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THE CORESTRICTION OF VALUED DIVISION ALGEBRAS
OVER HENSELIAN FIELDS I

YOON SUNG HWANG

When L/F is an unramified extension of Henselian fields,
we analyze the underlying division algebra °D of the core-
striction cory/r (D) of a tame division algebra D over L with
respect to the unique valuations on °D and D extending the
valuations on F and L. We show that the value group of D
lies in the value group of D and for the center of residue divi-
sion algebra, Z(°D) C N (Z(D) / F)'/*, where N(Z(D) | F) is the
normal closure of Z(D) over F and k is an integer depending
on which roots of unity lie in F' and L.

Introduction.

For any finite separable extension L/F of fields and any central simple alge-
bra A over L, the corestriction of A is a central simple F-algebra obtained as
the fixed point algebra under a Galois group action (cf. [Ri]). This induces
the map from the Brauer group Br (L) to Br (F') corresponding to the homo-
logical corestriction. Though this algebraic corestriction is an important tool
in the theory of division algebras, it is actually very hard to work with. To
gain a better insight into the behavior of the corestriction, we analyze here
the corestriction for valued division algebras over Henselian valued fields, for
which there is a well-developed structure theory. We will here concentrate
on the case when L is inertial (unramified) over F. In a subsequent paper
[H2], we will consider the more general case when L is tame over F, i.e.
char (F) { [L: F], where F is the residue field of the valuation on F.

For any ring R we write Z(R) and R* for the center of R and the group
of units of R, respectively. We will consider only central simple algebras A
finite-dimensional over a field F. By Wedderburn’s theorem, A & M, (D), a
matrix ring over a division algebra D, which is called the underlying division
algebra of A.

A valued field (F,v) is called Henselian if v extends uniquely to each field
algebraic over F. For a nice account for several other characterizations of
Henselian valuations, see Ribenboim’s paper [Rb]. Recall (e.g. from [W1])
that if D is a central division algebra over a Henselian valued field (F,v),
there exists one and only one valuation on D extending v on F.
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Let (L,v) D (F,v) be a finite separable inertial extension of Henselian
fields. This means that [L: F] = [L: F] and L is separable over F. Let D be
a central division algebra over L. We denote by °D the underlying division
algebra of the corestriction cory,r (D) of D. If D is inertially split over L, i.e.,
split by the maximal unramified extension of L, we have good information
obtained homologically using [JW2, Sec. 5|. Also, we can analyze a tame
and totally ramified division algebra since it is isomorphic to a tensor product
of symbol algebras (cf. Prop. 1.6). Furthermore, since a tame division
algebra over L decomposes in the Brauer group to S ®; T with S inertially
split and T tame and totally ramified (cf. Prop. 1.7), we obtain information
about a tame division algebra by combining the results about S and 7.
Our basic results are summarized in the following table. Here I'p is the
value group of the valuation on D and D is the residue division ring of the
valuation ring of D. Also N'(Z(D) / F) denotes the normal closure of Z(D)
over F, N+ I/F denotes the norm map from L to F, and ), is the map of (1.5)
below, so ker (6p) is a subgroup of I'p /T’y

D Tep Z (°D)

inertially split r.,Clp | Z (_) CN (z (ﬁ) /F)

(Th. 2.4)
tame, totally Z (@') CF (Nfﬁ,—(f)l/‘)

ramified Fep CTp t=exp(T'p/TL)

(Prop. 3.2, Th. 3.9) (if ps C F)
tame r.pCTp | Z(D) c N (z (D) /F)

(Th. 4.5, 4.6) k| exp (ker 0p)

The integer k in the table above depends not only on I'p /Ty, and [L: F]
but also on which roots of unity lie in F. One of the interesting results of
the investigation is to see how heavily the corestriction depends on the roots
of unity in F and L.

Here is an overview of the paper: After giving some preliminary results
in Section 1, we will analyze the corestriction of inertially split division
algebras in Section 2. In Section 3, we will consider the corestriction of tame
and totally ramified division algebras T over L (i.e. |I'r: T'p] = [T: L]
and char (L) t [T : L]) when p;, C F with t = exp(['s/T'z) (i.e. F has
a t-th primitive root of unity). Finally, in Section 4 we will analyze the
corestriction of tame division algebras. (In the Appendix, we will give an
explicit formula of the homological corestriction.)
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1. Preliminaries.

Let FF C K be fields with K algebraic over F. We write Gal (K/F) for
the profinite group of all F-automorphisms of K. If H is any subset of
Gal (K/F), we write F(H) for the fixed field of H. We say K is normal over
F if K is the splitting field of some family of polynomials over F’; K is Galois
over F if K is both normal and separable (if and only if F = F(Gal (K/F))).
We write N (K/F) for the normal closure of K over F. Also, if [K: F] < oo,
Nk/r denotes the norm map from K to F. We write F,, for the separable
closure of F.

For a central simple F-algebra A, [A] denotes the class of A in the Brauer
group Br (F) of F. If B is another central simple F-algebra with [B] = [4],
we write A ~ B. For any field K D F, let Br (K/F) denote the relative
Brauer group of K/F, which is the kernel of the canonical “restriction”
homomorphism Br (F) — Br (K) given by [A] — [A ®F K].

Here is our notation for certain central simple F-algebras: (K/F,G, f)
is the crossed product algebra determined by a 2-cocycle f: G x G — K~,
where K is a finite dimensional Galois extension field of F' with Galois group
G;

(K/F,o,a), is the cyclic F-algebra generated over K by a single element
z with defining relations zcz™! = o(c) for all ¢ € K and z" = a € F*, where
K is a Galois extension of F' with cyclic Galois group generated by ¢ and
n=[K:F);

(a,b; F),, is the symbol algebra generated over F' by i and j with defining
relations: " = a, j” = b, 1j = wji, where w € F* is a primitive n-th root
of unity and a, b € F*. Since a symbol algebra depends on a choice of
a primitive n-th root of unity w, we will sometimes write (a, b, w; F'),, for
(a,b; F),,. In writing symbol algebra (a,b; F'),, there is an implicit choice
made of which primitive n-th root of unity w to use. When this has been
done, then for an integer n' dividing n, (a, b; F'),,» denotes the symbol algebra
built using the primitive n'-th root of unity w™™ .

Recall that the cyclic algebra (K/F, o, a), corresponds to the cohomology
class of the cup product

(11) [o(infG, ()] U(a)
in the continuous cohomology group H?(G, F}.,),

where G = Gal (F,,,/F) is the absolute Galois group of F, G, = Gal(K/F)
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= (0), f € H'(Go,Q/Z) = Hom (G, Q/Z) is defined by f(o) = L + Z,
é: HY(G,Q/Z) — H?*(G,Q/Z) is the connecting homomorphism, and a €
F* = H°(G,F;,).

In fact, the corestriction (or transfer) homomorphism arose from the co-
homology of groups, and the algebraic corestriction is compatible with the
homological corestriction via the crossed product construction. Let G be a
group and let A be a left G module. Let H be a subgroup of G of finite
index n. For m > 0 an integer, H™(G, A) (resp. H™(H, A)) denotes the
m-th cohomology group of G (resp. H) with coefficients in A.

For each m, there is the corestriction (or transfer) cor$ : H™(H, A) —
H™(G,A). (See [B, III, Sec. 9].) We give an explicit formula describing
this homological corestriction for m > 0. Let R = {py,... ,pn} be a set of
representatives of the left cosets of H in G. For m = 0, H°(H, A) = A¥ =
{a € Aloca=aforallc € H} and H°(G, A) = A%, and cor$}: H°(H, A) —
H(G, A) isgiven by a+» % pia for a € HO(H, A) = A™. Given p; € R and
o € G, there are uniquely determined elements p, ;y € R and (o, p;) € H
such that

(1.2) 0pi = Po.(5)0(0; pi);

where the map o +— o, is a homomorphism from G to the symmetric group
S,. Now take any f € Z™(H, A), the group of m cocycles of H with values
in A; define a function cor$; (f) € Z™(G, A) as follows: for oy,... ,0, € G

(1.3)  cor (f)(o1,--- y0m)
=" Plorom)e(® F (6 (00 Ploram)a) »
=1

. ,(S (O'j,p(,jﬂ...gm)‘(i)) geos ,(5(O’m,pi))] .

(We will deduce this formula from [Ta, p. 259] in the Appendix.) Form > 1,
the homological corestriction cor$ : H™(H, A) — H™(G, A) is induced by
the map f +— cor (f) given in (1.3) above. Recall that the (homological)
corestriction map commutes with inflation and connecting homomorphisms
(cf. [We, Prop 2.4.5 and Prop. 2.4.7]).

Recall the following case of the projection formula which will be used often
in this paper (cf. [Ti, Th. 3.1]).

Proposition 1.4 (Projection Formula). Let L/F be finite dimensional and
separable. Assume F contains a primitive n-th root of unity. If a« € L* and
b€ F*, then cory p ((o,b;L),) ~ (Np/r(a),b; F)  in Br (F).

The valued division algebra (D,v) is a division ring D with valuation
v, that is, a function v: D* — T (a totally ordered abelian group written
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additively) such that for all a, b in D*, v(ab) = v(a) + v(b) and v(a +
b) > min (v(a),v(b)) if a # —b. Associated to v, we have its value group
I'p = v(D*); the valuation ring Vp = {d € D*|v(d) > 0} U {0}; the unique
maximal left ideal Mp of Vp, Mp = {d € D*|v(d) > 0} U {0}; the group of
v-units of D*, Up = Vp — Mp = V}}; the residue division ring D=Vp /Mp.
If F is the center Z(D) of D, there is a well-defined epimorphism

induced by o: D* — Gal(Z(D)/F) which is given by d ~ ¢; where ¢ is
the map induced by conjugation by d (cf. [JW2, 1.6]).

Let (F,v) be a Henselian valued field. Let D be a central division F-
algebra (with a unique valuation extending v on F). We say D is tame and
totally ramified over F if char (F) {[D: F] and |T'p: I'p| = [D: F]. D is said
to be inertially split over F' if D is split by F,,, where F,,, is the maximal
unramified extension in some algebraic closure of F. Also, D is said to be
tame if char (F) = 0 or char (F) = q # 0 and the ¢g-primary component of
D is split by F,,. (See [JW2, Lemma 5.1] and [JW2, Lemma 6.1] for other
characterizations of inertially split and tame division algebras.) Recall also
that D is said to be inertial over F if [D: F] = [D: F] and Z(D) = F. Let

D(F) = {D|D is a central division F-algebra with [D: F] < oo}
Dy, = {D € D(F)| D is tame and totally ramified over F'}
D;(F) = {D € D(F)| D is inertial over F}
D;s(F) = {D € D(F)| D is inertially split over F} and
D,(F) ={D € D(F) | D is tame over F}.

It is clear that D;(F) C D, (F) C Di(F) and Dy, (F) C Dy (F).

Given (D, v) a valued central division F-algebra, one has the “fundamental
inequality” [D: F] > [D: F)-|Tp: k| (cf. [S, p. 21]). We say D is defectless
over F' if equality holds.

Throughout this paper, we will assume that L/F is a finite separable
inertial (unramified) extension of Henselian valued fields. We now recall
some facts about inertial extensions as summarized in [JW2, Sec. 1]. Let
F.,. denote the maximal unramified extension of F' in some algebraic closure
F,y of F. Recall that I'r,, = I'p, F,, is the separable closure Fsep of F,
and F,, is Galois over F. Also, for any field £ with F C E C F,, and
[E: F] < oo, E isinertial over F if and only if E C F,,. Further, the map
L—1T1 givesa 1 -1 correspondence between fields L with FF C L C F,,
and fields L with F C L C F,,. Given a field L with F C L C F,., and
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[L: F] < oo, the corresponding L (inertial over F with L = L) will be called
the inertial lift of L over F.

We now finish this section by recalling two propositions which will be very
useful for this paper. See [D2, Th. 1] and [JW2, Lemma 6.2, Th. 6.3] for
proofs of Props. 1.6 and 1.7, respectively.

Proposition 1.6 (Drax!’s decomposition theorem). If D € D(F) is tame
and totally ramified over a Henselian field F, D is isomorphic to a tensor
product of symbol algebras.

Proposition 1.7. If D € D(F) is tame over a Henselian field F, then there
exist S € D;(F) and T € Dy, (F) such that D ~ SQpT in Br (F). (Such S
and T are not unique.) Furthermore, if D ~ S®pT is such a decomposition,

Z(D) = F(0s((Cs NT1) /TF)) C Z(S),
I'p =T's+T'rand ker (0p) =T'r/Tp.

2. Inertially split division algebras.

If D € D;yr), we have good information about D homologically, which is
obtained in [JW2, Sec. 5]. We will give a brief summary on this. (See
[JW2, Th. 5.6]).

We fix a Henselian valued field (F,v). Let A be the divisible hull of I'p,
s0 A ~Tr®;Q Let G = Gal(F,,/F)= Gal(F,,/F), a profinite group.
Let U = U, the group of v-units of F,,,.. Since I'r,, = I'r (on which G acts
trivially), we have a short exact sequence of discrete G-modules:

1-U— F5Tp—0.

From this short exact sequence, we have the following exact sequence, which
will be the basic focus of our attention:

(2.1) 0 — H*(G,U) = H*(G, F:,)> Hom, (G,A/TF),

where H? and Hom, denote the second (continuous) cohomology group and
the continuous homomorphism group, respectively.

In this exact sequence, H*(G, F:,.) & Br(F,,/F) and H?(G,U) = IBr(F),
where IBr(F) = {[D] € Br(F)|D € D;(F) i.e., D is inertial over F'}. (See
[JW2, Th. 5.6].) Also, IBr(F) is isomorphic to Br(F) via the isomorphism
B given by [D] — [D]. (See [JW2, Th. 2.8].) Further, if a: H2(G,U) —

H? (G,F_n,*) = H? (G, F:ep) is the map induced by a map U — F,,, given
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by u — @, the following diagram commutes: (See [JW2, Examples 2.4,
Prop. 2.5].)

H}(G,U) —— H!(G,F,,,)

sep

(2.2) gl lg
IBr (F) —2— Br (F)

where the vertical isomorphisms are given by crossed product construction.
We now identify H?(G,F: ) with Br (F,, /F). For any D € D,,(F), as

[D] € Br (Fy, / F), set hp = ¥[D] € Hom (G, A/T'r), where v is the map in
(2.1); further, let hp: G/ ker (hp) — im (hp) be the isomorphism induced

by hp. Then

(2.3)
(1) 1m(hD) = FD/PF and }"(ker(hD))
is the inertial lift of Z(D)

(2) (After identifying G/ ker(hp) with Gal (Z (D) /F) )ED = 05!,

where 0p: I'p/T'r — Gal (Z (ﬁ) /_F_) is the map of (1.5) induced by conju-
gation. See [JW2, Th. 5.6] for the proof.

Now let (L,v) 2 (F,v) be a finite (separable) inertial extension of Henselian
fields. Since L is inertial over F, L C F,, so L,,, = F,,. Let

G = Gal(F,, /F) > Gal(F,,/F) and
H = Gal(F,, /L) = Gal (L, / ) = Gal (T,., / I).

Then H is a subgroup of finite index |G: H| = [L: F] = [L: F).

Note that, for ¢ > 0 the corestriction map cor$ from H(H,F}) to
H*(G, F,) sends the continuous cohomology group H:(H, F’%) into the con-
tinuous cohomology group H:(G, F,.).

Theorem 2.4. Let (L,v) D (F,v) be a finite inertial extension of Henselian
fields. Suppose D € D;;(L). Then,
(a) °D € Dy (F)
(b) TepCTp
(c) Z (@) CN (Z (ﬁ) /F), the normal closure of Z (27) over F.
)

(d) If D € Dy(L), then °D € Dy(F) and *D ~ corgz (D) in Br (F).
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(So, if D € D,(L), then °D € Dy(F).)

Proof. (a) Let N = N(L/F). As F,, is normal over F;, N C F,,, so N,,, =
F,.. Let R be a set of representatives of the left cosets of Gal (N/L) in
Gal (N/F). Then, by [D2, p. 52, Cor. 1], °D ®p N ~ cory;p(D) @ N =
® " (D®, N) € Br (N,,./N) since D € D;,(L), where ? (D ®; N) means

pER
D ®; N made into an N-algebra by (d®n)-n' =d®np~!(n'). So, °D is
split by N,,, = F,,, hence ¢D € D, (F).

From this and definition of tame division algebras, it is clear that if D €
D,(L), then ¢D € D,(F).

(b) Let H = Gal(L,,/L) = Gal(F,,/L), G = Gal(F,,/F), A = the
divisible hull of I'r =T';, and U = Uf,, = Ur,.. Then since the corestriction
map is functorial and commutes with the connecting homomorphism, the
following diagram is commutative,

0 —— H*(H,U) — HZ*(H,F*) —— Hom, (H,A/Tr)

't nr

0 —— H*G,U) —— H2*(G,F:) —— Hom, (G,A/TF)

where the row exact sequences are those of (2.1). As done in (2.3), w
identify H2(H, F},) and H*(G, F},) with Br (L,,/L) and Br (F,,/F), re-
spectively. As D € D (L) and by (a), ‘D € D;(F). Set hp = v[D] €
Hom, (H,A/Tf) and h.p = v[°D] € Hom, (G,A/T'r). Since the diagram
above is commutative, h.p = y(cor§ ([D])) = cor§ (v([D])) = cor§ (hp).
Now, by (2.3), I'p /T'r = im (hp) and I'ep /T'r = im (hep). But im (hep) =
im (cor$ (hp)) C im(hp) by (1.3), as G acts trivially on A /T'r. Hence
I'ep CTp.

() 45 [D] € Br (L /1) = Br (Fy /1) = HE(H,Fy), and [D) e
Br (F,./F) = H?(G,Fz,), by (2.3), F(ker (hp)) and F(ker (h.p)) are the
inertial lift of Z(D) and Z( cD) respectively. Let Z = F(ker (hp)) and
M = N(Z/F). Since Z C F,, and F,, is normal over F, M C F,,. Let
I = Gal(F,,/M) and K = Gal(F,,/Z) = ker(hp). Then I is normal
in G = Gal(F,./F),and I C K C H = Gal(F,,/L) C G. Note that
res (hp) = 0 as K = ker (hp). Let E be a set of representatives of the
double cosets IgH. Then, by [B, p. 82, III, Prop. 3.5, res§ (cor$ (hp)) =
Y ger COTingr,—1 ©T€Sih -1 (hp), where the “restriction map” on the right
is with respect to the conjugation map (: — g~'ig, a — g~'a), regarded
as a map (I NgHg™, F*.)—(¢~'Ig N H, F*) — (H, FEr). But as I
is normal in G, g7'fzgNH = INH C K, so resj,g,-1 (hp) = 0 for
each ¢ € E. Hence, res§ (cor$ (hp)) = 0, so ker (hep) D I. Therefore
2(7D) = F(ker (hp)) C F(D) = M = N(2(D)/F).
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(d) Since D € Dy(L), [D] € IBr (L) = H?(H,U) = ker (y), where 7 is
the map of (2.1). Since the diagram above in the proof of (b) is commu-
tative, [°D] = cor$, ([D]) € ker (y) = H2(G,U) = IBr (F). Hence °D €
D;(F). As the corestriction map is functorial, the map « in (2.2) is com-
patible with corestriction. So, since the algebraic corestriction corresponds
to the homological corestriction, and by (2.2), we have <D ~ corg, (D) in

Br (F). |

3. Tame and totally ramified division algebras.

We begin this section by giving a proposition we will use a number of times.

Proposition 3.1. Let (F,v) be a Henselian valued field. For 1 < i < k,
let n; > 1 be integers with (char F,n;) = 1, and a;,b; € F*. Assume F has
primitive n;-th roots of unity w;. Letn =n,;---n; and £ = bem(n,, ... ,ng).
Then

(1) The tensor product of symbol algebras, T = ® (@i bi; F)p, s a tame

and totally ramified division algebra over F if and only if
{(¢/n;)v(a;), (£/n;)v(b;) |1 <3 < k}
generates a subgroup of order n® in U'r/fTr; when this occurs,

Tz = ((1/n:)v(a:), (1/n;)v(b:));_, + Tr.

(2) If D € Dy, (F) and D™ is the underlying division algebra of D®™, the
m-fold tensor product of D with itself over F, then D™ € Dy, (F), and

Cpm /[Tp =m(Cp/Tr), so Tpm=mlp+Tp.

Proof. (1) Suppose {(¢/n;)v(a;) (E/ni)v(bi)}i.c=1 generates a subgroup of or-
der n? in I‘F/Zl"p Then by [JW1, Cor. 2.6], T € Dy,(F) and I'7 =
<1—11;v(a,) - v(b; )> +I'r. Conversely, suppose T' = ®(a,,b,,F) € Dy, (F).
Let a;, 8; be the generators of T over F' with relatlons o = a0 = b,
and o;8; = w;B;c;. Then A = (o F*, ,B,F*)z , is an armature of T, that
is, an abelian subgroup of T*/F* of order dimpT such that {ai,ﬂi}le

generates T as an F-algebra. Since T' € Dy, (F), by [TW, Prop. 3.3],
the map : A — I'r/T'r induced by v (i.e., the map zF* — v(z) +

k
I'r) is an isomorphism. So, I'r /T'r = <-;—iv(a,-) +Try oo(b;) + 1"F>._1 and
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{(¢/n;)v(a;), (é/ni)v(bi)}:;l generates a subgroup of order n? in I'r /¢T'r
(namely L'y [ ¢T'F), as [Ty /Tp| = [T': F] = n?. Also,

r —<iv(a-) 1 (b-)>k 4T
T — n. z’niv i F

7 i=1
k
as Tr /T = (Lv(a;) +Tp, 20(bi) +Tr) _

(2) As D € Dy, (F) and F is Henselian, by Prop. 1.6 D = .c_gl(ai,bi;F)n,.

for some a;, b; € F*.
Let d; = ged(n;,m) and n; = d;n}, m = d;m! so that gcd(n],m}) = 1.

Since D = iél(ai,bi;F)m € Dy (F), by (1),
{(€/n;)v(a:), (€/ni)v(bi) |1 < i < k}

generates a subgroup of order n? in I'p / fT'r. Also, since the map
PF /ZPF — %PF/FF,

induced by multiplication of %, is an isomorphism,
1 1
—uv(a;), —v(b) |1 <i<k
{av(@), Tob1<i<k)

generates a subgroup <n%'v(ai) +Tp, 2v(b;) +Tp|1 <i < k> of order n? in
k )
iT'p /Tp. We want to show @l(ai,bzn‘;F)n; € Dy, (F). Since n}|n;, 1 <i <
k
k, <;lc'”(ai) + T, 2rv(bi) + Fp>__1 is a subgroup of
<1 (a:) + T'r, ~v(b) + T >k
n"U a; F e i F

1 i=1

Since | (Lv(a;) + Tr, 2o(b) + Tr |1 < i S k)| = n?,

— nl2,

(sv(@)+Tr, o (b‘)+I‘>k
n,vai F)n{v )

7 7 =1

where n' = nj ---n}. Let ' = fem(nj,... ,n}). Then

1 1 |
—v(a;) +Tr, Zv(b;) + T C —Tr/Tf.
(770(@) +Te, o) +Te) € ZTr /T

=1
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Since the map ;—,I‘p /Tr — T'r/¢TF induced by multiplication of ¢, is
) . k

an isomorphism, ‘<T%v(ai) +0TF, Lo(b;) +£’I‘p>__1l = n'2.  Also, since
ged(nj, mi) =1,

{(@ /n)v(as), (€ [ni)o(b) |1 < <k}
and

{(¢" [ ni)v(a:), (€' [ ni)v(by) |1 < i < k}

generate the same subgroup of I'r / £'T'r. So,

{(€ /nyv(a), (@ /nio(®) |1 < i < k)
generates a subgroup of order n'? in I'r /¢'Tr. By applying (1) we have
é (ai, bml ; F), € Dy, (F) with value group

((/mo(as), (1/n)o(®))._ +Tr.

k .
Since D™ ~ ® (a;,b7; F),,, ~ ® (a;,b;"; F),:, we have
i=1 *

k I
D™ = @ (a4, b%; F)yy € Der(F).

Because gcd(n},m}) = 1, we have

((A/n)v(b;) +Tr) = ((m;/ny)v(b:;) + Tp) =
= ((m/n,)v(bl) + FF>, SO FDm /FF =
- <(1/n'~>v<az-> T, (1/n)o(67) + Tr)._ =
= ((1/n})v(a;) + Tr, (1/n})v(b;) + Tr)i, = m(Tp/Tr) .

(In fact, the equality I'pm = mI'p+T'F is a special case of [JW2, Prop. 6.9].)
(|

Recall that we assume that (L,v) 2 (F,v) is a finite (separable) inertial
extension of Henselian fields. Given any positive integer n and a field F', we
write u, C F to say that F' contains n distinct n-th roots of unity.

Proposition 3.2. Let T € Dy, (L) and n = exp (U'r/T'L). If p, C F, then
FCT g FT.

Remark. Without the assumption u, C F, it is still true I'er C I'y. We
will prove this in Theorem 4.6 below.
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Proof. First we will show that if T = (a, 3; L), is a symbol algebra in D, (L),
then [L: FII'r + T C Ter C I'y: Since I'y, = T'p, @ = au and 8 = bw for
some a, b € F* and v-units u, w € L*. Let Ty = (a,b;L),, A = (a,b; F),,
and let S be the underlying division algebra of (a,w; L), ® (u,8; L),. Since
T = (o, f; L), € Dy (L), by Prop. 3.1 {v(a),v(8)} generates a subgroup of
order n? in 'y, /nl'y, and I'r = ((1/n)v(c), (1/n)v(B)) +T1. Asv(a) = v(a),
v(b) =v(B) and T'r = I'y, by Prop. 3.1, again, T, € Dy, (L) and A € Dy, (F)
with
I'a=((1/n)v(a), (1/n)v(b)) +T'p =TIy, =Tr.

Clearly S € D;;(L). SoT ~ Ty ®, S in Br (L) with T, € Dy,.(L), S €
D;s(L). Then by Prop. 1.7, 't = I', + I's. Note that as Ty = A Qf
L, °Ty ~ A®LFl in Br (F), so °T, is the underlying division algebra of
A®LF] where A € Dy, (F). Then by Prop. 3.1 (2), Ty € Dy,(F), and
Te, = [L: FIC4 +Tp = [L : FI'r + T as Iy = T'y. Also, by Theorem
24, ¢S € Di(F) and I'cs C I's. Since ‘T ~ °T, ®F °S in Br (F) where
¢To € Dy.(F) and ¢S € D, (F), by Prop. 1.7, 'y = I'eqy + I'cs. Hence
[LZ F]FT +I'r C FCTQ +Teg =T C FTO +I's = I'r, as desired.

k

Now, if T' € Dy,(L), then by Prop. 1.6, T = @11} where each T is a

symbol algebra in Dy, (L) of index n; with n;|n. Also, I'r = 2?:1 I'r.
k

Then T ~ @1 °T; in Br (F). Since each °T; € Di(F) by Theorem 2.4,

Ter € Y5, Te, by [JW2, Cor. 6.7]. Since I'er; C I'z; by what we have
shown above, I'.q C Zle e, C Zf=1 Iy, =T7. Od

We will shortly give Proposition 3.4, which will be very useful for this
paper. The following purely group-theoretic lemma will be used in the proof
of that proposition.

Lemma 3.3. Let A; x A, be the direct product of cyclic groups A; of order
r;, @ = 1,2. Let m; be the projection map of A; X Ay onto A; fori=1,2. Let
H be a subgroup of Ay X Ay such that m;(H) = A;, 1 =1,2. Let By = HN A,
and B, = HN A,. Ift is any positive integer and T 1is the t-torsion subgroup
of H, then T = C; N Cy, where C;, i = 1,2, are the unique subgroups of H
such that C; D B; and |C;: B;| = ged (7, t).

Proof. Since |C;: B;| divides t, t(C; / B;) = (0), so tC; C B;. Hence t(C; N
C;) CB NBy, =(0),and C;NC, CT. Take h € H with th = 0 (i.e.,
h € T). Then 0 = =;(th) = tm;(h). But rym(h) = 0 as |4;] = ;. So
ged (r;,t) - m;(h) = 0. Let D; be the subgroup of A; of order ged (r;,t). Then
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wi(h) € D; as A; is cyclic. Since B; = ker (m;|g) and m;|g is onto, the map
%+ H/B; — A; induced by 7;|y is an isomorphism. Since 7;(h + B;) =
n;(h) € D;, h+ B; € #;7(D;). But #;7Y(D;) = C;/ B;, for i = 1,2. Hence
h € C; NC,. Therefore, T C C, N C,. O

Proposition 3.4. Let (F,v) be a Henselian field. Let r,, ro and t be
positive integers, and let M;/F, 1 = 1,2, be cyclic inertial extensions of
degree r; with Gal(M;/F) = (r;). Let z,, zo € F* such that, for any
prime p dividing r1, r5 or t, v(z;) + pI'r, v(z2) + pI'r are Z,-linearly
independent in U'p /[pI'r. Suppose D is the underlying division algebra_of
(M, /F, 7'1,:1:1),1 ®F (My/F,T9,%3)r, ®F (z1,73;F);. Then Z(D) = E\E,,
where M; D E; D F, and [M E] = ged (r4,t) fori=1,2.

Proof. Let A be the divisible hull of I'r and let r, = pi'ps?---pi*, r2 =
pliple.. pf" and t = pi'p% .- - pi*, where the p; are distinct primes and e;,
fi, t; > 0 such that at least one of e;, f; and t; is larger than 0 for all ¢,
1 <14 < k. Since v(z;) + p;'r, v(z2) + p:T'F are Z,,-linearly independent in
I'r / p:T'r by assumption, in A/T'p,

1 1 .
<_e,-v($1) +Tr, —v(z2) + PF> =ppits
p; Di
and ) )
KE”(%) +Ir, Ev(iﬂz) + PF> = pi¥.
Then in A /T,
1 1
—v(z1) +Tr, —v(z3) +TF )| =117
™ ]

and ) .
|<;”($1) +p, ZU(%) + FF> =

Let T = (z,%,; F); and S; = (M;/F,7;,x;),, for i = 1,2. Then by Prop.
3.1, T € Dy,(F). Also, by [JW1, Cor.2.9], S; € D(F) with S; = M; and
Is, = <;1—'u(a:1)> + I'r for 1 = 1,2. Also, S; is inertially split over F as M; is
a splitting field of S;. Let S be the underlying division algebra of S; ®F S,.
Then D ~ S ®p T in Br (F) where S € D;,(F) and T € D;,.(F). Let hg,
hs,, hs, € Hom, (Gfr,A /Tf) as in (2.3). Since hg = hs, + hs,, im(hs,) =
s, /Tr = < v(z;) +I‘F>, i=1,2, and < v(z;) +FF> <i2v(a:2) + I‘F> =

(0) as l(ﬁ (z1) +Tr, 7ov(z2) + I‘F>l = r,79, we have ker (hg) = ker (hg, )N
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ker (hs,). So by (2.3),

Z(8S) = F(ker hs) = F(ker hg,) - F(ker hsg,)
=Z(85)2(S:) =M, - M,

Also,
FS/FF = 1m(h5) - lm(hsl) + 1m(h32) =

= <—1-v(m1) + I‘F> X <—1-'v(:1:2) + I‘F> X Zipy X Ly
T T2

Since S € D;,(F), by [JW2, Lemma 5.1], 6s: I's /Tr — Gal (Z(S)/F) is

an isomorphism. Let H = I's /T'r and 4; = I's, /T'r for ¢ = 1,2. Then

HCA, xA, Let Bp=HNA;, and B, = HN A,. Since H = 1m(h5)

im (hg, +hs,), and im (hg, )Nim (hs,) = (0), m;(H) = A; where m;: A; X Ay —

A; is the i-th projection map. Note that

(CsATr) /T = (Cs /Te) 0 (0(@1) + Tey 0(0a) +Tr ) =

={a€ls/Tr|ta=0}asTs/Tr C (Fo(z1) +FF> x (Lo(za) + rp>.

So (I's NT'y) /T'r is the t-torsion subgroup of H. Then by Lemma 3.3,
(Ts NITr) /Tr = C; NC,, where C; D B; and |C; : B;| = ged(r;,t) for
i=1,2.

We have the map hs: Gal(F,./F) - I's /Trp = H C A; x A, where
A; = im(hg,) for ¢ = 1,2. Since A; N A, = (0), for g € Gal(F,,/F),
Az(= im (hs,)) contains hs(g) = hs,(9) + hs,(g) if and only if hg,(9) =
0. So, h3'(B1) = h3'(G N A;) = ker(hs,) = Gal(F,, /M,;). Likewise,
hsl(Bz) = ker (hs,) = Gal(F,,/M;). Hence, in the isomorphism 0s =
hs':Ts /Ty — Gal (M, / F), 65(B:) = Gal (M;34; / 7F;) for i = 1,2.
Therefore 05(C;) = Gal (M, M, /E;) where M; D E; D F and [M;: E;] =
ged (ri, t) for i = 1,2. Then by Prop. 1.7, Z(D) = F(6s((TsNT'y) /TF)) =
.7:(C1 N 02) E1E2 O

Corollary 3.5. Let (F,v) be a Henselian field. Let ry,r5, and t be positive
integers and assume L, Lr,, tr, © F. Let uy, up be v-units in F, and let
T, Ty € F* such that for any prime p dividing r,, r, or t, v(z,) + pI'f,
v(z,) + pI'r are Z,-linearly independent in I'r /pI'r. Let w, (resp. wy,) be
an arbitrary primitive t-th (resp. r;-th) root of unity in F. Suppose D is
the underlying division algebra of (:z:l,ul,w,.l,F),1 ®r (T2, Uz, Wry; F)ry, ®F
(z1,Z9,ws; F);. Then Z(D) = F(_t/”,ﬂ;”)

Proof. Let s; = o(u;F*™) in F*/F*" for i = 1,2. Then s;|r;, uj’ =

wi™ for some w] € F*, so u; = wkw]/* = (wkw)) "/% for some k € Z,

Ti 1
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where w,, is the given primitive r;-th root of unity, and w,, = w:;'/ %, Let
w; = wfw!. Then u; = w;"’* and F (u:/ T") =F (w,1 / s") is a cyclic inertial
extension of F' of degree s; for each 1 = 1,2. Also, D ~ (xl, w;‘/ s‘;F) ®F
T1
(-’Bza w?/sz; F)r2®F($1,fB2; F), ~ (z1,w1; F), ®r (22, ws; F),,®p(z1,22; F),.

But (z;,w;; F), = (M;/F,7;,;), where M; =F (w;l / s‘) are cyclic inertial
over F of degree s;, and 7; are some generators of Gal (M;/F). So, by Prop.
3.4, Z (5) = E\E, where M; D E; D F, and [M; : E;] = ged (s;,t), so
E; = F(z’u’ﬁ/s‘) = F(ﬂf/”). Hence Z (ﬁ) = f(ﬁﬁ/rl,#z/rz). O

We will consider Z (W) for T € Dy, (L) in Theorem 3.9. We first intro-
duce an equivalence relation in D;(F') for a Henselian field (F,v). For any
Dy, D, € D,(F), we write D; = D, if [D,] = [D;] mod IBr (F) in Br (F).
This is an equivalence relation since I Br (F) is a subgroup of Br (F') (cf.
[JW2, Prop. 2.5]).

Remark 3.6. Let (F,v) be Henselian.

(i) If D,,D, € D,(F) and D,~ D,, then Z(D;)= Z(D,) by
[JW2, Cor. 6.8].

(ii) If L/F is inertial, Dy, Dy € D;(L) and D; = D,, then °D; = °D,
since °I € D;(F) for any I € D;(L) by Theorem 2.4 (d).

The following lemma will be used in proof of Prop. 3.8.

Lemma 3.7. Let K/F be a finite extension of Henselian fields. If o is a v-
unit in K, then Nk/p(o) is a v-unit in F, and Ng/p(a) = N—,;/—F—(a)e where
e=[K:F)/[K:F)|.

Proof. Recall that the integral closure of V in K is the intersection of all the
valuation rings of K extending Vr (cf. [Bo, Ch. VI, Sec. 1, Th. 3, p. 378]).
As F is Henselian, Vi is the unique valuation ring of K extending Vy. So
Vk is the integral closure of Vr in K. Hence « is integral over Vy. Let f be
the minimal polynomial of @ over F. Then f € Vg[z] since VF is integrally
closed.

Note that f = ¢ where ¢ € F[X] is a monic irreducible polynomial, i > 1
and ideg () = deg(f) since f € Vp[X] is a monic irreducible polynomial
and F is Henselian (cf. [Rb, Th. 3]). Since (@)’ = f(@) = f(a) = 0,
i.e., (@) = 0, ¢ is the minimal polynomial of @ over F. So NgF@) =
(—1)EFl(p(0))EFldeg () (cf. [L, Ch. VIIIL, Sec. 5, Th. 5.1]). On the other
hand, Ng,(a) = (=1)KFI(f(0))K:Fldes (£). But since f(0) = (0) and
deg (f) = ideg(p), Nir(a) = (=1)KF(p(0))1K:FI/idee (p) = Nz w(@)®
where e = [K: F]/[K : F). d
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Proposition 3.8. Let the symbol algebra T = (a1, az; L), € Dy, (L) where
n > 1 is any integer, (so p, C L) and ay,09 € L*. If p, C F, then

Z (C_T) CF (Nz-/p (f)l/d> , where d = ged (n,[L: F]).

Proof. Since I'y, = 'p, a; = a;u; for some a; € F*, u; € Uy. Note that since
(01,012; L)n € Dttr(L)’ by Prop. 31, in FL/nFL

[{(v(ay) + nlp,v(as) + nlL)| = n?

But as v(a;) = v(a), 1 = 1,2, and I'y /nT'p = g /nl'p = —I‘F/I‘F, we
have in 1T /T, |(2v(a:) + T'p, tv(az) + T'r)| = n®. So for any prime p
dividing n, in %I‘F/FF, l<%v(a1) + Fpiv(al) + FF>' = p?, or equivalently
inT'r /plE, v(a,) + pI'r, v(az) + pI'r are Z,-linearly independent.

Note that [(u;, us; L),] € I Br (L) by [JW2, Prop. 2.5], since the “symbol
algebra” (u;,us; V%), over the valuation ring Vi is an Azumaya algebra over
Vi and an order in (uj,us; L), (cf. [JW2, Ex. 2.4 (i)]). Then since T ~
(uy,u2; L) ®(ay,u2; L), ®(uy,a2; L), ®(ay,as2; L), in Br (L), we have T ~ D
where D is the underlying division algebra of (a;,us; L), ®y, (as, url; L)n (237
(a1,a9;L),. By Remark 3.6 (ii), and Prop. 1.4, and as Ny, p(a2) = a[QL:F],
‘T = °D ~ (al,NL/F(uz);F)n RF (ag,NL/F(ul‘l);F)n RF (al,a2 Fl. F) .
But (ay,a8""; F) ~ (a1, a5; F)w, where d = ged (n, [L: F)), [L: F] = de,
and n = dn’ so that ged (e,n') = 1. Say, let (a1,a$; F)p = (a1, a$, w; F), for
some primitive n'-th root w of unity. Then (a;,a$,w; F), = (a1, ag,w*; F),
for some k with ged (k,n') = 1. So (al,a[QLF F) is similar to a symbol
algebra (a;,as,w*; F), where n' = n/ged (n,[L: }4’]) Hence ‘T =~ °D ~
(a1, Nr/p(u2); F)o ®F (a2, Npjp(ui'); F)n ® (a1, a2, w*; F),y in Br (F). Then
by Remark 3.6, and Cor. 3.5,

Z(T) = (D) = F ((Neye(ua)™ /™, (Neyp(ui)™/") -

Since [L: F) = [L: F), Npr(ui') = Ngm(ui?) and Npjp(us) = Ng7(w)
by Lemma 3.7 above. So

Z(T) = F (Ngm(@) "/, Npp(ui)*) € F(Ng ()Y,
where d = n/n’' = ged(n, [L: F)). O

Theorem 3.9. Suppose T € Dy, (L) and n = exp (T'r/TL). (So p, C L.) If
o C F, then

Z(°T) C F (N (DY), d = ged (n, [L: F)),



CORESTRICTION OF VALUED DIVISION RINGS I 69

where Ny /7 15 the norm map from I to F.

k
Proof. By Prop. 1.6, T = _@IT,-, where each T is a symbol division algebra

k
in Dy, (L) of index n; with n;n. Then °T ~ ® °T; ~ Ty ®r °T} where
i=1

k— R _
T, = @IIT,-. We prove that Z(°T) = Z(?Ty) - - - Z(°Ty). By induction on k, we

need only to prove Z(°T) = Z(Ty)Z(°Ty). Since °Ty € D,(F) by Theorem
2.4, °Ty/F is defectless, and Z(<Tp) / F is Galois by [JW2, Lemma 6.1].
So, £L = Z(°Ty) N Z(°T}) is separable over F, and Z(T) and Z(°T}) are

linearly disjoint over £. Also, by Prop. 3.2, and as I'r /I’ = él(PTi/FL)’

weiave Ler, NTeq, €T NTq, =T =T'p. Hence, by MW, Cor. 3.12],
Z(°T) = Z((Ty)Z(Tx) = Z(°Ty) - - - Z(Tx—1) Z(°Ty). But by Prop. 3.8, for
1<i<k,

Z(°T) CF (Ngp(L)V/*) , d; = ged (s, [L: F)
Therefore, as n;|n,
Z(T) S F (Ngs(DV"), d=ged (n,[L: F)).
g

4. Tame division algebras.

We will show in Theorems 4.4-4.6 below that I'.p C I'p for D € D;(L),
without any restriction on roots of unity in F, and that for D € D,(L),
Z(cD) C N(Z(D)/F)'*, where k > 1 is some integer dividing exp (ker 6p)
which depends on which roots of unity lie in F'. We first give some proposi-
tions which will be used in the proofs of the theorems.

Proposition 4.1. Let n = p* with p an odd prime, k > 1, and let wy be a
primitive n-th root of unity in L. Suppose a,b € F* and T = (a,b; L), €
Dyt (L). Then

(a) if pp C F, then °T ~ (a,b*; F)pn/r in Br (F), where £ = [L: F(wy)),
and r = [F(w): F]. Hence, ‘T € Dy, (F) and Tep = [L: FII'z + T'p;

(b) if pp € F, then °T = F.

Proof. (a) For 1 < i < k, set w, = (w)?" ', a primitive pi-th root of unity. Let
F; = F(w;). Let t be maximal with w; € F' so that F = Fy and [Fi, : Fi] =p
for i > t. (Note that r = [F; : F] = [F}, : F}] = p*~%, so p* = n/r.) Then by
[M, #15, p. 144,

COrp, ., /F, ((0'7 b, Wit1; Fi+1)P‘+1) ~ ((G,, b, wi; Fi)Pi) -
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So it follows that
COI'Fy /F ((a,b,; Fi)n) ~ (a, b; Fy)pe = (a,b; F)n/r-
Hence, by Prop. 1.4,

°T ~ corp/r((a,b,; L)s) ~ corg,/r (corp/r((a,b,; L),))
~ COI'F, /F ((aa bl; Fk)n) ~ (a7 bl; Fk)n/r-

The second statement follows easily by Prop. 3.1.
(b) Let K = F(w,) and let s be maximal with w, € K so that K = F,
and [Fiy, : F;] = p for i > s. As above, it follows by [M, #15, p. 144] that

COrFy /K ((aa bawk;Fk)p") ~ (aab’ws;K)p"

If Gal(K/F) = (o), then o(w;) = w® where 4™ =1 (mod p°) for m =
[K : Fland v # 1 (mod p) since o0 moves w,. It follows easily that
Nk/r(ws) = 1 and so corg/r((a,b,ws; K)pe) ~ F by [M, #16, p. 145]. So
corp, /r((a, b,wy; Fy)n) ~ F. Hence by Prop. 1.4., as Ny /g, (b) = b, £=[L:
Fk])

‘T~ CorL/F((av b; L)n) ~ CorFk/F(CorL/Fk ((a‘a b; L)n)) ~
~ CorFk/F((a, be; Fk)n) ~ F.

O

Proposition 4.2. Let n = 2%, k > 3, and let wy be a primitive n-th root of
unity in L. Suppose a,b € F* and T = (a,b; L), € Dy,(L). Then

(@) if pa C F, then °T ~ (a,b%; F)n/r ®F (a,b5F)y ~ (a,b%; F)yyr in
Br (F), where £ = [L: F(w)],r = [F(wi): F] and e = 14+ 2 is an odd
integer. Hence °T € Dy, (F) and °T = [L: FII'r + T'r;

(b) if ps € F, then °T = (a,b; F); or = F, and °T € Dy, (F).

Proof. (a) For 1 <i < k, set w; = (w)?" ', a primitive 2:-th root of unity. Let
F, = F(w;). Let t be maximal with w; € F so that F = F; and [F, : F;] =2
for i > t. (Note that ¢t > 2 as uy C F.) Then by [M, #15 and #13, p. 144],

COTFy,/F: ((a,b, wir1; Fip1)zitr) ~ ((@, b, —wy; Fy)2i)
~ ((a‘1 b7 wi; E)Z‘) ®F ((a‘a ba _1; Fi)2) -
Since corg,/r,_, ((a, b, —1; F;);) ~ F;_; by Prop. 1.4 as Ng,r,_,(b) = b?, we
end up with corg, /r((a,b; Fi)n) ~ (a,b; F)n/r ®F (a,b; F),. Hence, by Prop.
1.4,
T ~ COI'L/F(((I, b’ 5 L)n) ~ COI'p, /F (corL/Fk((a’ b7 ) L)n))
~ corg, /r ((a,b% Fi)n) ~ (a, b Fk)n/r ® (a,b5F), .
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The second statement follows easily by Prop. 3.1.

(b) Let K = F, = F(v/~1) and let s be maximal with w, € K so
that K = F, and [F;y, : F;] = 2 for i > s. As above, it follows by
[M, #15 and #13, p. 144] that

corg, /k ((a, b, wi; Fi)ax) ~ (a,b,ws; K)9: Qk (a,b, —1; K)s,.

Note that cork/r((a,b, —1; K),) ~ F by Prop. 1.4. If Gal(K/F) = (o), then
0(ws) = w* where u? =1 (mod 2°) and u # 1 (mod 4) since o moves /—1.
It follows easily that Ng,p(ws) = 1 or —1, and so corg/r((a, b, ws; K)3.) ~ F
or (a,b,—1; F), by [M, #16 and #7, pp. 143-145]. So corg, /r((a, b, wr; Fi)a)
~ F or (a,b,—1; F),. Hence,

°T ~ corp/r((a,b;L),) ~F or (a,b;F),.
O

Lemma 4.3. Let wy be a primitive fourth root of unity in L. Let a,b,c,d €
F*, and let T = (a,b; L), and Ty = (a,b; F),. Suppose T, Ty € Dy, (L).
Then

(a) if wy € F, then °T ~ (a,b*; F), in Br (F), where £ = [L: F]. So
°T € Dy,(F), and Teg = [L: F|T'r + Tp. Also, °Ty ~ (c,d%; F) in Br (F),
50 “Ty € Dy, (F), and Teg, = [L: F|I'yy +T'p;

(b) if wy & F, then “T = F.

Proof. (a) follows easily by Prop. 1.4 and Prop. 3.1. (b) can be proved by
the exact same arguments in the proof of Prop. 4.2 (b). O

Recall that we are assuming L/F is a finite separable inertial extension
of Henselian fields.

Theorem 4.4. Let T € Dy,.(L) and exp (I't/T'L) = p°pi* - - - pr, where
Po =2, e >0, and for 1 < i < r, the p; are distinct odd primes, and
e;>0. Let T = _éOT,- be the primary decomposition of T where T; is the p;-
primary component of T. (SoI'r = Y.._o I'r, and 'y, /Ty, is the p;-primary
component of I'r/T';.) Suppose p,, C F for 1 < i <1y and p,, £ F for
ro+1<i<r. Then

(a) if4texp(I'r/TL) or pa C F, then

(L: F] (FTO +I'n, +"'+FT,O) +Tp CTler CT7,and
(b) if 4| exp (I'r/T'L) and py € F, then

[L: F] (Tr, + -+ +Tg, ) +Tp C Tep C Tr.
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Proof. As T; € Dy, (L) by Prop. 1.6, T; = @ (0tk, Br; L) m, for some oy, By €

L*, and some my; powers of p; for 1 < k < ¢; (so Lr, /T = ,fé <va(ak) +TI'y,
=1 k
et
mLkv(ﬁk) +1"L>) Since I'y, = I'p, T; ~ ( (ak,bk;L)mk) ®F S; for some

k=1

S; € D;(L ) and ay, by € F* with v(ax) = v(ay), v(be) = v(B) (1 <k < ¥).
Let T} ~ ® (ak,bx; L)m,. As T; € Dy, (L), Prop. 3.1 shows T; € Dy, (L),
and 'y = I‘T‘ Since T; ~ T! ®;, S; where T € Dy, (L), and S; € Dys(L),
by Prop. 1.7, I'y, = I'yy + T's,. Also, as L/F is inertial, °S; € D;,(F) and
I'es, € I's, by Theorem 2.4.

For 1 <4 < 1y, as p,, C F, by Prop. 4.1 °T] ~ k(% (aks 0% F) s f7s

=1

where ny = [L: F(wm,)] (Wm,, & primitive m-th root of unity) and r; =
[F(wm,): F]. Let Ay be the underlying division algebra of (ax,bg*; F)m, /r. -
As (ak,bk;F)mk/rk € Dttr(F), by PI‘Op. 317 Ak € Dttr(F) and

L, /Te =i ({ Zv(ae) + Te, “o(be) +Tr )
= (2 F) ({-vla) + T, mikvwk) +p))

£;
as ngry = [L : F). Then, by Prop. 3.1 again, A := k@lAk € Dy, (F)

and I'y/T'r = EB (Ta,/Tr) = [L: F)(T'1: /TF). So, T} = A € Dy, (F)

and Tepy /Tp = [L F\(Tr /Tp) = [L: F)(I'r, /Tr). Since °T; ~ °T; QF
¢S, I‘cT =Ter; + s, by Prop. 1.7. So,

[LZ F]FT‘ 4+Tp Cleq, = PcT'( +Teg, C FT" +Ts, =TIr,.

Forro+1<i<r,as u, ¢ F by assumption, “T} = F by Prop. 4.1. So
CT,,' = cS,;, and FcT‘. = ch', g Fs.. _C_ I‘T‘

(a) If 4 texp (I'r/T'L) or py C F, then the same argument proving of the
case when 1 < i < ry gives us [L: F|I', + I'r C I'eq; C I'g,, using Prop.
4.2 and Lemma 4.3 instead of Prop. 4.1. Thus, since I'r = > [_, 'z, and
FcT = Z::O Fcﬂ by [JW2, Cor. 115], [L F](PTO 'I':[‘T1 +--- +PT1‘0) +FF g
FcT g FT.

(b) If 4| exp (I'7/T'L) and pg € F, then by Prop. 4.2 and Lemma 4.3,

}
Ty ~ kélAk, where for 1 < k < 4y, Ax = (ax,by; F); or = F. Hence

cTé (S Dttr(F) and FcTé g PT(;. As cTo ~ cTcl, ® CSO with CS() € Dis(F),
by Prop. 1.7, Teq, = Teqy + e, € I'yy + s, = TI',. Therefore, [L:
F)(Tr, +-+-+Tq )+ Tp Clep C . a
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Theorem 4.5. If D € D,(L), then T'-p C T'p.

Proof. By Prop. 1.7, there are S € Dy (L) and T € Dy, (L) such that
D ~ S®.T in Br (L), whence I'p = I's + I'r. Then by Theorem 2.4
and Theorem 4.4, I':¢ C I's and I'.x C I'r. Also, by Theorem 2.4, ¢S and
°T are tame over F. As °D ~ S ®p °T in Br (F), by [JWZ2, Cor. 6.7],
[ep CTeg+Ter CTg+ T =Tp. O

Now, we will give relations between Z(D) and Z(°D) and between
exp (ker 0p) and exp (ker 6.p) for D € D,(L).

Theorem 4.6. Let D € D;(L) and t = exp (ker 6p). Let t = 2°°p$* - - ptr,
where ey > 0, and the p; are distinct odd primes and e; > 0 for 1 < i <r.
Suppose p,, € F for 1 < i < 1o, and p,, ,¢_ F forrg+1 <1< r. Let
5 =2%p% ...p;° gnd s' = p - -pre®. Then

(a) if 41t or ps C F, then exp (ker 0.p) = s/ged ([L: F), s) and Z(°D) C
N(Z(D) [/ F)'/™ where n = ged ([L: F),s) - (t/s), and

(b) if 4|t and py € F, then exp (ker :p) = es'/ged ([L : F),s') where
e=1o0r2, and Z(D) C N(Z(D—) / F)Y™ where n' = ged ([L: F],s')-(t/s").

Proof. By Prop. 1.7, there is a noncanonical decomposition in Br (L), D ~
S' @ T" where S’ € D;(L) and T' € Dy,(L). As ker(0p) = 't /Tp,
we have t = exp (ker 0p) = exp (' /T'L). Let T" = ®T’ be the primary

decomposition of T". Since T} € Dy, (L), by Prop. 1.6, T' is a tensor product
of tame totally ramified symbol algebras

T = jgl(w(i’zj_l), (1,2 D)(ig)»

where

3(3) 1
_— o r
j@l <t(i’j)v($(1,2] 1)) + L,

(cf. Prop. 3.1). Note that as

Iy /Ty = v(Z(s,25)) + FL>

t(4, 5)

exp(l'p» /TL) = the pi-component of exp (I'r /TL) = pf’,

each t(i,7) | pf*. (For n € Z and p a prime, if we write n = n, - nj, where n,
is a power of p and n; is prime to p, then we refer to n, as the p-component
of n.)
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Since 'y = I'r, z(i,j) = v, Y5y, 1 < J' < 25(i), for some y(; ;) € F*
and u(; j) v-units in L*. Note that

(@(i,2i-1) T(3,2)5 L)t(i,j)
~ (u(i,2j—1),$(i,2j); L)t(i,j)®(y(i»2j_1)’ U(4,25) 5 L)t(i,j)®(y(i’2j_1)’y(i’2j); L)t(i,j) ’
and
[(“(i,zj—l),x(i,zj);L)t(i,j) ® (y(i,za‘—l),U(i,zj);L)t(i,j)] € Br (L, / L).
Let S; be the underlying division algebra of

i)
8 | (2i—1y 62373 D)5 @ Wis26-1), Ui L)t(i,j)]

i()
and T; = .® (Y(i,25-1)» Yis, 2]),L)t(i’j). It follows from Prop. 3.1, that T :=

éoTi € Dy, (L). Then by replacing S’ and T' .with the underlying division

algebra of S’ ® (éoSi) and T, we have in Br (L), D ~ S ®, T where
T j(4) .

SeD,L),T= ig)oTi and T; = j§1 (Y,25-1)2 Yii,24)3 L)t(i,j) with yq ;) € F*.
And °D ~ °S ®f °T where °S € D;,(F) by Theorem 2.4.

(a) Suppose 41t or uy C F.

By Prop. 4.1 (a) for 1 < ¢ < 7y, and by Prop. 4.2 (a) and Lemma

0 o 0D ) N :
4.3 for 1 = 0, °T; ~ j® (y(z 2j-1)> Y(s, 2‘7)’F)t(i,j)/r(i,j) where £(0,5) = f; - [L:
F(wto,5)] with f; an odd integer, £(i,j) = [L: F(wy )] for 1 < i < 7o
and 7(3,7) = [F(wy,j) : F] for 0 < i < 1o (wy(i,5) is a primitive #(i, j)-
th root of unity). Let d(i,j) = ged (2( 7), ri(t—])) 2(i,7) = 28;)’ and
t'(i,5) = r(zt](;;i’()w) gcd([z%?t(i’j)) so that ged (¢'(4, 7), t'(4,7)) = 1. Then
r(4,5)d(i, ) = ged ([L: F], ¢(5,4)) as r(1,5)€(2,5) = [L: F]for 1 <i <o
and r(0,5)£(0,5) = [L' Flf;j, 2 1 f;, and t(0,5) are powers of 2. Then
FQ)

¢ ).
T' ~ ® (y(121 1),1/(,2,) ’F)t'(z])'

Forr0+1<z<'r‘,as,ung °T; = F by Prop. 4.1. So °T ~ @ochn
Br (F). Since

Ir /Ty =Tr/TF :zéo(FT‘/PF) =

r o §(3) 1 1
= i I'r,—
& D <t(z )v(y( 2i-1)) +T'r (

i ]) (y(z21))+rF>
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and Ter, /Tp C T'p, /T, it follows from Prop. 2.4 that °T = & °T; €
Dy, (F) and

ro 3(8) 1 1

= 1,2j— Tpyor— 1,2] Tr),

o @ <t,(z-,j)"(y( 2i-1)) + Tk t,(z,J)v(y( 24)) + F>
1

as ged (€', ), ¢'(4,4)) = 1.
Let T = f_e?oT,.. Then

I'r [Ty = & (T /T1)

o §(3) 1 1
= — — i 3 — I‘ P . . 1: ] F -
o & <t(2,j)v(y( 125 1)) +1r t(Z,])v(y( ,2_1)) + L>

i=0j=1
Since I';, = I'r and

t'(4,5) = t(4,4)
ged ([L: F),¢(3,5)),Ter /Tp = [L: F)(Tp /TL)

Recall that s = 2%°p% -..p® = exp(['p/T'L), as t = 29°p%* ---por =
exp (I'r/T'.). Note that (¢/s)['r C T'rv, as exp (I'r,/T'1) | (¢/s) for i > ro.
Also, for 0 < i < o, as each t(i,5) | s, each t(i,5) /t'(i,5) = ged([L: F],
t(i,7)) | ged ([L : F),s). Therefore, ged ([L : F),s)['w C Ter. Hence, as
n = ged ([L: F),s) - (t/s), we have nI'r C Ter.

Note that if A is a finite abelian group (written additively) and £ is a
positive integer, then

exp (4)
ged (4, exp (A))

(4.7) exp(£-A) =

(This follows from the fact that there is b € A with o(b) = exp (A) and the
formula o(£ - b) = o(b) / ged (¢4,0(b)).) Since I'ex /T'p = [L: F|(I'r /T'1) and
'y /T is a finite abelian group,

exp (' /T'L)
ged ([L : Fl,exp (I'r/T))

by (4.7) above. Since D ~ ¢S Qp T with S € D;;(F) and °T € Dy, (F),
by Prop. 1.7 exp (ker 6:p) = exp (Ter/T'r) = s/ ged ([L: F], s).

Let o
_ AR IS VA ()R L
K=F ({y(i,zj—l)’ Y(i,23) } )

i=0 j=1

exp (Fer/Tr) = = s/ged ([L: F),s)
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Then K/F is totally ramified and I'x = I'er. Since ¢S € D;,(F) and K/F is
totally ramified, by [JW2, Cor. 5.13] Z((°S)k) = F(0:s((T<s NT'k) /TF)),
where (°S)k is the underlying division algebra of °S ®p K. Also since °D ~
¢S ®p °T with ¢S € D;;(F) and °T € Dy, (F), by Prop. 1.7 Z(<D) =
F(0-5((Ces NTer) /Tr)). Hence Z(<D) = Z((¢S)k) as [er = k.

Now, since K/F is Galois and K N L = F with K/F totally ramified and
L/F inertial, L and K are linearly disjoint over F' and L ®f K is the field
L- K. So by [D1, p. 56, Ex. 1}, (°S)kx ~ corpk/k (SLk) in Br (K), where
Sk is the underlying division algebra of S ®; LK. Since Spx € D;s(LK)
and LK / K is inertial, by Theorem 2.4,

Z(°D) = Z((*S)x) S N(Z(Sk) / K) .- (4.8)

Recall that n = ged ([L: F],s) - (t/s). We showed just before (4.7) that
nl'r CTep =T =Tpk. So, n((TsNTr) /(PsNTrk)) = 0.
Let

Os: Fs/FL — Gal (Z(g) /-E)
be the map of (1.5). Then by [JW2, Lemma 5.1}, 65 is an isomorphism and
Z(8) / L is abelian Galois as S € D;,(L). By Prop. 1.7, 0s((sNT'y) /T'L) =
Gal (Z(S) / Z(D)). Also, since S € D,,(L) and LK/L is totally ramified, by
[JW2, Cor. 5.13] again 05((T's NT1x) /T1) = Gal(Z(S) / Z(SLx))- So
Gal (Z(S1k) / Z(D)) = Gal(Z(S) / Z(D)) / Gal(Z(S) / Z(Scx))
= (FS N FT) / (FS N FLK)-

Hence Gal (Z(Spx)/ Z(D)) is an abelian n-torsion group by the preceding
paragraph. Note that p, C Z(D) as n|t = exp (I'y/T'z), and u, € L C
Z(D). Hence by Kummer theory Z(S.x) is an n-Kummer extension of
Z(D), i.e., Z(Sx) = Z(D) ({e}{"}, _,) for some a,, € Z(D). Therefore,

(4.9) Z(Scx) € Z(D)".
Since K = F, by (4.8) and (4.9) above
Z(D) S N(zZ(D)'" |F) C N(Z(D)/F)'/".
(b) Suppose 4|t and py ¢ F.

By Prop. 4.1, for 1 <4 < 7y, as shown in proof of (a)

. i) £(i,j
L~ 8 (y(’ 23-0, Ui F>t(i,j)/r(i,j)

where £(i,7) = [L: F(wy )] and r(i,5) = [F(w,5): Fl, and for 1o +1 <
i(0) .

1 <r, °T; = F. Also, by Prop. 4.4 and Lemma 4.3, ‘T, ~ ?®1Aj where
]:
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7(0) 70
Aj = (Y0,2i-1)s Y(0,25); F)2 or = F. So we have T ~ <® A; ) Fl8 T)

Then by the exact same arguments as in proof of (a), ‘T = ( )

(&w °T) € Dy (F) and

Lor/Tr = (8, /Tr)) @ (B (Cer /7))

(’éa)(m, /I‘F)) & [L: F](Tr /Ts)

where T" = ,<r_8°>1T,~. So exp ([e7/T'r) = eexp([L: F](I'r»/T'L)) where e =1
or 2. But by (4.7),

exp (T'r /T'L)
ged ([L: F),exp (I /T'))

!

exp ([L: F](T'r+/T'L)) =

~ ged([L: F),s')

Hence exp (['-r/Tr) = es'/ged ([L: F),s')

As in (a), let K' be a totally ramified extension of F' with I'xs = I'er. Let
n' = ged ([L: F), s') - (t/s'). Since ¢(0,7) | 2°°, we have t(0, j) | n'. For i >0,
we have, just as in (a), t(4,5) | t'(s,j)n’ if i < ro and ¢(1, j) | n' if ¢ > ro. These
divisibility relations show n'T'y C 'Lk, hence Z(°D) C N(Z(D) / F)V/™, by
just the same argument as for (a). a

Theorem 4.6 gives us the best general relation one can expect between
Z(D) and Z(°D) for D € D,(L), L/F inertial, as the following example
illustrates.

Ezample 4.10. Let r, 5, and t be positive integers with ¢ | [L: F]. Let z,
z3 € F* such that for any prime p dividing r;, 7, or ¢, we have v(z;) + pI'F,
v(z,) + pI'F are Z,-linearly independent in I'r /pI'r = I', / pI',. Suppose
pe C F, where £ = fcm(ry,7,,t). Then if D is the underlying division algebra
of (z1, ur; L), ®r (22, uz; L),, ® (21, Zo; L);, where u; and u, are units in
L*, then by Prop. 1.4 and as t|[L: F], in Br (F)

D ~ (%1, Npyp(w1); F),, ®F p (1, Np/p(u2); F),,
[L:F,
®F ($1,$2 ,F)t
~ (21, Npyp(w1); F),, ®F (22, No/r(us); F),,
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So, by Cor. 3.5, Z( ) = f( /Tl, —;/rz), and Z(-C_D—) = F((NZ/F(ﬂl))l/”a
(Nz/7(1z))!/™). Hence Z(°D) C N(Z(D) /F)'*, where t = ged (t,[L: FJ)
as t|[L: F).

Appendix.

In [Ta, p. 259], Tate gave a formula describing the homological corestriction
using a set of representatives of the right cosets. From this, we will deduce
a formula stated in Section 1 describing the homological corestriction with
respect to a set of representatives of the left cosets. Presumably, this formula
is known, but we have been unable to find it in the literature, except for
m < 2. Here we use the notation Gp; for p,,(; in (1.3) above.

Let G be a group and A a left G-module. Let H be a subgroup of G of
finite index n, and let R = {e4,... ,a,} be a set of representatives of the
right cosets of H in G. For 7 € G, we write 7 € R for the representative
of Hr. Given a; € R and o € G, there are uniquely determined elements
€(a;,0) € H and @;0 € R such that

(A1) ;0 = e(a;,0)050
Then we have, for any o, 7 € G and o; € R,
(A2) g(a;,1) =1, and e(a;,07)=¢e(a;,0)e(azo,T).

By [Ta, p. 259], the homological corestriction from H™(H, A) to H™(G, A)
(m > 1) can be described as follows: It is the homomorphism cor$, of the
cohomology groups induced by the cochain transformation of C™(H, A) into
C™(G, A), for a cochain f € C™(H, A), given by

(A3) COI'H( o1, ,om) =
. Z a; ' [f(e(as, 01), (007, 02), . . . ,e(@or 0521, 0;),
- 6(@0T Omo1,0m))]-

Let p; =a;' for1 <i<m,soL=1{ps,...,pn} is a set of representatives
of the left cosets of H in G. For 7 € G, we write T € L for the representative
of 7H in L. (It will be clear from the context when 7 stands for a left coset
representative and when for a right coset representative.) Given p; € £ and
o € G, there are uniquely determined elements op; € £ and 6(o,p;) € H
such that

(A4) op; =5p;0(0,p;) -
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Then, since 57p;0(07, p;) = 07p;0(0,7p,)6(T, p;) for any o,7 € G, and p; €
L, we have

(A5) o7p; =o07p;, and 6&(oT,p;) = (o, 7p;)0(T, p;) -
Since 1 = 6(co™, p;) = 8(0,071p;)6(c71, p;), we have also
(A6)  &(0 Y, p) ' =6(0,071p;) forany o €G and p; € L.
By taking the inverses in the both sides of (A1), we have

1

oot =a@o te(a, 0)

-1

where &;o ! € £ and e(a,,0) € H. But 07 'a; "' = 0-1p;6(c7*, p;) where
o~1p; € L and 6(c7 1, p;) € H are uniquely determined elements as in (A4).
Hence we have

(A7) @o ' =o0"lp,
and
(A8) elag,0) =6(c p)t =d6(0c o)

Now by using successively (A3), (A8), (A7), (A5) and (A6), the cochain
transformation (A3) becomes;

cors, (f)(o1,.-- ,0m) =
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n

= o7 [f(e(o, ), (@D, 02),

i=1

e(@or0;.1,05), -« E(@O1 - Om1,0m))]

o' [f(6(ort, a7 t) Y 6(0y o) T,

i

=1

..(5(0’;1,01,‘0’1 "'O'j_l_l)_l,

0o @mor oma )Y
=Y pilf(6(o7t, i), 6(05 07 i),
=1

50(05 Y (01 050) ) T

8(ot (01 Ome1) " ps) )]

= Z Pi [f((s(o.lag;lpi)’6(02702_101—1pi)7
i=1

. ,(5(0']', Jj_la-j——ll T al_lpi)a SR 5(07117 O.;llo.;l,l——l e Gl—lpi)]
= Z (25 I Umpi[f(5(alaa2 o 'Umpi)76(a2aa3 o Umpi)a
=1

. ,(5(0’j,0'j+1 cet Cfmpi), cee ,(5(0'",, pl))] ’

by replacing p; with 67 6,,0;, since {01 - OmpP1,-.- ;01 OmPn} IS & per-
mutation of {p1,...,p.}.

The homological corestriction cor$ from H™(H, A) to H™(G, A) (m > 1)
is the homomorphism of cohomology groups induced by the cochain trans-
formation C™(H, A) — C™(G, A) just computed.
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