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INDEFINITE KAC-MOODY ALGEBRAS OF SPECIAL
LINEAR TYPE

GEORGIA BENKART, SEOK-JIN KANG, KAILASH C. MISRA

From the special linear Lie algebra An = st(n + 1,Q we
construct certain indefinite Kac-Moody Lie algebras IAn(a, b)
and then use the representation theory of An to determine
explicit closed form root multiplicity formulas for the roots a
of /An(α, b) whose degree satisfies \deg(a)\ < 2a + 1. These ex-
pressions involve the well-known Littlewood-Richardson coef-
ficients and Kostka numbers. Using the Euler-Poincare Prin-
ciple and Kostant's formula, we derive two expressions, one
of which is recursive and the other closed form, for the mul-
tiplicity of an arbitrary root a of IAn(a, b) as a polynomial in
Kostka numbers.

Introduction.

For Kac-Moody algebras the root multiplicities of only the finite and affine
algebras are explicitly known. In this paper, the third of a series of articles on
the structure of non-finite, non-affine Kac-Moody algebras, we study certain
indefinite Kac-Moody algebras coming from the special linear Lie algebra
An — s£(n + 1, C) of traceless (n-f-1) x (n + 1) complex matrices. The main
theme of these articles is that combinatorial results from the representation
theory of classical simple Lie algebras can be applied to the problem of
determining root multiplicities for Kac-Moody algebras. The starting point
is a well-known construction of graded Lie algebras of Kac-Moody type whose
ingredients are a Lie algebra G over C, two G-modules V and V, and a G-
module homomorphism φ : V ® V —> G. The graded Lie algebra C =
C(G,V,V,φ) = ΣfcGzA built from these components contains no graded
ideals which intersect the local part V Θ G Θ V trivially. The algebra G
is specialized to be gί{n + 1,C) = s£(n + 1,C) Θ CJ. The G-module V
is assumed to be V(bAχ) = V(6ei), the irreducible G-module with highest
weight b times the first fundamental weight Λχ? or equivalently b times €i,
where ex maps a matrix to its (1,1) entry. The homomorphism φ is the map
given by (2.1) below. A certain parameter "α" enters into the definition of φ.
We argue that the algebra £(G, V, V*,φ) is isomorphic to the Kac-Moody
algebra having generalized Cartan matrix
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c =

ί 2-6 0 0\

C(An)
—a

0

0

where C(An) is the Cartan matrix of Lie algebra An. For almost all positive

integral values of a and 6, the matrix C is of indefinite type, which we denote
by IAn(a,b).

Our investigations in [BKM2] focused on the 6 = 1 case where we deter-
mined closed form formulas for the multiplicities of roots a = ka0 + k^i +

h knan whose degree k satisfies —2a < k < 2a. We also considered in that
paper the analogous indefinite algebras IBn(a, 1), ICn(a, 1), and JjDn(α, 1)
constructed from an algebra G which is a central extension of a simple Lie
algebra of type Bn, Cn or Dn respectively.

Section 1 of this present work reviews the basic construction and back-
ground results. In the next section the construction is specialized and
is shown to give the indefinite algebras IAn(a, 6). In the third section
we develop closed form multiplicity formulas for the roots of IAn{a, b) up
to degree 2a + 1, that is, for all roots in the graded components Ck for
k = 0, ± 1 , . . . , ±(2α + 1). The multiplicity formulas involve the well-known
Littlewood-Richardson coefficients and Kostka numbers and are similar in
spirit to the ones found in [BKM2] for the case 6 = 1 and in [BKM1] for
the case n = 1. However, there are added complications which must be dealt
with here in going from the 6 = 1 case to the general case.

In the final section we use the Euler-Poincare Principle and Kostant's
formula to derive two expressions, one of which is recursive and the other
closed form, for the root multiplicities of the Kac-Moody algebras IAn(a, 6).
The closed form formula we obtain is related to the Berman-Moody formula
[BM] in that ours corresponds to a maximal proper subset of the simple
roots, while the Berman-Moody formula corresponds to the empty subset.
This connection is explained further in [Kan3]. These formulas enable us
to write the multiplicity of an arbitrary root of IAn(a, 6) as a polynomial in
Kostka numbers.

Many interesting Kac-Moody algebras are indefinite Kac-Moody algebras
of special linear type. For example, the rank two Kac-Moody algebras are
just the algebras IAλ(a,6). The hyperbolic algebra HA^ studied by Fein-
gold and Frenkel [FF] and Kang [Kanl] [Kan2] is IA2(2,2) in our notation,
and the hyperbolic algebra HA^\ whose root multiplicities have been in-
vestigated in [Kan2], is /A2(4,1). Similarly, the hyperbolic algebra ^
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is IA3(3,1) and HD^ is IA3(1,3).

1. The Construction.

We begin this section by recalling some necessary background results which
can be found in [BKM1], The first is the construction whose basic in-
gredients are a Lie algebra G, two G-modules V and V, and a G-module
homomorphism φ : V1 <g> V —> G. Set TQ = G, T-λ = V, and Tλ = V.
Let T~ = Σk>ϊ F-k (resp. T+ = Y^k>xJ

rk) be the free Lie algebra gen-
erated by T-χ (resp. T\). Then T-k (resp. Tk) for k > 1 is the space
of all products of k vectors from T^\ (resp. T\). In particular, the set of
elements [^i^? • • ? [#fc-i5#fc] •••]]? where the vectors Xι are chosen from a
basis for T-χ (resp. ^Ί) , spans T-k (resp. Tk). There is a Lie bracket for
JΓ = T~ θ TQ θ T+ which extends the products in T~, T+, and T^ Thus,
for g G T^ v E J7-!, and tί; G ^ Ί ,

(1.1) [9, a;] = g x = -[x,g] ifx = v,w,

and

(1.2) [ιy, v] = -0(iί; ® v) = —[υ, ti;].

Under this bracket, J 7 = Σ A E Z ^ becomes a graded Lie algebra which is
generated by its local part JF-I+FQ + TI.

For k > 1 define the subspaces

(1.3)

J±k = {x€ F±k I [yi, [ [i/*-i,s]] • •] = 0 for all yu . . . ,j/fc-i

and set

(1.4) J-

Then by ([BKM1], Proposition 1.7 or [FF], Proposition 4.2) J~ and J+
are ideals of ̂ , and the ideal J = J~ 0 J + is the largest graded ideal of JF
trivially intersecting T-χ 4-^0 + T\. Our main object of study is the graded

Lie algebra

(1.5) £ = £(G, 7, Γ, ψ) = r / J- θ f0 θ f V J +

= © £-2 θ £_i © Co 0 £1 © £2 θ

where d = Ti for i = ±1,0 and d = Fi/Ju for i φ ±1,0. The algebra
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C — θ Σkez £* ^ a s n o graded ideals which trivially intersect the local part
V®G@V.

Let £± = JF*/ J± = Σ*>i £±ifc, and for a fixed choice of G, V, V, φ, let
m > 2 denote the smallest integer such that J_m φ (0). Then J m φ (0) must
hold. We will consider cases where J~ = Σfc>m J-fc (resp. J + = Σk>m Λ)
is the graded ideal oϊ T~ (resp. ^*+) generated by J__m (resp. J m ) .

Suppose now that G = gί(n + 1,C) = s^(n + 1,C) θ C/ and let 7ΐ be
the Cartan subalgebra of diagonal matrices in G. Assume V is a faithful
irreducible highest weight G-module relative to %. Then the dual space
V* of V is a lowest weight module for G. The free Lie algebra T+ (resp.
T~) generated by T\ = V* (resp. T-\ = V) is a module for TQ — G with
finite dimensional weight spaces relative to %, and the multiplicities of those
weight spaces can be computed using the following generalization of the Witt
formula.

Proposition 1.6 ([Kanl], [Kan2]). LetΩ = {ωι,ω2,...} be an enumeration
of the weights of T-ι = V relative to Ή. Then for any weight j of T~',

(1.7)

where μ denotes the classical Mδbius function; ω \ 7 if 7 = /so; /or some

positive integer n, in which case ^ = K and - = ^ αnrf

(1.8) 2?( ω )= ^

where T(ω) = {(t) = ( t l 5 ί 2 , . . . ) | t{ e Z^° and

The algebra £ = £(G, V, V*^φ) has finite dimensional root spaces relative
to Ή, and to compute the multiplicities of those roots we need additional
information about the spaces J±k in the ideal J. This information comes
from considering the homology module H3(C~) which inherits a Z-grading
from that of Cr = T~ /J". Suppose that d is the smallest integer with
H3(£~)_d φ (0). As Kang shows in ([Kanl], [Kan2]), the value of d deter-
mines the structure of certain of the homogeneous components of J:

Proposition 1.9. Let T~~ = Σk>ι F-k be the free Lie algebra generated
by the G-module T-\ — V. Let J~ — Σk>m J-k be the ideal of T~ generated
by J_m C T-m for some m > 2. For C~ = T~ j J~ let d be the smallest
integer such that H3(C~)-d Φ (0). Then

(1) for m < j < min(2m,cf),
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(j—τn) times

(2) Ifd<2m, then

In the next section we consider the algebra £(G,V,V*,ψ) under more
stringent restrictions on the module V.

2. Indefinite Kac-Moody Algebras of Type IAn(a,b).

The module V = V(bAx) = V{bex) for G = gί(n + 1,C) can be explicitly
realized as the C-vector space of homogeneous polynomials of total degree b
in the indeterminates z 1 ? . . . , zn+χ. We adopt the shorthand z- for the mono-
mial zr±zr2 z£+ι corresponding to the (n + l)-tuple r = (r1? r 2 , . . . , r n + 1 ) ,
and let ξj be the (n + l)-tuple with 1 in the ith position and 0 elsewhere.
Then the action of the matrix unit Eiyj in gί{n + 1, C) on z- is afforded by

where it is understood that ^+^<~^ is 0 if any component of the (n+l)-tuple
L+ξi-ξj = (r i , . . . , r< + 1 , . . . , Tj - 1 , . . . , r n + 1 ) is negative. Thus, Eiiά acts as
Zid/dzr Assume V* is the dual space of V, and let {d- | s = (si,..., sn + 1)
and Σ"=ι Si = 6} be the dual basis to the basis {zL} so that d-(zL) = δs,Γ

We define

(2.1) ψ{d°- <8> ^) = Ύ Σ nS^-ί^i + (« - τ

where I is the identity matrix in G = gl{n + 1,C). Then ^ is a G-module
homomorphism, which can be seen by direct computation or by using ([FF],
Proposition 4.1) coupled with the fact that the basis of matrix units E^
forms an orthonormal basis for G relative to the trace form (#, <?') = tr(gg').

Suppose α0 = —bβi and α* = βi — e ί + 1 for i = 1,..., n, where €i : Ή —> C
is the projection of a matrix in the Cartan subalgebra Ή onto its (i, i) entry.
Then the monomial z^1 = z\ is a maximal vector for V of highest weight
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bAi — bβi and d^1 is a minimal vector of lowest weight —6Λ1 = — 6ei, and
the weights of V are given by

(2.2) {bλx - kxax knan \ b > kx > k2 > > kn > 0} =

+ m2e2 H h m n + i e n + 1 | m{ > 0 and rrti H h m n + i = 6}.

Let e» = JS?t,*+ij /i = -^i+i,ij ^ = ?̂t,» ~ Ei+i,i+ij where i = 1 , . . . , n , denote

the canonical generators for [G, G] = si(n + 1, C), and let

e0 = 56 ξ l and /0 = z6 ξ l = z\.
Set

ho = [e0, /o] = - ( α ~ 5

Then it is easy to verify using the maximality of /0 =
of e0 = d^1 that the relations

and the minimality

(2.3)

=aj(hi)ej

hold in £(G, V, V*,^). If C = (Cij)?j=0 is the matrix whose (ΐ,j) entry is
given by Cij = ^(/i^), then as in [BKM1] we have,

Theorem 2.4. TΛe Lie α/̂ e6rα ^ ( G , ^ ^ * , ^ ) with G = gί{n + 1,C),
V = V(bAχ) and φ as in (2.1) is isomorphic to the Kac-Moody algebra
IAn(a,b) with Cartan matrix

(2.5)
SJ

' 2 - 6 ••• 0 0\

—a

0 C(An)

where C(An) is the Cartan matrix of An = sί(n + 1,C).
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3. Root Multiplicities in IAn(a,b).

An integral combination θ = #i€i + + θn+ien+i of the e '̂s is a dominant

weight of G = ^ ( n + 1,C) relative to U if and only ii {θ1 > θ2 > --- >

θn+i > 0} determines a partition of | θ \d= Σ?=l &i- Thus, if

a = ~{ja0 + fcitt! + + /enαn)

= (j6 - Λi)ei + (kλ - &2)e2 + + (fcn_i - kn)en + fenen+1

is a root of C = £(G, V, V*, ̂ ) = IAn(a, b) of degree —j, then α is a dominant
weight if and only if {jb — kλ > kx — k2 > > fcn-i — kn > kn > 0} forms
a partition of jb into at most n + 1 nonzero parts. We identify a with
the partition {θι > θ2 > > θn > θn+1 > 0} having θι = j6 — fci, and
θi — ki-ι — ki for i > 2 and write α h jb to signify that α determines a
partition of jb. It suffices to compute the multiplicities of roots that are
dominant weights, for the others are conjugate to those under action of the
Weyl group of C It also suffices to determine the multiplicity mult(α) of a
for a a root of C~ as mult(—a) = mult(α). Now by Section 1,

(3.1) mult(α) = dim Ca

= dim C~

= dim T~ — dim J~.

Thus, our strategy for computing mult(α) is to invoke (1.7) for dim T~
and to use Proposition 1.9 for dim J~. The latter involves determining the
homology H3(£~). Throughout this calculation we use V(X) to denote the
irreducible G-module with highest weight λ. In particular, £ _ x = V =
V(—a0) = V(beχ). Our first result in this direction is

Proposition 3.2. For 1 < j < a, £-j = T-j, so mult(α) = dim(J*_j)α for
all roots of degree —j.

Proof. By the Gabber-Kac Theorem [GK], the ideal J~ of T~ is generated
by the element (αd/o) 1 + α /i, which has degree —(α + 1) and weight —(α +
l ) α 0 — Oίi — (ab + b — l)eχ + e2. Hence, J~ is generated by the space

(3.3) J _ ( α + 1 ) S V(-(a + l ) α 0 - ax) = V((ab + b - l ) C l + e2).

The assertions then follow. D

Let Δ C W* be the set of roots of C and let α 0 = — 6ei,α< = £% — ei+ι
for i = 1,... ,n, be the simple roots in Δ. Use Δ + (resp. Δ~) to denote
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the positive (resp. negative) roots of C relative to α0, c*i,..., α n . The Weyl
group W of C is generated by the set {s* | i = 0,1,. . . , n}, where Si is the
reflection ^(7) = 7 —7(/ιi)αi determined by the simple root α .̂ For w eW,
l(w) is the length of w relative to these generators. Let ΔQ" (resp. Δ "̂)
denote the set of positive (resp. negative) roots in C of degree 0, so that
every root in Δ^ is a combination of {oti \ i = 1,..., n}. Set Δ^o = Δ ± \ Δ j ,
and let

W = {weW\ w~ιA+ C Δ+},

as in ([GL], Proposition 8.1). This leads to the following useful lemma:

Lemma 3.4([Kanl], Lemma 4.3). Suppose w = W'SJ and l(w) = l(w') + 1.
Then w eW if and only if w' E W and w'(aά) e Δ j 0 .

By Kostant's formula (see Garland and Lepowsky ([GL], Theorem 8.6)
or Liu [Li]), we have for the homology module Hk(C~~),

(3.5)

where p eH* satisfies ρ(hi) = 1 for i = 0,1,. . . , n. Combining these results
gives

P r o p o s i t i o n 3 . 6 . Suppose that a>2 and b > 1. Then

->>_ ίvχ-α(δ+l)α o -(& + l)αi) for n = 1
) ~ I V(-a(b + l)α0 - (6 + l)αi) Θ V(-(2a + l)α0 - 2αi - α2) for n > 2.

Proo/. By (3.5), H3(C~) = ©£%ew V(wp — p). Using Lemma 3.4 it easy
Z(u,)=3

to verify for n = 1, that sosiso is the only element of length 3 in W and for
n > 2, the only elements of length 3 in W are

Hence, the result follows since

SQSISQP - p = -α(6 + l ) α 0 - (6 + l)αi

and
"" P = —(2α + l ) α 0 — 2αχ — α 2 .

D
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Observe from Proposition 3.6 that when 6 = 1 , the smallest d with

H3(C~)-d Φ (0) is 2α, while when 6 > 2, the smallest value is 2a + 1.

W e a s s u m e henceforth t h a t 6 > 2, as the case 6 = 1 can be found in

[ B K M 2 ] or can be gotten by modifying the argument below. Now from

Propositions 1.9 and 3.6 we have

Corollary 3.7. For a + 1 < j < 2a,

(3.8) J_, £* y®"'®V^ ®V(v)

j — a — 1 t imes

and

(3.9) J_(2α+1) £S (y®-- ®V®V(uή/v(φ),
a times

where

v = (μb + b — l)eχ + e2 h 6(α + 1)

^ = (2α6 + 6 - 2)eχ + e2 + e3 h 6(2α + 1).

Prom Corollary 3.7 we see that determining the structure of J-j for j =
α + 2,..., 2a +1 involves knowing how to decompose the tensor product V®m

of m — j — a — 1 copies of the representation V into irreducible G-summands
V(λ) and then how to write V(λ) ® V(y) as a sum of irreducible G-modules
for λ, v dominant weights. The first step in this analysis is the following

Proposition 3.10. Let V be thegi(n+l,C)-module F(6AX) = F(6ei). Then

λhmfe
l, m

where {bm} denotes the partition ofmb having m parts equal to 6? and Kx^my
is the Kostka number.

Proof. Prom the Littlewood-Richardson Rule (see for example, the discussion
in [M], [BKM2], or [BBL], Chap. 7) we can derive the multiplicity of
the irreducible summand V(X) in ®mV as follows: Let Xλ h 6 denote the
partition of 6 having just one part of size 6. Associate to λi its frame, which
has just one row with 6 boxes, and fill in those boxes with "IV. Append 6
boxes to the frame of Xλ in such a way that no two lie in the same column
and the result is the frame of some partition λ2 h 26. Fill in the adjoined
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boxes with "2's". Proceed in this fashion to arrive at a partition λ = λm

of mb whose frame has been filled with b "i's" for i = 1,... , m in such a
way that the numbers weakly increase across the rows and strictly increase
down the columns. The result is a "semistandard tableau" of shape λ where
λ h mb. The tableau's content is the partition {6m}, as it contains b "i's"
for ΐ = 1,..., m. The number of nonzero parts £(X) of λ, which is at most m
by the construction, must not exceed n + 1. By the Littlewood-Richardson
Rule, the multiplicity of V(λ) in ®mV is the number of such semistandard
tableaux, which is the Kostka number ifλ?{6m}. D

T h e o r e m 3.11. Let j be an integer such that a + l<j<2a + l. Assume

α = -(jao+Y^=ikiai) = {Jb-k1)
is dominant so that a h jb. Then

(3.12) dimJ- =dim(J_ i)

Σ Σ
πhjb \ λh(j-α-l)6

£(π)<n+l,j-a+l £(\)<n+l, j-a-1

where

v — [μb + b — V)tχ + e2 = {ab + b — 1,1} h α& + fe

0 - (2α£> + 6 - 2)eχ + 62 + e3 - {2α6 + b - 2,12} h 2ab + b.

Proof. Corollary 3.7 gives

J_j ^ V®3~a~l ® V(v)

for a + 1 < j < 2a and

where v = {abΛ-b-l)e1Λ-e2 h ab+b and 0 = (2α6+6-2)€i+e2 + c3

Therefore by Proposition 3.10, we have

Σ
x)<',

for a + 1 < j < 2α, and

X\-(j-a-l)b

£(λ)<n+l, j-a-1
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J_(2o+1) *( £ Kx>mV(\) ® V(u)

, a

Now if λ h ji — a — 1, then since z/ has two nonzero parts, we have by the
Littlewood-Richardson Rule,

πhjb

n+l, j-α+1

where cj^ is the Littlewood-Richardson coefficient (see [M] ). Since the
multiplicity of α in V(π) is the Kostka number KπiCn the assertions in (3.12)
follow. ' D

Remark. For λ h ra, the Kostka number i£\,{i™> is just the number of
standard tableaux (strictly increasing along each row and column) of shape
λ with entries in {1,..., m}. That number equals m\/h(λ) where h(X) is the
hook length of the partition λ. Thus, (3.12) in the case that b = 1 is just
(4.11) of [BKM2].

Now we need to compute the multiplicity dimT~ of a in the free part.
Recall that the weights of V are

Wt = {rriι€ι H + m n + 1 e n + i | mi > 0 and mi H + ran+i = 6},

and each weight has multiplicity one. As a consequence of Proposition 1.6

we have:

Proposition 3.13. Assume a = — (ja0 + Σ£=i kioii) = (jb — kλ)eι + (&i —

&2)e2 + * * * + (&n-i — kn)en + knen+ι is dominant so that a h jb. Let

Wt = {miβi H h m n + 1 e n + i | rrii > 0 and mx Λ h m n + i = b}.

denote the set of weights of V(beι), and let Wt — {ωλ,ω2,...} be an enu-

meration of those weights. Then

(3.14)

where μ denotes the classical Mόbius function; ω \ a if a — nω for some
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positive integer K, in which case - — K and - = - and

= Σ
(t)eT(ω)

where T(ω) = {(ί) = (*x,ί2,...) \U G Z^° and Σ i ^ i = "}-

We close this section by applying the multiplicity formulas derived in this
section to calculate root multiplicities for the algebras IAn(2,2) with n > 3.
In particular, for /^43(2,2) we compute the multiplicities of the dominant
roots a = — (ja0 + &icxi + k2a2 + k3a3) = έ^ei + θ2e2 + #363 + 04€4 where
j =2,3,4,5 = 2a + 1. We explicitly exhibit the calculations for one choice
of α for each value j = 3,4,5 and then display the remainder in the tables
below. It follows from ([BKM2], Prop. 4.12) that the multiplicity of such
roots a is the same for all algebras /An(2,2) with n > 3.

To avoid cumbersome notation we adopt the shorthand for the dominant
root which illustrates its parts as a partition. Thus, we write {4,12} for the
root a = — (3α0 + 2ax + a2) = 4eχ + e2 + e3. For the algebra JA3(2,2) we
have V = V(2e1) = V({2}) and a0 = -2eu and the weights of V are

Wt = {2eue1 H-e2,2e2,ei + e3,e2 + e3,2e3,ei +e 4 ,e 2 + e4,63 + e4,2e4}.

Recall by (3.3) that J~ is generated by J_3 ^ V{y) = V{heλ + e2) =
F({5,1}). Then by (3.8) and (3.9) and the Littlewood-Richardson rule (see
[BKM2] or [BBL], Chap. 7),

J_4 ^V ® V(u) = V{{2}) ® F({5,1})

= V({7,1}) Θ V({6,2}) Θ y({6,12}) Θ V({5,3}) Θ ̂ ({5,2,1}),

7_5^ (y®V<8>V(v)\/v(φ)

,1})) /v({8,12})

S F({9,1}) Θ 2F({8,2}) Θ F({8,12})

Θ 3F({7,3}) Θ 4F({7,2,1}) Θ V({7,13})

θ 2V({6,22}) e 2F({6,2,12}) θ ^({5,5})

θ 2F({5,4,1}) θ 2F({5,3,2}) φ V({5,3,12}) θ V({5,22,1}).
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Example 1. Consider the root a — —(3α0+20:1+0:2) = 4ei+e 2 +e 3 = {4,12}

for LA3(2,2). Then

a - 4ei + e2 + e3

so that by (3.14)

- + - = 3.

Now dim J~ = d i m ( J _ 3 ) a = dim V({5, l}) β = K{5Aha = 2 by Table 9.12
of [BBL]. Therefore dim Ca = 3 - 2 = 1.
Example 2. Let a - - ( 4 O Ό + 3c*! + a2) — 5ei + 2e2 + e3 = {5,2,1} for
IA3(2,2). Then

α = 5eχ + 2e2 + e3

(2ei) + (ei + €2) + (ca + €3)

= (2ex) + (β! + e2) + (ex + e2) + (ex + e3)

and by (3.14)

3! 3! 3! „

Since dim Ja = d im(J_ 4 ) α = if{7,l},α + {̂6,2},α + - {̂6,l2},α + {̂5,3},α +
^{5,2,i},α = 2 + 2 + 1 + 1 + 1, we have dim Ca = 9 - 7 = 2. (We have used
the fact (see for example [S], Chap. 2) that KΈy(X represents the number of
semistandard tableaux of shape π and content a to evaluate Kπta.)
Example 3. In this final example assume a = — (5α0 + 4αχ + α 2 ) = 6eχ +
3e2 + e3 = {6,3,1} for JA3(2,2). Then

a = 6ei + 3e2 + e3

= (2e1) + (2d) + (2eχ) + (2e2) + (e2 + e3)

= (2ei) + (2ci) + (€χ + €2) + (ci + e2) + (e2 + e3)

= (2ex) + (26^ + (6! + e2) + (2e2) + (ei + e3)

= (2eχ) + (6i + e2) + (€i + e2) + (ci + e2) + (βx + e3)
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and from (3.14) we obtain,

4! 4! 4! 4!

By our calculations above

dim J~ = dim (J_5)α =

=2+4+1+6+4+0+2+4

+0+0+0+0+0+0+0

= 23,

so that dim Ca = 26 - 23 = 3.

Root Multiplicities in I4n(2,2) for n > 3.

Dominant
Roots: a

{3,1}

{2,12}

{i4}

{4,2}

{32}

{4,12}

{3,2,1}

{23}

{3,13}

{2M 2}

{5,3}

deg(α)

- 2

- 2

- 2

- 2

- 3

- 3

- 3

- 3

- 3

- 3

- 3

- 4

dim^ -

1

1

2

3

2

2

3

5

7

8

11

4

dim J~

0

0

0

0

1

1

2

2

2

3

3

3

dim Ca

1

1

2

3

1

1

1

3

5

5

8

1
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Root Multiplicities in IAn(2,2) for n > 3.

Dominant
Roots: a

{42}

{5,2,1}

{4,3,1}

{4,22}

{32,2}

{5,13}

{4,2,12}

{3M2}

{3,22,1}

{24}

{6,4}

{52}

{6,3,1}

{6,22}

{5,4,1}

{5,3,2}

{42,2}

{4,32}

{6,2,12}

{5,3,12}

{5,22,1}

{42,12}

{4,3,2,1}

{4,23}

{3s, 1}
{32,22}

deg(o )
-4

-4

-4

-4

-4

-4

-4

-4

-4

-4

-5

-5

-5

-5

-5

-5

O

0

-5

-5

-5

0

-5

-5

-5

dim .7^
4

9

13

17

22

15

30

31

48

69

9

10

26

36

35

60

71

88

62

104

138

111

158

282

240

366

dim Ja
3

7

8

10

11

12

17

18

22

27

8

9

23

31

28

45

49

58

42

77

103

84

131

169

150

195

dim£-
1

2

5

7

11

3

13

13

26

42

1

1

3

5

7

15

22

30

20

27

35

27

27

113

90

171
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Remarks. Any partition in the table having only 2 nonzero parts corre-
sponds to a root — (koao + kioti), which is a root for all algebras JAn(2,2)
with n > 1. By ([BKM2], Prop. 4.12) its multiplicity in IAn(2,2) for all
n > 1 is the same as its multiplicity in /Aχ(2,2). The algebra IAι(2,2) is
just the affine algebra A^ and all roots for A± have multiplicity one ([Kac],
Cor. 7.4), so all partitions with 2 nonzero parts have multiplicity one. Any
partition θ = {θι > θ2 > θ3 > 0} with 3 nonzero parts corresponds to a root
— (kQa0 + kicti + k2a2), where θλ = 2k0 — kλ, Θ2 = kλ — k2 and θ3 = k2. T h e

multiplicity of θ in IAn(2,2) for n > 2 is the same as in JA2(2,2), which is
the hyperbolic Kac-Moody algebra HA^ studied by Feingold and Frenkel
[FF] and by Kang [Kanl] [Kan2]. Assume

l/2(02 + θ3 -

Then whenever a is conjugate under the Weyl group to a root having a2-
coefficient equal to —1 or 1, its multiplicity is given by p(det(Γ(α)) + 1)
where p( ) is the classical partition function (see [FF], p. 117). All the
partitions with 3 nonzero parts in the table have such expressions for their
multiplicities.

4. Root Multiplicity Formulas.

In this final section we apply the Euler-Poincare Principle (see [CE]) and the
extension of Kost ant's formula given in [GL] to derive two root multiplicity
formulas, one of which is recursive and the other closed form, for the algebra
IAn{a,b) ^ C = C{G,V,V\φ). Since dim£α = dim£_α for any root α, it
suffices to determine dim£α = dim£~ for a = —(ja0 + Σ™=1 Kai). Needed
in the argument is the construction of the homology H*(£~) = i2*(£~,C)
with coefficients in the trivial C~-module C.

Consider the complex (A*(£~),d*):

> Λ*+1(£-) ^ Λ*(£") ^ Λ*- 1^") ^ •••

Jl> Λ i (£-) Jl+ Λ θ ( £ - ) Λ+ C _ ^ (o),

where dk is defined by
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dk(xχ A X2 Λ Λ Xk)

( - 1 ) * + f " 1 ( [ a ? >a?t] Λ i i Λ Λ ί . Λ Λ ί t Λ Λ xk).
l<s<t<k

Then for all k > 0, Hk(C) = (Ker dk)/{Im dk+t).

By the Euler-Poincare Principle we have,

(4.1)

where for any completely reducible G-module M = © ^ M λ the formal

character is, by definition, the sum

ch(M) = Σ (dimMλ)e(λ).
xen*

If a = ~0'α0 + Σ<Li ki&i) is a root with j > 2, (the case j ? = 1 corresponds
to the weights of F which have multiplicity one), then since Ho(£~) = C
and fli(£-) =* £"/[£-,£-] ^ £_i = V, it follows from (4.1) that

(4.2) dim C~ = dim(£_ i)α

= £(- l ) f c dim Λfc(£")α - f > l ) * dim fΓ*(£-)β.
fe=2 fe=2

If Λ: > j , any weight of Λ*(£~) has degree < — k < —j. Hence

dim Λh(C~)a = 0, as dega = -j. Therefore for k > j , dim Hk(C~)a =
dim (Ker dk)a — dim(Im dk+i)a — 0. Consequently, the sum on the right
hand side of (4.2) reduces to

(4.3)
k=2

Kostant 's formula (3.5) gives

dimHk(£-)a= Σ dimV(wp-p)
weW
l(w)=k
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where V(wp — p)a = 0 unless deg(wp — p) = —j = deg(a). If deg(wp — p) =
—j, then dim V (tup — p) α = dim y(it;p — p)^- = Kwp^p^^ where α is the
unique dominant weight conjugate to α, and Kwp_p^ is the Kostka number.
For convenience, let Kwp_p,a = dim V(wp — p) α = Kwp-P,Έ. Thus,

(4.4)

k=2 β1< <βr

P\λ VPr —
β

We also make use of the following total order defined on the root lattice
of £ - . If a = 0i€i H h 0n+ien+i and /3 = ζ1e1 H + Cn+ien+i?

 t h e n w e

say α < β iff ΣΓΛ' ^ < ΣΓ=/ 0 or Σ ^ 1 0, - ΣΓ=i' C< and 0, < 0 for some
i and 0S = ζs for i < s < n + 1. Then equations (4.3) and (4.4) combine to
give the following recursive formula for the root multiplicities.

Theorem 4.5. Let IAn{a, b) £ C = £(G, V, V*,ψ), and for any root β of
£~, let rπp = dim£^. If a = —(jθi0 + Σ£=i ^iai) for some j > 2, then

\Pl)'"\Pr,
P\λ \-Pr = k

j

k=2 vueW

deg(wp-ρ)=-j

Next we present an example to illustrate how this recursive formula can
be applied in an actual root multiplicity computation.
Example 4.6. Once again we assume the algebra is of type /^43(2,2), and
we let a = -(6α 0 + Gaλ + 2α2 + α3) = 6ei + 4e2 + e3 + e4 = {6,4,12}. (This
is a root whose multiplicity cannot be computed using the results of Section
3 because its degree — j = —6 satisfies j > 2a + 1 = 5.) Then by (4.3),

dim Ca = dim Ca

= dimΛ2(£")α - dimΛ3(£-)α + dimΛ4(£-)α - dimA5(£~)a

+ dimΛ6(£-)α - dim^2(>C~)α + dimif3(£~)α

£-)a - dimH6(C~)a.
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Now dimAk(C~)a = d i m ^ Λ ^ Λ -Λin | Xi G £_Γ ί, rx + • • + rk =
6; wt(xι) + + wt(xk) = a}, and we can use the tables in the previous
section to compute these dimensions. As a result we obtain

dimΛ2(£-)α =

dimΛ3(£-)α = 251

dimΛ4(£-)α = 102

dimΛ 5(/r)α = 15

dimΛ6(£~)α = 0.

For the homology portion, Kostant's formula (3.5) and Lemma 3.4 give:

-p) = V(soSlP-p)

Z(u»)=2

H3(C~)= Σ V{wp-p) = Visos^op-p)®V(s0s1s2ρ-p)

l(w)=3

= V{-6a0 - 3αj) Θ V{-5a0 - 2αχ - α2)

V(—10α0 — 6αχ) © V(—7a0 — 3αχ — 2 α 2 — ^3)

= Σ V(wp- p) = V({sos1)
2Sop- ρ)®V(sos1sQs1s2p- p)

® V(-8a0 - 4αi - a2)

- p) θ V{(sos1)
2s2ssp ~ρ)® ^((sO51)

2s2s1p - p)

= V(-21a0 - 15αχ) θ V(-18α0 - 12αx - 2α2 - α3)

θ V(-18αo~llαi - 2α2)

= F({27,15}) θ F({24,10,12}) θ F({25,9,2}).
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Prom this we see that dimHk(C~)a = 0 except when k = 3 where

dimH3(C~)a = dim F({9,3})α = K{9t3ha = 4.

Thus,

dim£ α = dim C~ = 225 - 251 + 102 - 15 + 4 = 65.

With the Euler-Poincare Principle as a guide, we define M to be the
following formal alternating direct sum of finite dimensional modules for
G = g£(n + 1,C):

(4.7) M =

= Σ(-1)*+1 Σ V(wp-p)
k=i wew1

l(w)=k

Then for a = — (ja0 + ΣΓ=i ^α:*), we set

(4.8) dimMα = ^ V -Λ, ^Wp-p,a,

deg(wp-p)=-j

and define the formal character of M to be

(4.9) ch(M) =

It may be that dimMα is nonpositive for certain values of a. Let τ l 5 r 2 , . . .
be an enumeration of the weights in {α | dimMα φ 0} compatible with the
total ordering on the root lattice of C~ given above, and for τ define

and

(4.11) B{τ) =
teT(r)
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Then we have

Theorem 4.12. For any root a = ~(ja0 + £ " = 1 Â α*) of IAn(a, b) = C =
C(G,V,V\φ),

Σμ

i κ Έ (
deg(wp—p)=degτi

where μ denotes the classical Mόbius function.

Proof. Since

it follows from (4.1) that

J J (1 - e(a))dϊmC« = 1 - ch(M).
c

Thus,

(1 - β(α))-*»*.- = ^^^y = (l - Σ )

Now taking the formal logarithm of both sides and using the series expansion

log(l — z) = — Y^=1 \zk, we obtain

(
v 771

f)(dimMTi)e(τi))

α€Δ,,0

Hence,
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Comparison of the coefficient of e(τ) on both sides gives

a \ r T

Therefore, by Mόbius inversion we obtain

τ\a

as desired. The rest comes from substituting the expression in (4.8). D

To illustrate the result in Theorem 4.12 we calculate the multiplicity of
a = — (5α0 + 4α?i +a2) = 6βi +3e 2 -f e3 using it. This multiplicity has already
been computed in Example 3 of Section 3 by the methods of that section.

The Weyl group of G = gί(n + 1,C) is the symmetric group W = Sn+i,
which acts on the weights by sending θ = Σ"=l θ^i to Σ™=ι 9zewi for w G W.
Thus, each weight ^ is conjugate to a unique dominant weight θ whose
coefficients relative to the basis e1? e 2 , . . . , en +i are in descending order, hence
form a partition. If V(λ) is the finite dimensional irreducible G-module with
highest weight λ, then for any weight θ of V(λ), dimy(λ)^ = Kx^, the
Kostka number.

Example 4.13. Let a = - ( 5 α 0 + 4αχ + α 2) = 6ex + 3e2 + e3 for /A3(2,2).
First observe that since the coefficient of α 2 is — 1, the expression in Theorem
4.12 reduces to

(4.14) d i m £ β = d i m / : - = β ( α ) =
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where T(a) = {< = (<*) | U G Z^°, Σ<*Λ = <*} and {τi,τ2,...} is an
enumeration of the weights of M — Σ™=ι(—l)k+ιHk(C~). Now by the same
arguments as in Example 4.6 we see that the terms Hk(C~) for k > 3 do not
contribute to the multiplicity of a since their weights have degree less than
deg(a) = —5. Recall from Example 4.6 that

# ! ( £ - ) = F ( - α 0 ) = V(2e1) = V({2})

H3(£-) = F ( - 6 α 0 - 3 α x ) Θ V(-5a0 - 2α x - α 2 )

= V({9,3})ΦV({8,12}).

Again from degree considerations, the only modules which can contribute to
(4.14) are V({2}), V({5,1}), and V({8,12}). The dominant weights of these
#^(4)-modules and their multiplicities are displayed below:

.{5,1} {4,2} {4,12} {32} {3,2,1} {3,13} {23} {22,12}
V({ό,L}) 1 1 2 1 2 3 2 3

J ) 1 1 3 1 1 3

{5,4,1} {5,3,2} {5,3,12} {5,22,1} {42,2} {42,12}
1 1 3 3 1 3

{4,32}{4,3,2,1}{4,23}{3M}{32,22}
1 3 3 3 3 '

These multiplicities can be computed by determining the corresponding
Kostka numbers. For {2} and {5,1} these Kostka numbers can be found
in [M] or ([BBL], Table (9.12)). Alternately, the multiplicities can be got-
ten by converting the weight to a linear combination of fundamental weights
and then by consulting the appropriate table for A3 in [BMP]. The other
nondominant weights can be obtained from these by applying permutations.
Note that since

M = H^C-) - H2(C-) + H3(£-)

for a weight r of H2(C~) we have dimM r = — dimFdδ, l}) r = —if{5,i},r5

where r is the unique dominant conjugate of r. Keeping this in mind, we
proceed with evaluating (4.14). Now the partitions of a in terms of all the
weights of M are:
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a = (6ej + 3e2 + e3)

e2) + (Cl + e2) + (c2 +

e2) + (2e2) + (ei + e3)

e3) + (ej + e2) + (2e2)

2e2) + (ei + e2) + (ex + e3)

= (4Cl + e2 + e3) + 2{e1 + e2)

= (3Cl + 2e2 + e3) + (2ej) + (Cl + e2)

= 2(2€l) + 2(e i + e2) + (2e2) + (€l + e3)

= (2ex) + 3(Cl + e2) + (€l + e3).

Hence,

B(a)

'+ (1)(1)(1) + l { 1 ) ( 1 ) ( 1 ) +

(1)(1)(1)

l (1)(1)(1)
=1-2-2-2-2-2-4-2-2-4-2+4+6+12+4

Concluding Remarks. The results of this paper pertain to the algebras
IAn(a,b), but the methods for obtaining the recursive and closed form for-
mulas work in general. The only place where the particular nature of the
algebra IAn(a, b) is used is in evaluating the multiplicities in terms of Kostka
numbers.

Although the examples presented are for the indefinite algebra 7J43(2,2),

the multiplicities of the roots computed are the same for all algebras IAn(2,2)
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with n > 3 and for the analogous algebras Jl?n+i(2,2), JCn+i(2,2), and
JΓDn+1(2,2) with n > 3 (See [BKM2], Sections 4 and 5.). These algebras
are constructed by replacing the Cartan matrix C(An) with the Cartan ma-
trix corresponding to the simple Lie algebra of type JBn+iϊ Cn+i or Dn+ι.

Acknowledgment. We would like to thank Professor Stephen Doty for a
helpful conversation.
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