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TENSOR PRODUCTS WITH ANISOTROPIC PRINCIPAL
SERIES REPRESENTATIONS OF FREE GROUPS

CARLO PENSAVALLE AND TIM STEGER

Let r be the tensor product of an anisotropic principal se-
ries representation of a free group Γ, not an endpoint rep-
resentation, with an irreducible unitary finite dimensional
Γ-representation. Usually r is irreducible and has exactly
two perfect boundary realizations. In a certain well speci-
fied anomalous case τ splits into two irreducible components
and each component has exactly one boundary realization,
which is not perfect.

1. Introduction.

Let Γ be a noncommutative free group on finitely many generators. Fix a
basis A+ for Γ and let A — A+ U A+1 consist of the basis elements and their
inverses. Let π be a representation from one of the anisotropic principal
series of [Figa-Talamanca-Steger]. Let p be an irreducible unitary finite
dimensional representation of Γ. The aim of this paper is to apply the
results of [Steger] to the tensor product π ® p. In particular, we show
that the representation π ® p is irreducible under most circumstances, and
decomposes into two irreducible components when it does decompose.

Anisotropic principal series representations. The following is taken
from [Figa-Talamanca-Steger]. (That paper deals with a free product of
copies of Z/2. The case of a free group is somewhat less complicated.) Let
μ be a symmetric probability measure on A, suppose that μ(a) > 0 for a € A,
and denote by Spec(μ) the spectrum of μ acting on P(T) by left convolution.
Then Spec(μ) consists of a closed interval symmetric about 0. Let σ belong
to the interior of that interval. There is a unitary representation, π, described
below, determined by the pair (μ, σ). Fixing μ and letting σ vary we obtain
a series of representations whose direct integral is the regular representation
of Γ. Call such a series an anisotropic principal series for (Γ, A), and call
the representation π an anisotropic principal series representation.

Fix (μ,σ). Recall that each x G Γ has a unique shortest expression,
Q>\Q>2' * &L>> as a product of elements in A. That shortest expression is the
reduced word for re, characterized by the property that ataι+ι φ e for any I.
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The length, \x\, of x as above is L. A nonzero function /: Γ —> C is called
multiplicative if

(1.1) f(xy) = f(x)f(y) when |xy| - |x| + \y\.

A multiplicative function is determined by its values on A. For 7 ^ Spec(μ),
the inverse of left convolution by ηbe — μ on ^2(Γ) is left convolution by
gΊ = hΊ/(2wΊ), where /ι7 is a multiplicative function and wΊ is a constant.
Let

(1.2) h± = Λσ±<o = lim Λσ ± w
o—>Ό-|-

0± = ί̂ σϋo = h±/(2w±)

Then φ is a positive definite function on Γ, and the representation (TΓ, Ή) is

defined by applying the construction of Gel'fand and Raikov to φ.
For later use, observe that since μ is symmetric, hΊ{a) — hΊ(a~λ) for all

a G A, and consequently the same holds for h±. Also note that since μ is
real, /i7 = /z7, tθγ = ΰ)7, and consequently /ι±, tϋ-t, and g± are complex
conjugates of one another.

Results for τ = π ® p. Let Ή ® V be the representation space of r, where

Ή is the representation space of π and V is the representation space of p.

Define sgn: Γ —> C x by sgn(x) = (-l) | a j | .

Theorem 1.1. Exclude the anomalous case that σ = 0 and p = p ® sgn.

TΛen r 25 irreducible.

In the anomalous case, r splits into two irreducible representations. The

full story of the anomalous case is in Section 4.

Theorem 1.2. Exclude the anomalous case that σ = 0 and p = p ® sgn.

ΓΛen £Λere ώ a dense subspace Z CH®V and a constant Co > 0 so that

lϊm

V and w2, W4 G

The boundary, Ω, of Γ. The statements of the other main results, and the
proofs of all the results, depend on the idea of the boundary of Γ. See [Figa-
Talamanca-Nebbia] or the introduction to [Kuhn-Steger] for more de-
tailed discussions of the boundary. Give Γ the structure of a tree by putting
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an edge between x and xa for x G Γ and a G A. Let d( , •) be the distance
on Γ given by this tree structure. Note that \x\ — d(e,x). A geodesic is a
sequence (xι)ι C Γ such that d(xhxm) = \l — m\. There is a unique geodesic
between any two elements of Γ. The boundary, Ω, is conveniently defined as
{semiinfinite geodesies (xι)fl0}/ ~ where two such geodesies are considered
equivalent when some shift of the indices makes them cofinally equal. This
space is also called the space of ends of the tree. Given x £ Γ and ω G Ω,
there is a unique geodesic [x,ω) starting at x and representing ω, and this
we think of as the geodesic from x to ω. Let

(1.3) [e,ω) = (e,ωi,u;2, . . )

There will exist ( α / ) ^ C A satisfying didi+i φ e such that ωL = aχa2 aL.
We may think of ω as the infinite reduced word a^a^a^ . . . . For ^ G Γ , define

Γ(z) = {x G Γ; z G [e,x]} and Ω(^) = {ω G Ω; z G [e,ω)} ,

those reduced words, respectively finite or infinite, which start out with the
word for z. Topologize Γ U Ω by taking the singleton subsets of Γ and the
sets (T(z) U Ω(z))zer as a basis of open sets. This topology makes Γ U Ω and
Ω compact, with Γ discrete and with every point of Ω in the closure of Γ.
Indeed, ω = lim/^ooo;/ where u>ι is as in (1.3).

The left action of Γ on itself preserves the tree structure, and therefore
it induces an action of Γ on Ω. We write that action as multiplication, and
indeed, it is the obvious action by left multiplication of finite reduced words
on infinite reduced words. This left action of Γ on Γ U Ω leaves the topology
fixed.

Realization of π on the boundary. Define a probability measure v on Ω

by

v(Ω(xa)) = \h+(xa)\2/(l + \h+(a)\2) for x G Γ, a G A, \xa\ = \x\ + 1 .

This works since ΣaeA l^+( α ) | 2 /( l + l^+( α ) | 2 ) — l Define a unitary repre-
sentation 7Γ Γ̂ of Γ on L2(Ω, dv) by

(1.4) (^lίiH = ^
V / V -f-I V / /V / I ϊ / \ 1 7-1/ 1 \ Γ

(/i+(α) ιF(a ιω), if ω

for a G A. This extends to a representation of Γ because π^ j_Γ(α)π^Γ(α~1) = 1.

The action of general x G Γ is given by

(π'+Γ(x)F)(ω) =
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for

(1 *>) P (x ω) - H + ^
h+(Xι)

where x — X\X2 and xλ is the last element common to the geodesies [e,x]
and [e,ω), that is, the longest common initial segment of the reduced words
for x and ω. Unitarity of π^Γ depends on

(1.6) \P+(x,u)\

the right hand side being a Radon-Nikodym derivative. This is easy to check
for x G A and then follows for all x. One defines π'_τ in just the same way,
using /ι_ instead of h+.

[Figa-Talamanca-Steger] exhibits unitary Γ-maps ι±\ T-L —> L2(Ω, dv),
intertwining π to π'±Γ respectively. Also exhibited explicitly is the intertwin-
ing operator

which satisfies Jπ+Γ(x) = π'_Γ(x)J for x G Γ. Although complex conjugation

intertwines π'+τ and π;_Γ just as J does, J is a complex linear map, more

complicated than simple conjugation.

Boundary representations. Define ^representations π'±ς2 of the commu-
tative C*-algebra C(Ω) on L2(Ω,dv) by

(1.7) Ka(G)F)(ω) = (π'_Ω(G)F)(ω) = G(ω)F(ω) .

The symbols π^Γ and π^_Ω are chosen so as to match the following defini-
tion from [Steger].

Definition 1.3. Let Γ be any free group and let Ω be its boundary. A

(Γ, C(Ω))-representation or boundary representation, π', of Γ on %' is a pair

(TΓĴ TΓQ) such that

(1) π'v is a unitary representation of Γ on W.

(2) π'Q is a ^representation of C(Ω) on %'.

(3) For x G Γ and G G C(Ω), <(x)π^(G)4(x" 1 ) = π'Q(\(x)G) .

Here (λ(x)G)(α;) = G(x~ιω). The reader familiar with crossed product
C*-algebras will see that a boundary representation is just a representation
of the crossed product algebra Γ x C(Ω). We will routinely drop the sub-
scripts Γ and Ω on π^. One may easily verify that the two representations
π'+ defined by (1.4) and (1.7) fit together to give a boundary representation
of Γ. One makes πf_ into a boundary representation in the same way. Note
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that although π'+ and π'_ are equivalent as Γ-representations and identical as
C(Ω)-representations, they are not equivalent as (Γ, C(Ω) ̂ representations.

Let p be an irreducible unitary representation of Γ on a finite dimensional
Hubert space V. It is easily verified that the definitions

τ'±Γ(x) = π'±Γ(x) <g> p(χ) τ^n(G) = π'±Ω(G) ® id

give boundary representations τ'± acting on L2(Ω, dv) ® V. Indeed this sim-
ple construction applies generally, yielding a boundary representation as
the tensor product of any boundary representation and any ordinary Γ-
representation. Identifying L2(Ω,dv) ® V with L2(Ω,c?z^;V), (see [Reed-
Simon] Section 2.4, Theorem 10,) gives for any F G L2(Ω, dv\ V)

(r'±Γ(x)F)(ω) = P±(x,ω)p(x)F(χ-1ω)

and

where x G Γ and G G C(Ω).
The following definitions are also from [Steger].

Definition 1.4. Let Γ be a free group, let Ω be its boundary, and let π be
a fixed unitary representation of Γ on Ή.. A boundary intertwiner for π is a
pair (*,, π') satisfying

(1) π' is a boundary representation of Γ on a Hubert space Ή!.

(2) i is a bounded Γ-map from % to W.

(3) H' is generated as a (Γ, C(Ω))-space by L(Ή).
If L is an isometric inclusion, the pair is called a boundary realization of π,
and if i is unitary, the pair is called a perfect boundary realization of π.
Condition (3) is equivalent to requiring that τr'(C(Ω))6(Ή) be dense in 7ί'.

Definition 1.5. Two boundary intertwiners (ί,1? π[) and (L2, π'2) for the same

given representation π of Γ are equivalent if there is a unitary (Γ, C(Ω))-map

U: Tί[ —> Ή'2 so that Όιλ = L2.

Let (iι,π[) and (̂ 25^2) ^ e ^ w o boundary intertwiners for a given repre-
sentation π of Γ. The direct sum of these two intertwiners,

is defined in two steps. Let π's be the direct sum boundary representation
on Ή[ ®Ή'2' Let ϊs(v) = (LI(V),L2(V)). Then (ϊs,π's) satisfies the definition
of a boundary intertwiner except for condition (3). Let T~L'S be the closure
in H[ Θ Ή 2 of τr's(C(Ω))ΐs(Ή). Then T~L'S is a subboundary representation of
H\ Θ Ή,2. Denote the boundary representation on H's by πf

s. Finally, let
LS: % —> Ή!s be ϊs with its range restricted to ΉJS.
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For G G C(Ω) one may verify that

L*aπ'8(G)La = 6 > ί ( G ) * i + t*2π
f

2(G)L2

To be consistent with that definition define, for a boundary intertwiner (L, π')

and for real t > 0,

t(ι,ir') = tf'hy)

and define

0(t,π') = (0,C)

where ζr is the boundary representation on 0-dimensional Hubert space.
From these definitions it follows that if (^i,τrί) and (t2,π2) are boundary
realizations, that is, if i\ and ι2 are isometric inclusions, and if 0 < t < 1,
then t{Lι,π[) + (1 — t)(i2,π'2) is also a boundary realization.

Results on boundary realizations of r. Return to the specific case
of the tensor product representation (r, % ® V) of an anisotropic principal
series representation (TΓ^Ή) and an irreducible unitary finite dimensional
representation (p, V) of Γ. The maps

L± ® id: H ® V —)• L2(Ω, di/) ® V

are unitary Γ-maps intertwining r with τ'±τ. Thus (̂ ± ® id, τ±), where r̂ _ =

(r^Γ,r^_Ω), are two perfect boundary realizations of r.

Theorem 1.6. Exclude the anomalous case that σ = 0 and p = p ® sgn.
Then, up to equivalence, the only perfect boundary realizations of r are (L±®
id, rj.). Moreover, all boundary realizations, perfect or otherwise, are given,
up to equivalence, by

ί ( ^ ® i d , τ D + ( l- ί)(*_®id,τ l) forO<t< 1 .

Outline. Section 2 describes some general results on unitary representations
of free groups and their boundary realizations. Section 3 establishes the
applicability of those general results in the present context. Section 4 deals
with the anomalous case, σ = 0 and ρ = p® sgn.

2. General Results.

If Ή and Hi are Hubert spaces, we denote by B(H,Hι) the vector space of

all bounded linear maps from HtoHλ. IfH = Hi then B(H) = B(H, H).

Definition 2.1. Let T E B{H). We say that T is positive if

( T v , υ ) n > 0 f o r υ€H.
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We denote by B+ {%) the set of all positive operators in B(H).

Definition 2.2. Let T £ B+(H). We define the trace of T as

= J2(Ten,en)n

+00

Σ
7 1 = 1

where ( e n ) ^ is a fixed orthonormal basis for H.

Properties 2.3. Let S and T be in B {%).

(1) tr(τ)e[o,+oo].

(2) tr(α S + βT) = a tv(S) + β tr(T) for α, β G R+.

(3) tτ(SS*) = \\S\\2

HS where || • \\HS is the Hilbert-Schmidt norm.

(4) ΊίUe B(H) is unitary, then tr([/TC/-1) = tr(Γ).

(5) tr(T) is independent of the choice of basis.

(6) Let V be a finite dimensional Hubert space, then tr(T®idy) = dim V tr(T).

Proof. For (l)-(5), see [Dixmier] Section 1.6.6, Theorem 5. Let (vπι)^ι=1

be an orthonormal basis of V. Then using (en ® ̂ m)n,m as a basis of % ® V

gives (6). D

Definition 2.4. Let S,T e B+(H). We define the following inner product

Properties 2.5. Let S and Γ be in B+(H).

(1) ( 5 , T ) β + w e [ 0 , + o o ] .

(2) (S,T)B+

(3) ( 5 , Γ ) B + n =(T,S)B+ .

(4) (5, Γ) + is bilinear in S and T.

(5) Let V be a finite dimensional Hubert space, then (ϋ'Θid,

dimV (i

Proof. (1) follows directly from the definition. For (2),

= tτ{y/Sy/fVTVS)
(«)



188 CARLO PENSAVALLE AND TIM STEGER

For (3),

(S' T W> = I I ^ ^ I l L = \\(SsVτy\fHS = \\VτVs\\2

HS = (τ,s)B+m .

Finally (4) follows from the definition and (3), and (5) follows from (6) of
Properties 2.3. D

One may easily verify the following lemma.

Lemma 2.6. Let Γ be a free group. Let π be a unitary representation of
Γ and let (L,π') be a boundary intertwiner for π. For any G G C(Ω) with
G > 0 the operator

is linear, bounded and positive.

Now we can give the definition of the Finite Trace Condition (FTC) for
boundary intertwiners.

Definition 2.7. Let A be a set of generators and their inverses for a
free group Γ. Let (tι^[) and (L2,π2) be two boundary intertwiners for
a representation (τr,Ή) of Γ. We say that (tι^π[) and (L2^TΓ2) satisfy the
(FTC) if

for all a E A.

Lemma 2.8. Let Γ be a free group with A as a set of generators and
inverses. Let π be a unitary representation ofY and let (^1? π[) and (L2^2) be
boundary intertwiners for Γ. Let p be a unitary representation ofY on a finite
dimensional Hilbert space V. Let r = π ® p, τ[ Γ = π[ Γ ® ρ7 τ'2T — π'2T ® p7
rί,Ω — 7Γi,Ω®i(i7 andτ'2ςι — π^πΘid. Then ( ^ φ i d , ^ ) and (^2®id, τ2) satisfy
the (FTC) as realizations of r if and only if (iι,π[) and (6 2 ,^) satisfy the
(FTC) as realizations of π.

Proof. Let a <E A. Then

((*! ® id)*r{ ( l Ω ( α ) ) (iλ ® id) , (L2 ® id)* τ'2 (1 - l Ω ( α ) ) (L2 ® Ίd

= dimV (6>i (ln(α)) ̂ i^2π2 ί 1 - info)) L2)B+{n)

according to (5) of Properties 2.5. D

The following result, which is our main tool, is from [Steger].
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Theorem 2.9. Let Γ be a free group and let A be a set of generators and
their inverses. Let (π,Ή) be a unitary representation of Y on a Hilbert space
Ή.. If (iι,π[) and (6 2 ,^) are two perfect boundary realizations ofπ satisfying
the {FTC), and if π[ and π'2 are irreducible and inequivalent as boundary
representations, then

(1) π is irreducible.

(2) Up to equivalence (iι,π[) and (i2,π'2) are the only perfect boundary
realizations ofπ.

(3) Up to equivalence all boundary realizations of π are obtained as

t(iuπ[) + (1 -t)(L2,π'2) with te [0,1].

(4) There exists a dense subspace Ήo C % and a constant Co > 0 so that

e e | x | r (υ u π(x)υ 2 )(v 3 ,π(x)υ A ) = (υuv3)(υ2,v4)
xer

for vι, v3 E Ή, and v2, v4 G HQ.

3. Technical Results.

In this section, let Γ be a free group with A as a fixed set of generators and
their inverses. Let (π, Ίί) be an anisotropic principal series representation of
Γ and let (i±,π'±) be the two perfect boundary realizations of π described
in the introduction. Let p be an irreducible unitary representation of Γ
on a Hilbert space V of finite dimension N. Let r = π ® p be the tensor
product representation of Γ on the Hilbert space H 0 V . We will establish
that the hypotheses of Theorem 2.9 apply to r and its two perfect boundary
realizations (L± ®id, τ'±) except in the anomalous case σ — 0 and p = p® sgn.
The various conclusions of Theorem 2.9 give Theorems 1.1, 1.2, and 1.6.

L e m m a 3.1. Let T e β(L2(Ω, dv\ V)) be a linear bounded C{Ω)-map. Then

there exists t E L°°(Ω,dw,GL(V)) such that

(TF)(ω) = t(ω)F(ω) for F E L2(Ω, dv V) .

Proof. We identify V with C ^ and use subscripts on elements of V to pick

out their coordinates. For every n — 1,. . . , N define En E L2(Ω, dv\ V) as

follows

(E")m(ω) = δ(m,n) ^ ίl * m = n

10 it m ψ n .
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Hence for any F G C(Ω; V) we have F = Σn=i π'+(Fn)En. The operator T
acts as follows

( N \ N

n=l / n=l

We define

tmn(ω) = (TEn)m(ω) where tmn G L2(Ω, dv) .

Then

(TF)m(ω) = Σtmn(ω)Fn(ω) = (t(

where ί(α ) = (̂ mn(̂ ;))ivχjv belongs to L2(Ω, c?i/; GL(V)). Since T is bounded,
it follows from Lusin's Theorem that the entries of t are almost everywhere
bounded. Then t G JL°°(Ω,G?Z/; GL(V)). Consequently extending by density,
we get

(TF)(ω) = t(ω)F(ϋ;) for F G L2(Ω,dzy; V) .

D

Endow GL(V) with the norm || ||oo obtained by identifying any linear
operator t: V —> V with its matrix {tjk)^k and setting HίH^ = supJ-k \tjk\.

Lemma 3.2. Let f be a function in Lι(Ω,dv; GL(V)). Then

lim — ] — - I \\f{ω ) - f{ω)\Udv{ω') = 0
jQ(ωn)

for almost all ω = (ωo,ct;i,... ,α; n , . . . ) G Ω.

Proof. This is a standard consequence of the boundedness of the maximal

function for L1-martingales. D

Lemma 3.3. If η G Γ, a G A, and \ja\ = |-y| + 1, then 7 - ^ ( 7 0 ) = Ω(α) .

Proof. Thinking of boundary points of Ω as infinite reduced words, one sees

easily that

7 - 1Ω(7α) C Ω(α) and 7Ω(α) C Ω(7α) .

D

Lemma 3.4. If η G Γ, a G A, and \ja\ = I7I + 1, Λ̂en JP+(7, ω) is constant
for ω G Ω(7α).

Proof. By (1.5)

P + ( 7 ,α;) = ^ — f o r ω G Ω ( 7 α ) . D
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Lemma 3.5. If η G Γ, a G A, and \ηa\ — \η\ + 1, then

dv(η~ιω) ιs(Ω(a))
~ΓΓX~ = ~T7V(—^Γ for ω G Ω(7«)

Proof. From (1.6) we have that

By Lemma 3.4 above, |P+(7,ω)|2 is constant for ω G Ω(7α). Clearly this
constant also gives

•
Lemma 3.6. Lei / 6e a function in L°°(Ω,dv]GL(V)). Let p be a unitary
representation of Γ on a finite dimensional Hilbert space V and let Q: Γ x
Ω —> C be a function, v-measurable in ω, such that
(1) \Q(x,ω)\ = 1 /or all x eT and ω G Ω.

(2) /(rr-1^) = Q(x,ω)p(x~1)/(α;)p(j:) /or α l b e Γ and wGίί.

(3) If ^γ, y eT and 7 ^ Γ(y) ίΛerz Q(j,ω) is constant for ω G Ω(y).
TΛen ίΛere erczsίs a £ A and t0 G GL(V) such that

f{ω) — to for almost all ω E Ω(a) .

Proof. By Lemma 3.2 there exists α; = (ω0, α; l 5 . . ., α;n,...) Efi such that

lim ^ 7 ^ τ / ||/(α/) - slloo^ίω') - 0

where s = f(ω). For every n > 1 let an = 7~1α;n where 7n = α;n_χ. Accord-
ing to (3) Q(7n,α/)s has a constant value for α;' G Ω(α;n). Let sn —
be that constant value. Then

I!I o n ! m? T
7—TT / \\f(ω') ~ s\\oodv{ωl) (using Lemmas 3.3 and 3.5).
{ωn)) JΩ(ωn)

77^7
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Hence

Since U(V) is compact, since sn G {as |a | = 1}, and since A is finite,
we may select a sequence (rij) so that p(jnj) ~~̂  Po for some p0 in W(V), so
that snj. —> ί for some t G GX(V), and so that αnj. = a for all j and for
some a e A. Then

/ \\μ0f(ω')pϊ1-t\\oodv(ω')=0.
./Ω(α)

That is

/(ω) = t 0 for almost all ω G Ω(α)

where ί0 = Poλtpo- D

In analogy with Γ(y), the set of all words which start with the letters of y,
define Γ(y) = Γ(y~1)~1, the set of all words that end with the letters of y.

L e m m a 3.7. Let (Γ,-A) be a free group. Let p be a unitary representation

of Γ on a finite dimensional Hίlbert space V and let q: Γ —> C be a mul-

tiplicative function (not a character, see (1.1)). // there exists a G A and

t0 G GL(V) such that

top(x) = q(x)p(x)t0 for x G Γ(α)\f (a'1)

then
toρ(x) = q(x)p(x)t0 for x G Γ .

Proof. Fix x G Γ(αχ) Π T(a2) where <2χ, α2 G A and α2 7̂  α" 1 . Choose

Wι G Γ(α) such that w\ £ Γ(α - 1 ) and w\ £ Γ(a^λ). Choose w2 G Γ(α)

such that w2 $ f(a~1). Then wu w2, w1xw2 G Γ(α)\f (α" 1 ) , and

+ I re I + |^2 | Hence

t0p(w1xw2) —

=> q(w1)p(w1)t0p(x)ρ{w2) = q{wι)p(wι)q(xw2)p(xw2)t0

^ t0p(x)p(w2) =

=> top(x) = q(x)ρ(x)t0 .

For x G f (α" 1) choose 6 G A such that 6 φ a and 6 7̂  α""1. Then 6 and xί> are
words which don't end with α" 1 and \xb\ — \x\ + 1. In this case we already
know that

toρ(xb) = q(xb)ρ(xb)t0 and



TENSOR PRODUCTS WITH ANISOTROPIC PRINCIPAL SERIES 193

Hence

toρ(x)p(b) = q(x)ρ(x)q(b)p(b)t0 = q(x)ρ(x)toρ(b) .

D

Recall that σ G Spec(μ) is not allowed to be an endpoint. We define

*» d i y f 0 Γ I S Γ

This makes q a multiplicative function of modulus one on Γ.

L e m m a 3.8. If q2(a) = 1 for all a G A, then σ = 0 and g(x) = sgn(rr) =

(-1)1*1 for allxeΓ.

Proof. From [Figa-Talamanca-Steger], Proposition 1.3.4, we will use

(1) 2w+ = μ(c)(/ι^1(c) - h+(c)) for any c E A and

(2) 2w+ = σ-ΣheAμ{b)h+{b).
We proceed, dividing the proof into two cases.

(A) There is a c G A such that h+{c) G R. By (1) we note first that w+
is real and then that h+(b) is real for all b G A. By [Figa-Talamanca-
Steger], Lemma 2.3.1, and the discussion thereafter, we know that h+ = Λ,_
and w+ = w- is impossible for σ in the interior of Spec(/i). This eliminates
case (A).

(B) For all a G A we have h+(a) G iR. Since h+{a) G iR for all a e A,
w+ G iR. By (2) σ = 0. We also have that q(a) = — 1 for all a G A, so

ς(a;) = (—1)1*1 for all x E Γ . G

Proposition 3.9. The two boundary representations τ± are irreducible.

Proof. We only need to work with τ | . Let H\ be a closed (Γ, C(Ω))-stable
subspace in L2(Ω,dz/;V). Then 7ί2 = W-i has the same property, so the
orthogonal projection T: L2(Ω,dv;V) —> L2(Ω,,dv;V) onto Hi commutes
with τ+(x) and τ+{G) for all x G Γ and G G C(Ω). So, as usual, we only
need to prove that any bounded (Γ, C(Ω))-map T on L2(Ω,dv; V) is scalar.
Applying Lemma 3.1 there exists t G L°°(Ω, dv\ GL(V)) such that

{TF){ω) = t{ω)F{ω) for F G L2(Ω,dz/; V) .

On the other hand, for all x G Γ and F G L2(Ω, ώ/; V)

(r WTfKα;) = P^(x,ω)p(x)t(χ-1ω)F(χ-1ω)

and

M = t(ω)P+(x,ω)p(x)F(χ-1ω) .
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Therefore

t{x~~ιω) = p(x~1)t(ω)p(x) for any x E Γ .

Prom Lemma 3.6, with Q(x,ω) — 1 there exists a E Γ and t0 E GL(V)
such that t(ω) = t 0 for almost all ω E Ω(α). Fix x E Γ(α)\f ( G Γ 1 ) . Then
xα; E Ω(α) and the product xα; does not simplify when ω E Ω(α). Therefore

ί0 = t(xω) = ρ(x)t(ω)p(x~1) — p(x)toρ(x~1)

for almost all ω E Ω(α). By Lemma 3.7, with q(x) = 1, it follows that

top(x) = ρ{x)tQ for x E Γ .

Then t 0 commutes with p(rr) for all x E Γ. As a consequence of Schur's

Lemma, ί0 is scalar. That is, there exists a E C such that

t(ω) = α idy for almost all α; E Ω(α) .

We want now to extend this result to Ω. Fix b e A. Find 2r E Γ(α) Π f (6).
Then for ω £ Ω(6~1), zω E Ω(α). Thus ί(ω) = a idy almost everywhere on
Ω\Ω(6~1). Vary b to see that this holds almost everywhere on Ω. Thus T is
multiplication by a. D

Proposition 3.10. Excluding the anomalous case that σ = 0 and p =
p ® sgn7 the two boundary representations τ'± are inequivalent.

Proof. We proceed by contradiction. Suppose that

T : L2(Ω,dzy;V) —+L2(Ω,dz/;V)

is a unitary (Γ,C(Ω))-map that intertwines τ^(rr) with τ'_{x) and τ^_(G)

with τ'__(G) for any x in Γ and G in C(Ω). By Lemma 3.1 there exists

t E L°°(Ω, rfi/; C?L(V)) such that

(TF)(ω) = t(ω)F(ω) for F E L2(Ω,rfz/; V) .

For all x E Γ and F E L2(Ω, rfi/; V) the following holds.

(τ'_{x)TF)(ω) = P-{x,ω)p{x)t(x~1ω)F(χ-ιω)

and

(Tτ'+(x)F)(ω)=t(ω)P+(x,ω)p(x)F(χ-1ω) .

Hence
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By Lemma 3.6 with

™"> P.(x,ω) P+(x,ω)~ '

there exists a E Γ and t0 E GL(V) such that

t(ω) — t0 for almost all ω E Ω(α) .

Fix rr E Γ(α)\f (α""1). When CJ E Ω(α), the product xα; does not simplify
and xω E Ω(α). By the absence of cancellation

for cj E Ω(α). For almost every u G ί!(o)

to = t(xω) = Q(x~\ω)p(x)t(ω)p(x~1) = g(rr)p(x)top(a:~1) .

Thus, by Lemma 3.7, the relation top(x) = q(x)p(x)t0 holds for all x E Γ.

For x j G Γ

q(xy)p(xy)t0 = tQρ(xy) = toρ(x)ρ(y)

= q(x)p{x)top(y) = q{x)p{x)q{y)p{y)t0 = q{x)q{y)p{xy)t0 .

Hence
q{x)q(y) = g(xy) for x, y E Γ .

This means that g is a character of Γ. Then for any a £ A we have

That is
<?2(α) = 1 for ae A.

By Lemma 3.8 it follows that σ = 0 and g(x) = sgn(x) for all x E T. Since
toρ(x) — sgn(rr)p(x)tQ, t0 is an intertwiner between p and p 0 sgn. Since
the anomalous case is excluded, and since σ = 0, p and p ® sgn cannot be
equivalent. Therefore £0 must be 0. D

Proposition 3.11. The two boundary realizations (L± ® id, τ'±) satisfy the
{FTC).

Proof. Given Lemma 2.8, we need only to work with (̂ ±,7rίj_). Remem-
ber that L± are unitary, and that the Hilbert-Schmidt norm is invariant
under unitary operator action on either side. Observe also that for any
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a E A the functions 1Ω(O) and 1 — 1Ω(O) are idempotent, so τr^(lΩ(α)) and

π'_(l — lfi(α)) are projections and consequently the operators i*i_π

and i*_πL(l — lΩ(α))ί<- are too. Recall that J = L~L*+ intertwines

{π'+(x),L2{Ω,dv)) with (π'_(x),L2{Ω,dv)).

Therefore, our problem reduces as follows

( ( . ; < ( l Ω ( o ) ) ι+ , L*_π'_ (1 - l Ω ( α ) ) t-)

Section 3 of [Figa-Talamanca-Steger] gives the following description of
J. Define a set (Fx)χ(=.γ of functions in /C(Ω), the space of locally constant
functions in Z/2(Ω,dz/), by

Fe= 1 Ω

Fχa = ,nf ,An(ax) ,nί xχlΩ(a) for |α| = 1 and |a?α| = |a;| + 1 .

We know that (i?

x)a ;er spans /C(Ω) and

JFxa = —^rτFxa for |α| - 1 and \xa\ = \x\ + 1 .
w+h-(x)

For # E Γ let JCX be the linear span of {Fxa |a;o| = \x\ + 1 and α G A}.
This means that

JCX = {F e /C(Ω) supp(F) C Ω(a ), / F(cj)dzy(α;) = 0,
JΩ

and F depends only on the first \x\ + 1 letters of ω} .

Define /Co = C 1Q. Then the spaces /Ĉ  together with /Co span /C(Ω). Each
element of Kx is an eigenvector of J. In addition, for x Φ y, Kx and /Cy are
orthogonal to each other and to /Co, with respect to integration by v. For
these reasons, we can write

xer

J\jc0 = idκ;0

J\κ,x =
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Let x G Γ and |x| > 1. If x <E Ω(α) then π'_(l - lΩ ( α ))(/C x) = 0 . If x £ Ω(α)
we have

Hence π^(lΩ(α)) J*7r'_(l — lπ(α)) is identically zero on © ^ i ^ ICX. Therefore
to compute the Hilbert-Schmidt norm, we need only to work with the re-
striction to /C0Θ/Ce. Since /Coθ/Ce is finite dimensional, the Hilbert-Schmidt
norm is finite. D

4. Anomalous case.

Let Γ be a free group and let A be a set of generators and inverses for Γ.
As in the introduction, fix a symmetric probability measure μ on A. The
anisotropic principal series representation π is constructed from the pair
(μ, σ) where σ is in the interior of Spec(μ). The burden of this section is to
explain the special case σ = 0.

Since the function sgn is a character

(4.1) ((Λ)sgn) * ((/2)sgn) = (Λ * /2)sgn

where /Ί and f2 are functions on Γ and "*" denotes convolution. The symbols

in the following lemma are from (1.2).

L e m m a 4.1. When σ — 0

(1) 9+ = -(s-)sgn

(2) w+ ~ —W-

(3) h+ = (Λ-)sgn

(4) w-k, h±(a) E iK for a G A

(5) φ(x) = 0 if \x\ is odd.

Proof. For 7 ^ Spec(μ) recall that gΊ is defined as the inverse of ^δe — μ,

both functions acting on £2(Γ) by left convolution. From (4.1)

-9-Ί = (7^e + μ)~l = ( (τ4 - μ)sgn)~1 = (ηδe - μ)~1sgn = (g7)sgn

where multiplication by sgn is pointwise multiplication but all inverses are
inverses for the convolution algebra. (1) then follows from the definition oίg±
as the limit ^o±io (2) and (3) follow from the equality g± = h±/{2w±) given
that h± is a multiplicative function and w± is a constant. Since w+ = vb-
and h+ — /i_, (4) is a consequence of (2) and (3). (5) is immediate from (1)
and the definition φ — (g+ — g_)/(g+(e) — g_(e)). D
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Since (π, Ή) is the result of the GeΓfand-Raikov construction applied to </>,
there is a cyclic vector kQ £ Ή such that

{kQ, π(x)k0) — φ(x) for x £ Γ .

Let

(4.2) Ή e = closed-span{π(x)fc0; x £ Γ, \x\ is even}

% o = closed-span{7r(y)fc0; y £ Γ, |y| is odd} .

By (5) of Lemma 4.1, these two spaces are orthogonal to one another, so

n = He® Uo. Define S: U -> W by

Lemma 4.2.

(1) Sπ(x) '= sgn(a;)π(x)Sί /or x G Γ.

(2) πγ(rc) = sgn(rr)π^(rr) /or a: £ Γ.

(3) L+S = 6_.

Proof. (1) follows from the definitions. To establish (2), it is enough to do

so for x E A, and that is immediate by the definition (1.4) of τr̂ _ and by (3)

of Lemma 4.1. Since L+Sk0 — 1 = £-&o5

L+Sπ(x)k0 =

= π _̂(x)̂ _A:o = i-π(x)k0

for n; £ Γ. Since the Γ-translates of k0 are dense in Ή, this proves (3). D

Fix p an irreducible unitary representation of Γ on a finite dimensional

Hubert space V, such that p = p ® sgn. Then there exists a unitary map

8: V —> V such that

(4.3) sp(x) = sgn(x)p(x)s .

Observe that since s2p(x) = p(x)s2, s2 is a scalar operator. Multiplying s
by an opportune constant, we may assume s2 is the identity operator.

We consider, the operator S ®s\H®V —> %®V.

Lemma 4.3.

(1) (S 0 s)τ(x) = τ(x)(S ® s) for all xβT.

(2) {S®s)2 = Ίdn®v.

(3) S ® s is unitary and self adjoint.
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(4) τ[(x) = sgn(x)rf__(x) for all x G Γ.

(5) (L+ ® id)(5 ® s) = {i- ® s).

Proof. (1) follows from (4.3) and (1) of Lemma 4.2. In fact

(S ® s)τ{x) = (S ® s)(π(z) (8) p(x)) = (S'π(x) ® sp( c))

== (sgn(x)π(x)5ί ® sgn(x)p(x)s) = r(x)(S ® 5) .

For (2) (,ί>®s)2 — (S2®s2) — id^<g>idy = i d ^ y . Remember that S Θ s is the
tensor product of unitary self adjoint operators. This gives (3). By (2) of
Lemma 4.2 π'+(x) — sgn(x)π!_(^) for any x £ Γ, and so τ'+(x) = π'+(x)®p(x)
— sgn(x)π'_(x)(g)p(x) — sgn(x)τf_(x), proving (4). Finally, (3) of Lemma 4.2
gives (5). D

Let Ve and Vo be the 1 and - 1 eigenspaces of s respectively. This means
that

s\Ve = id|V e 5|Vo = -id | V o V = Ve θ Vo .

Then the 1 and —1 eigenspaces of 5 ® s are

We - (He ® Vβ) θ (Ήo ® Vo), Wo - (He ® Vo) θ (H o ® Vβ) -

Let τe and τo be the representations of Γ on We and Wo respectively.
From the perfect boundary realization (L+ ® id, τ̂ _) of r construct boundary
realizations, no longer perfect, ( t e , τ | ) and (^ o,r |) of τe and ro respectively,
by restricting L+ ® id to >Ve and Wo. Condition (3) in Definition 1.4 holds on
account of Proposition 3.9, which says that τ | is irreducible as a (Γ, C(Ω))-
representation.

The following result from [Steger] is parallel to Theorem 2.9.

Theorem 4.4. Let Γ be a free group, let A be some set of generators and
their inverses for Γ ; and define length on Γ in terms of A. Let (τri,Ήi) be an
arbitrary unitary representation ofT and let (^i,π') be a boundary realization
of τ\γ. Suppose that (/α,π;) is not perfect and that it satisfies the (FTC) with
itself. Suppose further that πf is irreducible as a (Γ,C(Ω))-representation.
Then

(1) τri is irreducible.

(2) Up to equivalence, (^i,π') is the only boundary realization of Έ\.

(3) There is a dense subspace Hoi C Hi and a constant Co > 0 so that

lim Co

/or Vι, υ3 e Hi and v2, υ4 G H01.
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The rest of this section is devoted to showing that the abstract Theo-
rem 4.4 applies to our particular situation.

Theorem 4.5. Let σ = 0 and ρ = ρ® sgn. Let τe and τo be the two direct
summands of r defined previously. The conclusions of Theorem 4.4 apply to
τe and its realization (te^r^) and also to τo and its realization (^0,τ^_).

Accordingly we have T'+ ~ τe@τ0 as representations of Γ, where τ'+ is real-
ized perfectly on the boundary, but neither of its two irreducible summands
can be realized except in conjunction with the other.

Neither (&β,τ+) nor {ιo^τ\) is a perfect realization, verifying one of the
hypotheses of Theorem 4.4. Proposition 3.9 asserts that τ'+ is an irreducible
(Γ, C(Ω))-representation, verifying another. It remains only to show that
(j,e, τ\) satisfies the (FTC) with itself as a realization of τe and similarly for
(*Ό> r+) This can be reduced to Proposition 3.11, which says that (^+®id, rj_)
and (*,_ ® id, r i ) satisfy the (FTC) as realizations of r.

L e m m a 4 . 6 . Let j : Ήi — > % be an isometric inclusion. If S,T G B + ( Ή ) ,

then

(2) (j*Sj,j*Tj)β+{Hl) = (jj*Sjj*,jj*Tjj*)B+{n).

Proof. For (1), check that both sides are positive square roots of jj*Sjj*.
For (2), let (e m ) m be an orthonormal basis for %ι and suppose that (jem)m

and (fn)n together make up an orthonormal basis for H. Then

(fSj,fTj)B+{ni) =

= (n*Sjj\jj*Tjj*)B+{n)

since

( y / 2 ^ f n ) n = o
for all n. D

Lemma 4.7. Let H be a Hilbert space. IfX,YeB {%) and T € B+ {%),
then

(X + Y)* T {X + Y) < 2 {X*TX + Y*TY).
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Proof.

{(X + Y)' T(X + Y) υ, v) = \\T1'2 (Xυ + Yv)

<2{\\Tι'2Xυf + \\T1'2Yυf)

= 2((X*TXv,v) + (Y*TYv,v)) .

Π

For fixed α € A we must show that

( 4 4) {<->'+ (ltl(α)) te, t.*eT'+ ( 1 - l Ω ( β ) ) O β + ( W e )

is finite. Let j e : We —> % ® V be inclusion. Then

(/,+ <8) id) j e = Le j*je = idWc 2jej* = i d W 8 V + (S ® s) .

Together with these identities Lemma 4.6 says that up to a factor (4.4) equals

(4.5)
((id + {S ® s))* (t+ ® id)* τ | ( l Ω ( β ) ) (t+ ® id) (id + {S ® s)),

(id + (5 ® a))' (t+ ® id)* < (1 - l Ω ( α ) ) ( t + ® id) (id + (5 ® s)))B+{H9V).

By Lemma 4.7 the first of the two operators in this inner product is bounded

by

(4.6) 2 ( ( ^ ® i d ) * r ; ( l Ω ( α ) ) ( ^ ® i d )

+ (5 0 sY {L+ ® id)* r | ( l Ω ( α ) ) (6+ ® id) (S ® 5)) .

Keeping in mind (5) of Lemma 4.3, the identity of τ'+ and r'_ as represen-
tations of C (Ω) and the fact that 5*5 = id, one sees that (4.6) is equal
to

2 ((*+ ® id)* r ; (l Ω ( α ) ) ( ^ ® id) + {L_ ® 5)* r l (lΩ ( f l )) (/._ ® 5))

= 2 ( ^ π ^ (lΩ ( f l )) ^+ 0 id + ̂ *_πL (l Ω ( α ) ) t- ® id) .

This bound, and the similar bound on the second operator in (4.5), together
with the bilinearity and positivity of the B+ (Ή 0 V)-inner product, show
that up to a factor (4.5) is bounded by

(^π+ (lΩ(α)) i+ ® id + 6lπ!_ (lΩ(α)) ^- ® id,

ι>*+π+ (1 ~ lΩ(fl)) ^+ ® id + CLΈL (1 - l Ω ( α ) ) i- ® i
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This expands into four terms. The term

is zero since the two operators involved are complementary orthogonal pro-

jections.

(*4-7Γ+ (l-Ω(α)) ι>+ ® id, L*_π'_ (1 — ln(a)) i- ® id)

is finite by Proposition 3.11. The other two terms are zero and finite re-

spectively by symmetry. This concludes the proof that (4.4) is finite, and so

concludes the proof of Theorem 4.4 for r e. To prove the (FTC) for (to^+)

with itself use the same method, letting j0: Wo —> Ή ® V be inclusion and

making use of

(L+ ® id) j0 = LO jζjo — id>vo 2J O J* = id^®v — (S ® s) .
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