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A CLASS OF INCOMPLETE NON-POSITIVELY CURVED
MANIFOLDS

B.H. BOWDITCH

In this paper, we describe a class of simply connected non-
positively curved riemannian manifolds which satisfy some
curvature constraints. Such manifolds have many of the prop-
erties of (complete) Hadamard manifolds, such as geodesic
convexity and the existence of an ideal boundary.

1. Introduction.

The geometry of Hadamard (complete, simply-connected, non-positively
curved riemannian) manifolds has been intensively studied for some time. A
general account of the basic theory can be found in [BaGS]. However, there
are interesting examples of non-positively curved manifolds which fail to be
complete, while retaining many of the geometric properties of Hadamard
manifolds. The best known is the Weil-Peterssen metric on Teichmuller
space. This is negatively curved [Ah, Tro] and incomplete [Wl], yet it ad-
mits an exhaustion by compact convex sets, and is thus geodesically convex
[W2]. We describe some further examples in Chapter 2. Also, incomplete
non-positively curved metrics have been used to construct interesting exam-
ples of complete non-positively curved manifolds by modifying the metric in
a neighbourhood of the ends (see for example [AbS]).

These examples suggest that certain incomplete metrics may be of some
interest in their own right. In this paper we restrict attention to metrics sat-
isfying certain curvature constraints, and show that they behave, in many
respects, like complete manifolds. We shall assume in particular that the
curvature "blows up" along any path of finite length that leaves every com-
pact set.

Let us first summarise a few properties of (complete) Hadamard manifolds.
Firstly, the exponential map based at any point gives a diffeomorphism of
W1 onto X. Moreover, there is a natural compactification, Xc, of X into a
topological ball, formed by adjoining the ideal sphere, Xj — XC\X. A point
of Xj may be thought of as an equivalence class of geodesic rays, where two
rays are equivalent if they remain a bounded distance apart.

If, in addition, we assume that X has strictly negative curvature bounded
away from 0, then it follows that X is a "visibility manifold", i.e. any two
points of Xj may be joined by a bi-infinite geodesic [EO].
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If we go further, and impose another curvature bound away from — oo (so
that X has "pinched curvature"), then much more can be said about the
geometry of X. For example, we have Anderson's result [An] that if Q C Xc

is any closed subset, and hull(Q) C Xc is the closed convex hull of Q, then
Xj Π hull(Q) = Xi Π Q. For further results about convex sets, see [Bo].

To generalise to incomplete (i.e. not necessarily complete) manifolds, let
us assume that:

(A) X is a Riemannian manifold such that

(Al) X has non-positive curvature, and

(A2) X is simply connected.
We write d for the path-metric on X, and write (X, d) for the metric comple-
tion of (X, d). Given ϊ G l , write κ(x) for the maximal sectional curvature
of any tangent 2-plane at X.

Suppose we assume, in addition to (A), that:

(B) For all a E X\X, there is some K > 0 and a neighbourhood U of α in
X such that for all x E X Π 17, we have κ(x) < ~l/K2d(xJa)2;
then, we claim that:
(1) X is geodesically convex. In fact, any two points x,y E X may be

joined by a geodesic segment [x, y] C X U {x, y}. Moreover, [x, y] is, up
to reparameterisation, uniquely length-minimising among all rectifiable
paths in X.

(2) The completion X is a CAT(O) space (as explained in Section 3.5).

(3) There is a natural compactification Xc of X so that Xc is homeomor-

phic to a closed ball, with X as its interior.

(4) There is a natural continuous injection L : X —> Xc from X in the

metric topology to Xc in its topology as a ball.

(5) Suppose (x,y) E (Xc x Xc)\(Xf x Xf°) w h e r e XT = XcV(X)
Then, x and y may be joined by a unique geodesic [x, y] C. X U {rr, y},
(where [x,x] = {^}) Moreover, [x,y] is closed in Xc>

(6) The map [(ar,y) κ> [x,y]] : ( X c x ^c)\(X/°° x X/°°) —»• ^ ( ^ c ) is
continuous, where ^(X^) is the set of all closed subsets of Xc in the
Hausdorff topology (Section 5.2).

Suppose, in addition to (A) and (B), that X satisfies:

(C) There exist p0 E X and Lo, RQ > 0, such that if x E X with
iϊ 0, then κ{x) < —l/Lld(x,po)2; then it follows also that:
(5;) If (x, y) E Xc x Xc, then # and y may be joined by a unique geodesic

[x,y]CXu{x,y}.

(6') The map [(x,y) »->- [rc,j/]] : Xc x Xc —>• ̂ (Xc) ι s continuous.



INCOMPLETE NON-POSITIVELY CURVED MANIFOLDS 3

More precise statements of these results will be given later. They will
all be proven in this paper: (1) Proposition 3.5.3. (2) Proposition 3.5.1,
(3) Proposition 4.5.2, (4) Proposition 4.3.4, (5) Lemma 4.1.4, Lemma 5.3.1,
(6) Proposition 5.3.4, (5') Lemma 6.2.1, Proposition 6.2.3, (6') Proposition
6.3.2.

If one adds additional hypotheses, such as pointwise pinching of curva-
ture, then we have variations of Anderson's construction which enable us to
construct convex sets in X. Thus, for example, with appropriate hypotheses,
we can deduce that X has an exhaustion by compact convex sets. There is
also the possibility of generalising some of the results of [Bo] to such spaces,
though we shall not get involved with that here. Indeed we suspect that this
programme could be carried further, and that, for example, many analytic
results could be carried over to such spaces.

Note that in the complete case, pinched negative curvature is the same as
pointwise negative curvature together with bounded geometry. "Bounded
geometry" means that, for any fixed r > 0, the set of metric balls {N(x,r) \
x (Ξ X} (defined up to isometry) all lie in a compact set in the C2-topology.
There is an analogous statement in the incomplete case. In this case, if
X is negatively curved, properties (B) and (C) and pointwise pinching of
curvature are all implied by a single hypothesis of "bounded geometry up
to scale". To explain what we mean, let B be the closed unit ball in Rn,
with a standard orthonormal frame, Fo, at the origin, o. Let y be the space
of smooth Riemannian metrics on JB, with strictly negative curvature and
with smooth boundary, dB, such that the frame Fo is orthonormal in each
metric, and such that dB is always the unit sphere about o. We give the
space y the C2 topology. Suppose that X satisfies (A). Suppose that x £ X,
and λ > 0 is such that the ball N(x, λ) is compact. Given any orthonormal
frame, F, at #, let e : B —> N(x, λ) be the composition of a dilation by
a factor of λ on W1 with the exponential map sending Fo to F. Thus, e is
a diffeomorphism, so we can pull back the metric on X to get a metric on
B. This gives us a point of y. We shall say that X has bounded geometry
up to scale if there is a compact subset, S C y , such that for all x G X,
we can choose λ(x) > 0 such that N(x,λ(x)) is compact, and such that for
some frame at #, the the point of y constructed as above always lies in
S. (Note that we are free to choose λ(x) as small as we like. However, the
sectional curvatures at the origin of metrics in S are all bounded away from
0. Thus, if X(x) is small, the scaling factor forces the curvature at x to be
large. Similarly, if the curvature at x is small, then there must be a large
compact metric ball centred on x.) We leave as an exercise the fact that this
property implies properties (B) and (C).

As remarked earlier, one motive for studying incomplete manifold might
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be to gain some further insight into the geometry of the Weil-Peterssen met-
ric on the Teichmuller spaces. Wolpert [W2] shows that this is geodesically
convex. As an example, he considers the case of once-punctured tori. In this
case, the moduli space is a 2-dimensional Riemannian orbifold with two cone
singularities (orbifold points), and a cusp singularity (with the cusp point re-
moved), of the type obtained by spinning the graph of f(x) = x3, x > 0 about
the x-axis. It follows that the universal cover (i.e. Teichmuller space) in this
case satisfies axioms (A) and (B) (see Chapter 2). For higher-dimensional
spaces, the situation becomes more complicated. The asymptotics of the
curvature tensor have been studied by Trapani [Tra]. It appears that in
general property (B) fails. However, one might still hope for some modifi-
cation of the hypothesis (B), for example, to take account to the directions
of the tangent 2-planes along which the curvature blows up, sufficient to
recover an ideal sphere analogous to Thurston's compactification.

In general, incomplete simply connected manifolds of negative curvature
seem to have received little attention. Without some strong constraints on
the curvature, they can behave in ways quite unlike Hadamard manifolds.
For example, Hass [Ha] gives an example of a negatively curved metric on a
3-ball which contains a closed geodesic in its interior. This phenomenon is
not possible in dimension 2, nor with constant curvature in any dimension.
It might be interesting to explore further conditions under which this sort
of behaviour would be prohibited.

2. Examples.

In this chapter we give some examples of the kind of incomplete manifolds
we are considering. These particular examples have been chosen principally
to illustrate the assertions made in the introduction. We begin with some
manifolds satisfying properties (A) and (B).

Suppose —oc < a < b < oo, and that / : (α, b) —> (0, oo) is a smooth
function. Let t be an arc-length parameter along the graph of /, graph(/) C
(α, 6) x (0, oo). Given t £ graph(/) write p(t) G i U {oo} for the length
of the tangent at this point to the intercept with the x-axis. (Figure 2.)
We take the sign of p(t) to be the same as that of df/dt. We may form
a surface of revolution, S, by spinning graph(/) about the x-axis. Now, S
has two orthogonal foliations: one by generators of S which are intrinsically
geodesic, and the other by circles of curvature c(ί) = l/p(ί) We see that S
has Gaussian curvature equal to

dt p2 \dt J f dt2'

Thus, for S to non-positively curved, we need that / be convex. Such a
surface, 5, has two topological ends corresponding to the ends of the interval
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(α, b). We see that the end corresponding to a will be complete if and only
if a — —oo, or else a > — oo and f(x) —> oo as x —>> α. We call such an end
a tube. If we have a > -oo and /(x) -> 0 and ^{x) -> 0 as a; -» α, then we
call the end a cusp. If 5 satisfies property (B), we see that it is necessary
(but not sufficient) that either both the ends of S be tubes, or that one end
be a tube, and the other be a cusp.

Figure 2.

As an explicit example, consider the graph of f(x) = x@ for some β > 1,

defined on the interval (0,oo). We have ~ y ^ y 0 ( ^ ) = ~β(β - l)x~2 Now

x/t —> 1 as t —> 0, and so the curvature of S blows up like —1/t2 as we

approach the cusp point at 0. We see that S satisfies (Al) and (B), and so

its universal cover, X — S satisfies (A) and (B). The metric completion X of

X is obtained by adding a single point, p, at the origin 0. Thus, under the

natural inclusion i : X —> Xc, the point p maps to an ideal point t(p) G Xj.

The remaining ideal points can be thought of as the endpoints of the geodes^

generators of X, as t -> oo. Thus, the set Xf of these remaining ideal points

has naturally the topology of an open interval. This is compactified into the

circle, X/, by adding the point i(p).

Suppose, more generally, that / : (0, 6) —> (0, oo) is convex, and that

f{x) -+ 0 and £ ( z ) -> 0 as x -» 0. Then μ = l i m ^ ^ ft(t) G (0,1] is well

defined. (Thus μ — 1 if b < oo.) Let S be the surface of revolution, and

X — S the universal cover. We may coordinatise X using a radial coordinate

θ eR and an arc length coordinate t G (0, oo). In this way, 5 is the quotient

of X by the map [(£, θ) f-> (£, θ + 2π)]. As before, Xc is formed by adjoining

the arc {(oo, ί ) | ^ G K } , and then taking the one-point compactification with

the point 0 at the origin. Let lθ be the geodesic generator {(t,θ)\t G (0, oo)}

of X. The total Gauss curvature of the sector of X lying between lθl and

lθ2 may be calculated as C(θ0) — -/o°°(^o/) \jl£) dt — —μθ0 where θ0 —

θ2 — 0i- Applying Gauss-Bonnet, we find that the ideal points (oo,0i) and

(oo, 02) can be joined by a bi-infinite geodesic in X if and only if C(θ0) < —π
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i.e. if and only if θ0 > π/μ. Now, μ < 1, and so X cannot have the visibility

property. Note that % -> 1 as t -> oo, and so k(t) = ± ( ^ - l) = o(l/t2).

Thus Property (C) fails in this case.
By giving similar consideration to the case where both ends of S are tubes,

we see that no surface constructed in this way can satisfy all of properties
(A), (B) and (C).

The surfaces of revolution just described are a special case of the following
more general construction.

Suppose M is a Riemannian manifold, and that / C R is an open interval.
Let / : / —> (0, oo) be a smooth function. We define a Riemannian metric
on X = M x / by setting

ds2 = dt2 +

where t is arc length in 7, g^ is the Riemannian metric on M with respect
to the local coordinate system {xι)i, and ds is infinitesimal distance in X.

We remark that this is an example of a still more general construction
of "warped products" described in the paper of Bishop and O'Neill [BiO].
In a warped product, the interval / may be replaced by any non-positively
curved manifold. In the paper cited, there is a complete characterisation of
when a warped product is non-positively curved.

In our special case, we can derive the relevant inequalities fairly simply as
follows. Note that X has two orthogonal foliations, one by geodesies of the
form {x} x / for x G M, and the other by codimension-1 submanifolds of
the form Mt = M x {£} for t G /. Each Mt is totally umbilic, with principal
curvatures equal to c(t) = jh\^{t)- In the intrinsic metric, Mt is isometric
to M with the metric scaled by a factor of f(t).

Write A = d/dt for the vector field on X orthogonal to the Mt. Now
suppose that Π is a tangent 2-plane at (#,£) G M x / = X. If Π is orthog-
onal to A(x, £), then Π corresponds to a tangent 2-plane, Π M at x in M.
Write SM (ΠM) for the sectional curvature of M in ΐlM Thus, the sectional
curvature, in Π, of the intrinsic metric of Mt is SM(RM)/ f(t)2!. Applying
Gauss's Theorema Egregium [S], we see that the sectional curvature,
of X in Π is given by

-c^(s M <Π M , -(§) ' ) .

On the other hand, suppose that Π is a tangent 2-plane at (x,t) containing
the vector A(x, t). In this case the sectional curvature, 5(11), of X in Π is

-c
dt c ~ fdt'
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Now, if Y and Z are, locally, any two vector fields everywhere orthogo-

nal to A, then a simple calculation shows that R(A, Y, Y, Z) = 0, where

R is the Riemann curvature tensor. This symmetry implies that each sec-

tional curvature of X at (x^t) lies between — j^ί and J^SMO^M) — c2 =

'S'M(ΠM) — [%j ) for some tangent 2-plane Π M at x in M. In par-

ticular, for X to be non-positively curved, it is sufficient that M be non-

positively curved, and that / be convex. (For more detailed computations

of this nature, see [BiO].)
Examples of this construction are the surfaces of revolution described

above. In this case, we have M — R and / is thought of as a function of
arc-length, t, along graph(/) = /. In such a case, we must always have
4L < i
dt ^ ± -

With this last constraint removed, we can construct examples satisfying
(A), (B) and (C). For example, with M = / = R, and f(t) = e*, we obtain
the hyperbolic plane foliated by horospheres.

For another example, set M — R, / = (0, oo) and f(t) = Ψ with β >
1. Now, the curvature k(t) equals - j ^ ί = -β(β - l)/t2. This case is
qualitatively similar to the surface of revolution of [x ι-»> x&] described above,
except that now, X satisfies (C), and has the visibility property.

As a third example, set Af = R, J = (0,1) and f(t) = t2/(l - t)2. We
see that jfc(ί) = - ± § = -2(2t + l)/t 2(l - tf. Thus -k{t) grows like 1/t2

as t -> 0 and like 1/(1 - t)2 as t -> 1. It follows that X satisfies (A) and
(B). Since it is bounded (has finite diameter), it trivially satisfies (C). Both
the completion, X, and the compactification, Xc , of X may be identified
set-theoretically as (R x [0,1])/-, where (x,0) - (y,0) for all x,y G R.
However, the topologies are different. Thus Xc may be thought of as the
one point compactification of X x (0,1] by adding the point 0 = {(#,0)}/~,
whereas X is noncompact—a base of neighbourhoods of 0 being given by
{(Rx [0, e))/~ I e > 0}. Note that the natural map X —> Xc is a continuous
bijection.

One can construct higher dimensional examples, for example by taking M
to be euclidean n-space En, or hyperbolic n-space W1. Note that M = En,
/ = R and f(t) = eι gives us Mn + 1. So does M = HΓ1, / = R and f(t) =
cosh t.

There are many variations on this theme one can explore. One can also go
on to construct further examples by gluing together examples of this type.
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3. Geodesic convexity.

In this chapter, we aim at establishing properties (1) and (2) for manifolds
satisfying (A) and (B). The following notation is used throughout.

Suppose X is a Riemannian manifold. We write TXX for the tangent space
to X at x, and TX for the total space of the tangent bundle. Given ξ,ζ G
TXX, we write (£, ζ) and \ξ\ = \/(ξ,ξ) respectively for the Riemannian inner
product and norm on TXX. If ξ,ζ φ 0, set Z(ξ,ζ) = cos~1(<^7 C>/Î MCi) G
[0, π] for the angle between ξ and ζ. We write d for the induced path-metric
onX.

We shall use the term "geodesic" in the Riemannian sense of a curve whose
first derivative is parallel. Thus, in terms of the metric d1 a geodesic can
be characterised as a constant-speed path, for which all sufficiently small
subpaths are length-minimising.

3.1. Ruled maps. In this section we take X to be a Riemannian manifold
of non-positive curvature (Al). For x G I , we write κ(x) G [—oo,0] to be
the maximal sectional curvature at x.

Suppose that / = [t0, ίi] C M is a closed interval and J C M. is any interval.
We write int / and int J respectively for the interiors of / and J. Given a
smooth map β : I x J —> X, we shall denote by βu and βι the maps

and

βb = [u^ β(t,u)} :J—+X

where t e I and u e J. Thus βu(t) = βt{u) = β(t,u). We refer to paths

of the form βu and βι respectively as longitudes and transversals. We write

dβ/dt and dβ/du respectively for β*(d/dt) and β,(d/du). We say that β is a

ruled map if for all u G /, βu is a geodesic. Thus §f (£, u)\ = (length βu)/\tι —

<o|
Suppose that for u G J, the geodesic βu is non-constant. We see that the

map \t H* | f (^^) is the first variation of a geodesic along βu. Thus, the

component of | f (t,u) parallel to ^(t,u) is linear in t. Moreover, since X is
non-positively curved, the Riemannian norm of the component orthogonal
to ϋ(£, u) is convex (see the discussion of normalised ruled maps below). It

follows that the map \t H-> | f (t,u) is convex. This is also readily verified

in the case where βu is constant. Integrating, we find that the map [t ι->~

length^] : J —> [0, oo) is convex. In particular:

Lemma 3.1.1. For all t G [to^iL w e have

length βt < max(length βto, length βtχ).
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We shall say that a ruled map β : / x J —> X is non-degenerate if βu

is non-constant for all u G J. In such a case, we say that (t, u) E I x J is
a singular point if /? fails to be an immersion at that point, i.e. if §f (ί, u)
is some multiple of ^(t,u). We say that β is non-singular if there are no
singular points in int I x J. In such a case, the pull back of the Riemannian
metric to int I x'mtJ is also a Riemannian metric of non-positive curvature.
In fact, the curvature at (£, u) is at most κ(β(t, u)). This is Synge's Inequality
(see [S]). In the particular context of ruled maps, it is discussed in a paper
of Aleksandrov [Alek].

By a ruled surface, we shall mean the image, P = β(I x J) C I , of a
ruled map β : I x J —> X, where J is compact, and such that β is non-
singular and injective on int/ x int J. We shall refer to the sets β(I x {u})
for u G J as generating geodesies. We write κP(x) for the intrinsic curvature
of P at x. Thus κP(x) < κ(x) < 0. Of particular interest is the case where
the boundary, cλP, of P is a piecewise geodesic path. This motivates the
following definition.

Definition. By a (non-positively curved) n-gon we mean a surface P,
which is topologically a closed disc with boundary dP, together with a set
V C dP of n points, and a metric, p on P such that p restricted to the
interior intP = P\dP is a non-positively curved Riemannian metric, and
such that each component of dP\V is geodesic.

We shall refer to the points of V as vertices and the components of dP\V
as edges. At each vertex v G V, the adjacent edges meet at some well-defined
angle θ(v) > 0. Since the metric is not assumed to be Riemannian at the
point v itself, it may be possible to have θ(v) = 0 (if the curvature grows
sufficiently fast as we approach υ). In such a case, we refer to v as a cusp.
In all cases we consider, P will be convex, i.e. θ < π for all υ G V. Now, the
Gauss-Bonnet formula tells us that

θ{v) = (n - 2)π + / κP{x)dω{x),
JP

where κp(x) is the curvature at x G P, and dω is the area element. Note
that we must always have n > 3.

By talking about ruled surfaces, we avoid having to worry about the
technical complication of dealing with singular points; although intuitively
we would expect such points to work in our favour since they concentrate
negative curvature. The fact that singular points do not cause any real
problems has been made precise by Aleksandrov [Alek].

Another another type of restriction we shall want to place on ruled maps
is the following.
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We say that a non-degenerate ruled map β : I x J —> X is normalised if:
(Rl) for all u E J, the longitude βu = [t »-» β(t,u)] is a geodesic param-

eterised with respect to arc-length (i.e. ^(t,u) — 1 for all (t,u));

and

(R2) for all (t, u) E / x J, we have

Thus, for a fixed u, the map 11-» |^(ί, tm is a Jacobi field along the

longitude βu. We write J(t) — |^(ί, n) . From the Jacobi field equation [S],

we know that, except where it vanishes, J(t) is smooth in t, and that

ή2 T

— (t)>-κ(β(t,u))J(t).

Suppose that λ : / —y [0, oo) satisfies X(t) < —κ(β(t,u)) for all t E / =
[to,ti]. The following is a simple consequence of the above differential in-
equality.

Proposition 3.1.2. Suppose f : I —> [0, oo) is smooth and satisfies
ξί( t ) = λ(ί)/(t) for all t E J. If f(t0) - J(t0) and ft(t0) < ft (ί0)
/(<) < J(<) /or α// ί E /.

Corollary 3.1.3. Suppose f : / —> [0,oo) is smooth and satisfies ^(t) —
λ(t)f(t) for all t E /. If f(t0) = J(t0) and f(tx) = J(tλ), then f(t) < J(t)
for all tel.

Of particular interest will be the case where λ has the form

\(t) = l/K2(t + h)2

for t > 0, and K,h > 0 fixed. The solutions of ^(t) = \(t)f(t) have the
form (ί + h)ι+μ and (t + h)~μ where μ = (>/l+4iί 2 ) - 1 > 0. In particular,
if /(0) = 1 and f (0) = 0 we have the solution

We shall refer to this later (Lemmas 3.4.1 and 6.1.1).
For the proof Lemma 3.4.1, we will need to describe a process of "normal-

ising" ruled maps.
Suppose that a : I x J —> X is a non-degenerate ruled map, where now

/ = [t>0, Vι\. We are looking for a subset S C IRx J and a map p : I x J —> S
with the following properties:

(Nl) p is a smooth diffeomorphism of / x J onto S.
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(N2) For all u G J, the set S Π (R x {u}) is a closed interval of the form

(N3) For all u G J, the map p\(I x {u}) sends / x {u} linearly onto
[qo(u),qi(u)] x {u}.

(N4) The map β = a o p~ι : S —> X is a normalised ruled map (i.e. it
satisfies properties (Rl) and (R2) above.)

We see that S has the form S — {(t,u) G R x J | qo(u) <t< <Zi(̂ )}, where
qo,qi ' J —> R are smooth maps.

As before, we define longitudes, αu, βui and transversals α v, /?*, by αv(?x) =
αM(υ) = α(v,n) and ^(w) = βu(t) = β(t,u). For i = 0,1, set 7̂  = α^ :
J —> X, and σ̂  = [u >-> {qi(u),u)] : J —>• 5. Thus, 7< — βoσi. We see that

Φ w x dqi( xdβ( f ,, dβf , , x

and so

Note that ^{σ^u)) is the unit tangent vector ^(w) = {^f) ^(^uu) t o

the geodesic αu, where Z(ιz) = lengthαM = length^.
Now, suppose that we are given α, and want to construct S and p, and

hence /?. We can obtain the functions q^ up to an additive constant, by
integrating the quantity ( ^ Ή i & f a ) ) . Note that -^(q^u)-qQ(u)) = £(ίi),
and so we can arrange that qι(u) — qo{u) = Z(n) for all u (Ξ J. This, then,
defines the set 5 C R x J, and hence determines the map p : I x J —» 5.
One verifies that the map β = α o p" 1 satisfies properties (Rl) and (R2) as
required.

3.2. The space of geodesies. For the moment, we can take X to be any
Riemannian manifold. Let (X,d) be the metric completion of (X,d). Since
(X, d) is a path-metric space it follows that (X^d) is a path-metric space.
We claim that every point of X\X is accessible by a smooth path of finite
length:

Lemma 3.2.1. Suppose y G X\X; then there is a smooth path β : [0,1] —>
X so that β(0) = y, j9((0,1]) C X and lengthβ < oo.

Proof. Certainly, y is accessible by a rectifiable path of finite length in X,
and we may use local convexity to approximate it by a smooth path. D

Now, write path(X) for the set of all paths from [0,1] to X. Given α, β G
path(X), write

dsupfaβ) = m<ιx{d{a(t),β{t)) \t G [0,1]}.
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Thus dsup is a metric on path(X). We see easily that:

Proposition 3.2.2. (path(X),ύίstφ) is a complete metric space.

We write path(X) C path(X) for the subspace of paths lying entirely in
X.

We define the endpoint map

π : path(X) —>X xX

by π(β) = (/?(0),/3(l)). Clearly π is continuous.
Let geod(X) C path(X) be the subspace of those β G path(X) such that

either β is constant, or else /3((0,1)) C X and /3|(0,1) is a constant-speed
geodesic. Let

geod(X) - geod(X) Π path(X) = geod(X) Π ττ~ι{X x X).

Now, let us suppose that X is non-positively curved (Al). In this case,
the map π : geod(X) —> X x X is a local homeomorphism:

Lemma 3.2.3. Suppose b G geod(X). Let π(/3) = (x,y). Then, there are
neighbourhoods U of x and V of y in X, and a neighbourhood W of β in
geod(X) such that π\W : W —> U x V is a homeomorphism.

Proof. This follows, exactly as in the complete case, using the Jacobi field
equation, and the implicit function theorem. D

We see that, if X has dimension n, then geod(X) is a 2n-dimensional
manifold, and inherits a smooth structure from X x X.

Suppose that 7 : J —y geod(X) is a smooth path. By definition, the
paths 7i = [u M- j(u)(i)] : J —> X for i — 0,1 are smooth. We write
7 : [0,1] x J —> X for the map given by j(t, u) = j(u)(t).

Lemma 3.2.4. The map 7 is smooth.

Proof. From the implicit function theorem, exactly as in the complete case.
D

Thus, 7 is a ruled map. Note that j t — 7* according to our previous
notation. Applying Lemma 3.1.1, we see that 7 is a rectifiable path in̂
(path(X),<iSUp). In fact, if J' C J is any subinterval, then

length(7|J/) < max(length(70|J'),length(7l|J')) .

Since (path(X),o?swp) is complete, we have the following:
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Lemma 3.2.5. Suppose 7 : (0,1] —> geod(X) is smooth, and lengthη { <
00 for i = 0,1. Then, 7 extends (uniquely) to a map 7 : [0,1] —> path(X).

Suppose, in such a case, it happens that 7(0)((0,1)) C X, so that 7(0)|(0,1)
must be geodesic. Thus, by definition, 7(0) G geod(X). Our aim in the next
section is to show that this is always the case if X satisfies axiom (B), and
7(0) is non-constant.

3.3. The path-lifting property. Suppose that X is non-positively curved

(Al) and satisfies:

(B) For all a G X\X, there is some K > 0 and a neighbourhood U of a in
X such that for all x G X Π U we have κ(x) < — l/K2d(x, a)2.

We aim to show that π : geod(X) —> X x X is a covering map. A similar
idea can be found in [AlexB]. This result will be based on the following
path-lifting property.

Lemma 3.3.1. Suppose 7 : [0,1] —> path(X) with τ((0,l]) C geod(X),
and 7|(0,1] smooth. For i = 0,1, write 7; for the path [u f—>> j(u)(i)] :
[0,1] —> X. Suppose that for i = 0,1, we have length 7̂  < 00. Then

7 ( 0 ) e g e o d ( X ) .

Proof By definition, any constant path lies in geod(X), so we can suppose
that 7(0) is non-constant. As remarked at the end of the last section, it
suffices to show that 7(0)((0,1)) C X. Without loss of generality, we can
suppose that η(u) is non-constant for all u G [0,1]. Define a : [0,1]2 —> X
by a(v,u) — j(ύ)(υ). Thus, a : [0,1] x (0,1] is a non-degenerate ruled
map. Now, the normalising procedure of Section 3.1 gives us a map p :
[0,1] x (0,1] —> Rx (0,1] so that β — aop"1 : SO —> X is a normalised ruled
map, where SO = p([0,1] x (0,1]) = {(t,u) G R x (0,1] | qo(u) < t < qλ(u)}.
We have 7,|(0,1] = β o σ{ where σ^u) = (qi(u),u). Thus, for all u G (0,1],

dji dqi dβ dβ ( ..

and so
dqτ
— (1

We see that /0 ^(u) du < length7^ < 00, and so qi(u) tends to a limit,

9i(0), as u tends to 0. Also, since l(u) — lengtha u — q±(u) — qo(u) for

all u G (0,1], and since a0 = 7(0) is non-constant, we see that qo(0) <

9i(0). Let S = {(t,u) E K x [0,1] I qo(ύ) < t < qι(u)}. We may extend

p to a homeomorphism p : [0,1]2 —> S mapping [0,1] x {0} linearly to

[9o(O),gi(O)] x {0}. Thus, β extends to a map β = a o p~ι : S —> X. As
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before, we define longitudes, βu, and transversals, βt, by βu(t) — /?*(?/) —
β(t,u). We want to show that βo((qo,qι)) = τ(0)((0,1)) C X.

Suppose, for contradiction, that there is some t E (#o?<Zi) with 0(£, 0) E
X\X. For notational convenience, we shall assume that t = 0, i.e. that
0(0,0) eX\X. Let α = 0(0,0).

Let [/ be the neighbourhood of a in X given by the hypothesis (B) above.
We can find t0 > 0 and u0 > 0 such that [—ί0, #o]x [0? ̂ o] Q S and 0([—to? *o] x

[0,UQ])QU.

Now, for all (t, u) E 5, we have that

< max
i=0,l du

< max
i=0,l du

The first inequality follows from Corollary 3.1.3 (with A Ξ O ) and the second

comes from the formula for ^(u) given above. In particular, we see that

for all t E [-ίo,£o],

ru

JO
du < max l e n g t h ^ |[0,

i=O,l
< cx>.

Given u E [0,w0], set

ru

h(u) - /
Jo §!<*•> dw.

Thus, h(u) = length(0°|[O,u]) > d(α,0(O,u)). Since the longitude βu is a
geodesic parameterised by arc-length, we have, for all t E [—to,to]

d(β(0,u),β(t,u)) =

and so

d(a,β(t,u)) < \t\ + h(u).

Thus, by hypothesis (B), we have

κ(β(t:u))<-l/K2(\t\+h(u))2.

Fix, for the moment, some u E (0,uo] For t E [—to,ti] set J(t) —

£(t,u) . If J(0) 7̂  0, then J is differentiate at 0. Suppose ^ ( 0 ) > 0,

Then, applying Proposition 3.1.2 on the interval [0,t0] and using the for-

mula given after the Proposition, we find that

J(to) >
2/i

to

h(u)
J(0).
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If, on the other hand, ^(0) < 0, then, by symmetry, we get the same lower
bound for J(—10). Thus, in all cases, we get that

J(0).

Thus,

OO
Jo du °' Jo

2μ + lJ0 V h(u)
n ίu° ί in

2μ + 1 70 V M w )

l + μ

— (u)du
du

du

du

μ

2μ
= OO.

Tjί

This contradicts the existence of a e τ(0)((0,1))Π(Z\X). Thus τ(0)((0,1)) C
X, and so 7(0) G geod(X) as required. D

Corollary 3.3.2. The map π : geod(X) —> X x X is a covering map.

Proof. By Lemma 3.2.3, we know that π is a local homeomorphism. Lemmas
3.2.5 and 3.3.1 together tell us that π has the path-lifting property for smooth
paths. The result follows by standard arguments. D

3.4. Properties of geodesies. In this section we shall add the assumption
(A2) that X is simply connected, i.e., altogether we are assuming that X
satisfies hypotheses (A) and (B).

Now, X x X is simply connected, and so by Corollary 3.3.2, we see that
each component of geod(X) maps homeomorphically to X x X under π.
Choose any point x0 £ X, and let geod0(X) be the component of geod(X)
containing the constant path at x0. Let π0 be the restriction of π to geod0(X)
so that π 0 : geod0(X) —> X x X is a homeomorphism. Given x,y G X,
write [x -> y] = πQ1(x1y). We see easily that for all x G X, [x -> x] is the
constant path at x.

Lemma 3.4.1. geod(X) = geod0(X).

Proof. Suppose, for contradiction, that geod(X) Φ geod0(X). Choose any
x G X. Since π : geod(X) —> X x X is a covering map, there is some
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a G geod(X)\geod0(X) with π(α) = (x,x). Thus a ^ [x -^ x]. Without loss
of generality can suppose that x fi α((0,1)). (Otherwise choose a smaller
segment of a and reparameterise.) For each ί E (0,1), the path a meets the
path [x —>• a(t)'\ in α(ί), at an angle different from 0 or π. Thus, as t ranges
through [0,1], the geodesies [x —> a(t)} span a non-positively curved 1-gon,
which is impossible by Gauss-Bonnet (Section 3.1). D

In summary, we have shown:

Proposition 3.4.2. Any two points of X are joined by a unique geodesic
(defined on the domain [0,1]). Moreover, this geodesic varies smoothly in its
endpoints.

Given x,y G X, write [x,y] C X for the image of [x —>> y]. Thus [x,x] —
{x} and [z,y] = [y,x\.

For a fixed x G X: the function p defined by p(z) — length [x —» z] is
smooth on X\{x}. Moreover, any geodesic [x —> y] is orthogonal to the level
sets of p, and so a standard argument of Riemannian geometry shows that:

Proposition 3.4.3. For all x,y G X, the geodesic [x -» y] is, up to
reparameterisation, the unique length-minimising rectifiable path from x to
y. (In particular, d(x,y) — length[x —> y}.)

Now, given x G X and y G X\{x}, we write xtj — d} ) ^ ( 0 ) ? where

a — [x —> y]. In other words, x^ is the unit tangent vector at # along [rc,y].

If 2τ G X\{a;}, write yέ2r = Z(xy,xz) for the angle between xy and xz.

Given the existence and uniqueness of geodesies, the following comparison
theorems follow exactly as in the complete case. Let (E2, d!) be the euclidean
plane,

Proposition 3.4.4. (Angle Comparison Theorem of Aleksandrov). Sup-
pose x,y,z G X are distinct points. Choose x',y;, z Έ E 2 , so that d'(x',y') =
d(x,y), d'(y',z') = d(y,z) and d'(z',x') — d(z,x). Then xyz < x'y'z1,
yzx < y'z'x1 and zxy < z'x'y1.

We refer to x'y'z1 as a comparison triangle for xyz.

P r o p o s i t i o n 3 . 4 . 5 . (CAT(O) i n e q u a l i t y ) . Suppose x,y,z G X are distinct
points. Suppose u G [x,y] and υ G [x,z\. Choose a comparison triangle
x'y'z' in E2 for xyz. Let v! G [x'^y'] and v' G [x',z'\ be the points with
d'(x',u')=d(x,u) and d'(x',υ!) =d(x,υ). Then d'(u'\v') < d{u,v).

We thus say that (X,d) is a αCAT(0)-space". More precisely, a CAT(O)-
space is a path-metric space in which every pair of points may be joined



INCOMPLETE NON-POSITIVELY CURVED MANIFOLDS 17

by a "geodesic", in the sense of a length-minimising path, and where the
conclusion of Proposition 3.4.5 is satisfied where [x,y] may be interpreted as
any choice of geodesic from x to y. In fact, it follows, in retrospect, that in
a CAT(O)-space, there is a unique geodesic joining any pair of points, and
so [x,y] is uniquely defined. For further discussion of such spaces, see Ball-
mann's article in Chapter 10 of [GH], or the book by Bridson and Haefliger
[BrH],

As a corollary of Proposition 3.4.5, we have the convexity of the distance
function:

Proposition 3.4.6. Suppose /, J C R are intervals, and that a : / —> X
and β : J —> X are geodesies parameterised proportionately to arc-length.
Then the function [(t,u) ι-> d{a(t),β(u))] : I x J —> [0, oo) is convex.

3.5. The completion. Finally in this chapter, we describe the geometry
of the completion (X,d) of (X,d). We are again assuming that X satisfies
hypotheses (A) and (B).

Now, the metric completion of any CAT(0)-space is a CAT(0)-space, so

we see immediately that:

Proposition 3.5.1. (X,d) is a CAT(0)-space.

In particular, every pair of points are joined by a unique geodesic. Recall,
however, that the term "geodesic" is here being used in the metric space sense
of a constant-speed globally length-minimising path. We should therefore
check that this agrees with the notion of "geodesic" already defined in Section
3.2. As before, we write geod(X) for the space of such geodesies.

Note that it's easy to see that a path a G geod(X) is globally length-
minimising, in other words, that lengthα = d(x,y) where (#,y) = π(α). To
do this, choose t G (0, | ] . Since geodesies in X are globally length-minimising
(Proposition 3.4.3), we have that length (α|(t, 1-i)) = rf(α(ί),α(l-ί)). The
observation follows by letting t -> 0. Now, since (X,d) is CAT(O), it now
follows that if α,/3 G geod(X) with π(α) = π(/3), then a — β. (This can also
be verified directly, by a similar limiting argument.) It remains to show that
such paths always exist:

Lemma 3.5.2. Any two points of X can be joined by a path in geod(X).

Proof. Suppose x,y G X. Since every constant path lies in geod(X), we can
suppose that x φ y. By Lemma 3.2.1, both x and y are accessible by smooth
paths of finite length in X. From the geodesic convexity of X (Proposition
3.4.2) and Lemma 3.3.1, we see that x and y can be joined by a path in

geod(X). D
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In summary, we have shown:

P r o p o s i t i o n 3.5.3. For all x,y G X , there is a unique a G geod(X)

with τr(α) = (x,y) Moreover length a — d(x,y). In fact, a is the unique
constant-speed globally length-minimising path in X from x to y.

We can now use the term "geodesic" without ambiguity. As with X,
we write [x -» y] for the unique path in geod(X) joining x to y. We write
[#? y] Q X f° r the image of [x —>> y]. As before, [x, y] = [y, x] and [x, x] = {x}.
Note that for all x, y G X, we have [x, ?/] = {z G X|d(x, z)+d(z, y) — d(x, y)}.

Note that since (X,d) is CAT(O), it follows that the distance function
is convex (cf. Lemma 3.4.6). In particular, geodesies vary continuously on
their endpoints, and so:

Proposition 3.5.4. The map π : geod(X) —> XxX is a homeomorphism.

We remark that if we fix one endpoint, then geodesies vary in a C1 fashion:

Proposition 3.5.5. Given a G X, define fa : X x (0,1) —> X by /α(x, t) —

[a -+x](t). Then fa is C1.

Proof. Clearly, if a G X, then fa is smooth. If a G X \ X , we choose a
sequence of points an G X with an —» α, and check that the derivatives of
the functions fan converge. This can be done by considering Jacobi fields
along [x, αn] (c.f. the case of horofunctions [Hel]). D

4. T h e compactification.

In this chapter, we assume that X satisfies axioms (A) and (B). We shall
describe the compactification Xc — X UX/, where Xj is the "ideal sphere".
Thus, Xj may be thought of, set theoretically, as the union of X° = X\X
and a set, X^° of asymptote classes of geodesic rays. We shall show that Xc

is homeomorphic to a closed ball (Proposition 4.5.2.)

4.1. Geodesic rays. A geodesic ray based at x G X is a path α : [0, oo) —>
X such that α(0) = x, and α((0, oo)) C X, and such that α|(0, oo) is a
geodesic parameterised by arc length.

We know (Proposition 3.5.3) that geodesies are length-minimising in X.
In particular, a must be a proper map.

Suppose α,/3 are geodesic rays. By Lemma 3.4.6, the map

is convex. Thus, if d(a(t),β(t)) is bounded above, then

d(a{t), β(t)) < d(a(0),β(0)) for all t.
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Definition. We say that the rays a and β are asymptotic if d(a(t),β(t))
is bounded as t —> oo.

Clearly this is an equivalence relation on the set of geodesic rays. Note
that:

Lemma 4.1.1. If a and β are asymptotic rays, then the map

is monotonically non-increasing.

Corollary 4.1.2. Two asymptotic rays based at the same point are equal.

Proposition 4.1.3. Suppose that β is a geodesic ray, and x G X. Then
there is a (unique) geodesic ray based at x asymptotic to β.

Proof. For this, we need only the convexity of the distance function (Lemma
3.4.6), and the completeness of X.

For n G N, set ln = d(x,β(n)). Let an : [0,/n] —> X be the geodesic from
x to β(n) parameterised by arc-length. Note that n —10 < ln < n +10. From
Lemma 3.4.6 applied to β and αn, we see that d(a(t),β(t)) < l0 provided
t <n — l0. Thus, if m > n > ί0, then d(an(n — lo),a.m{n — l0)) < 2Z0 Now,
by Lemma 3.4.6 applied to an and α m , we see that for all ί E [ 0 , n - Zo]>
we have d(an(t),am(t)) < -^f-- Thus, for a fixed ί, the sequence (an(t))
is a Cauchy sequence, and so tends to a limit a(t) G X. Now each an is
length-minimising, and so d(a(t)1a(u)) = \t — u\ for all ί , u E [0,oo). Thus
by Proposition 3.5.3, we see that α((0,oo)) C X and α|(0,oo) is geodesic.
For all n > t + l0, we have d{β{t),an{t)) < /0, and so d{a{t),β{t)) < l0. Thus
a and β are asymptotic. D

Now, let Xf° be the set of asymptote classes of geodesic rays. We write
Xj for the set X\X, and define the ideal sphere, Xj, as a disjoint union
Xι = X°! U Xf°. We write I α = I U l / for the compactification of X, and
L : X —> Xc for the natural inclusion. We shall describe the topology on
these spaces in Section 4.3.

Suppose that x e X = X U X*} and that y G Xf°. Lemma 4.1.3 tells us
that there is a unique geodesic ray β based at x and in the class y. We say
that β tends to the point y. Write [x,y] = /?([0,oo)) U {y} C Xc, and refer
to [x, y] as the geodesic joining x to y. Given the existence and uniqueness
of geodesies in X, we have established that:

Lemma 4.1.4. Given (x, y) G Xc x Xc\(Xf° x Xf°)> then there is a unique
geodesic [x,y] joining x to y.

We may extend the notations xtj and yxz to the case where x G X and
y,zeXc\{x}.
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Note that from the proof of Proposition 4.1.3, we see that if z,x E X,
y E Xf°> and yn E [z,y] Π X is a sequence of points tending to y, then the
vectors xyl tend to 5^ in the unit tangent space at x.

If we fix y E Xf°, then the vector field [x ^ xfj] : X —> TX, is C 1 ,
where TX is the total tangent bundle to X. This may be proven using
the convergence of Jacobi fields just as in the complete case. We may also
define a positive-time flow φ : X x [0, oo) —> X along this field. Thus,
φ(x,t) = β(t), where β is the geodesic ray based at x tending to y. As in
the complete case, we have:

Propos i t ion 4.1.5. The flow φ : X x [0, oo) —> X is C2.

4.2. Horofunctions. In this section, we describe the "horofunctions" (or
"Busemann functions") about a point y E Xf0. The results will be used
again in Chapter 6, though, for the moment, it is something of a digression.

Fix y E Xf°. Suppose a E X. Let β be the geodesic ray based at a tending
to y. Given any x E X, the function [t *-> t — d(x,β(t))] is monotonically
increasing in t. Moreover it is bounded above (by d(x,a)). It thus tends
to a well-defined limit ha(x) = limί_>oo(^ — d(x:β(t))). We see easily that
\ha(x)—ha(x')\ < d(x,x') for all x, a;' E X. Thus, ha : X —> E is continuous.
Also, one can show that ha is C2. This follows as in the complete case (see
[Hel]). We refer to ha as a horofunction about y.

To see that ha is at least Cι on X is elementary. For a fixed t, write /*(#) =
t — d{x,β(t)). Thus / : X —> R is smooth on X, and its gradient, grad/ t

at x equals x$t where yt = β(t). From the Angle Comparison Theorem
(Proposition 3.4.4) we can verify that x$t tends to xy as t —> oo. Moreover,
this convergence is uniform on compact subsets of X. Thus / is C 1 , and
grad/(x) = XΊ).

As a consequence, we may deduce that any two horofunctions about y
differ by a constant.

L e m m a 4.2.1. If a,b,x E X, then hb(x) — hb(a) + ha(x).

Proof. From the previous paragraph, we know that for all x E X, we have
grad(/z6 — ha)(x) = 0, and so hb — ha is constant on X. By continuity, it is
constant on all of X. Since ha(a) = 0, we must have hb(x) — ha(x) — hb(a)
as required. D

We remark that we do not really need the differentiable structure on X in
order to deduce Lemma 4.2.1. In fact, it follows from the CAT(0) inequality.
The important observation is that if we have a "long" rectangle in a CAT(0)-
space, then the sum of the two diagonals is approximately equal to the sum
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of t h e two long edges. M o r e specifically, s u p p o s e x, y,z,w E X , a r e a n y four
points, then \d(x,y) +d(z,w) —d(y,z) — d(x,w)\ < ^(d(x^z)2 + d(y,w)2),
where R — mm(d(x,y),d(z,w),d(y,z),d(x,w)). Here xz and yw are the
"short" sides. The exact form of the right-hand term of the inequality is
unimportant. We just need to note that if the rectangle is sufficiently long,
while the lengths of the short sides remain bounded, then the first term can
be made arbitrarily small. We leave the reader to work out the details of
this, and relate it to the definition of horofunctions.

Suppose that h is a horofunction about y. We have seen that |grad/ι| = 1
everywhere, and so the level sets of h give us a codimension-1 foliation of X
by C2 submanifolds. Given t e i , write S(t) — Xfλh~ι(t). We refer to S(t)
as a horosphere about y. Let B(t) = X\/ι-1([ί, oo)). Thus B(t) is a closed
convex subset of X with boundary S(t). We call B(t) a horoball about t.

Given a horoball B about y, we may define the nearest point retraction p
of X onto B. Thus, for all x E X, ρ(x) is the nearest point on [x, y] Π B to
x. We see that p(x) = x for all x e B, and ρ(X\B) = S = OB. We have
observed that S is a C2-submanifold. We have

Lemma 4.2.2. The nearest point retraction p\(X\B) : X\B —> S is C2.

Proof. Let h be the horofunction with h(S) = {0}. Apply Proposition 4.1.5,
noting that ρ(x) — φ{x, —h(x)) for all x E X\B. D

4.3. The compactified topology. Choose any basepoint p E X, and let
Tp(X) be the unit tangent space at p. Now each vector in T*(X) determines
the germ of a geodesic emanating from p. We may continue this geodesic
until either we arrive at some point of X°, or until we form a geodesic ray
tending to some point of Xf. Lemma 4.1.4 thus gives an identification of
Xj = X°j U Xy° with T^X). Thus, Xr is given the topology of an (n - 1)-
sphere. This topology turns out to be independent of the choice of basepoint
p E X. Moreover, it may be extended to give Xc the topology of a closed
n-ball. In this, and the next two sections we give an account of this.

The identification X = X U X? C Xc gives us a metric d o n l U l f . We
may extend this to a map d : Xc x Xc —> [0, oo] by setting d(x, x) — 0 and
d(χ, y) = oo when x E Xf° and y E Xc\{x} Given x E X U X°, and r > 0,
we write

N(x,r) = {yeXc\d(x,y)<r}.

If p £ X, write

C(p, x, r) = {yeXc\ d{x, [p, y]) < r}.
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In other words, y G C(p,x,r), if and only if [p, y] meets N(x,r). Clearly
N(x,r) C C(p, x,r). The following is a simple consequence of the CAT(O)
inequality.

L e m m a 4.3.1. Suppose thatp G X and y G Xf°. Given z G [p,y]ΠX, and
r,r' > 07 then there is some w G \p,y]Γ\X such that C(p,w,rf) C C(p, z,r) .

We may now define a topology, τ(Xc?_p)5 on Xc> relative to the point
p £ X. We describe neighbourhood bases for points y G Xc as follows. If
y G X, we take as neighbourhood base the collection {7V(y, e) \ e > 0}. If
y G X°, we take as neighbourhood base {C(p, y,e) | e > 0}. If y G Xf°, we
take as neighbourhood base {C(p, £, e) | x G [p, y] Π X, e > 0}. Note that, in
the last case, by Lemma 4.3.1, we could equally well take as neighbourhood
base {C(p, x,r) | x G [p, y] Π X} for any fixed r > 0. It is easily verified
that these sets form the basis for a topology τ(Xc,p) on Xc Clearly, its
restriction to X agrees with the metric topology. However, its restriction to
X U Xj = X is, in general, coarser than the metric topology. We aim to
show that τ(Xc,p) is independent of p G X. The following lemma will be
used in several places in the rest of this paper.

L e m m a 4.3.2. Given a G Xj, and h,η > 0 ; we can find r > 0 with
the following property. Suppose (y,z) G (Xc x Xc)\(Xf° x ^i°) an^ x ^
iV(α, r) Π X. If rf(α, [y, z]) > /ι? ^Λen y£2r < η.

Proof. By hypothesis (B), we can find i f ,h 0 > 0 such that if d(x,a) < /ι0,
then κ(a ) < —l/K2d(x,a). Suppose hyη > 0. Let r > 0, depending on h
and 77, be as determined below. We can assume that r < h' — min(/ι,/ιo)
Let R = ti -r.

Now let £, y, z be as in the statement of the lemma. For the moment, we
assume that y, z G X U X£. The general case will follow by continuity. We
want that yxz < η.

Since cf(α, [y,z]) > h, we have that x £ [y,z\. Let θ — yxz. We can
suppose that θ > 0. Now, x,y,z are the vertices of a ruled surface ob-
tained by joining x to each point w G [y, z] by a geodesic [#, w]. Thus
P ~ |J{[#, w] I w ^ [Ϊ/J^]} i s a non-positively curved 3-gon. In fact, if q lies
in i n t P = P\dP, then the intrinsic curvature Kp(q) is at most κ(q). By
Gauss-Bonnet, we find that

- / φ)dω(q) < - / κP(q)dω(q) < π,

where dω is the area element of P.
Suppose t G (0, ϋ ) , and w G [y,z] \ {y,z}. Let q(w,t) be the point of

[x,iϋ] with d(x,q(w,t)) — t. (Figure 4a.) Now d(a,q(w,t)) < d(x,a) +
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d(x,q(w,t)) <r + t. Thus -κ(q(w,t)) > l/K2d(a,q(w,t))2 > l/K2{r + t)2.
By the Angle Comparison Theorem (Proposition 3.4.4), we see that the path
traced out by q(w, t) as w moves on [y, z] has length at least θt. Thus,

π > - / κ(p)dω(q)
Jp

Γo K2(r

where f(s) — s — log s — 1. Now f(s) -> oo as s -> 0, and so if r/h! is
sufficiently small, we have θ < πK2/'f(r/h!) < η as required.

To deal with the case where y G Xj° and z E X U X°, choose a sequence
of points yn G [y, 2 J Π J with yn —>• y. As observed in Section 4.1, we have
xytt -» ί^, and so the general case follows by continuity. D

Proposition 4.3.3. The topology τ(Xc,p) is independent of p E X.

Proof. Suppose p,p' G X. Certainly τ(Xc,p) and τ{XC')p
l) agree on X. We

thus want to show that for all y G X/, the neighbourhood bases with respect
to p and p', as described above, are equivalent.

Suppose, first, that y G Xj°. Let / = d(p,pf) and suppose r > 0. Given
x G [p, y] Π X, we want to find x' G [p;,y] Π X with C(p',x',r) C C(p,x,r).
By Lemma 4.3.1, we have 2 G [p,y] so that C(p,z,r + 21) C C(p,x,r). By
Lemma 4.1.1, we can find rr' G [p7,y] with d(z^x') < I. lΐ w E C(pr,x',r)
so that d(^ ;, \p',w]) < r, then the CAT(O) inequality, applied to the trian-
gle wpp'', tells us that d(x', [p,iϋ]) < d(rr7, [p',tu]) + d(p,pf) < r + I. Thus
rf(2r, [p, ty]) < (r + /) + d(z, x1) < r + 2/, and so w G C(p, 2r, r 4- 2/). We have
shown that C(p\x',r') C C(p,x,r) as required.

Now suppose that y E Xj. Given 6 > 0, we want to find e; > 0 so
that (7(y,y, 6r) C C(p, y, e). We can assume that e < d(y,p'). Let /ι0 =
<i(y, [p,jp']) and /z = min(/ιo,e). Lemma 4.3.2 gives us some e' > 0 such that
if x G 7V(y, e ' ) Π J and (α, 6) G ( X c x Xc)\ft°° x ^ Γ ) . t h e n d(v, [a, b]) < h

or axb < π/3. Now suppose that 2 G C(p',y,e'), so that there some x G
[p;,z] Π N(y,ef) Π X. Since d(y, [p,p;]) > /*, we have p i p ' < π/3. Thus
pίjz > π - π/3 = 2π/3 and so d(y, [p, 2:]) < h < e. Thus Ĵ  G (7(p, y, e). We
have shown that C(p', y, e;) C C(p, y, e). D

We shall write r(Xc) for the topology thus defined on Xc. The following

is easily verified.
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Propos i t ion 4.3.4. The natural inclusion L : X —> Xc is continuous.

Here, and in the rest of this paper, we adopt the convention that X has
the metric topology, whereas X U Xj has the subspace topology induced
from r(Xc)'

It is not very hard to see that (Xc, τ(Xc)) ι s compact hausdorff. We shall
not give a direct proof here, since we show, in the next two sections, that it
is homeomorphic to a closed n-dimensional ball.

4.4. Starlike sets. Let En be n-dimensional euclidean space, and let 0 G En

be any point. We identify the unit tangent space TjE71 with the unit sphere
Sn-χ. We may identify En with (Sfn~1 x [0,oo))/~~, where (f,0) ~ (C,0)
for all ξ,ζ G 5 n ~ 1 , otherwise equivalence classes are single points. We may
identify the compactified space Eg with (S'n~1 x [0, oo])/~. We write (ξ,t)
for the —class of (ξ, t). Thus, 0 = (ξ, 0) for all ξ G Sn~ι.

Note that a subset Σ C En is open and starlike about 0 if and only if
it has the form {(f,ί) | 0 < t < f(ξ)}, where / : S71'1 —> (0,oc] is lower-
semicontinuous. We write

Thus, Σc is also starlike about 0, and a subset of the closure of Σ in Eg.
Write Σ 7 = Σ C \ Σ = {(£,*) G Eg | * = /(£)}• (Note that this notation is
consistent with that previously defined if Σ = En — X ) We put a topology
τ{Σc) on Σc as follows. We demand that the subspace topology on Σ
induced from τ(Σc) agrees with that induced from E n . If (ξ,£) G Σj , we
take as a base of neighbourhoods the collection {D(U,u)} where

D(U, u) = {(ζ,v)eΈc\ζ€U,υ>u}

and U ranges over all neighbourhoods of ζ in ζ, and u ranges over the
interval (0, £). Thus, in general, the topology r(Έc) on Σ,c is coarser than
the subspace topology induced from (Eg,τ(E£)). (Note that τ(E£) agrees
with our previous definition with Σ = En = X.)

Now, if α,6 G (0, oo] and h : [0, α] —> [0,6] is a homeomorphism, with
h(0) = 0, then the map h — [(£, t) κ> (ξ, h(t))] gives a homeomorphism of the
ball JV(O, a) onto JV(O, b) (where JV(O, oo) = Eg). Moreover, if Σ C JV(Q, a) C
En is open and starlike about 0, then so is Σ ; = h(Σ). Also, Σ'c = h(Σc\,
and h\Σc : ( Σ c , τ ( Σ c ) ) —)> (ΣJ7,r(ΣJ7)) is a homeomorphism.

Write Bn for the closed unit n-ball (as a manifold), and write int l? n —
Bn\dBn for its interior.

Lemma 4.4.1. Suppose Σ C En is open and starlike. Then, the pair
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(Σc,Σ)7 with the topology given by τ(Σc), is homeomorphic to the pair
(Bn,'mtBn).

Proof. Let E^ = En U {00} be the one point compactiίication of E n . Let
Bo = JV(O,1) C En C E^, be the unit ball about 0. From the discussion
prior to the statement of the lemma, we see that we can assume that Σ C Bo.

Let g : En —> E^ \{0} be the inversion given by g((ξ,t)) = (ξ, 1/t) for
t > 0 and g(0) — 00. Restricted to J30, the map g gives a homeomorphism of
Bo onto Boo = E ^ \ i n t β o Let Ω = g(Σ), and Ω c = ρ ( Σ c ) . Let <9Ω be the
topological boundary of Ω in E^, so that <9Ω C i?oo\{og} and Ω c — Ω U <9Ω.
We define the map p : Ωc\{oo} —> [0, 00) by p(x) = deuc(x, <9Ω), where deuc

is the euclidean distance.
Certainly, p is continuous on Ω, and p(x) = 0 if and only if x G Ω C \Ω.

Moreover, if (ξ,ί), (ξ,^) G Ω with t < u, then p((ξ,t)) < p((ξ,u)). We now
define h : Ω c —^ Eg by /ι((ξ, ί » = (ξ, 1 + p((ξ, ί>)> and h{oo) = oc. Clearly,
h maps Ω c bijectively onto B^, and /i|Ω is a homeomorphism onto int^Boo.
It follows that j = g"λhg maps Σc bijectively onto ΰ 0 , and that j\Έ is a
homeomorphism onto int JB0 Moreover, a simple exercise shows that j is, in
fact, a homeomorphism from (ΣC:τ(Σc)) to Bo. D

With a bit more work, one can make a stronger statement, namely:

Lemma 4.4.2. Suppose that Σ C En is open and starlike. Then, there
is a homeomorphism of (Σ^,Σ) to (Bn,'mtBn) whose restriction to Σ is a
smooth diffeomorphism onto int.5n.

Proof (Sketch). One way to do this is to approximate the map p, from the
proof of Lemma 4.4.1, by a smooth map, p1, with dp'/dt > 0 everywhere
on Ω\{oo}. Define σ : B^oo} —> (0,oo) by p«ξ,σ«ξ,t)))) = t. We
want to smooth out σ on int i?o\{oc} to get a smooth map σ' with dσ'/dt >
0. Given any positive integer n, define σn : S™"1 —> (0,oo) by σn(ξ) =
σ((ξ, 1 + l/n)). We approximate each σn by a smooth map σ'n : S^"1 —>
(0,oo) so that \σ'n{ξ) - σn{ξ)\ < l/2n(n + 1) for all ξ G Sn~ι. In this way,
we arrange that σ'n+1(ξ) < σn(ξ) for all ξ E 5'n~1. By interpolation, we get a
smooth function σ' : B(0,2)\B0 —> (0, oo) so that σ'{(ξ, 1 + 1/n)) = σ;(ξ)
and dσ'/dt > 0. We now extend to a smooth function σ' : int i?oo\{ίX)} —>
(0, oo) so that dσ'/dt > 0 everywhere, and σ;((ξ,t)) = £ for all sufficiently
large t. The identity pf((ξ,σ'((ξ,t)))) — t allows us to define a smooth
map p' : Ω\{oo} —> (0, oo), with dp'/dt > 0. We extend p' to a map
Ωc\{oc} —> [0, oc) by setting p'(Ωc\Ω) = {0}. We now proceed as in
Lemma 4.4.1. It may be verified that the map j ' : Σc —> Bo thus defined
is a diffeomorphism on Σ. D
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4.5. The logarithm map. In this section, we relate the discussion of star-
like sets to our compactified manifold XQ.

Choose any point p E X and then identify the unit tangent space T^{X)
with Sn~1 via an isometry φ : T^(X) —> S71'1. Recall the description of
Eg as a quotient of Sn~1 x [0, oo], given in the previous section. We define
a map log : Xc —> E£ as follows. Set log(p) = 0, and for x E Xc\{p},
set log(rr) = (φ(px),d(p,x)), were d(p,x) = oo for x G Xf°. By Lemma
4.1.4, we see that log is a bijection onto its image Σ>C(X) = log(Xc) Q Eg.
Moreover log|X gives a diffeomorphism of X onto Σ(X) = log(X) C X.
This follows as in the complete case. Thus, Σ is open and starlike about 0.
Also, we have that, set theoretically, (Σ(X))C — ΣC(X)

Lemma 4.5.1. The map log : (Xc,τ(Xc)) —> (Σα(X), τ(Σ c(X))) is a
homeomorphism.

Proof. The fact that log is continuous is a simple consequence of the An-
gle Comparison Theorem (Proposition 3.4.4). We have also noted that
log \X is a diffeomorphism. It remains therefore to show that exp = log"1 :
ΣC{X) —> Xc is continuous at all points of ΣC{X)\Σ{X).

Suppose that y = exp((f,ί)) G Xj. Given r G (0,ί), let
x — exp({ξ,t - r/2)). Thus, x G [p, j/] with d(x,y) = r/2. By the continuity
of exp |X, we can find U C 5'n"~1 which is a neighbourhood of £, such that
iϊξ' G U, then (ξ,t-r/2) G Σ and d(z,exp((ξ,ί - r/2))) < r/2. It follows
that d(y,exp((ξ/,t -r/2))) < r/2, and so exp((ξ',tr)) E C(p,y,r) whenever
V > t - r/2 and (£',£') E ΣC{X). This shows that exp(JD(C7,t - r/2)) C
C(p, ?/, r), and so exp is continuous at (ξ,£).

The case where exp((ξ,ί)) E Xp° is similar. D

Putting Lemma 4.5.1 together with Lemma 4.4.2, we have:

Proposition 4.5.2. The pair (XC,X), in the topology τ(Xc), is home-
omorphic to the pair (£?n, int £?n) where Bn is the unit n-dimensional ball,
and inti?n is its interior. Moreover, we can arrange that the homeomor-
phism restricted to X gives a smooth diffeomorphism onto inti?n.

In particular, we see that XQ is compact metrisable.

5. Continuity properties.

As in the previous chapter, we are assuming that X satisfies axioms (A)
and (B). Our aim here is to investigate how geodesies move as we vary the
endpoints.
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5.1. Lower semicontinuity of the distance function. We extend the
metric d on X = X U X® to a map d : Xc x Xc —>• [0, oo] by setting
d(x,x) = 0 and d(x,y) = oo if a; G X/° and y G Xc\{#} We claim that
this map is lower-semicontinuous on Xc x Xc given the product topology
τ(X c ) x τ(X c ).

Lemma 5.1.1. Suppose that #,y G X U X° and x φy. Given and h > 0,
there exist neighbourhoods U ofx and Vofy in r(Xc) such that ifuEU and
v G V, and (u,υ) £ Xf° x Xf°, then d(x, [u,υ]) < h and d(y, [u,υ]) < h. In
fact, we can find u',v' G [u,υ] with d(x,u') < h, d(y,vf) < h and u' G [u,υ'].

Proof. We shall deal with the case where x and y both lie in X®. The
remaining cases are simpler. We can assume that h < \d(x,y). By Lemma
4.3.2, there is some eλ > 0 such that if a G N(x,βι) Π X and (z,w) G
(Xc x Xc)\(Xf x XF), then either d(x,[z,w]) < Λ, or else zάw < τr/2.
There is a similar constant e2 corresponding to b. Let e = min(el7 β2, Λ). Let
[/ = C(y,x,e) and V = C(rr,?/, e). Prom the definition r(Xc) = ^(^c?^) =
τ(Xc>> y) we see that C7, V are neighbourhoods of #, y respectively in r(X(7).
Suppose that u e U and υ G V, so that d(rc, [u,y]) < e and d(y, [υ,x]) <
e. Choose α G [u,y] Π N(x,e) Π X and 6 G [υ,a;] Π N(x,e) Π X. By the
Angle Comparison Theorem (Proposition 3.4.4), we see that abx < τr/3,
and so abυ > 2τr/3 > π/2. Thus d(y, [α,v]) < Λ So, again by the Angle
Comparison Theorem, we have vάy < π/3 and so uav > 2π/3 > π/2. Thus
cf(α;, [w,υ]) < h. Similarly, d(y, [ιt,υ]) < h.

Note that d(x,y) > d(u,x) + d(x,y) — 2e. Thus if w',^ G [u,v] with
φ ; , ^ ) < /ι and d(y,v') < h then d(u,uf) > d(u,υf) + d(α:,y) - 2e - 2h >
o?(n, v') since e < h and 4/i < d(rc, y). If n ^ -X"/°, this shows that u' G [ι/, υ'].
If u G X/°, choose u0 G [τx,u;] Π [u,υ;] Π X, and apply the same argument
with u0 replacing u. D

Lemma 5.1.2. Suppose x G X?, y G Xf° and z G [α, y] Π X. Gẑ  en /i > 0,
then there is some e > 0 and a neighbourhood V about y in τ(Xc) such that
if u G iV(x, e) and υ eV, then d(z, [it, t;]) < Λ.

Proo/. Take e = /ι/2. By the definition of τ(Xc), the set F = C(x, z, e) is a
neighbourhood of y. Suppose v G V and w G N(x,e). Then d(z, [α;, i?]) < e,
and so by CAT(O) applied to xuυ, we find that d(z, [u, v]) <2e<h. Π̂

Lemma 5.1.3. Suppose x G X U Xj and y G X/° and s G [a;,y] Π X.
Given any h > 07 £Λere are neighbourhoods U of x and V of y in r(Xc) such
that ifueU and υ G V and (w,^) ^ Xj° x Xf°, then d(x, [u,υ]) < h and
d(z, [u,v]) < h. Moreover, we can find u',v' G [u,v] with d(x,u') < h and



28 B.H. BOWDITCH

d(z,υ') < h and u' G [u,v'\.

Proof. As with Lemma 5.1.1. Use Lemma 5.1.2. •

Proposition 5.1.4. The map d : Xc x Xc —* [0> °°] is lower semicontin-
uous, where Xc x Xc is given the product topology τ{Xc) x τ(Xc)

Proof. Suppose x,y G Xc If £ = y, then d(x,y) — 0 and there is nothing
to prove. If x G X U X° and y G Xc\{x}, the result follows from Lemmas
5.1.1 and 5.1.3. The only remaining case is where x,y G Xf> and x φ y,
so that d(x,y) = oo. Choose any p G X. Let θ = xpy > 0. Given any
r > 0, let R — rcosec(#/4). Since r(Xc) = τ(Xc,p), by applying the
Angle Comparison Theorem (Proposition 3.4.4), we can find neighbourhoods
U of x and V of y such that if u G f7 and i> G V, then d(p,u) > i?,
d(p, ̂ ) > R, zβv < θ/4 and ypυ < Θ/A. Thus î p^ > θ/2 and so, again by
angle comparison, d{u,v) >r. D

5.2. The Hausdorff topology. We have seen that Xc is homeomorphic to
a ball and hence metrisable. A metric on Xc induces a Hausdorff distance
on the set, ^(Xc), of all closed subsets of Xc and hence a topology on

- Since Xc is compact, it's not hard to see that the topology on on
is independent of the choice of metric on Xc We call this topology

the Hausdorff topology on tf(Xc).
A more natural description of the Hausdorff topology is in terms of uni-

formities (see [K]). Here we shall deal only with bases of uniformities. Given
a set y , write Δ = Δ(Y) C Y x Y for the diagonal {(#, x) \ x G Y}. Given a
subset W C 7 x 7 , write W2 = {{x,y) G Y xY \(3z G Y){(x,z) eW,{z,y) G
W)}. We say that a subset W C Y x Y is symmetric if (#, y) G M̂  whenever
(y, x) G W. A collection Ψ of symmetric subsets of Y x Y form a uniform
basis for Y if the following hold:
(1) Δ C W for all W G Ψ.

(2) For all Wu W2 G ̂ , there is some W3 G >T with W3 C Wλ Π VΓ2

(3) For all W G ̂ , there is some V eW with V2 QW.
Two such bases #i and W2 are equivalent if for all W^ G #1 there is some
W2 G Ψ2 with VF2 C PFi, and for all W2 G Ψ2 there is some W/ G # i with
Ŵ ί Q W '̂ Thus, two bases give rise to the same uniformity if and only if
they are equivalent. (For our purposes, we can define a uniformity as an
equivalence class of bases.)

Given a subset W C Y x Y and a subset A C Y, write WA = {x G

Y I (3y G A)((a:,j/) G W)}. Thus if Δ C W, then A C WA.

A uniform basis ^ on Y induces a topology on Y, where a neighbourhood
of the point x G Y is given by ^{ r} = {W{rz;} | W G W}. This topology
depends only on the uniformity. It is hausdorff if and only if f] Ψ — Δ.
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Note that a metric d on Y induces a uniformity with basis {{(x,y) G
Y x Y I d(x,y) < e} \ e > 0}. This uniformity, in turn, induces the metric
topology. If Y is compact, then this is the unique uniformity of Y inducing
the metric topology.

Suppose that Ψ is a uniform basis on Y. Write ^(Y) for the set of subsets
that are closed in the induced topology. Given W G ^ , write P(W) =
{(A,B) G V(Y)xΨ(Y)\A C l f β , ΰ C WA}, and set P ( ^ ) - {P(W0|W G
Ψ). One checks that P(Ψ) is a uniform basis on &{Y). If (Y, ^ ) is hausdorff
(respectively metrisable) then (if(Y),P(>^)) is hausdorίf (metrisable). We
refer to the topology induced on &(Y) by P(W) as the Hausdorff topology.

Since Xc is compact metrisable, it admits a unique uniformity, and so
ff(Xc) has a well-defined Hausdorff topology. In the next section shall show
that geodesies vary continuously in this topology. We spend the rest of this
section giving an explicit description of the uniformity on XQ>

Fix p G l , and suppose that A C XUXj. Given e > 0, define Ω(p, A, e) C
Xc x ^ c &s follows. The pair (x,y) lies in Ω(p, A, e) if either there is some
o G i with d(α, [p, x]) < e and rf(α, [p, y}) < e, or else if x, y G X U Xj and
d(x,I/) <2e.

Clearly Ω(p, A, e) is symmetric and if 5 C A and 5 < e, then Ω(p, B, δ) C

Lemma 5.2.1. For oW A C X U X^ and e > 0, we have Ω(p, A,e)2 C

Proo/. Suppose (x,y), (y,^) G Ω(p, -A,c). There are three cases.
(1) There are points α, b G A, a0 G [p, x], α l 5 6χ G [p, y] and ί)0 G [p, z] with

d(α, αi) < e and d(6,6^) < e for i = 0,1. Without loss of generality, we
have d(p,δi) > d(p,αi). (Figure 5a).

rz;
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Applying CAT(O) to pbobu we have d(au\p,z\) < 3e. Thus (x,z) E

(2) d(y, z) < 2e and there is some a E A with d(a1 [p, a;]) < e and d(α, [p, y])
e. Applying CAT(O) to pyz, we find that d(a,\p,z]) < 3e, and so
(x,z) G%4,e).

(3) If d(x,y) < 2e and d(y,z) < 2e, then d(x,z) < 4e and so (#,2) E
Ω(p,A,2e).

D

Given r > 0, write τ4(p,r) = X^ U (X\int JV(p,r)), and set W(p,r,e) =
Ω(p,A(p,r),e). Clearly Δ C ^ ( ^ ^ e ) for all r > 0 and e > 0. Let ^ =
Ψv = {VF(p,r, e) I r > 0, e > 0}. Applying Lemma 5.2.1, we see that Ψ is a
uniform base on X c .

Lemma 5.2.2. The uniform base Ψv induces the topology r(Xc) on Xc

Proof. We need to check that if x E Xc> then Ψ{x\ gives a neighbourhood
base for x in τ(X c) = τ(Xc,p).
Case (1): J E I

If 6 < d(X?,[£,p]) and r > d(x,p) + 6, then W(p,r,e){a;} = N(x,e).

Case (2): a; E X7°.

Clearly C(p,x, e) C W(p,r, e){x} for all r > 0 and e > 0. Now, [p , i ]n l f =
{x}. Given any e E (0, d(p, a;)), let y E [p, x] be the point with d(a;, y) = e/3.
Let ί = ί(e) = |oί(Xy, [p, y]) > 0, so δ < e/6. Now, suppose r > rf(p, a;) + 5.
If 2 E VF(p,r, ί){x}, then either cί(z,a;) < 2ί < e, and so z E C(p, a;,e), or
else there is some a E τ4(p, r) with d(α, [p,#]) < ί and d(α, [p, 2:]) < ί < e/3.
Since r > d(p, x) + 5, we must have a E X/, and so d(x, a) < δ + e/3 < 25/3.
It follows that d(x, [p, ̂ ]) < 2e/3 + e/3 = e, and again we have z E C(p, x, e).
We have shown that W(p,r,δ){x} C C(p,a;,e).

Case (3): x E X7°°-
Given r > 0, take y E [p,a;] with d(p,y) = r. Then (7(p,r, e){rz:} C
W{p,r,e){x} for all e > 0.

Conversely, suppose y E [p, ̂ ] Let r = c?(p,y), and let 5 = ί(r) =
|d(Xj, \p,y\) > 0. Suppose e E (0,5), and z E W(p,r, e){x}. Then, there is
some a E A(p, r) with d(α, [p, y]) < e < 5 and d(α, [p, z]) < e. If α E X/, then
d(a, [p,y]) > 5 and so d(α, [x,y]) < e < 2e. If α £ Xj, then d(p,a) > r, and
so again, d(α, [x,y]) < 2e. Applying CAT(0), we find that c?(y, \p,z\) < 3e
and so z E C(p, y, 3e). Thus W(p, r, e){rr} C C(p, y, 3e). D

It follows that the uniform base Ψv defines the unique uniformity on Xc

inducing the topology τ(Xc) In particular, Wp and Wq are equivalent for all
p,qEX.
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5.3. Continuity of geodesies. By Lemma 4.1.4, any pair of points (x,y) G
(Xc x Xc)\{Xj° x Xj°) may be joined by a unique geodesic [x,y].

Lemma 5.3.1. Each geodesic [x,y] is closed Xc-

Proof. We can assume x φ y. Choose p G [x,y]\{x,y}. If zn G [x,y] is any
sequence, it is easily seen that some subsequence converges in r(Xc,p) to a
limit in [x,y]. D

We give tf(Xc) the Hausdorff topology as described in Section 5.2. We
give Xc x Xc the product topology r(Xc) x τ(Xc)

Proposition 5.3.2. The map [(x, y) *-> [x, y]] : (Xc x Xc)\(Xf° x Xf) —>
is continuous.

Proof. We distinguish six cases.

Case (1): x,y G X.

This follows from Proposition 3.4.2.

Case (2): x, y G Xj and x φ y.

Fix some p G [x,y] Π X. Suppose r > 0 and e > 0. Let [/, V be the
neighbourhoods of x, y respectively, given by Lemma 5.1.1, so that if u G U
and υGV, then we can find u\v' G [M,v] with d(x,u') < e/2, d(y,v{) < e/2
and ?/ G [IA, i;']. From the convexity of the distance function (Proposition
3.4.6), we have that [u',υf] C 7V([x,y],e/2) C VF(p,r, e)[x,y] and [a;,y] C
iV([?i',?;/],6/2) C W(p,r,e)[u,υ]. (Figure 5b.) Supposes G [u,u']. Again, by
convexity, we have d(u\ [p, z]) < e/2, and so rf(a;, [p, 2r]) < e. Thus ^ G
C(p,x,e) C W(p,r, e){x}. Therefore, [u,u'] C ^(p,r , e){x}. Similarly,
[v,v'\ C W(p, r, e){y}. We have shown that

[ί/,υ] C W{p,r,e)[x,y]

and

[x,y] C

In other words, [ϊi,v] G P(W(p,r, e)){[x,y]}. Now, the sets

P{W{p,r,e)){[x,y}}

as e —> 0 and r -» CXD form a neighbourhood base for [x,y] in the Hausdorίf
topology on tf(Xc). This deals with Case (2).
Case (3): x = y G X?.

Choose any p G X, and suppose e > 0 and r > 0. By Lemma 4.3.2, there
is some δ0 > 0 such that if α, z G Xc with d(rr, a) < δ0 and ^άp > π/3,
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then d(x, [p, z\) < e. Let δ = min(50,e/3). Suppose u,v
(u,v) (£ X?° x Xf°. We claim that [u,v] C C(p,x,e).

C(p,#,<5), and

x p y

Figure 5b.

To see this, choose oG[p,w] and b G \p:v] with d(a;, α) < δ and d(x, fe) < ί,
and suppose z G [u, i/]. (Figure 5c.) If d(a,z) < 2ί, then d(x,2r) < (5 + 25 < e,
and so 2: E N(x,e) C C(p, x, e). Similarly if d(b,z) < 2δ. Thus, we can
suppose that d(a: z) > 2δ and d(b, z) > 2δ, and so, by the Angle Comparison
Theorem, we have that azb < π/3. Thus, without loss of generality, we can
suppose that uza > | ( π — π/3) = π/3. Thus, again by angle comparison,
uάz < π — π/3 = 2π/3, and so zap > π/3. It follows that d(α, \p,z]) < e,
and so z E C(p, x, e). This proves the claim that [n, v] C C(p, x, e).

Figure 5c.

Now, for all r > 0, we have C(p,x,e) C VΓ(p, r,

symmetric, we have x G W(p,r,e)[u,υ], and so [w

As e -» 0 and r ->• 00, the sets P(W(p, r, e)){{x

base for {x} = [x,x] in the Hausdorff topology on

Case (4): x G X and y G X?.

This is similar to Case (2).

{x}. Since W(p, r, e) is

] G P(W(p,r,e)){{x}}.
form a neighbourhood
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Case (5): x E l J a n d j / E Xf°.

Fix p G [z,y]\{£,y}, and suppose e > 0 and r > 0. Choose z G [p,y] with
d(p, <z) > r. By Lemma 5.1.3, we can find neighbourhoods [/, V about x,y
respectively, such that if u G U, v G F and (w, v) ^ X/° x X/°, then there
exist u',v' G [ίi,?;] with </(#,?/) < e/2, d(y,vf) < e/2 and w' G [ii,v']. Arguing
as in Case (2), we see that [u1>'] C JV([α;,y],e/2), [x,z] C JV([u,υ],e/2),
[11,14'] C C(p, rr,e), [v,v'\ C C{p,z,e) and [z,y] C C(p,v',e/2). Now x,^ G
A(p,r) and so [ϋ,t;] G P(W(p,r,e)){[x,y]}.

Case (6): rr G X and j/ G X/°.

This is similar to case (5). D

6. Visibility.

In this Chapter, we assume that X satisfies properties (A), (B) and (C),
where (C) is the statement:

(C) There exist p0 G X, and Lo,Ro > 0 such that if x G X with d(po,x) >
Ro, then φ) < -1/L2

od{po,x)2.

It follows immediately that if we fix any L G (0, Lo)5 then for all p G X,
there is some R = R(p) such that if d(p, x) > i?, then φ) < —1/L2d(p,x).
We aim to show that, with these hypotheses, X is a visibility manifold, and
that geodesies vary continuously on Xc x Xc-

6.1. Convergence of asymptotic geodesies. Suppose y G Xj°, and h :
X U Xj —> R is a horofunction about y. (Section 4.2.) Suppose 60>&i £
X U X°j with /ι(60) = /ι(6i). Let # : [0, oo) —• X U X? be the geodesic ray
[bi,y]. Thus h(βo{t)) = h(βι{t)) = /i(60) +^ for all ί G [0,oo).

Lemma 6.1.1. d(βo(t),βx(t)) -> 0 as t -> oo.

In fact, we show that d(βo(t),β1(t)) < A(t + λ)~μ where μ > 0 is fixed,
and A, λ > 0 depend on 60 ^nd 6χ.

Proo/. We can assume that bo,bι G X. Join b0 to 6X by a smooth path
7 : [0,1] —> X. Let t0 = max{Λ(7(u)) | u G [0,1]}. Let B be the horoball
X Π /^([ίojOo)), and let 5 be the bounding horosphere X Π h~ι(t0). Let
p : X\int B —> S be the nearest-point retraction. Now, the path h o 7 :
[0,1] —> S joins β(t0) to jS(*i), and, by Lemma 4.2.2, is C2. Thus, without
loss of generality, we can assume that bo^bx e S = h~x(0), and that b0 and
&! can be joined by a C2 path 7 : [0,1] —> S.

Now, for each u G [0,1], let βu : [0,oo) —> X be the geodesic ray based
at j(u) tending to y. Define β : [0,00) x [0,1] —> X by /?(*, ti) = ̂ ( t ) . By
Lemma 4.1.5, /? is C2. Note that h(β(t,u)) = t for all (t,tx) G [0,oo) x [0,1].
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Alsofe(ί,u)=grad/3(Λ(ί,ti)). Thus (f(t,tz), ff(*,ti)) = 0 for all (t,u). In
other words β is a normalised ruled map in the sense of Section 3.1 (except
that it is only C2 and not smooth, though this is more than enough). For
a fixed u, the map \t ι—> §f (£,u)\ is a Jacobi field along βu. Thus the map

[t *-» J(t,u)] is convex, where J(t,u) — |^(t,u) . Given t G [0, oc) write
βt : [0,1] —> X for the C2 transversal path [u \-> β(t,uj\. Thus length/?* =
/0 J(t,u)du. Now, for all ih,^2 G [0,1] the function d(β(t,Uι),β(t,u2))
is monotonically non-increasing in £. Thus, for any fixed subinterval / C
[0,1], the rectifiable lengths of the paths βι\I are non-increasing in t. Now,
length^ IJ) = Jj J(t,u)du. We deduce that for all u G [0,1] the map [t H+
J(t, u)] is non-increasing.

Now choose p e X, and let R — R(p). Thus, if d(p,x) > R, then we
have κ(x) < -l/L2d{p,x)2. Let λ = max{c?(j9,7(?/)) | u G [0,1]}. Thus
t — λ < d(p, /?(£, u)) < t + λ. Without loss of generality, we can assume that
d(p,β(t,u)) >R for all (t,u), and so «(/3(i,w)) < -l/L 2 ( ί + λ)2.

From the formula in Section 4.2, we find that J(t,u) < J(0,u) (1 + | ) ~ μ

where μ = (Λ/1 + 4L2) - 1 > 0. Thus

< length^ = / J(t,ti)Ai

+ jj length7 - A(t + A)"",

where 4̂ = λμlength7 In particular d(βo(t),βι(t)) -> 0 as t -» oo. D

6.2. Bi-infinite geodesies. A bi-infinite geodesic is a geodesic /3 : R —>- X
parameterised by arc-length. We say that β joins x G Xf° to y £ X™
if /3(—t) -> a; and /3(t) -> y as ί -> oo. Clearly the points x and y
are determined by β. We refer to them as the "endpoints" of β. Since
d(β(-t),β(t)) = 2|t|, the rays [t ^ /?(-t)] and [t ι-> /3(t)] for t > 0 are
not asymptotic. Thus the endpoints of β must be distinct. Moreover, the
endpoints determine β up to reparameterisation:

Lemma 6.2.1. Suppose that the bi-infinite geodesies α, β : K —» X have
the same endpoints. Then, there is some t 0 G K suc/i that β(t) = a(t +1 0 ) .

Proof. Let y G Xf° be the common endpoint so that a -+ y and /3 -»
y as ί —> oo. Let /ι be a horofunction about y. There is some t0 G M
such that Λ(α(ί + ί0)) = ^(/?(^)) for all < G R By Lemma 6.1.1, we have
d(a(t + to),β(t)) -> 0 as t -> oo. Also d(a(t + tQ),β(t)) is bounded as
t -> —oo. By Proposition 3.5.6, the map [t t-ϊ d(a(t + t0),/3(t))] is convex,
and thus identically zero. D
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We next want to establish the existence of a bi-infinite geodesic joining
any pair of distinct points of Xj°.

Lemma 6.2.2. Suppose p E X. Then, for all θ > 0, there exists r > 0
such that x,y E X UXj°, then either d(p, [x,y]) <r or else xάy < θ.

Proof. Let R = R(p) and L > 0 be the constants defined at the start of
this chapter. Let r = i?max(l,e2πί/2/l?). Suppose, for contradiction, that
cf(p, [x,y]) > r, and xpy > θ. We form a ruled surface T by joining p to
each point w E [x,y] with a geodesic \p,w] (c.f. Lemma 4.3.2). Thus T is a
non-positively curved 3-gon with vertices p, x and y. By Gauss-Bonnet, we
have — Jτ κ(z)dω(z) < π where dω is the area element of T. As in Lemma
4.3.2, we obtain the contradiction:

,>-jτΦ)du{z)>jR—dt

D

Proposition 6.2.3. // x,y E Xj°, and x Φ y, then there is a bi-infinite
geodesic joining x to y.

Proof. Fix any p E X. Thus xpy > 0. Choose sequences xn E [p, x] Π X
and yn E [p, y] Π X with xn —> x and yn —>> y. By Lemma 6.2.2, we can find
points zn E [xniVn] with d(p,zn) bounded. Since (Xc,τ(Xc)) is compact
metrisable, we can assume that zn converges to a point z E Xc By the
lower-semicontinuity of the distance function (Proposition 5.1.4), we see that
d{p,z) < oo and so z € X U Xj. Thus, by Lemma 4.1.4, we can construct
the geodesies [z,x] and [z, y].

Now choose any α E [z, x] \ {z, x) and b E [^,y]\{^,y} We claim that
d(a,z) + d(z,b) = d(α,6). By Proposition 5.3.2, the geodesic [zn,xn] tends
to [z, a:] in the Hausdorίf topology. Since the metric topology on X agrees
with that induced by τ(Xc), we have, in particular, that d(α, [^n^n]) ~̂  0.
Similarly d(b, [yn,zn]) -> 0. Thus we can find an E [xn^n]

 a n d bn E [yn,zn]
with d(a,an) -+ 0 and d(b,bn) -¥ 0. Now cί(αn,zn) + oί(2:n,6n) = d(αn,6n)
and so the claim follows. Thus, since [α, b] is the unique geodesic from a to
h, we have that z E [α,ί>] It follows that z E X, and [ar,z] U [z, y] gives a
bi-infinite geodesic joining x to y. D

If x,y E X/° and x φ y, we write [x,y] — {x,y} U imaged, where β
is the unique (up to parameterisation) geodesic joining x to y. It is easily
seen that [x,y] is closed in (Xc,τ(Xc)) Note that [x,y] = [y,#]. We write
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6.3. Continuity of geodesies.

L e m m a 6.3.1. Suppose p G X, and κ(p) < 0. Then for all e > 0, there

exists δ > 0 such that if x,y G Xc\{p} with xpy > π — δ, then d(p, [x,y]) < e.

Proof. By continuity of K, we have constants h > 0 and k > 0 such that
N[p,h) C X and κ(z) < -Jfc for all z G N(p,h). Given 6 G (0,/i), let 5 =
min(π/2, kπh2 /4). Suppose that x,y £ Xc\{p} are distinct with d(p, [#, y]) >
e. Let θ = a py. We claim that θ < π — δ. We can suppose that # > π/2. For
the moment, assume that rr, y G X U X/. We form a ruled surface by joining
each w G [x,y] to p by the geodesic \p,w] (c.f. Lemma 4.3.2). Integrating
the curvature, we find that

π - θ > ί k ί^t) dt = kπh2/4 > δ.

Thus θ < π — δ as required.
We can deal with the general case by taking the sequences xniyn G

[x,y] Π X with £ n —>> x and yn -> y, and noting that px n -> p2 and

pyΐi-^vύ- Π

We give X^ x Xc the product topology, and give ^(Xc) the Hausdorff
topology.

Proposition 6.3.2. The map [(x,y) ^ [x,y]] : Xc x ^ c —^ ^ ( ^ α ) is
continuous.

Proof. Note that Lemmas 5.1.1 and 5.1.3 generalise easily to the case where
(u,υ) G Xj° x X/°, with essentially the same proofs. Thus the argument of
Proposition 5.3.2 works to show that the map [(rr, y) ^ [#, y]] extended to all
of X c x X c is continuous at each point (#, y) G (Xc x Xc)\(^/° x -^Γ) I*
thus remains to show that it is continuous at each point (x,y) G Xf° x X/°.
There are two cases.

Case (1): x φ y.

Fix some p G [x,y] Π X with /ς(p) < 0. Suppose e > 0 and r > 0. Let
δ > 0 be the constant given by Lemma 6.3.1, and set η = min(e,rsin(5/4)).
Choose points a G \p,x] and b G \p,y], with d(p,a) — d(p,b) — r + 2e.
Let [/ = C{p,a,η) and V = C{p,b,η). If u e U and υ G V, then by the
Angle Comparison Theorem (Proposition 3.4.4), we find that xpu < δ/2
and ypυ < δ/2. Thus upv > π — δ and so d(p,[u,υ\) < e. Thus, there
is some q G [u,υ] with d(p,q) < e. If u G X/°, then [p, u] and [g, ΪX] are
asymptotic, and so, since d(α, [p, u]) < 77 < e, we can find w; G [#,u] with
<i(β? ̂ 0 ^ 2e. If u G XUX°, we can apply The Angle Comparison Theorem to
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find such a uf. Similarly, we can find υ' G [g, v] with d(b, υ') < 2e. Note that
d(p, υ!) >r and d(p, v') >r. By convexity of the distance function, we have
[u',υ'] C N{[a,b],2e) and [α,6] C ΛΓ([τi',ι/],2e), Also [x,a] C C(p,u',2e)
and [y, 6] C C(p,ΐ/,2e). If z G [ΊΛ, ix'], then by angle comparison, applied
to zpg, we see that d(u',\p,z]) < 2e, and so d(a,\p, z]) < 4e. This shows
that [u,uf] C C(p,α,4e). Similarly, [υ,υ;] C C(p, 6,4e). Since a,b,u',v' G
A(p, r), we have that [x,y] C W (̂p, r,4e)[iA, υ] and [u, υ] C W(p, r, 4e)[ί/, υ].
In other words, [u, v] G P(W(p, r, 4e)){[x, y]}. As e -> 0 and r -> oo, the sets
P(W(p,r, 4e)){[a;,y]} form a neighbourhood base for [x,y] in the Hausdorίf
topology on

Figure 6.

Case (2): x = y.

Choose any point p E X. Suppose p E X. Suppose r 0 > 0 and e > 0.
Let q G [p, x] be the point with d(p,q) = r0. By the continuity of the
logarithm map (Section 4.5), there is some 0 > 0 such that if q' G X U Xj
with d(p,q') = r 0 and gpg7 < 20, then g; G N(q,e). Thus if z G Xc with
cί(p5 ^) ^ "̂o a n d xpz < 20, then z G C(p, g, e).

Given 0 > 0, and p G X, let r > 0 by the constant given by Lemma 6.2.2.
Choose any η > 0 and let i? = max(r0 + 4ry, r + 5ry, 77 cosec 0). Let w G [p, y]
be the point with d(p, w) = r. Thus, by angle comparison, if u G C(p, iϋ, η)
then y m < 0.

Now suppose that u:υ G C(p,w,η). Choose n 0 G [p, u] and υ0 G [p,υ]
with d(w,Uo) < η and d(w,v0) < η. Suppose z G [u,υ]\{u,v}. If u E X/ °
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then [uo,u] and [z,u] are asymptotic, and so we can find uλ G [uo,u] and

u2 E [zju] with d(uι,u2) < η (Lemma 6.1.1). If u E X°n take ux = u2 — u.

Similarly, we find υλ E [vo,v] and v2 E [z,υ] with (/(^i,^) < ?̂ (Figure 6.)

Thus

λ) - d(z, ux) - d(z, vx)

>d(p,uo)+d(p,υo) + (d(uo,u1)+d(vo,υ1) -d(u2,v2)) - 2η

>2d{p,w)-8η,

and so d(p, z) > d(p, tϋ)—iη > max(r0, r+η). Since z is arbitrary, we see that

cf(p, [u, v]) > r + 77. Given this, we see in particular that d(p, [z, u2]) > r + η

and so cί(p, [^,^i]) > r. Thus zpiix = zpu < θ. Since also xpu < θ we have

#P^ < 2Θ. Since d(p,z) > r, it follows that z E C(p, g,e).

We have shown that if u,?; E C(p,w,η), then [?i,i;] C C(p,q,e). We

deduce that [n,υ] E ^(VF^rche^llα;}}. As r 0 -> 00 and e -> 0, these sets

form a neighbourhood base for {x} = [a;, #] in the Hausdorff topology on

. •
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