Z rιkc,tc)),

and Y+ = H_ i μ i * * H_ i μ n with {μuμ2, .. ,μn} = Q+ Π Δ(M* Πp^, ί c ) .

Remark 7.1.4. Since # is even, e is also a Richardson element of u. Thus

dime Gc - e — 2 dime M It follows that dim c O = |(dimc Gc e) = dime u-

Now it is easy to see that T £ ,(J4+)*(&%), and (,4+)*(J1)c(/?Ω)) all have the

same degree of homogeneity, namely —r — | Δ j n i C | + \A(uΠp^,,tc)\ = — r —

)

Proof of7.1.2. The fact that (,4+)'(]V%) is a constant multiple of (7.1.3) fol-
lows from Prop. (5.3.3) and the multiplicity formula in Corollary (5.3.11) as
in our calculation of (A+YCM-Q) (in the second half of the proof of Theorem
6.1.2.) when O is the Richardson orbit of a complex semi-simple Lie algebra.
(This is based on the similarity between the sums appearing in (5.3.12) and
(6.1.13).)

The fact that (A+)ί(J!te(/3Ω)) is a constant multiple of the sum Tq (defined
in (7.1.3)) follows from two basic results. The first is that β& = limί_)Ό+ AΦ
This is an unpublished result of Rao (see [Ba]) which is a consequence of
the fact that the even nilpotent orbit Ω is a deformation of the elliptic orbit
Φ. The second fact is a formula of Duflo and Vergne [DV] for the Fourier
transform of J*(/?ψ). These two results allow us to compute the Fourier
transform of J*(/3Ω)5 and hence J*(βn).

Here are the details of the computation of (A+)*(J*(/?Ω)). Suppose that
Φ e C~(fc*) and / G C°°{k) is such that φ = f. We have:

(7.1.4) (J.(βo),φ) = li

In the notation of [DV], Fty\k is the Fourier transform of J*(/?tψ). Therefore,

By definition,

Theoreme 41 of [DV] gives an integral formula for (A+y(Ftφ\k). It follows

from this formula that li

(7.1.5) / I i-VΓFKI™ f Σsjμj) (H) ( JJ <*(R))

•(A+)(f)(H)dSl...dsndH.
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In (7.1.5), FKILΠK (Σ"=i Sjμ^ (•) is the function on tteg defined as follows.

(See the formula for Fκ/H(μ,X) following Corollarie 28 in [DV].) We set

Δjf/LnK = {a G Δ|α(ίλb) φ 0}, A+/LnK = {a € Aκ/Lnκ\a(iλb) > 0} and

^ = E " = i «>/*>• τ h e n >

(7.1.6) e t / ( M ί / f )

K/LΠK

(Note that although Theoreme 41 is proven under the assumption that rank
g = rankά, it easily extends to general g.)

To complete the proof of (7.1.2) we need to rewrite the product

Fκ'L™{v){H) ( J] a

in the integrand of (7.1.5). First note that by (7.1.6) and the W skew
invariance of (ΠαeΔ+ a(H))i w e have

(7.1.7)

Let WlnK be the set of all w £ W such that whenever μ e t*c is dominant
relative to A+,wμ is dominant relative to Δ j n x . WlnK is the standard
cross-section to WLΠK in W. Then each element w G W has a unique
decomposition w — στ where τ E WlnK and σ E WLΠK ^nd length IU =
length σ+ length r. Identify W/WLnK with

Now rewrite (7.1.7)as:

(7.1.8) — ί — Σ £(τ)
1 |

Since Πα€Δ+ α(στH) = e(σ)ΠαεΛ+ "(τ£Γ), (7.1.8) becomes:

(7 L9) i w b i Σ e(τ) Σ e"(r/ί) π α(τF)

LDK
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If we substitute (7.1.9) for Fκ/Lnκ(v)(H) (ΓLGΔ+ ot{H)) inside the inte-
grand of (7.1.5), we obtain:

(7.1.10) £ e(r) ί
_ *- ττr1 ** t -

JJ α(τ.ff)(jl+)(/)(.ff)<fe1.. -rfsn d#.

Since e^σ r i ί) = e<"~1 I'><rlf>, i/ = Σ^=i sάμά and W^n^ permutes {μl5 μ2, . . . ,
/in}, the integral:

/" (_i)n e K-

has the same value for all σ € W^K, namely:

(7.1.11) | + ( - 1 ) V ^ " > Π a(τH)(A+)(f)(H)dSl...dsn.

In light of (7.1.11), (7.1.10) can be written as:

(7.1.12) \WLnκ\ Σ e(r) f ί (-l)»e"(^

a(τH)(A+)(f)(H)dSι...dsndH.

If we reverse the order of integration in each summand in (7.1.12), and
then make the change of variable H' = rif, we obtain:

(7.1.13) |WW| Σ e(τ) ί ί(-l)ne"W

α(H')(A+)(f)(τ-1H')d81...dsndH'.

Let g{H) = Π α 6 Δ + α(-H")(^+)(/)(-H") Since (A+)(f) is W skew invariant,

(7.1.13) is the same as

(7.1.14) (-l)n\WLnκ\\Wι

LnK\ JRn g f Σ(-isjμj) j ^ ... dsn

which equals (up to a constant)

(7.1.15) \W\(DLnκ (H_ i μ i * * H_ i μJ, ^JΓ
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Since Tq is W skew invariant and (T9, [(^+)(/)]) is equal to (7.1.15), we
conclude that (A+Y(J^(PQ)) is a constant multiple of T g . The proof of
Theorem 7.1.2 is now complete. D

Remark 7.1.14. Proposition 7.1.1 can be shown to hold for each Kc

nilpotent orbit Ό in N\£c\ in the case g = su(p, q) because the analogue of
Proposition 7.1.2 can be established. Since the argument is essentially the
same as that for Theorem 6.1.2, we will only sketch it.

Suppose for the moment that g is arbitrary, O is an arbitrary Kc nilpotent
orbit in Λί\p^\ and that there is a θ stable parabolic subalgebra q = l®u
(Levi decomposition) such that O = Kc (w* Π p^) (where u* C <j£ and
u* corresponds to u as in Section 5.3). Then as in Prop. 5.3.14, if Y =
Kc x QΠKC (M* Πp*), we have a proper morphism Y —> O. By the analogue of
(5.3.14), Ny and 6i\% have the same leading terms, where b = [K^ - QΓ\KQ],

This allows us to conclude that M ^ is a constant multiple of My. For the
purposes of calculating My, ray (μ) can be "approximated" by an expression
like (5.3.12) (just as for X in (5.3.3), rriχ is approximated by (5.3.12)).
Noting the similarity between (5.3.12) and (6.1.13), we conclude as in section
6 that (i4+)f (A%) is a multiple of T£. (T £ is defined as in (7.1.3).)

Now assume that £ = su(p,q). For each nilpotent Kc orbit Ό in λί\p^]j
there is a θ stable parabolic q such that O = Kc (u* Πg^). Barbasch
and Vogan give a formula for βςi (Theorem 4.2 of [BV4]) where Ω is the
inverse Cayley transform of O. This formula is similar to (6.1.6). That
is, if D = ΌL = ΠαeΔ+(/,ί ) D α , then βΩ = the limit of D applied to a
regular elliptic orbital integral, as the elliptic parameter approaches zero
while remaining in a fixed Weyl chamber. We then compute J*(/?Ω) by using
the results of [DHV] for the pushforward of the regular elliptic orbit.

These computation lead to an expression for (J4+)*(J*(/3Ω)) as a sum over
W of terms of the form €(W)W (DΎQ). Here ΎQ is a convolution of Heaviside
functions R_iv with v in Q+. Since Q+ = Δ+(Γ Πp^,ί c ) UΔ+(u* Πp^,ί c ) ,
and At = Δ + ( Γ n ^ , ^ ) U Δ + ( Γ Π 2 £ , t c ) , we can write D = ΌLnK D' and
Yρ = Y + * Y' where D' is the product of the directional derivatives D,, with
v in Δ + (Γ Πp* ί c ) , and Y' is the convolution of the Heaviside distributions
H_iv with z/Tn Δ+(Γ Π ^ , ί c ) . Therefore, D Y^ = ΌLnK Y+ * D ; Y ; =
&Lnκ ' Y + * ίo = &LΠK Y + A few more elementary manipulations allow
us to conclude that (A+)ί(J*(/3Ω)) is a multiple of Tq.

8. A conjecture of Vogan.

Theorems 6.1.1 and 7.1.1 and many other examples suggest the validity of
the following conjecture:
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Conjecture 8.1.1 (Vogan). If O is a Kc nilpotent orbit in λί\p^]7 which
is the Cayley transform of the nilpotent G orbit Ω in Λf[g*] then there is a
non-zero constant CQ such that J*(/?Ω) = <?Ω M ^ .

In addition to the examples presented here which support the conjecture,
it clear that M^ and J*(βςι) must have the same general form, because
{A+Y^NLQ) and (A+y(J*(βςι)) have the same general form. That is each of
these expressions must be a finite sum of terms like:

(8.1.2)
wew

where D is some homogeneous constant coefficient differential operator on t*,
and Y is some convolution of Heaviside functions of real valued weights on it,
and the aw are constants. Because of Props. 5.3.3, 5.3.4, and Corollary 5.3.10
it is clear that ultimately (Λ+)<(M^) can be computed in terms of partition
functions which must lead, as the computations in Theorem 6.1.2 reveal, to
a sum of expressions like (8.1.2). On the other hand, by unpublished results
of Harish Chandra, fa must be computable as a limit of some constant
coefficient differential operator applied to Jfy, Harish Chandra's invariant
integral. By applying the results of Sengupta, as in Theorem 6.1.2, we see
that (A+y(J*(fa)) must be expressible as a sum of terms like (8.1.2).

So we see that there is a good reason to believe in the validity of Conjecture
8.1.1, although clearly the observations above and the methods of this paper
do not suffice to establish it in general.
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