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MLUR RENORMINGS OF BANACH SPACES

PaTrICK N. DOWLING, ZHIBAO HU AND MARK A. SMITH

A specific construction is given on a Banach space X with
a l-unconditional basis which yields an equivalent norm on X
that is midpoint locally uniformly rotund. This construction,
when applied to ¢2, confirms a suspicion of K.W. Anderson
and answers a question of R.E. Megginson; when applied to
an example of M. Talagrand, it improves an example of P-K.
Lin.

Introduction.

In 1960, K.W. Anderson [A] systematically studied the geometrical notion
of midpoint local uniform rotundity in Banach spaces (definitions are given
in the next section), a notion which had been known earlier to G. Lumer
and M.M. Day. His motivation for such a study was to find the correct ro-
tundity notion in a reflexive Banach space X that would be in duality to the
smoothness notion of Fréchet differentiability of the norm in the conjugate
space X*. Although this hoped-for duality did not materialize, Anderson
did discover that the combination of strict convexity and the Kadec-Klee
property in reflexive Banach spaces is in full duality with Fréchet differen-
tiability of the conjugate norm; he also showed that this combination in a
reflexive Banach space implies midpoint local uniform rotundity. Anderson
strongly suspected that the last mentioned implication could not be reversed
(that is, that, in reflexive Banach spaces, midpoint local uniform rotundity
is not equivalent to the combination of strict convexity and the Kadec-Klee
property). However, he was unable to provide an example; in fact, he left
open the question of whether midpoint local uniform rotundity implies the
Kadec-Klee property in any Banach space.

In 1981, M.A. Smith [S] gave an example of a midpoint locally uniformly
rotund Banach space that fails to have the Kadec-Klee property, which thus
answered Anderson’s question in the negative. But the example that Smith
gave is a renorming of ¢, (and hence a nonreflexive space), thereby leaving
Anderson’s suspicion still unconfirmed.

In 1983, R.E. Megginson [M], during his investigation of the semi-Kadec-
Klee condition and nearest-point properties in Banach spaces, posed the
question: Are the reflexive midpoint locally uniformly rotund spaces exactly
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the strongly rotund Banach spaces? This question, as Megginson points out,
is equivalent to Anderson’s question of whether reflexive midpoint locally
uniformly rotund spaces have the Kadec-Klee property. Megginson gave a
third equivalent formulation of this question in terms of distance minimizing
sequences in a closed ball for a point, a formulation that led him to join
Anderson in the strong suspicion that the answer must be negative; but still
no example was known.

Backtracking chronologically, in 1980, M.A. Smith and B. Turett [S-T],
during their examination of which generalizations of uniform rotundity lift
from a Banach space X to the Lebesgue-Bochner function space L?(u,X),
posed the question: If X is strictly convex and has the Kadec-Klee property
and if 1 < p < oo, then does the space L?(u,X) have the Kadec-Klee
property? They noted that the answer is affirmative, whenever X is reflexive;
they also showed that without strict convexity the Kadec-Klee property need
not lift from X to L?(u, X) , even when X is reflexive.

In 1987, P-K. Lin [L] constructed an example of a strictly convex Banach
space X with the Kadec-Klee property such that L?(u, X) fails to have the
Kadec-Klee property, thus providing a negative answer to the question of
Smith and Turett. This space X is not midpoint locally uniformly rotund.

In this paper, a specific construction is given on a Banach space X with
a 1-unconditional basis which yields an equivalent norm on X that is mid-
point locally uniformly rotund. This construction, when applied to #2, pro-
duces the example sought after by both Anderson and Megginson and finally
confirms their suspicions that a reflexive midpoint locally uniformly rotund
Banach space need not have the Kadec-Klee property. This application to
#% also improves the example of Smith cited above by providing a reflexive
space with the specified properties. An application of the construction to an
example of M. Talagrand [T] produces a midpoint locally uniformly rotund
Banach space X with the Kadec-Klee property such that L?(u, X) fails to
have the Kadec-Klee property, thereby improving the example of Lin cited
above by upgrading the level of rotundity of both X and L?(u,X) from
strict convexity to midpoint local uniform rotundity. In addition, the space
X produced by this second application has the Radon-Nikodym property
and the Schur property; yet the space h?(D, X) of vector-valued harmonic
functions fails to have the Kadec-Klee property with respect to uniform con-
vergence on compact subsets of the unit disc D; this example complements
some recent work of the authors [D-H-S).
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Definitions and Preliminaries.

Throughout this paper X will denote a real Banach space, Bx will denote
the closed unit ball of X and Sx will denote the unit sphere of X. A sequence
{en},Z, in X is called a 1-unconditional basis for X provided {e,},>, is an
unconditional basis for X with unconditional constant 1; that is, for every
choice of scalars {z"},%, such that 3,2 z"e, converges and for every choice
of bounded scalars {)\,},%,, it follows that

n=0’

oo
n
” Z Anze,
n=0

Recall that a Banach space with an unconditional basis can be renormed to
have a 1-unconditional normalized basis; see [L-T, pp. 18-19].

For a given measure space (2,%, ) and 1 < p < 0o, the symbol L?(u, X)
will denote the usual Lebesgue-Bochner function space LP(, X, u, X); see
[D-U, p. 97]. For 1 < p < oo, the symbol h?(D, X) will denote the space
of X-valued harmonic functions defined on the open unit disc D in the
complex plane which have finite p-norm; see [D-H-S)]. A sequence {f,}, >,
in h?(D, X) is said to converge with respect to f to f in h?(D, X) provided

Tim (sup{| fa(z) = £(2) | : z € K}) =0

o0
< suphal Y amen
n n=0

for all compact subsets K of D.

A Banach space X is said to have the Kadec — Klee property (KK) pro-
vided that whenever {z,} %, is a sequence in Sx and z is in Sx withz, — =
weakly, it follows that z,, — z in norm. For 1 < p < oo and X, the space
h?(D, X) is said to have the Kadec — Klee property with respect to  —
convergence (KK(B)) provided that whenever {f.} = is a sequence in
Sre(p,x) and f is in Spr(p,x) with f, — f with respect to 3, it follows
that f, — f in norm.

The following is a well-known list of geometrical notions in a Banach
space; the list is given in the order of increasing strength.

(i) A point z in By is called an extreme point of Bx provided z is not
the midpoint of any non-trivial line segment lying in Bx. A Banach
space X is said to be strictly conver provided every z in Sx is an
extreme point of By.

(ii) A point z in By is called a strongly extreme point of Bx provided
that whenever {z,} ° is a sequence in X with || z £z, |[|— 1,
it follows that z, — 0 in norm. A Banach space X is said to be
midpoint locally uniformly rotund (MLUR) provided every z in Sx
is a strongly extreme point of By.



476 P.N. DOWLING, Z. HU & M.A. SMITH

(iii) A point z in By is called a denting point of Bx provided z is not an
element of the closed convex hull of {y € Bx : ||y —z || > €} for each
€ > 0. A Banach space X is said to have property (G) provided every
z in Sx is a denting point of By.

It should also be noted that, in any Banach space, property (G) implies

KK and, in a Banach space that contains no isomorphic copy of £, the

combination of KK and strict convexity implies property (G); see [L-L1].

The Construction.

Let X be a Banach space with a 1-unconditional normalized basis {e;} =
For n >0 and z = } 22, z’¢;, define 3, : X — R by

(e e] . o0 .
,Bn(Z:L"ej) = max {|x°|,|z"|, ' :I:Jej”}.
j=0 j=n+

=n+1

It is easy to show that each (3, is a lattice seminorm on X and that G,(z) <
| z || <26o(z) for all z in X. Now, for each n > 0, define o, : X — R by

an(ixjej) = ﬂn(g(azjﬁej)+ﬁn(§(zj)_ej).

It is straightforward to show that each o, is a seminorm on X and, for each
n > 0 and each z in X, that 8,(z) < 0,(z) < 2B8,(z) andso on(z) <2 || z |-
Define T,, ,,, : X — X by

oo [oe]
Tom (E xjej) =z’ + Z zie; form >0
j=0 j=m

and - -
Tom (Z wje]-) =z + z"e, + Z zie; form>n>0.
=0 j=m

It is clear that each Ty, ,, is linear and that | T, (z) || < || z || for each z in

X, since {e;} X, is a 1-unconditional basis. Now, for n > 1, choose a,, > 0

and, for m > n > 0, choose a, ,, > 0 such that

Yool = ) o, =1

n>1 m>n>0

Define T : X — £2 by

oo
T(z a:’ej) = (2°, ayz, apx?, ...).
ot
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Then T is linear and || T'(z) || £ 2| z || for all z in X. Finally, define the
following norm on X: for z in X, let

*) Nzl = (bo(@)* + 3 02Ba()?

n>1
z
+ Y @ non(Tam(@)? + 1 T() )
m>n>0
Then
1
S Izl < fl)
<l 2 flm
1
2
<(lzlf + La2llzlt+ ¥ a2, @lzl?+elzl)?)
n>1 m>n>0
=V10| z |
and hence || - || is an equivalent norm on X.

Theorem. Let X be a Banach space with a 1-unconditional basis {e,} 2,
and let || - ||» be the equivalent norm on X defined by (x). Then the Banach
space (X, || - ||m) s MLUR and lim,,,, || €0 + €, || = || €0 I = 2.

Proof. 1t is a straightforward computation to see that lim, . || €o + €5 ||m
= || e |lM = 2 and so it remains to show only that (X,| - |lm) is MLUR.
Toward this end, suppose z is in X with || z |y = 1 and {z4},>, is a

sequence in X with || z £ z; ||y — 1. Then the definition of || - ||; yields
the following three equations:

(1) kli’nolo Bu(z £ z1) = B(z) for alln >0,

(2) kliglo On(Tom(z £ 21)) = 0p0(Thm(z)) forallm>n>0

and

3) Jim || Tz £ ) o = || () [l

these equations follow by first observing that
2(lz + zllyy + llz — zell3g) — N2zl — 0,

by then rewriting this using (*) and finally by grouping “like” terms together
and applying the Lemma in [S] (see [S, p. 278] for details). Since (¢£2,]] - ||2)
is MLUR, equation (3) yields that lim;_,, || T(z:) ||z = 0 and hence

oo
(4) lim 2 =0 for all j > 0, where z;, = fo;e,-.

k—o00



478 P.N. DOWLING, Z. HU & M.A. SMITH

Since z is not zero, there exists ny in NU {0} such that z™ # 0 and z7 =0
for each j < mo. Without loss of generality, assume z™ > 0. Invoking (4), it
can also be assumed that :1:{c =0for 0 < j <np and for all ¥ in N. To show
(X, ] - |lm) is MLUR, it must be shown that z; — 0 in norm. Suppose this
is not the case. Then, by passing to a subsequence if necessary, there exists
€ > 0 such that || z || > € for all k in N. There exists m > ng such that
| Y52, z7e; || < ¢ and hence

l ano(Tno,m(x)) -z | =| Uno(Tno,m(x)) — Ong (Tno,m(mnoeno)) |
< Op, (Tno,m(a: —zT™en,))

o]

D

j=m

w .

< 2| Y ol
j=m
< &
5

Now, limg_,0 Oy (Tne m(Z £ k) = 0Ono(Tnem(z)), by (2), and so there
exists ko in N such that, for all £ > ko,

€
‘Uno(Tno,m(fB:tmk)) - Uno(Tno,m(m)) | < e

By (4), there exists k; > ko such that || Z;.":Bl zie; || < se for all k > k.
Now, for all k£ > k;,

€
| ano(Tno.m(zizk)) - Uno(Tno,m(xnoenoixk)) | < Uno(Tno,m(m_-'Enoeno)) < g

and hence

nol

| Ono(Tno m(T™€ny + 1)) — =
<| Uno(Tno,m(xnoeno + z)) — ano(Tno_m(x + z3)) |
+ lano(Tno,m(x + 1)) — ano(Tno,m(x)) |
+ | Ong (Tno,m(z)) — 2™ |
3e
e
Similarly, it can be shown that, for all £ > k,,

3e
|aﬂo(Tno,m(aneno _mk)) - xno I < ? .
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Note that, for all & > k;,

Tno (Lo, m(Z™€no + Tk)) = Py (znoeno + i(zi)"’ej) + Bno (i(‘”i)—ej)
j=m j=m
> 2™ + By (Yo(ed) )
j=m

and thus £, (E;’im (zi)"ej) < 3e¢. Similarly, it follows that

(]

bua (2 (~5)es) < 25

=m

S,

that is, B, (T3 (si)*e;) < Ze for all k > ky. Finally, for all k > ki, it
now follows that

leul < S ete] + | Z e
=0 j=m
< [Sete] + [Eere] + [Sebel
j=0 j=m j=m
s] 3e 3e ’ ]
< -8- + E + ?
Tt
=3
This contradicts the fact that | z; || > € for all ¥ in N. This shows that
(X, |l - llm) is MLUR and the proof is complete. O

Corollary. Let X be a Banach space with a weakly null 1-unconditional
normalized basis {e,} =, and let || - || be the equivalent norm on X defined
by (*). Then (X,|| - ||m) is MLUR but fails to have KK.

Proof. The Banach space (X,]| - |lm) is MLUR by the Theorem. Since
{en}, 2, is weakly null, %(eo + e,) — 3eo weakly and, by the Theorem,
lim, o || (€0 + €xn) lm = || 3€0 llm = 1. Therefore (X, || - ||m) fails to have

a

KK and the proof is complete.

1. Applications.

In this final section, the two examples advertised in the introduction will be
produced by applying the results from the previous section.
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Example 1. A direct application of the Corollary shows that ¢, and ¢°, for
1 < p < 00, admit equivalent renormings so as to be MLUR and fail to have
KK. In particular, there exists a reflexive Banach space that is MLUR but
fails to have KK; this is the first known example of a reflexive Banach space
in which all closed balls, but not all nonempty closed convex sets, are approx-
imatively compact Chebyshev sets; see [M, Theorem 2.7 and Theorem B.8].

The next goal is to produce an example of a Banach space X which has
KK and is MLUR but such that LP(u, X) fails to have KK for each p with
1 < p < 0o and an appropriate measure space (2, X, u). Following the lead
of Lin [L], the example constructed here is also a renorming of Talagrand
space [T].

To begin, recall the following facts about Talagrand space. Let A =
Un>1{0,1}" be the usual dyadic tree. If ¢ = {¢;},", is in {0,1}", write
| ¢ |= n and say that ¢ is a node of order n. If ¢ and 1 are two nodes,
write ¥ > ¢ whenever 9 extends ¢. Then Talagrand space, E, is defined to
be the completion of the space of all finitely non-zero functions e : A — R
under the norm

el =sup( 3 supe)?)”.

1 >
"2t fpl=n ¥2¢

Enumerate A as {¢,} ©, and let e;,, : A — R be the function that is

n=1
1 at 9, and O elsewhere. Then {ey, } = is a l-unconditional basis for E.
Talagrand [T] showed that E* is separable and so {ey,} %, is a shrinking
basis for E. Hence the sequence of coefficient functionals {e}, } = is a

l-unconditional basis for E*.
Example 2. Let X = R@ E* with norm, || - ||, given by

I (rye”) || = max{|r|, || e |I}

for (r,e*) in R @ E*. Let ¢, = (1,0) and e, = (0,e}, ) for n > 1. Since
E* embeds isometrically into X, it is easy to check that {e,} 2, is a 1-
unconditional basis for X and || e, ||= 1 for all n > 0. Let || - ||m be the
MLUR norm on X induced from {e,} *, via the Theorem. So

lim |[eo+enlm=|lelu=2.
n—oo

Let Q = II,,>:{0,1}", let ¥ be the Borel o-algebra of subsets of {2 and let
u denote the normalized Haar measure on 2. For each n in N, let p, be
the canonical projection from € onto {0,1}" and define g, : & — X by
gn(w) = 5(0,€; () for all w in Q. As noted in [L], the sequence {g,} >,

converges weakly to zero in LP(u, X) for each 1 < p < 0o. Defineh : @ - X
by h(w) = %€, for all w in Q. Then h + g, — h weakly in L?(u, X) for each
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1 < p < 0. Note that, for each w in €,
Jim || A(w) +gn(®) llv = [| hw) e = 1

and || h(w) + go(w) |lm £ V10 || A(w) + ga(w) || = V10 for each n in N.
Therefore, by the Bounded Convergence Theorem,

Hm || A+ gn llze @i = I 2 leem = 1

for each 1 < p < oo. Thus LP(u, (X, || - |lm)) fails to have KK even though
(X, 1| - llm) is MLUR and has KK; the assertion that (X, || - ||i) has KK
follows from the fact that E* (and hence (X, || - ||u)) has the Schur prop-
erty (see [T]). This completes Example 2 with respect to improving the Lin
example. But, furthermore, note X has the Radon-Nikodym property be-
cause it is a separable dual space. Now, let p with 1 < p < oo be fixed.
Since L?(u, (X, | - |lm)) fails to have KK, it also fails to have property (G).
Hence (X, || - ||m) fails to have property (G); see [L-L2]. Thus (see [D-H-S])
the space h?(D, (X, || - |lm)) fails to have KK(3). All the listed geometrical
properties of this example are summarized in the following concluding result.

Proposition. Let X be the Banach space in Ezample 2 equipped with the
norm || - ||p and let (Q, X, u) be the measure space given there. Then X has
the Radon-Nikodym property, has the Schur property (hence has KK) and is
MLUR; but L?(u, X) fails to have KK and h?(D, X) fails to have KK(3) for
each 1 < p < o0.
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