
PACIFIC JOURNAL OF MATHEMATICS

Vol. 170 No. 1 1995

THE CORESTRICTION OP VALUED DIVISION ALGEBRAS
OVER HENSELIAN FIELDS I

YOON SUNG HWANG

When L/F is an unramified extension of Henselian fields,
we analyze the underlying division algebra CD of the core-
striction cor̂ //? (D) of a tame division algebra D over L with
respect to the unique valuations on CD and D extending the
valuations on F and L. We show that the value group of CD
lies in the value group of D and for the center of residue divi-
sion algebra, Z(W) QM{Zφ)JJF)ιlk, where λί{Z(D)/F) is the
normal closure of Z(D) over F and k is an integer depending
on which roots of unity lie in F and L.

Introduction.

For any finite separable extension L/F of fields and any central simple alge-
bra A over L, the corestriction of A is a central simple F-algebra obtained as
the fixed point algebra under a Galois group action (cf. [Ri]). This induces
the map from the Brauer group Br (L) to Br (F) corresponding to the homo-
logical corestriction. Though this algebraic corestriction is an important tool
in the theory of division algebras, it is actually very hard to work with. To
gain a better insight into the behavior of the corestriction, we analyze here
the corestriction for valued division algebras over Henselian valued fields, for
which there is a well-developed structure theory. We will here concentrate
on the case when L is inertial (unramified) over F. In a subsequent paper
[H2], we will consider the more general case when L is tame over F, i.e.
char (F) \ [L: F], where F is the residue field of the valuation on F.

For any ring R we write Z(R) and R* for the center of R and the group
of units of ϋ , respectively. We will consider only central simple algebras A
finite-dimensional over a field F. By Wedderburn's theorem, A = Mn(D), a
matrix ring over a division algebra J9, which is called the underlying division
algebra of A.

A valued field (F, v) is called Henselian if υ extends uniquely to each field
algebraic over F. For a nice account for several other characterizations of
Henselian valuations, see Ribenboim's paper [Rb]. Recall (e.g. from [Wl])
that if D is a central division algebra over a Henselian valued field (-F, v),
there exists one and only one valuation on D extending v on F.
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Let (L, v) D (F, v) be a finite separable inertial extension of Henselian
fields. This means that [L: F] = [L: F] and L is separable over F. Let D be
a central division algebra over L. We denote by CD the underlying division
algebra of the corestriction corL/F (D) of D. ifD is inertially split over L, i.e.,
split by the maximal unramified extension of L, we have good information
obtained homologically using [JW2, Sec. 5]. Also, we can analyze a tame
and totally ramified division algebra since it is isomorphic to a tensor product
of symbol algebras (cf. Prop. 1.6). Furthermore, since a tame division
algebra over L decomposes in the Brauer group to S ®χ, T with S inertially
split and T tame and totally ramified (cf. Prop. 1.7), we obtain information
about a tame division algebra by combining the results about S and T.
Our basic results are summarized in the following table. Here Γ^ is the
value group of the valuation on D and D is the residue division ring of the
valuation ring of D. Also λί(Z(D) / F) denotes the normal closure of Z(D)
over F, Nip? denotes the norm map from L to F, and ΘD is the map of (1.5)
below, so ker (ΘD) is a subgroup of TD/YL.

D

inertially split

(Th. 2.4)

tame, totally
ramified

(Prop. 3.2, Th. 3.9)

tame

(Th. 4.5, 4.6)

T*D C ΓD

TcD c rD

Z[CD) (ZM(Z(D) /F)

Z^D)CF [N^iLf/ή
t = exp(ΓD/TL)

z(w) QN(Z(D) /F)1'"
k | exp (ker ΘD)

The integer k in the table above depends not only on YD/^L and [L: F]
but also on which roots of unity lie in F. One of the interesting results of
the investigation is to see how heavily the corestriction depends on the roots
of unity in F and L.

Here is an overview of the paper: After giving some preliminary results
in Section 1, we will analyze the corestriction of inertially split division
algebras in Section 2. In Section 3, we will consider the corestriction of tame
and totally ramified division algebras T over L (i.e. |ΓT : Γ^| = [T : L]
and char (I) \ [T : L]) when μt C F with t = exp(Γτ/ΓL) (i.e. F has
a £-th primitive root of unity). Finally, in Section 4 we will analyze the
corestriction of tame division algebras. (In the Appendix, we will give an
explicit formula of the homological corestriction.)



CORESTRICTION OF VALUED DIVISION RINGS I 55

This paper constitutes part of the author's doctoral dissertation. The
author thanks his thesis advisor Adrian Wadsworth for his great and kind
advice.

1. Preliminaries.

Let F C K be fields with K algebraic over F. We write Gal (K/F) for
the profinite group of all F-automorphisms of K. If H is any subset of
Gal (K/F), we write T(H) for the fixed field of H. We say K is normal over
F if K is the splitting field of some family of polynomials over F; K is Galois
over F if K is both normal and separable (if and only if F = ^(Gal (K/F))).
We write λί(K/F) for the normal closure of K over F. Also, if [K: F] < oo,
NK/F denotes the norm map from K to F. We write Fsep for the separable
closure of F.

For a central simple F-algebra A, [A] denotes the class of A in the Brauer
group Br (F) of F. If B is another central simple F-algebra with [B] = [A],
we write A ~ J5. For any field K D F, let Br (K/F) denote the relative
Brauer group of K/F', which is the kernel of the canonical "restriction"
homomorphism Br (F) -> Br (K) given by [A] -> [A ®F K].

Here is our notation for certain central simple F-algebras: (K/F, G, f)
is the crossed product algebra determined by a 2-cocycle / : G x G -> K*,
where K is a finite dimensional Galois extension field of F with Galois group
G\

(K/F,σ,a)n is the cyclic F-algebra generated over K by a single element
x with defining relations xcx~ι — σ(c) for all c G K and xn = a G F*, where
if is a Galois extension of F with cyclic Galois group generated by σ and
n = [lf:F];

(α, 6; F ) n is the symbol algebra generated over F by i and j with defining
relations: in = α, j n = 6, ij = ωji, where ω G F* is a primitive n-th root
of unity and α, 6 G F*. Since a symbol algebra depends on a choice of
a primitive n-th root of unity ω, we will sometimes write (α, b,ω\F)n for
(α, b;F)n. In writing symbol algebra (a,b;F)n there is an implicit choice
made of which primitive n-th root of unity ω to use. When this has been
done, then for an integer n' dividing n, (α, 6; F)n> denotes the symbol algebra
built using the primitive n'-th root of unity ωn^n .

Recall that the cyclic algebra (K/F, σ, a)n corresponds to the cohomology
class of the cup product

(1.1) [δ (infg0 (/))] U (α)

in the continuous cohomology group H*(G, F*ep),

where G = Gal (Fsep/F) is the absolute Galois group of F, Go = Gal (K/F)
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= (σ), f € Hι{G0Mβ) = Hom(G0,Q/Z) is defined by /(σ) = ± + Z,
ί: i7J(G,Q/Z) ->• H2(G, Q/Z) is the connecting homomorphism, and α €

In fact, the corestriction (or transfer) homomorphism arose from the co-
homology of groups, and the algebraic corestriction is compatible with the
homological corestriction via the crossed product construction. Let G be a
group and let A be a left G module. Let if be a subgroup of G of finite
index n. For m > 0 an integer, Hm(G,A) (resp. Hm(H,A)) denotes the
ra-th cohomology group of G (resp. H) with coefficients in A.

For each ra, there is the corestriction (or transfer) cor# : Hm(H^A) —>
Hm(G,A). (See [B, III, Sec. 9].) We give an explicit formula describing
this homological corestriction for m > 0. Let TZ = {px , . . . ,/9n} be a set of
representatives of the left cosets of H in G. For m = 0, H°(H,A) = A^ :=
{α G A I σa = a for all σ e H} and iί o (G, A) = AG\ and corg: H°(H, A) ->

ii°(G, A) is given by α •-* Σ p<α for a e H°(H, A) = AH. Given ft 6 ^ and

( J G G , there are uniquely determined elements pσ#(i) E 72. and δ(σ,pi) G if
such that

(1-2) σft = pσm(i)δ(σ,pi),

where the map σ H-» σ* is a homomorphism from G to the symmetric group
Sn. Now take any / G Zm(H, A), the group of ra cocycles of H with values
in A] define a function cor^ (/) G Zm(G, A) as follows: for σ 1 ? . . . , σm G G

(1.3) corg (/)(<!!,... ,σ m )

(We will deduce this formula from [Ta, p. 259] in the Appendix.) For ra > 1,
the homological corestriction cor^ : Hm(H,A) -> Hm(G,A) is induced by
the map / ι-» cor^ (/) given in (1.3) above. Recall that the (homological)
corestriction map commutes with inflation and connecting homomorphisms
(cf. [We, Prop 2.4.5 and Prop. 2.4.7]).

Recall the following case of the projection formula which will be used often
in this paper (cf. [Ti, Th. 3.1]).

Proposition 1.4 (Projection Formula). Let L/F be finite dimensional and
separable. Assume F contains a primitive n-th root of unity. If a G L* and
b G F% then coτL/F ((α,6;L)n) - {NL/F(a),b;F)n in Br (F).

The valued division algebra (D,υ) is a division ring D with valuation
v, that is, a function υ : D* —> Γ (a totally ordered abelian group written
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additively) such that for all α, b in Z)*, v(ab) = υ(a) + v(b) and v(a +
b) > min(υ(a),v(b)) if a φ —6. Associated to υ, we have its value group
ΓD = υ(D*)] the valuation ring VD = {d e D* \ υ(d) > 0} U {0}; the unique
maximal left ideal MD of VD, MD = {d e D* \ v(d) > 0} U {0}; the group of
ΐ -units of £)*,£/£> = V& — MD = Vβ; the residue division ring D = VD/MD.
If F is the center Z(D) of J9, there is a well-defined epimorphism

(1.5) θD:ΓD/ΓF^G*l(Z(D)/F),

induced by α: D* -> Gal {Z(D) / F) which is given by cf h-> Q where Q is
the map induced by conjugation by d (cf. [JW2, 1.6]).

Let (F,υ) be a Henselian valued field. Let D be a central division F-
algebra (with a unique valuation extending v on F). We say D is fame and
fo£a% ramified over F if char (F) \ [D: F] and |Γ D : Γ F | = [D: F]. D is said
to be ίnertially split over F if -D is split by Fnr where Fnr is the maximal
unramified extension in some algebraic closure of F. Also, D is said to be
tame if char (F) = 0 or char (F) = q φ 0 and the ̂ -primary component of
D is split by F n r . (See [JW2, Lemma 5.1] and [JW2, Lemma 6.1] for other
characterizations of inertially split and tame division algebras.) Recall also
that D is said to be inertial over F if [~D: F] = [D: F] and Z(D) = F. Let

V(F) = {D I D is a central division F-algebra with [D:F]< oo}

Vttr = {D e V(F) I D is tame and totally ramified over F}

Vi(F) = {D e V{F) I D is inertial over F}

Vis(F) = {D e V(F) I D is inertially split over F} and

Vt(F) = {D e V(F) I D is tame over F} .

It is clear that V^F) C P i 5 (F) C ̂ ( F ) and 2?«r(F) C A ( ^ )

Given (D, υ) a valued central division F-algebra, one has the "fundamental
inequality" [D: F] > [D: F] \ΓD: Γ F | (cf. [S, p. 21]). We say D is defectless
over F if equality holds.

Throughout this paper, we will assume that L/F is a finite separable
inertial (unramified) extension of Henselian valued fields. We now recall
some facts about inertial extensions as summarized in [JW2, Sec. 1]. Let
Fnr denote the maximal unramified extension of F in some algebraic closure
Faιg of F. Recall that ΓF n r = ΓF, Fnr is the separable closure Fsep of F,
and F n r is Galois over F. Also, for any field E with F C E C Faιg and
[E: F] < oo, E is inertial over F if and only if E C F n r . Further, the map
L »-> L gives a 1 — 1 correspondence between fields L with F C L C F n r

and fields Z with F C Z C ̂ . Given a field Z with F C Z C F s e p and
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[L: F] < oo, the corresponding L (inertial over F with L = L) will be called
the inertial lift of Z over F.

We now finish this section by recalling two propositions which will be very
useful for this paper. See [D2, Th. 1] and [JW2, Lemma 6.2, Th. 6.3] for
proofs of Props. 1.6 and 1.7, respectively.

Proposition 1.6 (Draxl's decomposition theorem). If D G T>(F) is tame
and totally ramified over a Henselian field F, D is isomorphic to a tensor
product of symbol algebras.

Proposition 1.7. If D E V(F) is tame over a Henselian field F, then there
exist S G Vis{F) and T G Vttr{F) such that D ~ S®FT in Br (F). (Such S
andT are not unique.) Furthermore, if D ~ S®pT is such a decomposition,

Z(D) = F(θs((Γs Π Γ τ) /ΓF)) C Z(S),

ΓD = Γs + Tτand ker (ΘD) = ΓT/ΓF.

2. Inertially split division algebras.

If D G Vis^p), we have good information about D homologically, which is
obtained in [JW2, Sec. 5]. We will give a brief summary on this. (See
[JW2, Th. 5.6]).

We fix a Henselian valued field (F,v). Let Δ be the divisible hull of IV,
so Δ ^ Γ F ®z <Q>. Let G = Gal (Fnr / .F) = Gal (Fsep / F ) , a profinite group.
Let U = Upnr the group of v-units of Fnr. Since ΓVnr = ΓV (on which G acts
trivially), we have a short exact sequence of discrete G-modules:

nr
AΓF->0.

Prom this short exact sequence, we have the following exact sequence, which
will be the basic focus of our attention:

(2.1) 0 -> H2

C(G, U) -> H2

C{G,Fn*r)ΛHomc ( G , Δ / Γ F ) ,

where U2

C and Homc denote the second (continuous) cohomology group and

the continuous homomorphism group, respectively.

In this exact sequence, H2(G, Fn*Γ) £* Br(Fnr/F) and H2

C(G, U) <* IBr(F),

where IBr(F) = {[D] G Br(F)\D G D^F) i.e., D is inertial over F}. (See

[JW2, Th. 5.6].) Also, IBr(F) is isomorphic to Br(F) via the isomorphism

β given by [D] -> [5]. (See [JW2, Th. 2.8].) Further, if a: H2(G,U) ->

( ) = iϊc

2 (G,F* e p) is the map induced by a map U -> F* e p given
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by u ι-> ΰ, the following diagram commutes: (See [JW2, Examples 2.4,
Prop. 2.5].)

(2.2)

JBr (F) — ^ Br (F)

where the vertical isomorphisms are given by crossed product construction.

We now identify H2

c(G,F*r) with Br {Fnr /F). For any D e Via(F\ as

[D] e Br (F n r / F)^set hD = 7[D] G Homc(G, Δ/ΓF), where 7 is the map in

(2.1); further, let ho-G/ keτ(hD) -+ im(hD) be the isomorphism induced

by hD. Then

(2.3)

' (1) im (hD) = Γ D /Γ F and T(keτ{hD))

J is the inertial lift ofZ(D)

(2) (λίteΐ identifying G/keτ(hD) with Gal (z (p) /F) λhD = θ^\

where ΘD: YD/TF -> Gal (z (DJ /FJ is the map of (1.5) induced by conju-

gation. See [JW2, Th. 5.6] for the proof.

Now let (L, v) D (F, v) be a finite (separable) inertial extension of Henselian
fields. Since L is inertial over F, L C F n r so L n r = F n r . Let

G - Gal (F n r / F) ^ Gal (Fsep / F) and

H = Gal (F n r / L) = Gal (Ln r / L) S Gal ( I , e p / Z) .

Then if is a subgroup of finite index \G: H\ = [L: F] = [L: F].
Note that, for i > 0 the corestriction map corg from H^H^F^) to

Hl{G, F^r) sends the continuous cohomology group Hι

c(H, F*r) into the con-
tinuous cohomology group i/*(G,F^Γ).

Theorem 2.4. Le£ (ί/,υ) 2 (ί1,^) fee α finite inertial extension of Henselian

fields. Suppose D e Vi8(L). Then,

(a) cDeVis(F)

(b) TcD CΓD

(c) Z (^D) Qλf(z (~D^ / F ) , ίΛe normal closure of Z (j?) over F .

(d) If D e Vi(L), then CD e V^F) and ̂ D ~ corΓ/-p (jD^j in Br
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{So, ifDe Vt{L), then CD G Vt{F).)

Proof, (a) Let N = λί{L/F). As Fnr is normal over F, N C F n r , so iVnr =
F n r . Let 7£ be a set of representatives of the left cosets of Gal(N/L) in
Gal(N/F). Then, by [D2, p. 52, Cor. 1], CD ®F TV ~ corL/F(I>) ®F # =
®P {D®LN) G Br (Nnr/N) since 2? <E £>iβ(L), where p (£> ®L ΛΓ) means

D ®L N made into an iV-algebra by {d ® n) n' = d ® up ι{n'). So, CD is
split by Nnr = F n r , hence CD G Vis{F).

From this and definition of tame division algebras, it is clear that if D G
Vt{L),thencDeVt{F).

(b) Let # - Gal(Lnr/L) = Gal(Fn r/L), G = Gal(F n r/F), Δ = the
divisible hull of ΓF = Γ^, and U = Upnτ = ί̂ Lnr Then since the corestriction
map is functorial and commutes with the connecting homomorphism, the
following diagram is commutative,

0 > Hl(H,U) > Hl{H,F*nr) —ϊ-> Homc(#,Δ/ΓV)

corgj corgj

0 > Hl{G,U)

where the row exact sequences are those of (2.1). As done in (2.3), we
identify H2

c{H,F^r) and H2

c{G,F*r) with Br (Lnr/L) and Br (F n r /F), re-
spectively. As D G Vis{L) and by (a), CD G Vis{F). Set hD = 7[D] G
Hom c(iί,Δ/ΓF) and /ιCjD = 7[cΰ] G Homc (G, Δ/ΓF). Since the diagram
above is commutative, hcD = j{cor^ {[D])) = cor§ (τ([i?])) = cor# (/&£>).
Now, by (2.3), ΓD /ΓF = Ίm(hD) and Γc D /Γ F = im(hcD). But im(/icD) =
im(cor^(/i£))) C im(/i£>) by (1.3), as G acts trivially on Δ / Γ F . Hence

cβ ^ 1/).

(c) As [D] G Br(L n r /L) - Br {Fnr / L) = H2

c{H,F*r), and [ci^] G
Br {Fnr IF) = H2{G,F*r), by (2.3), JF(ker (/i£>)) and J*(ker (/iCjD)) are the
inertial lift of Z(D) and Z{CD) respectively. Let Z = ^*(ker {hp)) and
M = λί{Z/F). Since Z C Fnr and F n r is normal over F, Λf C F n r . Let
/ = Gal(Fn r/M) and K = Gal(F n r /Z) = ker (Zip). Then i is normal
in G = Gal(F n r /F), and / C K C i7 = Gal(F n r /L) C G. Note that
res^ {ho) = 0 as if = ker (/i£>). Let £?be a set of representatives of the
double cosets IgH. Then, by [B, p. 82, III, Prop. 3.5], τesf (corg (hD)) =
ΣgeE c o r /n H -1 o r e s / n H -1 (̂ £>)5 where the "restriction map" on the right
is with respect to the conjugation map (i H-» g~xig, a H-» ρ~1α), regarded
as a map (i Π gfΓp"1, F*r)-^{g~ιIg Π ΛΓ, F^r) -> {H,F*r). But as i
is normal in G, g~ιIzg Γ\H = IΓ\HCK, so r e s ^ ^ - i (/i£>) = 0 for
each g € E. Hence, resf (cor^ {hD)) = 0, so ker(/icD) D i. Therefore
Z(^D) - ^(ker(ΛcD)) C H O = M = λί{Z{D)/Ψ).
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(d) Since D <E 2><(L), [D] E IBr (L) = H2{H,U) = ker(7), where 7 is
the map of (2.1). Since the diagram above in the proof of (b) is commu-
tative, [CD] = corg ([£>]) G ker(7) = H2(G,U) = /Br (F). Hence c£> E
Όi(F). As the corestriction map is functorial, the map a in (2.2) is com-
patible with corestriction. So, since the algebraic corestriction corresponds
to the homological corestriction, and by (2.2), we have CD ~ corj,ψ(D) in
Br (F). D

3. Tame and totally ramified division algebras.

We begin this section by giving a proposition we will use a number of times.

Proposition 3.1. Let {F,v) be a Henselian valued field. For 1 < i < k,
let Πi > 1 be integers with (char F , ^ ) = 1, and α^,^ G F*. Assume F has
primitive n^th roots of unity ω .̂ Let n = nx nk and ί — £cm(ni,... , nk).
Then

(1) The tensor product of symbol algebras, T — ® (a i 56i;F)n. is a tame

and totally ramified division algebra over F if and only if

generates a subgroup of order n2 in YF/ίYF; when this occurs,

Yτ = t

(2) IfDe Vttr(F) and Dm is the underlying division algebra ofD®m, the
m-fold tensor product of D with itself over F, then Dm G Vttr(F), and

ΓD~ / ΓF = m(ΓD/ΓF), so ΓDm = mYD + YF .

Proof. (1) Suppose {(ί/rii)v(ai) (^/n<)v(6<)}*=:1 generates a subgroup of or-
der n2 in YF/£YF. Then by [JW1, Cor. 2.6], T G Vttr{F) and Γ τ -

( ^ ( α j ) , ^ ! ; ^ ) ) +Γ F . Conversely, suppose T = .® (α^^ F ) ^ G Atr(^)-

Let oti,βi be the generators of T over F with relations: aψ = a^β^ — 6j,
and aφi = ωφia^ Then Λ = (α iF*,/3 iF*)*=1 is an armature of T, that
is, an abelian subgroup of T*/F* of order dimFT such that {e*ij A}»=i
generates T as an F-algebra. Since Γ € Vttr(F), by [TW, Prop. 3.3],
the map v : *A —> YT/YF induced by v (i.e., the map xF* H-> υ(x) +

YF) is an isomorphism. So, Γ τ / ΓF = ί^-v(ai) + ΓF, ^-v(bi) + YF\ _ and
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/ni)v(ai)Λ£/ni)v(bί)}i=i generates a subgroup of order n 2 in YF/ίTp
(namely ίTτ / * Γ F ) , as |Γ T / Γ F | = [Γ: F] = n 2 . Also,

a s Γ τ / Γ F = (frfa) + Γ F , ^ ( 6 , ) + Γ ) ^

(2) As J9 € Vttr(F) and F is Henselian, by Prop. 1.6 D = ® (α<, 6<; F ) n i
2 = 1

for some α ,̂ 6̂  G F*.
Let cfj = gcd(nj,7τz) and n^ = cίi^ί, »τι = dim'i so that gcd(n^,7n^) = 1.

Since D = ® (α^δ. F ) ^ 6 ̂ t t r ( ^ ) , by (1),
2 = 1

generates a subgroup of order n 2 in Γ F / (Γp. Also, since the map

ΓF/iΓF->jΓF/ΓP,

induced by multiplication of j , is an isomorphism,

ί — v ( θ i ) , — v ( 6 i ) | l < < < j f e l
I n< n» J

generates a subgroup ί ̂ τv(fli) + Γ F , ^v(b{) + Γ F 11 < i < k\ of order n 2 in

| Γ F / Γ F . We want to show ® (α<, 6^''; F ) n ; E Vttr(F). Since ̂  | n z , 1 < i <
2 = 1

k, (^τv(ai) + Γ F , ^τv(bi) + Γ F ) . _ I is a subgroup of

( ) + Γ ( & ) + Γ

Since I (±υ(ai) + Γ F , ^v(6i) + Γ F 11 < i < k) \ = n\

= n'2,
2 = 1

where n' = n[ - n'k. Let ί' = £cm(n /

1,... , n'k). Then
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Since the map j?YF /YF —> YF / £ΎF induced by multiplication of ί\ is

an isomorphism, U^τv(ai)+£tYF^ jp-v(bi) + i'Tp/ — ̂ / 2 Also, since

( )gcd(nj,mί) = 1,

{{t /n'M^W /n'Mb?<)\l<i<k}

and

generate the same subgroup of TF / i'YF. So,

{(f/n'Mai), {g/n'Mbf) | 1 < i < k)

generates a subgroup of order n'2 in YF j ί'YF. By applying (1) we have

® (a^bf' F)^ e Vttr(F) with value group

Since Dm - ® (αf, 6™; F)n. - ® (αi? 6^ ^)n'., we have(

Because gcd(n^,m9 = 1, we have

/n'XM + IV) = ((m'Jn'Mbi) + ΓF> -

= ((m/nXfri) +ΓF>, so YDm/YF =

>(α;) + ΓF, (l/nίJϋίftO + rV)*=1 - m(ΓD/ΓF) .

(In fact, the equality YD™ — mYD+YF is a special case of [JW2, Prop. 6.9].)
D

Recall that we assume that (L, υ) 2 {F, υ) is a finite (separable) inertial
extension of Henselian fields. Given any positive integer n and a field F, we
write μn C F to say that F contains n distinct n-th roots of unity.

Proposition 3.2. Let T e Vttr(L) and n = exp(Γ τ/ΓL). If μn C F, then

Y°τ Q YT'

Remark. Without the assumption μn C F, it is still true YcT C Γ τ . We
will prove this in Theorem 4.6 below.
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Proof. First we will show that if T = (α, β\ L)n is a symbol algebra in Vttr{L),
then [L: F]ΓT + ΓF C TcT C Γ τ : Since ΓL = ΓF, a = an and β = bw for
some a, b e F* and ί -units u, w G L*. Let To = (α,6;L)n, A = (α,6;jP)n,
and let S be the underlying division algebra of (α, w; L)n ®L (IX, /3; L)n. Since
T = (α,/?;L)n G Vttr(L), by Prop. 3.1 {^(a),v(/?)} generates a subgroup of
order n2 in ΓL / nΓL, and Γ τ = ((l/n)v(α), (l/n)υ(β)) +TL. As υ(α) = v(α),
v(6) = t/(/3) and ΓF = ΓL, by Prop. 3.1, again, To G 2?«r(L) and A € A
with

ΓA = ((l/n)υ(a), (l/n)υ(b)) + ΓF = ΓTo = Γ τ .

Clearly S e Vis(L). So T ~ To ®L S in Br (L) with To E Vttr(L), S G
I>iβ(L). Then by Prop. 1.7, Γ τ = ΓTo + Γ 5 . Note that as To = A ®F

L, CTO ~ A®ίL:Fl in Br (F), so CTO is the underlying division algebra of
A^L:F\ where A G Vttr(F). Then by Prop. 3.1 (2), CTO G 2?«Γ(F), and
ΓcTo = [L: F]Γ A + Γ F = [L : F]Γ T + Γ F as Γ τ = TA. Also, by Theorem
2.4, C 5 G 2?<β(F) and TcS C Γ 5 . Since CT - CTO ® F

 C 5 in Br (F) where
CTO G Vttr(F) and C 5 G A s ( ^ ) , by Prop. 1.7, I \ τ = ΓcTo + ΓcS. Hence
[L: F]ΓT + Γ F C ΓcTo + Γc5 = ΓcT C ΓTo + Γ 5 = Γ τ , as desired.

Now, if T G Vttr(L), then by Prop. 1.6, T = ®T{ where each T is a

symbol algebra in Vttr(L) of index n» with n< | n. Also, Γ τ = Σi=1ΓTi.

Then CT - 4 CT{ in Br (F). Since each cTi G P f ( F ) by Theorem 2.4,

Γ c τ C ΣLI Γ c τ , by [JW2, Cor. 6.7]. Since ΓcTi C ΓT i by what we have

shown above, TcT C ^ t = i Γ c τ t Q X)*=1 ΓΓ ί = Γ τ . D

We will shortly give Proposition 3.4, which will be very useful for this

paper. The following purely group-theoretic lemma will be used in the proof

of that proposition.

Lemma 3.3. Let Ax x A2 be the direct product of cyclic groups A{ of order
ri7 i = 1,2. Let π; be the projection map of Aι x A2 onto Ai for i — 1,2. Let
H be a subgroup of Ax x A2 such that πi(H) = Ai} i = 1,2. Let B\ — HΠA2

and B2 = HnAi. Iftis any positive integer and T is the t-torsion subgroup
of H, then T = CΊ Π C2, wΛere d, i = 1,2, are £Λe unique subgroups of H
such that C{ 3 Si â cί (C :̂ Sj | = gcd(ri,ί).

Proo/. Since |Ci: ^ | divides ί, t(d / B{) = (0), so ίC< C S^ Hence ί ( d Π
C2) C JBx Π JB2 = (0), and d Π C2 C T. Take Λ € Jϊ with tΛ = 0 (i.e.,
h G T). Then 0 = π^t/i) = t^(/i). But r^^h) = 0 as |A<| - rt. So
gcd (r i } ί) Έi(h) — 0. Let D{ be the subgroup of Ai of order gcd (r<, t). Then
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τr;(/i) G Di as Ai is cyclic. Since B{ = ker^iljj) and π;|/f is onto, the map
7Γ; : H/Bi —> A< induced by T Γ ^ is an isomorphism. Since %i(h + Bι) =
πi(h) € A , h + BiE π^W B u t * . r l (A) = Ci/A, for i = 1,2. Hence
Λ E Ci Π C2. Therefore, T C d Π C2. D

Proposition 3.4. Le£ (F, ?;) 6e α Henselian field. Let rλ, r2 and t be
positive integers, and let Mi/F, i = 1,2, be cyclic inertial extensions of
degree r» with Gal (Mi/F) = (TJ). Le£ #!, X2 ^. ^ * 5?/cΛ fΛα̂ 7 /or any

prime p dividing r\, r2 or t, υ(xχ) + pTp, v(x2) + pΓp are 7jp-linearly
independent in ΓF/pTF. Suppose D is the underlying division algebra of
(MjF^xJr, ®F_(M2/F1τ2,x2)r2 ®F {xux2\F)t. Then Z(D) = EλE2,
where WiΏEiθΊi

i and \MI: Eλ = gcd (r<, t) for i = 1,2.

Proof. Let Δ be the divisible hull of ΓF and let rλ = pe\Pe

2 -—plk> 2̂ =
p{λp2

2 - - p{k and t =• pi1 pi2 pjj.fc, where the pi are distinct primes and ê ,
fi, U > 0 such that at least one of e i? /̂  and U is larger than 0 for all i,
1 < i < k. Since v(xλ) +piΓF, v(x2) +PiΓF are Zp.-linearly independent in
ΓF I PiTF by assumption, in

4 4r
and

T h e n i n Δ / Γ F ,

and

—
r2

Let T = (xi,x2;i ?) t and Si = (Mi/F,Ti,Xi)ri for i = 1,2. Then by Prop.
3.1, T e Vttτ{F). Also, by [JW1, Cor.2.9], s\ € V(F) with S~i = Wt and
ΓS j = \-jrv(xi)} + Γp for i = 1,2. Also, 5» is inertially split over F as Mi is
a splitting field of 5j. Let S be the underlying division algebra of SΊ ®p ^2
Then D ~ S Θ F T in Br (F) where 5 € Vis(F) and T € Pttrί-P1)- Let hs,
hsi, hs2 € Homc (GF,Δ/ΓF) as in (2.3). Since hs = hSl + Λsa> im(/i
ΓS i / Γ F = ( i φ O + Γf). * = 1,2, and ( ^ ( x j ) + Γ ί . ) n ( ^ ( a ; 2 ) + Γ
(0) as |(^-t>(xi) + ΓF, ^υ(a;2) + Γ F ) | = r^a, we have ker (hs) = ker (ΛSl)Π
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ker(ΛSa). So by (2.3),

Z(S) = :F(ker hs) = JF(ker hSl)

Also,

Γ s / ΓF = im (/ι5) C im (Λ5l) + im (ΛSa) =

ΓF\ x (J-v(x2) + ΓF\ = ZPl x ZΓ2.

Since S 6 Pi,(F), by [JW2, Lemma 5.1], θs: TS/TF -»• Gal(Z(5)/F) is
an isomorphism. Let H = Γs /ΓF and A4 = ΓSi/TF for i = 1,2. Then
H C ^ x Λ2. Let Bt = H Π A2 and B2 = H Π Ax. Since if = im(/ιs) =
im (hSl +hS2), and im (hSl )Πim (Λs2)

 = (0), ̂ i(H) = Ai where TΓJ : Aλ x ^2 —>
4̂j is the i-th projection map. Note that

(r 5nrΓ)/rF = (Γ 5 /Γ F )n^

= {α € Γ5/IV I to = 0} as Γ 5 / Γ F C ( ^ ( ^ ) + Γ F ) x (±υ(x2) + Γ F ) .

So (Γ5 Π Γ τ) / ΓF is the ί-torsion subgroup of H. Then by Lemma 3.3,
(Γ s Π Γ T )/Γ F = d Π C2, where C< 2 B* and |C< : JB<| = gcd{rut) for
i = l,2.

We have the map Λ5 : Gal(F n r /F) -> Γ 5 / Γ F = H C Ai x A2, where
Ai = im(Λ5.) for i = 1,2. Since Λ Π A2 = (0), for 5 E G a l ( F n r / F ) ,
A2(= im(hs2)) contains hs(g) = ^(ff) + hS2{g) if and only if hSl(g) =
0. So, / ^ ( S i ) = Λs1(C?ΠA2) = ker(ΛSl) = Gal(Fnr/Mλ). Likewise,
hγ{B2) = keτ(hs2) = Gal(F n r /M 2 ) . Hence, in the isomorphism 0$ =

Λ^1 : Γ 5 / Γ F —> GalfMΐM./F), ^ ( 5 , ) =_Gal(3^A^/Λζ) forj = 1,2.
Therefore βs(C<) = G3l(MιM2/Ei) where Mi D E{ D F and [Af*: JSJ =
gcd (r<, ί) for i = 1,2. Then by Prop. 1.7, Z{D) = f(θs{(Γs Π ΓΓ) / ΓF)) =

Π C2) = EXE2. D

Corollary 3.5. Let (F,v) be α Henseliαn field. Let rι,r2j and t be positive
integers and assume μt, μri, μr2 C F. Let ul7 u2 be v-units in F, and let
Xι, x2 G F* such that for any prime p dividing rl9 r2 or t, υ(xχ) + pΓF,
v(x2) + p Γ F are TLv-linearly independent in Γ F /pΓ F . Let ωt (resp. ωri) be
an arbitrary primitive t-th (resp. ri-th) root of unity in F. Suppose D is
the underlying division algebra of {xuu^ωTl\F)rχ <8>F (x2,n2,α; r 2;F) r 2 ®F

{xux2,ωt-F)t. Then Z(D) = F(u\/r\ut

2

/r2).

Proof. Let s{ = o(^F* Γ i ) in F* / F*ri for i = 1,2. Then Si\ru u? =

w[ri for some w\ G F*, so ti< = ωk

Siw'p/si = (α;* w$ri/" for some fcGZ,
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where ωri is the given primitive r -th root of unity, and ωSi = ω^Si. Let

Wi = ω*β.tϋj. Then Ui = w[i/Si and F u x ^ J — F [w]^1 J is a cyclic inertial

extension of F of degree S; for each 2 = 1,2. Also, D ~ (xx, w
rι'Sι F ) ®F

But {xi,Wi\F)Si = (Mi/F,Ti,Xi)Si where M< = F ( ^ i ^ y are cyclic inertial

over F of degree ŝ , and τ» are some generators of Gal (Mi/F). So, by Prop.

3.4, Z ( ΐ)) = EλE2 where Wi D E{ D Ψ, and [Aζ" : £?*] = gcd (5<,t), so

Ei = F (ϋή/si) = F (4/ri). Hence Z (p) =F (u[/ri,ΰf"2). D

We will consider Z faf) for T G Vttr{L) in Theorem 3.9. We first intro-
duce an equivalence relation in T>t(F) for a Henselian field (F,υ). For any
Du D2 G ACF), we write Dλ « D2 if [̂ 2] = [A] mod /Br (F) in Br (F).
This is an equivalence relation since / Br (F) is a subgroup of Br (F) (cf.
[JW2, Prop. 2.5]).
Remark 3.6. Let (F, υ) be Henselian.

(i) If DuD2e Vt(F) and Dλ^D2, then Z{D[) = Z(5£) by
[JW2, Cor. 6.8].

(ii) If L/F is inertial, Du D2 G 2?t(L) and i?! « D 2, then cjDχ w CJ92

since c / G 2?<(F) for any / G 2?<(L) by Theorem 2.4 (d).
The following lemma will be used in proof of Prop. 3.8.

Lemma 3.7. Let K/F be a finite extension of Henselian fields. If a is a v-
unit in K, then NK/F(&) is a v-unit in F, and Nκ/p(a) — N-χ,ψ(a)e where

Proof. Recall that the integral closure of Vp in K is the intersection of all the
valuation rings of K extending VF (cf. [Bo, Ch. VI, Sec. 1, Th. 3, p. 378]).
As F is Henselian, VK is the unique valuation ring of K extending Vp So
VK is the integral closure of Vp in K. Hence a is integral over VF. Let / be
the minimal polynomial of a over F. Then / G VF[x] since Vp is integrally
closed.

Note that / = ψ1 where φ G F[X] is a monic irreducible polynomial, i > 1
and ideg(φ) = deg(/) since / G VF[X] is a monic irreducible polynomial
and F is Henselian (cf. [Rb, Th. 3]). Since φ(aY = J(ά) = /(α) = 0,
i.e., φ(θέ) = 0, φ is the minimal polynomial of a over F. So N-χ,ψ(a) =

hand, Nκ/{a) = (-l) [ i r : F 1 (/(0)) [ K : F ] d e g (/)• B ^ t since /(0) = φ{θY and
deg(/) = i
where e = [K: F]/[K : F]. D
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Proposition 3.8. Let the symbol algebra T = (aua2\L)n G Vttr(L) where
n > 1 is any integer, (so μn C L) and α 1 ? α 2 G L*. If μn C F, £Λen

/ \ / /__\ l/d\

Z (=T) C F ( % / ϊ ? ( L ) J , where d = gcd (n, [L: F}).

Proof. Since Γ/, = IV, c^ = α ^ for some a,i £ F*, Ui E UL. Note that since
(aua2]L)n E Vttr(L), by Prop. 3.1, in Γ L /nΓ L

\(v(ax) + nTL, υ(a2) + ήΓL)\ = n2.

But as υ(ai) = v(α<), i = 1,2, and Γ L /nΓ L = Γ F / n Γ F ^ ^ Γ F / Γ F , we

have in ^ΓF /Γ F , |(^v(αi) + ΓF, ^v(a2) + Γ F ) | = n2. So for any prime p

dividing n, in ^ΓF /Γ F , (^(«i) + Tp^v(ai) 4- ΓF\ = p2, or equivalently

in Γ F /pΓ F , υ(αi) +pΓ F , v(α2) + p Γ F are Zp-linearly independent.
Note that [{uuu2; L)n] e /Br (L) by [JW2, Prop. 2.5], since the "synΛol

algebra" (uι, u2; VL)n over the valuation ring VL is an Azumaya algebra over
VL and an order in (uliu2\L)n (cf. [JW2, Ex. 2.4 (i)]). Then since T ~
{uuu2]L)n®(auu2]L)n®(uua2\L)n®(aua2\L)n in Br (L), we have T « Z)
where D is the underlying division algebra of (αi, u2\ L)n ®L («2, u^1 L)n ® L

( α i , α 2 ; i ) n By Remark 3.6 (ii), and Prop. 1.4, and as NL/F(a2) — a2

F\
CT π CD ~ (auNL/F{u2) F)n ®F (a2,NL/F{uϊι) F)n ®F (aua

[

2

L'F] F)^

But (aua
[

2

L:F];F) - (α^αi F ) ^ , where d = gcd(n,[L: F\), [L: F) = de,

and n = rfn; so that gcd(e,n') = 1. Say, let (αi,α|;F)n/ = (αi,α2,ct;;F)n/ for

some primitive n'-th root ω of unity. Then (au a\, ω\ F)n> — (aua2,ω
k;F)n>

for some k with gcd(A:,n/) = 1. So (aua[L: Fj is similar to a symbol

algebra (aua2,ω
k',F)n, where n1 = n/gcd(n, [L: JF1]). Hence CT w CD -

(α 1 ,^ L / F (^ 2 ) ;F) n ® F (α 2 ,^ L / F (^Γ 1 ) ;^)n®(αi,α 2 ,α; f c ;^) n / in Br (F). Then
by Remark 3.6, and Cor. 3.5,

Since [L: F] = [L: F], NL/F{u?) = Nτ/Ψ{u^) and ΛΓL/i?(ίi2) = Nτ/Ψ(ΰϊ)
by Lemma 3.7 above. So

Z(̂ Γ) = F (Nτ/ψ(ΰ2)
1/d, Nτ/ψ{^Y'd) C F(Nτ/ψ(Lf'd),

where d = n/n; = gcd(n, [L: F]). D

Theorem 3.9. Suppose T G 2V(£) and n = exp (ΓT/ΓL). (So μn C L.) //
βn Q F\ then

ZfT) C F (7V r / F(I)1 / d) , d = gcd (n, [L: F]),
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where Nj,ψ is the norm map from L to F.

k

Proof. By Prop. 1.6, T — ®Tί, where each Ti is a symbol division algebra
i=l

in Vttr(L) of index n* with n^n. Then CT ~ ® cT f ~
 CTO ® F

 cTfc where

To = V T * . We prove that Z(*T) = Z(*5T) Z ( ^ ) . By induction on fc, we
i = l

need only to prove Z(CT) = Z(CTO)Z(CTA;). Since CTO G X>t(^) by Theorem
2.4, C Γ O /F is defectless, and Z(*%)/F is Galois by [JW2, Lemma 6.1].
So, C = Z ( ^ ) Π Z(*2Γ) is separable over F , and Z ( ^ ) and Z(^T\) are
linearly disjoint over C. Also, by Prop. 3.2, and as ΓT/FL — Θ (ΓT ί/Γ^),
we have ΓcΓo Π ΓcTfc C ΓTo Π ΓTfc = TL = Γ F . Hence, by [MW* Cor. 3.12],
Z(^Γ) - Z^%)Z^Γk) = ZfT[) Z ( ^ 7 W ) Z ( ^ ) . But by Prop. 3.8, for
1 < i < f c ,

ZTO C F {Nτ/Ύ(Eγ^) , 4 - gcd (rii, [L:

Therefore, as n^n,

Z^T) C F (jVr^ίZ)1^) , d = gcd (n, [L:

D

4. Tame division algebras.

We will show in Theorems 4.4-4.6 below that TcD C Γ D for D e Vt(L),
without any restriction on roots of unity in F, and that for D G P t (L),
Z(CD) C J\f(Z(D)/Fy/k, where A; > 1 is some integer dividing exp (ker ΘD)
which depends on which roots of unity lie in F. We first give some proposi-
tions which will be used in the proofs of the theorems.

Proposition 4.1. Let n — pk with p an odd prime, k > 1, and let ωk be a

primitive n-th root of unity in L. Suppose α,6 G F* and T = (α,6;L)n G

Vttr(L). Then
(a) if μp C F, then CT - (a,b£]F)n/r in Br (F), where ί = [L : F(ωk)],

and r = [F(ωk): F]. Hence, CT G Vttr(F) and ΓcT = [L: F]ΓT + Γ F ;
(b) if μp<£F, thencT = F.

Proof, (a) For 1 < i < k, set ω% — {ωk)
p ~%, a primitive p*-th root of unity. Let

Fi = F(u)i). Let ί be maximal with ωt G F so that F — Ft and [F i + 1 : F ]̂ = p
for i > t. (Note that r = [Ffc : F] = [Ffc : F t] = pΛ"*, so p* = n/r.) Then by
[M, #15, p. 144],

corF i + l / F t ((a,b,ωi+1]Fi+ι)pi+ι) - ( (a ,^ ,^ ;^)^)
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So it follows that

corF f c / F ((α, 6, Fk)n) ~ (α, 6; F t ) p . = (α, 6; F)n/r.

Hence, by Prop. 1.4,

CT ~ cor L / F ((α, 6, L)n) ~ corF f c / F (corL / F((α, 6, L)n))

~ corF f c / F ((α,&';F*)n) - (a,bέ;Fk)n/r.

The second statement follows easily by Prop. 3.1.
(b) Let K = F(ωi) and let s be maximal with ωs (Ξ K so that K = Fs

and [F i +i : F J = p for i > s. As above, it follows by [M, #15, p. 144] that

corFk/κ((a,b,ωk;Fk)pk) ~ (a,b,ωs;K)pa.

If Gal(Jf/F) = (σ), then σ{ωs) = u£ where um = 1 (mod ps) for m =
[If : F] and u φ 1 (mod p) since σ moves CJI. It follows easily that
Nκ/F{ω8) = 1 and so coτκ/F((α,b,ωs;K)pa) ~ F by [M, #16, p. 145]. So
coτFk/F((α,b,ωk;Fk)n) - F . Hence by Prop. 1.4., as NL/Fk(b) = b£,£=[L:

CT - cor L / F ((α, 6; L)n) - corF f c / F(corL / F f c ((α, 6; L)n)) ~

6^;Ffc)n) - F.

D

Proposition 4.2. Zeί n — 2k, k > 3, and /e£ ^ &e a primitive n-th root of
unity in L. Suppose a, b G F* and Γ = (a, 6; L) n E Vttr(L). Then

(a) ί/μ 4 C F, then CT - (α,6^;F) n / r <g)F (α,6^;F)2 - (α,6^ e ;F) n / r in
Br (F), ^Λere ί = [L : F(ωk)],r = [F(ωk) : F] and e = 1 + £ is an odd
integer. Fence CT £ Vttr(F) and CT = [L: F]ΓT + Γ F ;

(b) if μ4 <£ F, then CT = (a,6;F) 2 or = F , and CT € Vttr(F).

Proof, (a) For 1 < i < A;, set CĴ  = (ωk)
2 *, a primitive 2 ι-th root of unity. Let

Fi = F(ω<). Let ί be maximal with ωt G F so that F = F t and [ F i + i : F<] = 2
for i > t. (Note that t > 2 as μ4 C F.) Then by [M, #15 and #13, p. 144],

cor F ί + l / F . ((α,6,ϋ; i +i;F i + 1) 2i+i) ~ ( ( α , 6 , - C J ^ F ^ S O

- ((α, 6,ω i ; Fi)2i) ® F ((α, 6, - 1 ; F f ) 2 )

Since cor F . / F ._ 1 ((α,6,-l;Fi) 2 ) ~ F f_i by Prop. 1.4 as Np./p.^b) = 62, we
end up with corF f c / F((α, 6; F f c)n) - (α, 6; F ) n / r ® F (α, 6; F ) 2 . Hence, by Prop.
1.4,

CT - cor L / F ((α, 6, L) n) ~ corF f c / F (corL/Ffc ((α, 6, L) n))

- corF f c / F ((α, 6̂ ; F f c)n) - (α, 6'; F , ) n / r ® (α, 6̂ ; F ) 2 .
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The second statement follows easily by Prop. 3.1.

(b) Let K — F2 = F(>f^Λ) and let s be maximal with ωs G K so
that K = Fs and [Fi+χ : Fi\ — 2 for i > s. As above, it follows by
[M, #15 and #13, p. 144] that

coτFk/κ((a,b,ωk;Fk)2k) ~ (a,b,ωs]K)2s ®κ (α,6,-l;ϋΓ)2.

Note that corκ / F((α, 6, - 1 ; K)2) ~ F by Prop. 1.4. If Gsl(K/F) = (σ), then
σ(ωs) = u£ where w2 = 1 (mod 2s) and u φ 1 (mod 4) since σ moves y^T.
It follows easily that NK/F(ωs) = 1 or —1, and so corjf/j?((a, b,ωs\ K)2*) ~ F
o r ( a , 6 , - l ; F ) 2 b y [ M , # 1 6 a n d # 7 , pp. 143-145]. SocorFfc/F((α,6,ω*;F*)n)
~ F o r (α, 6, —1; F)2, Hence,

c T ~ c o r L / j F ( ( α , 6 ; L ) n ) ~ F or (α,6;F)2.

D

Lemma 4.3. Le^ α;4 6e α primitive fourth root of unity in L. Let α, 6,c,dG
F* ; and let T = (a,6;L)4 and To = (a,6;F)2. Suppose T, To G Vttr(L).
Then

(a) i/oλt G F , ίAen CT - (a,be;F)4 in Br ( F ) ; where I = [L : F]. So
CT e Vttr{F), and ΓcT = [L: F]ΓT + ΓF. Also, CTO - (c,dέ;F) in Br (F),
so CTQ e Vttr{F), and ΓcTo = [L: F]ΓTo + ΓF;

(b) ifω4 £F, thencT = F.

Proof (a) follows easily by Prop. 1.4 and Prop. 3.1. (b) can be proved by

the exact same arguments in the proof of Prop. 4.2 (b). D

Recall that we are assuming L/F is a finite separable inertial extension

of Henselian fields.

Theorem 4.4. Let T G Vttr(L) and exp(Γ τ/ΓL) = p^p? pe

r

r, where
Po = 2, e0 > 0, and for 1 < i < r, the Pi are distinct odd primes, and

r

βi > 0. Let T = ® Tj be the primary decomposition ofT where Ti is the Pi-
primary component ofT. (So Γτ — Σί=o ΓV* and IVi I^L is the pi-primary
component of YT/YL.) Suppose μPi C F for 1 < i < r0 and μPi $£ F for
r0 + 1 < i < r. Then

(a) i/4fexp(Γ τ/ΓL) or μ4 C F, then

[L: F] ( r T o + ΓΓ l + + ΓT r o) + Γ F C ΓcT C Tτ,and

(b) ί/4| exp(Γ τ/ΓL) and μ4 <£ F, then

[L: F) (ΓT1 + + Γ T r o ) + Γ F C Γ c T C Γ τ .
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Proof. As Ti € VUr{L) by Prop. 1.6, T* = ® (ak,βk;L)mk for some α t , & €

IΛ, and some mfc powers of Pi for 1 < k < ί, ίso ΓT i /YL = φ /^-w(o;ί.) + Γ^,

. Since ΓL = ΓF, T{ ~ Λ ^ ( α * A ;£)«,») ® F $ for some

Si 6 £>is(L) and αfc, 6* <Ξ F* with v(ak) = v{ak), υ(bk) = υ(βk) (1 < k < £<).

Let 2V ~ ^ ( α f c , 6 f c ; L ) m f c . As T{ e Vttr(L), Prop. 3.1 shows T[ G

and Γ τ / = ΓT i. Since Ti ~ 2? ®L 5"i where 2^ G ©«P( t ) , and $ € ^
by Prop. 1.7, Γ τ. = ΓΪV + TSr Also, as L / F is inertial, cSi G X>fs(F) and
ΓcSi C Γ S i by Theorem 2.4.

For 1 < t < r0, as μPj C F , by Prop. 4.1 C7^' ~ ® {ak,b
n

k

k;F)mk/rk

where nk = [L : F(ωmk)] (α;mfc, a primitive mfc-th root of unity) and rk —

[F(ωmk): F]. Let Ak be the underlying division algebra of (ak,b^k;F)mk/Tk.

As {ak,bk;F)mk/rh e Vttr(F), by Prop. 3.1, Ak e Vttr(F) and

ΓΛfc / Γ F = nk ((^v(ak) + Γ F , ^ (
\\mk mk

-(£:ίl((;^)+Γ,,-U(W + Γ,))

as nkrk = [L : F]. Then, by Prop. 3.1 again, A := ® Ak G Vttr(F)

and I V I V = ΦJΓAJΓF) = [L : F ] ( Γ T / / Γ F ) . So, °T[ = A G 2?«P(F)

and ΓCPJΓF = [L: F](ΓT / / Γ F ) = [L : F]{ΓTi/ΓF). Since CT{ ~
 c η ' ® F

C5<, ΓcT* = ΓcT/ +TcS. by Prop. 1.7. So,

For r 0 + 1 < i < r, as //p. £ F by assumption, c ϊy = F by Prop. 4.1. So
cTi = c ^ , and ΓcTi = TcSi C Γ5, C Γ τ..

(a) If 4 f exp (Γτ/ΓL) or μ4 C F , then the same argument proving of the
case when 1 < i < r0 gives us [L: F]TTo + ΓF C ΓcTo C ΓT o, using Prop.
4.2 and Lemma 4.3 instead of Prop. 4.1. Thus, since Γ τ = Σ L O ^ T , and
ΓcT = ΣLoΓc T ί by [JW2, Cor. 1.15], [L: F](TTo + Γ T l + - • • + ΓT r o) +TF C
Γcy C Γy.

(b) If 41 exp (Γ T /Γ L ) and μA <£ F, then by Prop. 4.2 and Lemma 4.3,
CT^ ~ ® Afc, where for 1 < k < £0, Ak = (ak,bk;F)2 or = F. Hence

% € Ϊ W - F ) and ΓcT, C Γ τ . As CTO ~ CT{, <3> CSO with CSO E T>is(F),
by Prop. 1.7, Γ<Γo = ΓcT, + I \ S o C Γj* + ΓS o = ΓT o. Therefore, [L :
F](ΓTl + + ΓT r ) + Γ F C Γ e T C Γ τ . D
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T h e o r e m 4.5. If D e Vt(L), then TcD C ΓD.

Proof. By Prop. 1.7, there are S e Vis(L) and Γ e Vttr(L) such that
D ~ S ®L T in Br (L), whence Γz) = Γ 5 + Γ τ . Then by Theorem 2.4
and Theorem 4.4, ΓcS C Γ 5 and ΓcT C Γ τ . Also, by Theorem 2.4, C 5 and
CT are tame over F. As CD ~ C 5 <g)F

 C T in Br (F), by [JW2, Cor. 6.7],
ΓcD C Γc5 + ΓcT C Γ s + Γ τ = ΓD. D

Now, we will give relations between Z(D) and Z(CD) and between
exp (ker ΘD) and exp (ker θcD) for D E Vt(L).

T h e o r e m 4.6. Let D e Vt(L) and t = exp (ker ΘD). Let t = 2e°pe

1

1 ---p6/,
where e0 > 0 ; and the p{ are distinct odd primes and ê  > 0 for 1 < i < r.
Suppose μPi C F for 1 < i < r0, and μPi <£ F for r0 + 1 < i < r. Let
s = 2eoj9Γ pZ0 and s' = p? - pe

r

r

0° Then
(a) if4:\torμ4QF, then exp (ker θcD) = s/gcd {[L: F],s) and Z{CD) C

λf(Z(D)/F)1'" where n = gcd([L: F ] , 5 ) (t/s), and
(b) i/ 4|ί and μ4 ^ F , ίften exp (ker θcD) = ε8'/gcd([L : F],5#)

ε = 1 or 2, and ZίfD) C λί{Z(D) l~F)ι'n' where n' = gcd ([L: F], s')

Proo/. By Prop. 1.7, there is a noncanonical decomposition in Br (L), D ~

S1 ® L T1 where 5' € 2?<β(L) and T ; G Vttr(L). As ker(^D) = Γ τ , /TL,

we have t = exp (ker ΘD) — exp(ΓT/ / Γ L ) . Let T" = ®T/ be the primary
2=0

decomposition of T". Since T[ € Vttr(L), by Prop. 1.6, T/ is a tensor product
of tame totally ramified symbol algebras

T[ = ® (X(i,2j-l),X(i,2j

where

Γτ

(cf. Prop. 3.1). Note that as

exp (Γjv /ΓL) = the p rcomponent of exp (ΓT/ / Γ^) = pV,

each t(i,j) \p\i. (For n G Z and p a prime, if we write n = np np where np

is a power of p and n^ is prime to p, then we refer to np as the p-component
of n )of n.)
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Since ΓL = Γ F , x{iijf) = uiiJf)y(ijjt), 1 < f < 2j(i), for some yiiJΊ G F*
and Ufaf) v-units in L*. Note that

~ Ki,2j-i),χ(i,2j) L)t{ij)®(y(i,2j_i),u{iy2j) L)t{ij)

and

[ K M ^ W i l ί ^ y ® (y(i,2i-i),^(i,2i);i)ίW)] € Br (Lnr/L).

Let Si be the underlying division algebra of

and Ti = ® (l/(i,2i-i)j!/(if2i);^)t(ifJ ) It follows from Prop. 3.1, that T :=

®Tι G T>ttr(L). Then by replacing 5" and T'~with the underlying division
2=0

algebra of S" ® ί ® S< J and T, we have in Br (L), £> ~ S ®L T where

5 G 2><,(Ir), T = _έτ t and T< = J® (l/(<,2i-i),y(i,2i);£)t(iΛ with y ( i J 0 G F*.

And CD - C 5 ® F

 CT where C 5 G 2?ίβ(F) by Theorem 2.4.
(a) Suppose 4 \ t or μ4 C F .
By Prop. 4.1 (a) for 1 < t < r 0, and by Prop. 4.2 (a) and Lemma

4.3 for i = o, cτ, ~ | | (^^•- 1 ) '42?); F ) ί ( i J ) / r ( i ) j )

 w h e r e '(°>i) = Λ t L :

F(α;t(o,j))] with /̂  an odd integer, ί{i, j) = [L : F(ωt^ό))] for 1 < i < r0

and r ί ^ j ) = [F(ωt(ij)) : F] for 0 < i < r0 (α;t(ίfJ ) is a primitive t(i, j)-

th root of unity). Let d(ij) = gcd (/(», j), ίgg), f(i,j) = | g } , and

s o t h a t

r(i,j)d(i,j) = gcd([L: F], *(t,j)) as r(ij)ί(ij) = [L: F) for 1 < i < r0

and r(0,j)ί(0,j) = [L : F ] / J 5 2 | / j 5 and ί(0,.7') are powers of 2. Then

For r 0 + 1 < i < r, as μPi ^ F , CT^ = F by Prop. 4.1. So CT ~ ® cTi in

Br (F). Since
2 = 0

(
i=0

i=0j=l \ί(*,j) *(l,j)
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and ΓcT. /ΓF C ΓT i / Γ F , it follows from Prop. 2.4 that CT ^ ® CT{ €
i=0

2?«r(F) and

ί = 0

= 1 1 {vhiv{y(i'2i-ι))+ΓF' miv{y(i'2i))+TF) '

Let Γ ' = ®Tj. Then
i=0

If
Since Γ^ = ΓF and

t'(i j) = ί(i 7)

gcd ([L : F],ί(i, j)),ΓcT/ΓF = [L : F](ΓT, / Γ L ) '

Recall that s = 2eopί1 • pί?» = exp(Γ τ7ΓL), as t = 2eopί1 p* =
exp(Γτ/ΓL). Note that (t/s)Γτ Q IV, as exp(ΓTi/ΓL) | (t/s) for i > r0.
Also, for 0 < i < r0, as each t(i,j) j s, each t(i,j)/t'(i,j) = gcd([L : F],
<(*\i))| gcd([X : F],s). Therefore, gcd([L : F],s)Γτ* C ΓcT. Hence, as
n = gcd([L: F],5) (t/s), we have nΓ τ C ΓcT.

Note that if A is a finite abelian group (written additively) and i is a
positive integer, then

(4.7)

(This follows from the fact that there is b E A with 0(6) = exp (A) and the
formula o(ί b) = 0(6) / gcd (ί, 0(6)).) Since ΓcT / ΓF = [L: F](ΓT, / ΓL) and
ΓT' / ΓL is a finite abelian group,

by (4.7) above. Since CD ~ CS ®F

 CT with CS G Vis(F) and CT G Vttr(F),
by Prop. 1.7 exp (ker θcD) = exp (ΓcT/ΓF) = 5/gcd ([L: F],5).

Let
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Then K/F is totally ramified and Γκ = ΓcT. Since CS G Vis(F) and K/F is
totally ramified, by [JW2, Cor. 5.13] Z((CS)K) = f(flcS((ΓcS Π Γ κ ) /Γ F )),
where {cS)κ is the underlying division algebra of CS ®F ^ Also since CJD ~
C5 ®F CT with CS G Vis(F) and CT_ G P t t r (F), by Prop. 1.7 Zί^D) =
^(Λ 5((Γc 5 Π ΓcT) / ΓF)). Hence Z(^D) = Z{{CS)K) as ΓcT = Γ*.

Now, since K/F is Galois and K ΠL = F with K/F totally ramified and
L/F inertial, L and K are linearly disjoint over F and L ®F K is the field
LK. So by [Dl, p. 56, Ex. 1], \CS)K ~ coτLK/κ {SLK) in Br (K), where
5/,^ is the underlying division algebra of S ®L LK. Since SLκ € Vis(LK)
and LK IK is inertial, by Theorem 2.4,

)*) C ΛA(Z(5L^) / K). (4.8)

Recall that n — gcd([L: F],s) (t/s). We showed just before (4.7) that
nVτ C ΓcT = ΓA: = ΓL K . So, n((Γ s Π Γ τ) / (Γ5 Π ΓL X)) - 0.

Let

be the map of (1.5). Then by [JW2, Lemma 5.1], θs is an isomorphism and
Z(5)/IisabelianGaloisasS'GP i s(L). By Prop. 1.7, 0 5 ((Γ 5 nΓ τ ) /YL) -
Gal (Z(S) I Z(D)). Also, since S G P l s ( i ) and LK/L is totally ramified, by
[JW2, Cor. 5.13] again ΘS{(TS Π ΓL^) /ΓL) = Gal(Z(5) / Z ( 5 ^ ) ) So

Gal (Z(5L K) / Z(D)) * Gal (Z(5) / Z(D)) / Gal (Z(5) / Z(SLK))

= {rsnrτ)/(FsnrLK).

Hence Gal(Z(SLK) / Z(D)) is an abelian n-torsion group by the preceding
paragraph. Note that μn C Z(Z>) as n \ t = exp(Γτ/Γ ί/), and μt C L C
Z(D). Hence by Kummer theory Z(SLK) is an n-Kummer extension of

, i.e., Z(5Z^) = Z(D) ({αUn}S

m=1) for some αm € Z(S). Therefore,

(4.9) ( ^ ( y '

Since K = F, by (4.8) and (4.9) above

Z(D) C Λί{Z(D)1/n /F) C λί(Z(D)/F~)1/n .

(b) Suppose 4|ί and μ4 ^ F.
By Prop. 4.1, for 1 < i < r0, as shown in proof of (a)

hj)/r(i,j)

where £(i,j) — [L: F(ωt^j))] and r(i,j) = [F(ωt^j)): F], and for r0 + 1 <

i < r-> °Ti = ^ Also, by Prop. 4.4 and Lemma 4.3, CTO ~ ® ^ where
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Ai = (l/(o.2j-i), l/(o,2j); F)2 or = F. So we have CT

/i(o) \
Then by the exact same arguments as in proof of (a), CT = I φ Aj I

ΓcT/ΓF = (J?(ΓAj /ΓFή φ (.|(ΓcTt.

where T" = ®T<. So exp(ΓcT/ΓF) = εexp([L: F](Γ>,/ΓL)) where ε = 1

or 2. But by (4.7),

Hence exp(ΓcT/ΓF) = εs7gcd([L: F],s').
As in (a), let K' be a totally ramified extension of F with Tκ> = ΓcT. Let

n' = gcd ([L: F], s') (t/s'). Since t(0, j) | 2e°, we have t(O,j) | ri. For t > 0,
we have, just as in (a), t(i,j) | t'(i,j)n' if z < r0 and ί(ί, j) | n' if i > r0. These
divisibility relations show nΎτ C ΓL K ', hence Z(^D) C λί(Z(D) / F ) 1 / n \ by
just the same argument as for (a). D

Theorem 4.6 gives us the best general relation one can expect between
Z(D) and Z(*D) for D e Vt{L), L/F inertial, as the following example
illustrates.

Example 4.10. Let r1? r2, and t be positive integers with t \ [L: F]. Let a i,
a:2 G F* such that for any prime p dividing ri, r2 or t, we have v(xi) +pΓV,
^(^2) + p Γ F are Zp-linearly independent in ΓF /pΓF = ΓL/pΓL. Suppose
μi Q F, where ί = ίcm(rι,r2, t). Then if D is the underlying division algebra
of (a?i, Hi; L)ri <8>L (̂ 25 ^2; ^)r 2 ® (^I?

 χi\ L)t, where U\ and u2 are units in
L\ then by Prop. 1.4 and as ί | [L: F], in Br (F)

{x2,NL/F(u2);F)r2 .
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So, by Cor. 3.5, Z(D) = I(δ ί / f \δ£ / r a ) , and ZfB) = F((Nτ/ F(ύ1))1'r\
(Nτ/j?(ΰ2))1/r2). Hence ZfD) C λί{Z{D)/F)^\ where t = gcd(t,[L: F])
ast\[L:F].

Appendix.

In [Ta, p. 259], Tate gave a formula describing the homological corestriction
using a set of representatives of the right cosets. Prom this, we will deduce
a formula stated in Section 1 describing the homological corestriction with
respect to a set of representatives of the left cosets. Presumably, this formula
is known, but we have been unable to find it in the literature, except for
m < 2. Here we use the notation Wpi for pσ^i) in (1.3) above.

Let G be a group and A a left G-module. Let H be a subgroup of G of
finite index n, and let Έ, = {c*i,... ,αn} be a set of representatives of the
right cosets of H in G. For r G G, we write f G R for the representative
of Hτ. Given α̂  G TZ and σ G G, there are uniquely determined elements
ε(αi, σ) € H and a^a G ΊZ such that

(Al) c^σ = ε(ai, σ)c^σ.

Then we have, for any σ, T e G and α* G 7£,

(A2) ε(αΐ51) = 1, and ε(a^ στ) — ε{μ^ σ)ε(α£σ, r ) .

By [Ta, p. 259], the homological corestriction from Hm(H,A) to Hm(G, A)
(m > 1) can be described as follows: It is the homomorphism cor^ of the
cohomology groups induced by the cochain transformation of Gm(JΪ, A) into
Cm(G,A), for a cochain / G Cm{H,A), given by

(A3) oorg (/)(*! , . . . , σm) =

... ,ε(α;σi—σm_i,σm))].

Let pi = α" 1 for 1 < i < n, so C = {^i,... , pn} is a set of representatives
of the left cosets of H in G. For r G G, we write f E C for the representative
of TH in £. (It will be clear from the context when f stands for a left coset
representative and when for a right coset representative.) Given p{ G C and
σ G G, there are uniquely determined elements σp7 G £ and δ(σ,pi) G if
such that

(A4) σpi = σρlδ(σ,pi).
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Then, since στρiδ(στ)pi) = σrpiδ(σ^τpι)δ(τ1 pi) for any σ,τ £ G, and pi G
£, we have

(A5) στpi = σrp,, and <5(στ, p*) = δ(σ, rpi)δ(τ, pi).

Since 1 = 5(σσ 1,Pi) = ί(σ, σ~1Pi)ί(σ ^ f t ) , we have also

( A 6 ) δ(σ ι , P i ) λ = δ(σ,σ~~ιpi) f o r a n y σ E G a n d p i

By taking the inverses in the both sides of (Al), we have

σ~ιa~ι ^ a ~

w h e r e a{σ~ι G C a n d ε(aτ,σ)~1 G i ϊ . B u t σ 1ai

 ι — σ~ιpiδ(σ λ,pi) w h e r e

σ~~xpi G £ and ί ( σ " 1 , p i ) G if are uniquely determined elements as in (A4).

Hence we have

(A7) ά~σ =

and

(A8) ε(a.i,σ) — δ(σ ,p^) = δ(σ ->θίi )

Now by using successively (A3), (A8), (A7), (A5) and (A6), the cochain

transformation (A3) becomes;

... ,σm) =
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2 = 1

) \

V*)*... , δ{σm, σ^σ^

i, σ 2 σm/9i), δ{σ2, σ3

ι = l

by replacing /9i with σ\ σ m p i 7 since {σi σm/9i,... , σi σ m p n } is a per-

mutation of {p 1 ?... , p n } .

The homological corestriction corg from Hm(H, A) to Hm(G, A) (m > 1)

is the homomorphism of cohomology groups induced by the cochain trans-

formation Cm(H,A) -> C m (G, A) just computed.
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