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FACTORIZATION PROBLEMS IN THE INVERTIBLE
GROUP OF A HOMOGENEOUS C*-ALGEBRA

N. CHRISTOPHER PHILLIPS

Let X be a compact metric space of dimension d. In previ-
ous work, we have shown that for all sufficiently large n, every
element of the identity component Uo(C(X) 0 Mn) of the uni-
tary group U(C(X)®Mn) is a product of at most 4 exponentials
of skewadjoint elements. On the other hand, if X is a man-
ifold then some elements of Uo(C(X) (8> Mn) require at least
about d/n2 exponentials. Similar qualitative behavior (with
different bounds: 5 and d/(2n2)) holds for the problem of fac-
toring elements of the identity component invo(C(X) 0M n ) of
the invertible group as products of exponentials of arbitrary
elements of the algebra. In this paper, we identify the sets of
finite products of 10 other types of elements of invo(C(X)(g)Mn),
and we show that the minimum lengths of factorizations have
the same qualitative behavior as the two exponential factor-
ization problems above (after a suitable minor modification
in 3 of the 10 cases). We obtain upper bounds for large n
that range from 5 to 22, and lower bounds approximately of
the form rd/n2 with r ranging from 1/16 to 2. The classes
of elements we consider all make sense in general unital C*-
algebras. They are: unipotents, positive invertibles, selfad-
joint invertibles, symmetries, *-symmetries, commutators of
elements of invo(̂ 4) and Uo(A), accretive elements, accretive
unitaries, and positive-stable elements (real part of spectrum
positive). The last three classes are the ones requiring the
slight modification; without it, lengths of factorization behave
like exponential length rather than exponential rank.

Introduction.

If A is a unital C*-algebra, then the C* exponential rank of A, denoted
cer(A), is the smallest n G {1,1 + ε, 2,2 + ε,... , oo} such that every element
of the identity component of the unitary group of A is a product of at most
n exponentials of skewadjoint elements. (We say u is a product of k + ε
exponentials if it is a limit of products of k exponentials.) In [13] it is
proved that for n > 2 and X a compact manifold, cer(C(X) ® Mn) is at
least as large as about dim(X)/n2, but on the other hand is bounded above
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by a finite function of n and dim(X) which is at most 4 for n sufficiently
large (depending on d).

In this paper, we consider the problem of factoring suitable invertible
elements of C(X) <g> Mn as products of a number of other kinds of factors,
such as positive invertible elements, unipotent elements, symmetries, and
commutators of homotopically trivial invertibles and unitaries. Including
exponential rank and several other problems that have been studied before,
we consider a total of 12 factorization problems. (A detailed list is given
at the beginning of Section 1.) We prove in this paper that 9 of them
have the same qualitative behavior on C(X) ® Mn as described above for
C* exponential rank (although with different constants). The remaining 3
problems behave like C* exponential length [24], but, after a suitable small
modification, they too behave as above. Including the already known cases
for completeness, we thus give 12 theorems which say essentially the same
thing about different factorization problems in C(X) <g) Mn.

We find it striking that 9 different factorization problems, and slight mod-
ifications of 3 others, all have the same qualitative behavior on algebras of
the form C(X) ® Mn. In particular, the same topological obstruction seems
to prevent short factorizations when dim(X) » n > 2 (even when X is
contractible), and then seems to disappear for large n.

In Section 1, we describe 13 different factorization problems. (We only get
12 theorems because for C(X) ® Mn, although not in general CΓ-algebras,
two of the problems turn out to be identical.) We introduce notation, prove
several general lemmas, and discuss known results on the factorization prob-
lems for Mn and L(H). The remaining three sections contain the proofs of
our theorems; the arrangement is described near the end of Section 1.

Unless otherwise specified, we consider only compact metric spaces X; in
some of our problems, this saves some technicalities involving dimensions of
compact spaces that are not second countable. If a : X —> Mn is a function,
then det(α) is the function x «-> det(α(α;)). We let SUn and SLn denote the
unitaries and invertibles in Mn with determinant 1. If Z is any metric space
(for example, SUn), then C(X,Z) denotes the space of continuous functions
from X to Z with the topology of uniform convergence.

I would like to thank Terrance Quinn for valuable e-mail correspondence,
and Ian Putnam for calling my attention to Quinn's work on factorizations
into positive elements. It was questions about such factorizations that led
to this paper.
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1. Generalities on Factorization.

Let i b e a unital C*-algebra, let U(A) and inv(̂ 4) be its unitary and in-
vertible groups, and let U0(A) and invo(A) be their identity components. In
this paper, we consider the lengths of factorizations of elements of invo(^4),
when the factorization is possible at all, into selfadjoint invertible elements,
positive invertible elements, commutators of elements of U0(A) or invo(^4),
exponentials of skewadjoint or arbitrary elements of A, and the classes of
operators given in the following definition. (The terminology in the defini-
tion specializes for Mn, except as noted, to that used in the survey article
[29] on factorization problems in Mn.)

1.1 Definition. Let A be a unital C*-algebra. Then an element a G A is
called:

(1) a symmetry ("involution" in [29]) if a2 = 1;

(2) a *-symmetry ("symmetry" in [29]) if a is unitary and a2 — 1;

(3) unipotent if a — 1 is nilpotent;

(4) quasiunipotent (not in [29]) if a — 1 is quasinilpotent;

(5) positive-stable if sp(α) C {λ G C : Re(λ) > 0};

(6) accretive if (α + a*)/2 is positive and invertible;

(7) unitary accretive (not in [29]) if a is accretive and unitary.

We point out that a positive-stable (written without the hyphen in [29])
element is not necessarily positive. Our definition of accretive agrees with
that in [29] but conflicts with terminology used elsewhere. (See Section
4.) To clarify the significance of accretive and positive-stable elements, we
prove in Section 4 that an accretive element is positive-stable (and hence
invertible), and that a G A is accretive if and only if Re(φ(a)) > 0 for every
state φ.

Including the ones mentioned before the definition, there are altogether
13 classes. Somewhat over half of them are discussed in [29] for Mn and
(sometimes) for L(H). Unlike [29], we insist that positive and selfadjoint
elements be invertible, and, rather than using the most obvious generaliza-
tion of [29], we use commutators of elements of invo(A). Of the remaining
classes, products of exponentials are trivial in Mn. Unitary commutators
seem to have been overlooked in [29]. Quasiunipotent elements seem to be
a more natural class than unipotent elements in a C*-algebra, but in Mn

(the primary focus of [29]) and in C(X) ® Mn (the primary focus here),
both classes are the same. Finally, we consider accretive unitaries because
of their close connection with exponential length. (See Section 4.)

The paper [29] discusses a large number of other factorization problems.
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Some, such as products of symmetric matrices and pseudoinvolutions, do not
make sense in abstract C*-algebras without additional structure. Others,
such as products of projections, partial isometries, and nilpotent elements,
make sense in an abstract C*-algebra but do not take place in invo(A),
even with simple modifications. The problem of factorization into normal
elements, also considered in [29], can be easily modified to take place in
invo(^4), but it then has a trivial solution, given by the polar decomposition.

Only a few factorization problems have been considered in more general
C*-algebras. The two exponential factorizations were formally introduced
in [11] and [18], and there are now quite a few results; see the survey arti-
cle [16]. Commutators have also been considered by a number of authors;
references are also given in [16]. Factorizations into positive elements have
recently been studied by Quinn [19], [20]. Unipotent triangular matrices are
used in [5] in a purely algebraic setting, which is nevertheless very useful to
us, but we do not include this class with the 13 classes above because it is
not intrinsic.

1.2 Definition. Let C be one of the 13 classes of invertible elements
of a C*-algebra mentioned before or in Definition 1.1. Let A be a unital
C*-algebra. We define the following sets and numbers:
(1) Pc(A) is the set of all finite products of elements of A of the class C.

(2) PC{A) is the closure of PC(A) in inv(A).

(3) τkc(A) is the smallest number n such that every element of Pc(A) is
a product of at most n elements in the class C; it is oo if no such n
exists. We call it the C-rank of A.

(4) rkc(A) is the smallest integer n such that products of n elements of
the class C are dense in PC(A)\ it is oo if no such n exists. We call it
the C-rank of A.

Unlike our definition of exponential rank [11], [18], we do not allow the
values n + e here. We exclude them partly for simplicity and partly because
for some of the classes we consider, a limit of products of n members of the
class seems unlikely to be a product of n + 1 members of the class. For
example, if C is the class of positive invertible elements, then Theorem 3 of
[10] shows that τkc(L(H)) < 5. However, until very recently the best known
upper bound for τkc(L(H)) was 17. (See [30]. This has just been improved
to 7 in [17]. But it is still not clear whether rkc(L(H)) = τkc(L(H)).)

If C is the class of exponentials of skewadjoint elements, then the expo-
nential rank can be recovered as follows:

cer(̂ 4) — n if and only if τkc{A) — rk^(A) — n.
= n + ε if and only if rkc(A) — n + 1 and rkc(^4) = n.
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The same thing can be done whenever the elements of a general class C
include a neighborhood of 1 in Pc(A).

1.3 Proposition. Let C be any of the 13 classes mentiond in or before
Definition 1.1. Then Pc{A) C Pc{A) C mvo(A) for every unital C*-algebra
A.

Proof. We show that all the elements of class C are in mvo(A). The propo-
sition will then follow from the fact that mvo(A) is a closed subgroup of
inv(A).

The commutators are in mvo(A) by definition. It is a standard fact that
the exponentials are in invo(A). All the other classes satisfy conditions
ensuring that the spectrums of their elements do not separate 0 from oo; thus,
their elements are all exponentials. (For the classes of accretive elements and
accretive unitaries, use Corollary 4.3 below to see this.) D

If H is a separable infinite dimensional Hubert space, then in almost all
cases PC(L(H)) is known to be either U(L(H)) or inv(L(iϋΓ)), depending only
on whether all the elements of the class C are unitaries or not. (See [29].
For the classes of positive-stable elements and accretive elements, this follows
by comparison with the class of positive invertible elements. For the class
of accretive unitaries, see Section 4.) In particular, PC{L(H)) = PCL(H)).
Furthermore, in these cases τkc(L(H)) < oo, with known upper bounds
varying from 1 (for exponentials of skewadjoint elements) to 7 (for positive
invertible elements); again, see [29] and Section 10 of [16].

For A = Mn, things are a little more complicated. It turns out that Pc{A)
is always closed in inv(Mn), and always has the form {a G G : det(α) E H},
where G is either U(Mn) or inv(Mn), and H is a closed subgroup of the
multiplicative group C — {0}, not depending on n. Generally rkc(Mn) is
bounded above by a small constant independent of n (between 1 and 5), and
often this constant is known to be the exact value, except for the trivial case
n = l.

For commutative C*-algebras these problems are almost all trivial, but an
important distinction arises.

1.4 Proposition. Let X be compact Hausdorff (not necessarily metric),
and let C be one of the 13 classes considered in and before Definition 1.1.
(1) If X is not totally disconnected, andC is the class of positive-stable, ac-

cretive, or unitary accretive elements, then τkc(C(X)) = τkc(G(X)) —
oo.

(2) IfC is any of the remaining 10 classes, then τkc(C(X)) = τkc{C(X)) =
1 for any X.
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Part (2) is obvious and its proof is omitted. Part (1) will be proved in
Section 4, where results for totally disconnected X will also be given.

We now turn to the case C(X) ® Mn, with n > 2. Some more notation is
required to state our results:

1.5 Definition. For each of our 13 classes C, we define

Nc(n, d) = sup τkc(C(X) ® Mn),
()

where X runs through all compact metric spaces whose covering dimension
[6] dim(X) is at most d.

We note that, for compact metric spaces, all three of the usual dimensions
agree. See Theorem 1.7.7 of [6].

For each of the 10 classes of Proposition 1.4 (2), we will prove a result of
the following form:
(1) For any compact metric space X, we have

Pc(C(X) <S> Mn) = Pe(C(X) <g> Mn),

and both are equal to

{a e invo(C(X) ® Mn) : a(x) G Pc(Mn) for all x e X}.

(2) Nc(n, d) < oo for all n > 1 and 0 < d < oo.

(3) For each fixed d < oo, we have lim^oo supNc(n,d) < Nc, for some
explicitly given finite number NQ (betwen 4 and 22, depending on C).

(4) If X is a compact manifold with boundary, and n > 2, then

τkc(C(X) ® Mn) > /c(n,dim(X)),

for some explicitly given function fc with fc(n,d) —> oo linearly as
d -> oo for each fixed n.

Note that τkc(A) < τkc(A) for any C and A.
For the remaining three classes, (1) still holds, but τkc{C(X) <8> Mn) is

generally infinite. We will, however, still recover analogs of (2), (3), and (4)
by restricting to appropriate commutators, or, in this context, elements with
determinant 1.

The proofs of these results (except for several that have already been
proved elsewhere) occupy the remaining three sections. The three slightly
exceptional classes are treated together in Section 4, where their connection
with exponential length [24], [18] is demonstrated. The other classes of
nonunitary elements are treated in the next section, where the lower bounds
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are shown to follow immediately from results on Banach exponential rank,
while most of the upper bounds can be obtained from a theorem of Dennis
and Vaserstein on factorization into unipotent triangular matrices. The re-
maining unitary cases are treated in Section 3. Again, lower bounds follow
easily from exponential rank results, but upper bounds require more work.

The bounds we present, both upper and lower, are the best we can easily
obtain given the results already known. We have not seriously attempted to
find the best possible bounds in any of the problems we consider. We have
also not investigated more general C*-algebras. Thus, we can state three
problems (out of many possible):

1.6 Problem. Improve the upper and lower bounds given in this paper
for τkc(C(X) <g> Mn) for the various classes C considered.

1.7 Problem. For those classes C for which it is not obvious, characterize
Pc(A) and Pc(A) for an arbitrary unital C*-algebra A.

Of course, these two problems are not equally interesting for all classes C.

1.8 Problem. Does there exist a C*-algebra A such that τkc(A) is finite
for one of the 10 classes in Proposition 1.4(2), but infinite for another one?

2. Factorization of invertible elements.

We start this section by stating the factorization theorem for exponentials,
in effect proved in [13]. We then prove the factorization theorems for unipo-
tent elements, positive invertible elements, selfadjoint invertible elements,
symmetries, and commutators of elements of invo(^4).

The lower bounds in these results are obtained from the lower bound
for exponentials, and the upper bounds are obtained from a factorization
theorem for upper and lower triangular unipotent matrices due to Dennis
and Vaserstein [5]. (The upper bounds for commutators are already in [5].)

2.1 Theorem. Let C be the class of exponentials. Then:

(1) PC{C(X) ® Mn) = PC(C(X) ® Mn) = invo(C(X) ® Mn).

(2) Nc(n, d) < oo for n > 1 and 0 < d < oo.

(3) For fixed d < oo, we have liπv+oo sup7Vc(n, d) < 5.

(4) If X is a compact manifold with boundary and n>2, then
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Proof. (1) is well known (see [2, Proposition 3.4.3]), (2) follows from Corol-
lary 3.2 of [13] and Proposition 4.6 of [11], (3) is Theorem 3.4 of [13], and
(4) is Theorem 2.3 of [13]. D

For later use, it is important to note that the example which proves part
(4) of this theorem is actually a homotopically trivial element of C(X, SUn).

2.2 Proposition. Let X be a compact manifold with boundary, and let
n > 2. Let I be the least integer such that I > [dim(X) - 2]/[2(n2 - 1)].
Then there is a homotopically trivial a E C(X, SUn) which is not a limit of
products of fewer than I exponentials of elements in C(X) ® Mn.

Proof Let m = 2(n2 — 1)(/ — 1) + 2. Then m < dim(X). The proof of
Theorem 2.3 of [13] exhibits a contractible compact subset Xo of Rm, and
u E C(Xo,SUn), such that u is not a limit of products of fewer than I
exponentials. On the other hand, u E U0(C(X0) ® Mn) since Xo is con-
tractible. Therefore u = exp(ihι) exp(i/ι2) exp(i/ijv) for some N and self-
adjoint hu ... , hN E C(X0) 0 Mn. The proof of Lemma 2.3 of [11] (see the
claim (*) there) shows that Λ l5... , hN may be chosen to have values in

L = {a E Mn : a is selfadjoint and tr(α) E 2πZ}.

Since X is a manifold with dim(X) > m, we can identify Xo with some
homeomorphic subset of X. Since L is topologically the disjoint union of
vector spaces and Xo is connected, the Tietze extension theorem provides
&i,... , kpj : X —> L such that kj \χo= hj. Then υ = exp(ifci) exp(ikN) E
C(X,SUn) is homotopically trivial, since L can be retracted onto
{(2πr/n) 1 : r E Z} . By restriction to XOj we see that v is not a limit of
products of fewer than I exponentials. D

The following theorem is not of the form we are concentrating on in
this paper, because triangularity is not an intrinsic property of elements of
C{X) ®Mn. However, it has in effect been proved elsewhere, and parts (1)-
(3) will be used to prove the corresponding parts of several later theorems.
(Part (4) is included merely for completeness.) Note that the factors are
triangular (presumably alternating upper and lower triangular), not merely
pointwise triangularizable.

2.3 Theorem. Let C be the class of unipotent triangular matrices, that is,
elements of A® Mn which are either upper or lower triangular and whose
diagonal entries are all 1. Then:
(1) Pc{C(X)®Mn) = Pc(C(X)®Mn) = {ae mvo(C(X)®Mn) : det(α) =
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(2) Nc(n, d) < oo for n > 1 and 0 < d < oo.

(3) For fixed d < oo, we have lim^oo supNc(n, d) < 6.

(4) If X is a compact manifold with boundary and n>2, then

dim(X) - 2
ikc{C{X)®Mn)>

2(n2 -

Proof. We first note that it suffices to prove parts (1) and (2) for elemen-
tary matrices (unipotent triangular matrices with at most one nonzero off-
diagonal entry), since every elementary matrix is unipotent triangular and
every unipotent triangular matrix is a product of at most (n — l)(n — 2)/2
elementary matrices.

(1) We observe, by factoring out the determinant in a homotopy, that
{a G invo(C(X) ® Mn) : det(α) = 1} is the set of homotopically trivial
elements of C(X,SLn). Indeed, if a G invo(C(X) ® Mn) and det(α) = 1,
we can choose a homotopy t ι-» at from a at t = 0 to 1 at t = 1. Let
(ί, x) H-> ξt{%) be the continuous branch of det(at(x))~1^n which is 1 when
ί = 1. Then t ι-» ξtat is a homotopy in C{X,SLn) from a to fiαi, which
is locally constant with values of the form λ 1 with λn = 1. Since SLn is
connected, it is easy to connect ξιax to 1 in C(X,SLn).

By Lemma 9 of [28], the set of finite products of elementary matrices
contains a neighborhood of 1 in C(X,SLn). It is clearly a connected sub-
group, and it is therefore open. So it is the identity component. Therefore
the previous paragraph shows that

Pc(C(X) ® Mn) = {ae invo(C(X) ® Mn) : det(α) - 1}.

Since this subset is closed in mv(C(X) ® Mn), it is also equal to PC(C(X) ®
Mn).

(2) This follows from Theorem 4 of [28].
(3) The stable rank sr(C(X)) is the greatest integer not exceeding

1 4- dim(X)/2, by [27]. Using (2), the result now follows from Theorem
20 of [5].

(4) This follows from Proposition 2.2, since every unipotent triangular
matrix is an exponential. D

As an immediate corollary, we get the theorem on unipotent factorizations.

2.4 Theorem. Let C be the class of unipotent elements. Then:

(1) Pc(C(X)®Mn) = Pc(C(X)®Mn) = {a G mvo(C(x)®Mn): det(α) = 1}.

(2) Nc(n,d) < oo for n > 1 and 0<d<oo.

(3) For fixed d < oo? we have limn_yoo sup iVc(n, d) < 6.
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(4) If X is a compact manifold with boundary and n>2, then

~r fnrv\ ^ Tijr \ ^ dim(X) - 2
rkc(C(X) ® Mn) > g Λ I n

Proo/. Part(4) follows from Proposition 2.2, one inclusion in (1) is immediate,
and all the rest follows from the previous theorem. D

The following two lemmas enable us to apply Theorem 2.3 to other fact-
orization problems.

2.5 Lemma. Let a G C(X) <S> Mn be triangular, with diagonal elements
αi(#),. . . ,αn(x) at x G X. Assume that, for each x G X, the numbers
aj(x) are all distinct. Then there is s G invo(C(X)®Mn) such that sas~λ =
diag(αi,... ,α n ) .

Proof The proof is the same for upper and lower triangular matrices; we
do only the upper triangular case. The proof is by induction on n. The
case n = 1 is trivial, so suppose the result has been proved for n, and let
a G C(X)(8>Mn+i be upper triangular, with diagonal elements ( α l 5 . . . , α n + i)
with distinct values at each x G X. We write

a(x) =

with a0 G C(X) <8> Mn upper triangular, and with ξ : X —> O1 continuous
(thinking of elements of C 1 as column vectors). By the induction hypothesis,
there is s0 G invo(C(X) Θ Mn) such that soαos^1 = diag(α l 5... ,α n ) . Fur-
thermore, αn+i(ar) is not an eigenvalue of ao{x), since the OLJ{X) are distinct.
Therefore we can define

for x G X, and one checks that sαs"1 = diag(αχ,... , α n + i ) . D

2.6 Lemma. Le£α G (7(X)®Mn 6e the product ofk>2 unipotent triangular
matrices. Then a is a product of 2k positive invertible elements, and also-a
product of 2k symmetries.

Proof. Write a — aιa2" ak with ak triangular and unipotent. Let c be any
invertible diagonal matrix. Write

a =
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Let bj be the j'-th factor in this expression. Then each bj is again triangular,
and the diagonal entries of bj are the same as those of c (for j < k) or those
of c"^-1) (for j = k). If the diagonal entries of c(x) and c(x)~^k~1^ are all
distinct for each a E l , then Lemma 2.5 provides invertible elements Sj such
that SjbjSJ1 = c for j < k and SjbjSj1 = c""**"1) for j = k.

To write α as a product of 2k positive invertible elements, we now follow
the proof of Theorem 2 of [25]. Take c = diag(α,... , an) with (α,. . . , an)
distinct positive real numbers. For j < A;, we then have bj = (s*jSj)~1(s*jcSj)J

a product of two positive invertible elements. For j = fc, use c"^"1^ in place
of c to get the same thing.

To write a as a product of 2k symmetries, we follow the proof of Theorem 5
of [25]. Suppose first that n is even, so n = 2m. Let Ax,... λm be complex
numbers of the form λ̂  = exp(2πt0j), with 0 1 ?... , θm real, irrational, and al-
gebraically independent over Q. Take c = diag(λχ, λf \ λ2, λ^1,... , λm, λ" 1).
Then c and c~^k~^ have all their diagonal entries distinct. As in [25], the
equation

(x o W o lλ/o λ-Λ

1° λ-v I1 °Aλ °)
can be used to show that c and c~^k~^ are each products of two symmetries.
So bj, being similar to c or c~^k~ι\ is also a product of two symmetries.

If n is odd, let n = 2m + 1, choose A1?... , λm as before, and take c —
diag(λi, λΐ\... , λm, λ"1,1). Then proceed as before. D

2.7 Theorem. Let be the class of positive invertible elements. Then:
(1) Pc{C{X)®Mn) = Ψc(C{X)®Mn) = {α G invoiCW^Mn) : det(α) >

0}.

(2) Nc(n, d) < oo for n > 1 and 0 < d < oc.

(3) For fixed d < oo, we have linv^oo sup iVc(n, d) < 12.

(4) If X is a compact manifold with boundary and n >2, then

n ) 2

ft J.

Proof. (1) Since

{a E invo(CpO ® Mn) : det(a) > 0}

is closed in inv(C(X) (g> Mn) and obviously contains PC(C(X) <g> Mn), it
is enough to show that it is contained in PC(C(X) ® Mn). So let a G
invo(C(X) ® Mn) and suppose det(α) > 0. Then

det(α)-1 / n a € invo(C(X) ® Mn)
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and has determinant 1. By Theorem 2.3(1) and Lemma 2.6, it is a product
of positive invertible elements. Therefore so is

a = (det(α)1/n l)(det(a)-^na).

(2) This follows from the corresponding part of Theorem 2.3 by using
Lemma 2.6 just as above.

(3) Fix d < oo. Combine Lemma 2.6 and Theorem 2.3(3) as in the ar-
gument for part (1) to obtain the following statement: For all sufficiently
large n, all X with dim(X) = d, and all a G invo(C(X) ® Mn), there
are 12 positive invertible elements αi, . . . , αχ2 G C(X) ® Mn such that
a = (det(α)1/71 l)αχα2 αi2. Now det(α)1^nαi is again a positive invert-
ible element. Thus a is a product of 12 positive invertible elements.

(4) Theorem 2.8 of [29] implies that a product of two positive invertible
elements of Mn is similar to a positive invertible element of Mn, and so has
spectrum in the right half plane. It follows that the product of two positive
invertible elements of C(X) ® Mn is an exponential. Now use Proposition
2.2. D

2.8 Theorem. Let C be the class of selfadjoint invertible elements. Then:

(1) PC{C(X) ® Mn) = PC{C{X) ® Mn) = {a G invo(C(X) ® Mn) :

det(α) is real}.

(2) Nc{n, d) < oo for n > 1 and 0 < d < oo.

(3) For fixed d < oo, we have lim^oo sup.Λfc(n, d) < 13.

(4) If X is a compact manifold with boundary and n>2, then

dim(JSΓ) - 2
τkc(C(X)®Mn)>

2(n»-l) *

Froo/. Parts (1), (2), and (3) follow from the corresponding parts of Theo-
rem 2.7 by multiplying by the selfadjoint invertible element

fl det(α(a;)) > 0
wlx) = s

\diag(-l,l, . , l ) det(a(x)) < 0.

Part (4) follows from Proposition 2.2, since every selfadjoint invertible ele-

ment is an exponential. ~ D

2.9 Theorem. Let C be the class of symmetries (called involutions in [25]

and [29]). Then: _
(1) Pc{C{X)®Mn) = Pc(C(X)®Mn) = {a£ invo{C(X)®Mn) : det(α) =

{±1} for all x}.
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(2) Nc(n, d) < oo for n > 1 and 0 < d < oo.

(3) For fixed d < oo, we have lim^oo sup Nc(n, d) < 13.

(4) If X is a compact manifold with boundary and n>2, then

dim(X) - 2
τkc(C(X)®Mn)>

(n*-l)

Proof. Parts (1), (2), and (3) are proved in the same way as in the proof of
Theorems 2.7 and 2.8. (Note that the element w from the proof of Theo-
rem 2.8 is a symmetry. Also, one uses the part of Lemma 2.6 that refers to
symmetries.)

Part (4) follows from Proposition 2.2, since every symmetry is an expo-
nential. D

2.10 Theorem. LetC be the class of multiplicative commutators of elements
o/inv0(.A). Then:
(1) Pc{C{X)®Mn) = Pc{C{X)ΘMn) = {a G invo(C(X)®Mn) : det(α) =

1}.

(2) Nc(n, d) < oo for n > 1 and 0 < d < oo.

(3) For fixed d < oo, we have linin^oo sup Nc(n, d) < 6.

(4) // X is a compact manifold with boundary and n > 2, then

Proof Every multiplicative commutator of elements of invo{C(X) ® Mn) is
clearly in invo(C(X) <8> Mn) and has determinant 1. Thus

Pc(C(X) <S> Mn) C{ae mvo(C(X) ® Mn) : det(α) = 1}.

The rest of part (1), and part (2), follows from [28] as in the proof of
the corresponding parts of Theorem 2.3, because every elementary matrix
is a commutator of elements of mvo(C(X) ® Mn). (For n > 3, it is well
known that every elementary matrix is actually a commutator of elementary
matrices. For n = 2, see the proof of Theorem 5.4 of [13].)

Part (3) now follows from Theorem 2(d) of [5], using the fact that
sr(C(X)®Mn)<oo([27]).

Part (4) follows from Theorem 5.4 of [13], since the element u there is in
invo(C(X)®Mn). D

We note that part (1) of this result is in Proposition 2.4 of [26]. There
is a similar result for products of commutators of arbitrary elements in
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inv(C(X) ® Mn). Unfortunately, in (1) and (2) one must then apparently
require

n > sr(C(X)) + 1 - [dim(X)/2] + 2,

is where [ ] is the greatest integer function.

3. Factorization of unitaries.

We start this section with the statement of the factorization theorem for
exponentials of skewadjoint elements, essentially proved in [13]. We then
prove factorization theorems for "-symmetries and for commutators of ele-
ments of U0(A). Unfortunately, triangular matrices are unitary only if they
are diagonal, so the theorem of Dennis and Vaserstein used in the last section
does not help here. We must therefore use more direct methods. (Presum-
ably, these methods could also have been applied to some of the problems
considered in the previous section.)

3.1 Theorem. Let C be the class of exponentials of skewadjoint elements.
Then:

(1) PC(C(X) ® Mn) = PC(C(X) ® Mn) = U0(C(X) ® Mn).

(2) Nc(n,d) < oo for n > 1 and 0 < d < oo.

(3) For fixed d < oo, we have l i m ^ ^ sup Nc{n, d) < 4.

(4) If X is a compact manifold with boundary and n > 2, then

Proof. (1) is well known (see [2, Proposition 3.4.5]), (2) is Corollary 3.2 of
[13], (3) is Theorem 3.4 of [13], and (4) is Theorem 2.3 of [13]. D

As with exponentials of arbitrary elements, we will need a stronger state-
ment than part (4) of this theorem. Its proof is the same as that of Propo-
sition 2.2, and is omitted.

3.2 Proposition. Let X be a compact manifold with boundary, and let n >
2. Let I be the least integer such that I > [dim(X) —2]/[n2 —1] —1. Then there
is a homotopically trivial u G C(X,SUn) which is not a limit of products of
fewer then I exponentials of skewadjoint elements of C(X) <S> Mn. D

3.3 Lemma. (Compare [13, Lemma 3.1].) For integers n > 2 and
d > 0? there is M(n,d) < oo such that for every compact metric space
X of dimension at most d and every homotopically trivial u E C(X,SUn),
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there exists a rectifiable path from u to 1 in C(X, SUn) with length at most
M(n,d).

Proof. Let p be the metric induced on SUn by some Riemannian metric (or
by some realization of it as a finite simplicial complex). Apply Theorem 0.2
of [3] to obtain a number bd = bd(SUn) < oo. Choose M(n, d) to be any
real number greater than bd(SUn). Then for every compact metric space X
with dim(X) < d, and every homotopically trivial u G C(X,SUn), there is
a homotopy t »-> vt from υ0 = 1 to Vι = u with width [3] less than M(n, d).
Corollary 3.6 of [3] gives a Lipschitz homotopy t *->• ut with Lipschitz con-
stant less than M(d, ή)\ clearly the length of t \-+ ut in C{X)®Mn is bounded
by this Lipschitz constant. (Note that the existence of the geodesic equilo-
cally convex structure on SUn, needed implicitly in Corollary 3.6 of [3], is
ensured by Lemma 1.2 of [3].) D

Part (2) of the following lemma is a quantitative improvement of Lem-
ma 2.2 of [26]. We need only two commutators rather than n of them. (We
also get a much larger value of εn in the proof.) It is interesting to note that
at least part (2) can fail if C(X) ® Mn is replaced by the section algebra of
a locally trivial Mn-bundle. (We omit the example, since it would take us
too far afield.)

3.4 Lemma. For each n > 1 there exists εn > 0 such that whenever X is
a compact space and u : X —> SUn is continuous and satisfies \\u — 1|| < εn,
then:
(1) There exist 6 *-symmetries $i,... ,s6 6 C(X) <8> Mn such that u =

(2) There exist 4 homotopically trivial elements Wι,w2,W3,W4 G C(X, SUn)
such that u = (wιw2wlw2)(w3w4w^wl).

(3) //pG C(X) ® Mn is a projection unitarily equivalent to a constant
projection, then there exist 2 homotopically trivial elements Wι,w2 £
C(X,SUn) such that upu* = (wιw2w{w2)p(wχw2w{wl).

Proof. Conjugating everything by an appropriate unitary, we may assume in
case (3) that p is a constant diagonal projection.

We now suppose n is even. Let ξ = exp(π/n), a primitive 2n-th root
of 1. Define u0 = diag(ξ,£3,... ,£2n~1) G SUn, and let u0 G C(X) ® Mn

also denote the constant function with this value. Let 0 < εn < \1 — ξ\ =
2arcsin(l/(4n)). Then the closed εn-balls about the eigenvalues of u0 have
disjoint intersections with S1. By Theorem 13.6 of [1] (see Section 11 of [1]
for the notation), if υ G U(Mn) and ||v — uo\\ < εn, then the closed εn-ball
about any eigenvalue of u0 contains exactly one eigenvalue of v. In particular,
if \\u—1|| < εn, then uu0 has distinct eigenvalues at each point of X. We claim
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that there exists z € U(C(X) (g> Mn) such that zuuoz* is diagonal. To see
this, apply the argument of the second paragraph of the proof of Lemma 2.4
of [11] to the unitary defined on V = {c G U(Mn) : \\c — uo\\ < εn} by c *->
c, to obtain / : V —> U(Mn) such that f{c)cf(c)* is diagonal for all c E V.
Now define z(x) = f(u(x)uo(x)) for x e X.

Write 2imO2* = diag(λi,... ,λn) with continuous functions λi,. . . ,λn :
X —> S1. Each of these functions has range contained in a ball of radius
less than 2arcsin(l/4) centered on the unit circle, and so is homotopically
trivial. Furthermore, Xι(x) λn{x) = 1 for all x.

Following the proof of Theorem 3 of [21], we factor zuuoz* continuously
as

diag(λi 3 , . . . ) diag(l,

(The last diagonal entry of the second factor is \χ(x)
equation

λn(α;) = 1.) The

(**)
fa{x) 0

v 0 a(x)
0 a(x)

Vά(x) 0

applied to appropriate pairs of entries in (*), shows that each factor in (*)
is a product of two *-symmetries. Therefore uu0 is a product of four *-
symmetries. We can further use (**) in the same way as above to show that
u0 is a product of two "-symmetries. Then u = (UUO)UQ is a product of six
*-symmetries, proving (1).

To prove (2) and (3), we write

ZUUQZ* = d i a g ( λ ! , . . . , λ n ) =

with

a
λχλ2

0 λn_i/

and w2 =

(0
0

0

^1

1
0

0
0

0
1

0
0

•••OS

0

1

- o ;
(This works since Xι{x) An(x) = 1. Compare with Lemma 2.1 of [26].)
Therefore uuQ is a commutator. The entries of Wι are homotopically trivial.
Therefore we may replace Wι by detfai)"1/'1™^ and similarly for w2, to
express uu0 as a commutator of homotopically trivial functions from X to
SUn. Our choices imply that u0 commutes with p. Therefore (uuQ)p(uuQ)* =
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upu*, and we have proved (3). To prove (2), we use the same trick as above
to express UQ as a commutator.

If n is odd, we take £ = exp(2πi/n), u0 = diag(l,ξ,... jξ"" 1), and
0 < εn < |1 - ξ\ = 2arcsin(l/(2n)) instead. Define A, as before. The
proofs of (2) and (3) (involving commutators) are unchanged. For (1), we
use the factorization (*) as before. This time, each of the two factors of
(*), as well as UQ, has diagonal entries that match up in complex conjugate
pairs, with one entry left over, which is equal to 1. Each is therefore again
a product of two "-symmetries, proving (1). D

Combining Lemmas 3.3(1) and 3.4(1) and (2) yields the following result.
The part of part (1) which applies to commutators has already been observed
by Thomsen (in Proposition 2.4 of [26]).

3.5 Lemma. If C is either the class of *-symmetries, or the class of com-
mutators of homotopically trivial unitaries, then:
(1) Pc{C(X)®Mn) = Tc(C(X)®Mn), and is the set of homotopically triv-

ial unitaries, with determinant ±1 (depending on x £ X) for
""-symmetries, determinant 1 for commutators.

(2) Nc(n, d) < oo for n > 1 and 0 < d < oo.

Proof (1) We first observe that commutators of elements o£Uo(C(X)®Mn),
as well as "-symmetries, are homotopically trivial, that is, in U0(C(X) ®
Mn). An argument similar to one in the proof of Theorem 3.4(1) shows that
{u E U0(C(X)®Mn) : det(n) = 1} is the set of homotopically trivial elements
of C(X,SUn), and that

{u e UΌ{C{X) ® Mn) : det(u(x)) € {±1} for all x}

has exactly one path component corresponding to each continuous ±1-valued
function on X.

The previous lemma implies that the subgroups generated by the com-
mutators and the "-symmetries both contain an ε-neighborhood of 1 in
C(X,SUn). Furthermore, if λ : X -> {±1} is continuous, then
diag(λ, 1,... , 1) is a "-symmetry contained in the corresponding path com-
ponent of

{u e U0(C{X) ® Mn) : det(tι(a;)) 6 {±1} for all x}.

The claimed identifications of PQ(C(X) ® Mn) follow. Since these are closed
subgroups of mvo(C{X) ® Mn), we have PC(C(X) ® Mn) = ~PC(C{X) ® Mn)
in both cases.

(2) With M(n,d) as in Lemma 3.3(1) and εn as in Lemma 3.4, let r(n,d)
be the least integer exceeding M(n,d)/εn. Then JVc(n,d) < 2r(n, d) is clear
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for commutators. For "-symmetries, one extra one suffices to get into any

path component of PC(C(X) ® Mn), so Nc{n, d) < 6r(n, d) + 1. D

The previous lemma gives the first two parts of our standard factori-
zation theorem for unitary commutators and for "-symmetries. Unfortu-
nately what we have done so far does not give the third part. It turns
out to be true that the numbers M(n, d) of Lemma 3.3 can be chosen to
satisfy lim^oo sup M(n,d) < C for some fixed C independent of d. (See
Remark 4.11.) This, however, does not help, since the numbers εn in the
proof of Lemma 3.4goto0asn—>• oo. Further progress requires another
idea, which we take from [15].

3.6 Lemma. Let A be a unital C* -algebra.
(1) Let p^q,r G A be unitarily equivalent projections with p orthogonal to q

and q orthogonal to r. Then there exists a commutator u = ZχZ2z\z2,
with Z\,z2 G Uo(A), such that upu* = r.

(2) Let u G U(A). Then u Θ u* G U0(M2{A)) is a product of two *-

symmetries in M2{A), and is also a commutator wvw*v* with

w,υeU0(M2(A)).

Proof. (1) Let v be a unitary with υpv* = q. Define

e = -(p + q + pv*q + qvp) and w = 1 — p — q+ —τ=(p + q — pv*q + qvp).
<£ v 2

Calculations show that e is a projection, w is a unitary, wpw* = e, and

(*) (l-2e)p(l-2e) = g.

Furthermore, the unitary path

11-)- 1 + (cos(ί) — l)(p + q) + sm{t)(qυp — pυ*q)y

for t E [0,π/4], shows that w E U0{A).
In the same manner, we can construct a projection / and a unitary

x G UQ(A) such that xqx* = / and

(l-2/)ς(l-2/r=r.

Set u = (1 — 2/)(l — 2e); combining the previous equation with (*) yields
upu* = r.

Set z2 = w(l — 2e)*x*. Note that z2fz2 = e by (*) and the choices of
w and x. Furthermore, z2 G U0(A) because w,x G U0(A) and (1 — 2e)* is
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a *-symmetry. Further set Z\ = 1 — 2/, which is in U0(A) because it is a
"-symmetry. Then

ZiZiZlz; = (1 - 2/)(l - 2z2fz*2) = (1 - 2/)(l - 2e) = u.

So u is a commutator of elements of ί
(2) Define

uΛ J
J

Each factor on the right is easily checked to be a '-symmetry. Therefore
v G Uo(M2(A)). Now one checks that

This exhibits u @ u* as a commutator of elements of U0(M2(A)). Since
the product of the last three factors is a conjugate of a *-symmetry, it also
exhibits u φ u* as a product of two "-symmetries. D

3.7 Lemma. Let X be compact metric, and let n > 5dim(X) + 3. If
p,q G C(X) ® Mn are homotopic projections which are unitarily equivalent
to constant projections, then:
(1) There exists v £ Uo(C(X)®Mn), a product of at most 5 * -symmetries,

such that vpv* = q.

(2) There exists v G Uo(C(X) ®Mn), a product of at most 3 commutators
of elements of U0(C(X) (8) Mn), such that vpv* — q.

Proof. (1) This follows from Theorem 2.1 of [15] and the general relations
between the C* projective length and rank, Theorem 2.4 of [14].

(2) Let εn be as in Lemma 3.4. Choose δ > 0 such that whenever
e, / G C(Xk) <g> Mn are projections with ||e — /| | < (5, then there exists
u G U0(C(X) ® Mn) such that ueu* = /, ||u - 1|| < εn/6, and det{u(x)) = 1
for all x. (A standard construction produces δ such that there is always
a u satisfying all but the determinant condition. But if u is close enough
to 1, with the required estimate depending only on n, one can construct
detίu)-1/"^, and it will still be close to 1.)

Let p,q G C(X) ® Mn be homotopic projections. Write C(X) ® Mn =
limC(Xfc) ® Mn, where the Xfc are finite complexes of dimension at most

dimpΓ), as in Lemma 1.8 of [15]. As the proof of Proposition 2.11 of [14], we
can select a suitable term C{Y)®Mn from this direct system, and projections
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ί>o, Qo € C(Y) <g> Mn , such that if φ : C(Y) <g> Mn -» C(X) <g> M n is the map
to the direct limit, then \\p — ¥>(po)IU Ik ~ <P(QO)\\ < δ. Choosing C(Y) ® Mn

to be sufficiently far out in the direct system, we may further assume that
Po and g0 are homotopic.

We now work in C(Y) ® Mn . We consider one component of Y at a time;
thus, we may assume Y is connected. Then p 0 and q0 have constant rank.
Replacing them by 1 — p 0 and 1 — q0 if necessary, we assume they have rank
at most n/2.

We follow the proof of Theorem 2.1 of [15], with Γ(V) = C(Y) ® M n ,
and with p0 and q0 in place of p and q. Choose Pi,P2,9i? Q2 as in the second
half of that proof, with ranks as chosen in the first half. Choose pλ and qλ

as there, with H/̂  ~ Pi| | , ||9χ — qi\\ < δ. Further choose fx as there. Then
Px,?!, and fι are equivalent projections with px orthogonal to fλ and /1
orthogonal to qλ. Lemma 3.6 (1) therefore provides a commutator zλ such
that zipλz{ = qx. The first paragraph of the proof provides unitaries c±

and C2 such that ||ci — 1|| < εn/6 and Cιpxcl = pi, c^q^ — q±. Then

Continuing to follow the proof of Theorem 2.1 of [15], let

Choose projections p 2 , ί 2 € A as there, with \\p2 —
ll?2 — 92II < δ. Choosing / 2 as there, and applying Lemma 3.6 again, we
obtain a commutator w G A such that wp2w* = q2. Let z2 = qι+ w, again a
commutator of homotopically trivial unitaries. Further choose, again as in
the first paragraph, unitaries c3 and c4 such that \\d — 1|| < εn/6 and

i)* and c4(#i + g2)c4 = qλ + q2.

Then u = C4Z2clc2Zχcl satisfies

Combining the choice made in the second paragraph of the proof with the
result of the first paragraph, we can also find C^^CQ G UO(C(X) ® Mn) such
that

c5φ(p0)cl = p and c6φ(q0)c*6 = g.

Set υ 0 = c6</?(n)c5 Then V0PVQ = 9. We can furthermore write
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Call the factors s, v2, and v3. Then v2 and v3 are commutators of homotopi-
cally trivial unitaries because z2 and z\ are. Furthermore, ||s —1| | < εn, since
||Cj — JL || < εn/6 for % = 1,... ,6. Lemma 3.4(3) therefore provides a com-
mutator Vι of homotopically trivial unitaries such that Vi{v2v^pvlvl)v{ =
s{υ2vzpvlvl)s* = q. (Note that p is unitarily equivalent to a constant pro-
jection.) Therefore v = VιV2v3 is the desired product of three commuta-
tors. D

Let (a) denote the least integer / such that I > a.

3.8 Lemma. Let n > 5dim(X) + 3. Let C\ be the class of *-symmetries
and let C2 be the class of commutators of elements of UQ{A). Let bi =
τkCi(C(X) <g> Mn). Let 2n < k < 4rc. Then

τkCl(C(X) ® Mk) < 14 + (bx/2) and τkC2{C{X) ®Mk)<8 + (62/2).

// k = 2n, then

τkCl{C(X) ® Mk) < 7 + (fcχ/2) and ikc2(C(X) ® Mk) < 4 + (62/2).

Proof We follow the ideas of Section 3 of [15]. Let u G U0{C{X) <g> Mk).
Choose orthogonal projections ί>i,9i,p2, and q2 G Mk which sum to 1 and
such that rank(pi) = n and 0 < rank(ft) < n. Let p i 5 ft also denote the cor-
responding constant functions in C(X) ® Mk. By Lemma 3.7, there exists
υ0 E C(X) ® M/k, either a product of 5 "-symmetries or of 3 commutators,
such that VQ(PI + qi)v0 = tx*(pi + qι)u, that is, UVQ commutes with p1 + qx.
There further exists Vi, either a product of 5 "-symmetries or of 3 commuta-
tors, of the form zx Θ z2 with zι £ Ai = fa + ft)(C(X) ® Mk)(pi + ft), such
that UVQVI comutes with each pi and each ft.

We now find υ2, a product of two "-symmetries and also a commutator,
such that UVQV\V2 still commutes with each Pi and each ft, and such that
ft(wQt>iV2)ft = ft. Again, v2 = Z\ 0 z2 with ^ € -A*. To construct z^ let
î < Pi be a constant projection with the same rank as ft. With respect to

the decomposition of the identity (1 — r^) + r̂  -h ft in A^ we have the matrix
representation

Cn c12

P21 C22 0 I ,

0 0

and we take
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By Lemma 3.6 (2), Zi is a commutator of homotopically trivial unitaries,
and also a product of two "-symmetries.

The remainder of the proof takes place entirely within

(Pi +P2)(C(X) ® MO(pi + P2) = M2(C(X)®Mn).

We write the elements as 2 x 2 matrices; elements of C(X) ® Mk are gotten
by adding q± -f #2 to everything. We know that deleting the summand q± + q2

from UVQVIυ2 leaves a unitary u0 of the form

Note that (sχs2 Θ 1) + q\ + q2 € U0(C(X) ® M*) since it is homotopic to u.
The topological stable rank tsr(C(X)) is certainly less than 5dim(X) + 3,
by Proposition 1.7 of [22], and so sxs2 € U0(C(X) ® Mn) by Theorem 2.10
of [23]. Furthermore,

det(5l52) = det Γ1*2 °λ = det(uo)det K 2 ° J = det(txo).

We now assume that det(u(x)) € {±1} for all x (in the *-symmetry case)
or det(n) = 1 (in the commutator case). Because the Vj are products of
*-symmetries or commutators, it follows that det^VQ^^), and so by the
above det(u0) and det(siS2), are ±1 (in the *-symmetry case) or 1 (in the
commutator case). Therefore SχS2 is a product of at most &i "-symmetries or
b2 commutators, and we can write Sχs2 = Wχw2, where each Wi is a product
of at most (bι/2) *-symmetries or (δ2/2) commutators. One checks that
Sχs2 = WιW2 implies u0 — v4v3, where

( l 0
0

is a product of two *-symmetries and a also commutator of homotopically
trivial unitaries by Lemma 3.6 (2), and

(

is a product of (h/2) "-symmetries or (62/2) commutators.
Replacing Vj by Vj + qι+q2 for j = 3,4, we get u — v4v^v2V\V^^ which is a

product of 14+(6i/2) "-symmetries or of 8 + (62/2) commutators of elements
oiUQ{C{X)®Mk).
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If k = 2n then qλ = q2 = 0, and we can take V\ = v2 = 1. This leaves only

7 + (bι/2) "-symmetries or 4 + (62/2) commutators. D

3.9 Theorem. Let C be the class of * -symmetries. Then:
(1) Pc(C(X)®Mn) = Pc(C(X)®Mn) = {ae U0(C(X)®Mn) : det(u(x)) e

{±1} for all x}.

(2) Nc(n, d) < 00 for n > 1 and 0 < d < 00.

(3) For fixed d < 00, we have limn_^oo supN c (n, d) < 22.

(4) // X is a compact manifold with boundary, then

Proof. Parts (1) and (2) are contained in Lemma 3.5. For part (3), fix d, and
set b = Nc(5d + 3,c?), which is finite by (2). Define a sequence of integers
br inductively by b0 = b and 6 r + i = 7 + (6/2). If 6r > 15 then br+ι < 6;
therefore, there exists r such that br < 15. Furthermore, bs < 15 for all
s > r. Using induction and Lemma 3.8, we get Nc(2s(5d + 3),d) < 15 for
all s > r. Now let k > 2 r+1(5d + 3). Then there exists s > r such that
2 2s(5d + 3) < k < 4 2s(5d + 3), and Lemma 3.8 shows

Nc(k,d)<U+(Nc{2s{5d + 3),d)/2) < 22.

For part (4), we claim that a product of two *-symmetries is a limit of ex-
ponentials of skewadjoint elements. The result will then follow from Propo-
sition 3.2. To prove the claim, let Si and s2 be *-symmetries. Then isi and
—is2 have spectrum contained in {±i}, and so can be written isx = exp(ihι)
and — is2 = exp(ih2) with hχ,h2 selfadjoint and \\hι\\ = \\h2\\ = π/2. It
follows from Corollary 2.2 of [24] that exp(i/iχ)exp((l — ε)ih2) = exp(i/ιe)
for some selfadjoint hε E A, and clearly exp(z7iε) -> (i5i)(—is2) = sλs2 as
ε->0. D

3.10 Theorem. Let C be the class of commutators of homotopically trivial

unitaries. Then:
(1) PC(C(X) ® Mn) = Pc(C(X)®Mn) = {ae U0(C(X)®Mn) : det(ti) =

1}.

(2) Nc{n, d) < oo for n > 1 and 0 < d < oo.

(3) For ^ e d d < oo? lί e have lim^^^ supΛΓc(n,d) < 13.

(4) If X is a compact manifold with boundary, then
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Proof. Parts (1) and (2) are contained in Lemma 3.5. The argument for
Theorem 3.9(3) applies here as well, with different numbers. Since b > 9
implies 4 + (6/2) < 6, we get

lim supNc(n,d) < 8 + (9/2) = 13.
nyoo

For (4), we use the unitary version of Theorem 5.4 of [13]. It asserts that
if n > 2, and X is a compact manifold with boundary of dimension at least
m = 6(4n2 - 1)1 + 2, then there is u0 € U0(C(X) ® Mn) which is a product
of unitary commutators but not of 21 or fewer of them. To prove it, observe
that, as in [13], we may take X to be the closed unit ball of Rm. We use the
same u0 as in the proof of Theorem 5.4 of [13]. It is a product of unitary
commutators by (1). Suppose it were a product of 2/ of them. The formula

vw 0
0 (ΌW)Φ

would then show that u = uo®l € C(X) <g>M2n is a product of 6/ unitaries
of the form z Θ z*. Each of these is a limit of exponentials of skewad-
joint elements by Corollary 5 of [12]. So u would be a limit of products
of 6/ exponentials of skewadjoint elements, contradicting Theorem 1.10 of
[13]. D

3.11 Remark. It seems very unlikely that Nc{n,d) is smaller when n is
divisible by a large power of 2 than for other large n, when C is either the
class of "-symmetries or of unitary commutators. Therefore we expect that
one should be able to replace 22 by 15 in Theorem 3.9(3)and 13 by 9 in
Theorem 3.10(3).

4. Factorization problems related to exponential length.

In this section we prove factorization theorems for the class S of positive-
stable elements, the class Λ of accretive elements, and the class U of accretive
unitaries. The most obvious formulations of these factorization problems
yield behavior like that of the C* exponential length cel(A) introduced in
[24]. (See Theorem 4.6.) However, restriction to elements of C(X) <8> Mn

with determinant 1, a subset intrinsically characterized as the commutator
subgroup, yields factorization theorems of the same sort as in the previous
two sections. (See Theorems 4.12, 4.13, and 4.14.) Indeed, in Theorem 4.10
we see that, under this restriction, the C* exponential length itself behaves
in the same way.
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We point out that rk^(^4) can be sensibly defined for Banach algebras
A. Its behavior, as illustrated in Proposition 4.5 and Theorem 4.6, suggests
that it is related to the Banach exponential rank in somewhat the same way
that C* exponential length is related to C* exponential rank.

We begin this section with a few lemmas about the classes £, A, and
U. They are probably known, but we lack a reference. We next relate
the associated ranks to cel(^4), and prove the theorems for the unrestricted
factorization problems. We then introduce the notation for the restricted
problems, and prove the corresponding theorems.

Recall that in Definition 1.1 (5), we defined a to be accretive if (α+α*)/2 is
positive and invertible. This definition agrees with [29] but, as the following
lemma shows, not with other commonly used definitions.

4.1 Lemma. Let H be a Hilbert spacey and let a G L(H). Then a is accretive
if and only if there is ε > 0 such that the numerical range W(a) is contained
t n { λ e C : R e ( λ ) > e}.

Proof Recall ([8, Chapter 17]) that

Let a — b-\-ic with 6,c selfadjoint. Then clearly

{Re(λ) : λ G W(a)} = W(b),

and it is well known that a selfadjoint b G L(H) is positive and invertible if
and only if there is ε > 0 such that (6£, ξ) > ε\\ξ\\2 for ξ G H. D

At this point, we can contrast our definition with the more conventional
definitions of accretive operators on Hilbert spaces which are used in the
theory of semigroups. In Section V.3.10 of Kato's book [9], a not necessarily
bounded operator a is called accretive essentially when

W(a) C {λ G C : Re(λ) > 0}.

Fillmore ([7], page 87) uses a different sign convention in his semigroups, and
therefore requires W(a) C {λ G C : Re(λ) < 0}. Note that both definitions
apply to unbounded operators, which we do not have in (T-algebras, and that
even Kato's definition does not reduce to that of [29] for finite dimensional
Hilbert spaces.

4.2 Corollary. Let A be a unital C* -algebra. Then a G A is accretive if
and only ifRe(φ(a)) > 0 for every state ψ on A.

Proof. Note that if a is accretive and π is a unital homomorphism, then τr(α)
is accretive. So if a G A is accretive and φ is a state, we show Re(φ(a)) > 0
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by applying the Gelfand-Naimark-Segal construction to φ. Conversely, if
a is not accretive, there is a state φ such that φ((a + a*)/2) < 0. Then
Re(φ(a)) < 0. D

4.3 Corollary. Let A be a unital C*-algebra. If a E A is accretive, then a
is positive-stable, and, in particular, invertible.

Proof. Represent A faithfully on a Hubert space, and use the lemma to-
gether with the fact ([8, Problem 169]) that for a e L(H) we have sp(α) C
W(a). D

4.4 Lemma. Let A be a unital C*-algebra, and let u £ U(A). Then the

following are equivalent:
(1) u is accretive.

(2) u is positive-stable.

(3) ||u-l||<V5.
(4) cel(u) < π/2.

Proof. (1) <$> (2): Represent A faithfully on a Hubert space, and use the fact
that for normal a £ L(H), the convex hull of sp(α) is W(a) ([8, Problem 171]).

(2) 4=> (3): Clearly u is positive-stable if and only if sp(n) is contained in
S1 Π {λ e C : Re(λ) > 0}. Now use the fact that the norm of u - 1 is equal
to its spectral radius.

(3) <* (4): See Proposition 2.4 of [24]. D

This lemma implies that τku{A) is essentially a discrete version of the C*
exponential length. The precise statement is:

τku{A) = m if and only if cel(A) G (τr(m - l)/2, πra/2].

(Compare with part (2) of the next proposition.)
Because of this relation, we would like to propose rk5(A) as the appro-

priate analog for Banach algebras of the C* exponential length. The direct
analog is infinite even for M2, as one sees by considering the matrix (J ")
for \a\ large. It doesn't help to restrict to elements of determinant 1. On the
other hand, the definition oΐτks(A) makes sense for unital Banach algebras
A. We will see in the next proposition that τks(A) < τίu(A) + 1 if A is a
C*-algebra, just as beτ(A) < ceτ(A) + 1. In the theorem following, we will
also see that it behaves like eel on the algebras C(X) ® Mn, for which we
already know that the behavior of ber is similar to that of cer.

4.5 Proposition. Let A be any unital C* -algebra. Then:

(1) PΛ(A) = Pλ(A) = Ps(A) = PS(A) = invo(A) and PU{A) = PU(A) =

Uo(A).
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(2) As(A) < τkΛ(A) + l,ikΛ(A) < rkΛ(A) + 1, and τku(A) < τku(A) + 1.

(3) τks(A) < τkΛ(A) < rku{A)+l < 2cel(A)/π+2 andce\{A) < πτku(A)/2.

Proof. (1) The sets of accretive and positive-stable elements of A are both
contained in inγo(A) (in fact, in exp(^4)) and both contain neighborhoods
of 1 in A. Similarly, the set of accretive unitaries is contained in U0(A) and
contains a neighborhood of 1 in U(A).

(2) This follows from the same openness properties as in the proof of (1).
(3) The first inequality is trivial. The second follows from polar decom-

position. The third follows from the implication (4) => (1) of the previous
lemma, by choosing appropriate break points on a unitary path from 1 to
u G U0(A) of length at most cel(w) + ε, and because the accretive unitaries
contain a neighborhood of 1 in UQ(A). The last inequality follows from the
implication (1) =Φ> (4) of the previous lemma. D

4.6 Theorem. Let X be compact metric, let n> 1, and let A = C{X)®Mn.
(1) If X is totally disconnected, then rks(^4),rk.4(j4) < 4,rkw(Λ) < 3, and

cel(A) < π.

(2) If X is not totally disconnected, then τks(A) = τk^(A) = τku(A) =
cel(A) = oo.

Proof (1) If X is totally disconnected, then any unitary in A can be approx-
imated arbitrarily closely by unitary functions having only finitely many
values. So clearly cel(̂ 4) < π. The rest now follows from the previous
proposition.

(2) In view of the previous proposition, it suffices to show that rk,s(^4) =
oo. Since X is not totally disconnected, there exist distinct X\,XΪ G X
such that every closed and open subset of X which contains Xι also contains
x2- Choose a continuous function / : X —> M such that f(x\) = 1 and
f{%2) = —1. Define u € C(X)®Mn by u — exp(iMf) ® 1, where M is some
positive real number. We will show that if M > πl/2, then u is not a limit
of products of I positive-stable elements of A.

Suppose a is a product of / positive-stable elements of A, that is, a =
di - aι with a,j positive-stable. Note that 1 — t + ta,j is also positive-stable
f o r t e [0,1]. Define

- ί + tα,-)-

We now calculate the continuous logarithm log(det(&(£))) which is 0 when
t = 0. Functional calculus with logarithms is taken with the continuous
branch which is real on positive real numbers and undefined on negative real



242 N. CHRISTOPHER PHILLIPS

numbers. We have

i i

log(det(6(t))) = Σ log(det(l - t + ta3)) = £ tr(log(l - t + ta3)).
j=l j=l

The second equality holds because both sides are continuous and agree when
t = 0. Each term in the last sum has imaginary part in [πn/2, πn/2]. There-
fore, putting t = 1, we get

(*) I Im(log(det(α)))| < πnZ/2.

One easily checks that even if a is only a limit of products of I positive-stable
elements, its determinant must still have a logarithm satisfying (*). On the
other hand, if / is a logarithm of det(?i), then f(xι) — f{x2) — 2Mni. So u
cannot be a limit of products of I positive-stable elements. D

The previous theorem shows that, at least on C{X) ® Mn, the quantities
rk^ and τks also behave like C* exponential length. Nevertheless, behavior
like that of exponential rank is hidden just beneath the surface. (This is
even true for the C* exponential length itself.) To expose it, we restrict to
factorizations of the elements of determinant 1, intrinsically characterized
as the commutator subgroup. (See the characterizations of the commutator
subgroups of invo(A) and U0(A) in Theorems 2.10(1) and 3.10(1).)

4.7 Definition. Let C be one of the clases A, <S, or U. For a topological
group G we let G1 denote the closed subgroup generated by the commutators.
Let A be a unital C*-algebra, and define:
(1) FC(A) = PC(A) ninvo(i4)# if C = A or <S, and PC(A) = PC(A) Π U0(A)'

\£C=U.

(2) Tc(A) is the closure of P{.(A) in invo(>l).

(3) rk^(j4) is the smallest n (possibly oo) such that every element of PQ(A)
is a product of at most n elements of the class C.

(4) rkc(A) is the smallest n (possibly oo) such that products of at most n
elements of the class C are dense in PQ {A).

(5) j/Vc(n,d) = supd i m ( x ) < drk^((7(X) ® Mn), where X runs through all
compact metric spaces of dimension at most d.

We further set ceX{A) = sup{cel(w) : u E Uo(A)'}, and define

N'{n, d) = sup ceΐ(C(X) ® Afn),
dim(X)<d

using the same spaces X as before.
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Note that τk'c(C(X)) = τ&c(C(X)) = 1 for C equal to any of A, 5, and U.
We have thus recovered the behavior of Proposition 1.4(2).

4.8 Remark. For A = C(X) ® Mn, Theorems 2.10(1) and 3.10(1) imply
that 'mvo(A)' Π Uo{A) = U0{A)f. So we could have used invo(^4)' in the
definition of rk^(A) too.

We also have invo(^4)' Π U0(A) = UQ(A)' for the algebras considered in [4]
and [26]. In general, however, it seems to be unknown when this relation
holds.

4.9 Remark. We can also analogously define Pc(A),τk'c(A), etc. for other
classes mentioned in or before Definition 1.1. The analogs of the theorems in
Section 2 and 3 still hold, with the trivial modification that one must impose
the condition det(α) = 1 in the characterizations oίP^{A) and PQ (A). (Note
that the elements used to prove the lower bounds in all of these theorems
actually have determinant 1.)

We now present the main theorems, starting with the one for exponential
length.

4.10 Theorem. (1) cel(n) < oo for all u € U0(C(X) ® Mn)'.
(2) N'(n, d) < oo for n > 1 and 0 < d < oo.
(3) For fixed d < oo, we have lin^^oo sup iV'(n, d) < 4τr.
(4) If X is a compact manifold with boundary and n>2, then

Proof. (1) Actually, cel(u) < oo for any u G U0(A) for any unital C*-algebra
A. See [24].

(2) This is just Lemma 3.3.
(3) The proof of Theorem 3.3 of [13] gives, for each positive integer d and

ε > 0, a number M(d, ε) such that whenever dim(X) < d and u is a homo-
topically trivial element of C(X, SUn) with n > M(d, ε), then there exist self-
adjoint Λi,/i2,^3 € C(X)®Mn such that ||tx — exp(i/ii)exp(ΐ/ι2)exp(i/i3)|| <
ε. (Note that the first step in this proof, which applies to an arbitrary
u € U0{C(X) ® Mn), is to reduce to the case det(u) = 1.) An examina-
tion of the proof shows that the hi chosen in it satisfies ||Λi || < 2τr. Sim-
ilarly, going back to [12] in Step 7 of this proof, we get \\h2\\, \\h3\\ < π.
Therefore cel(tx) < 4π + 2arcsin(ε/2), using Proposition 2.4 of [24]. So
cel'(C(X) ® Mn) < 4π + 2arcsin(ε/2) for all large enough n.

(4) Theorem 2.6 of [24] shows that if cel(u) < /π, then u is a limit of
products of / exponentials. Now use Proposition 3.2. D
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4.11 Remark, The paths whose lengths are estimated in parts (2) and
(3) of this theorem are not required to have determinant 1 except at the
endpoints. It might seem more appropriate to require them to lie entirely
in Uo(A)'. With this extra condition, (2) still holds, and still follows from
Lemma 3.3. One can show that (3) holds with 4π replaced by 6π. We
omit the details, but note that it is fairly easy to get the estimate lOπ.
One replaces each hj by hj = — ̂ tτ(hj) 1, which at most doubles the norm.
One does the same thing with Λ4 = — i log(exp(—ih3) exp(—ih2) exp(-ihι)u).
Prom this, one gets a path of length not much more than 8π to a locally
constant scalar element of C(X,SUn). Now observe that a scalar in SUn

can be connected to 1 by a path of length less than 2τr.

4.12 Theorem. (1) P'Λ{C{X)®Mn) = ~F'A{C{X)®Mn) = {a E invo(C(X)<g>
Mn) : det(α) = 1}.

(2) N'Λ(n, d) < oo for n > 1 and 0 < d < oo.
(3) For fixed d < oo we have limn_>oo sup7V^(n, d) < 10.
(4) // X is a compact manifold with boundary and n>2, then

4.13 Theorem. (1) P's{C{X)®Mn) = P's{C{X)®Mn) = {a e invo(C{X)®
Mn) : det(α) = 1}.

(2) N^(n, d) < oo for n > 1 and 0 < d < oo.
(3) For fixed d < oo we have lim^oo sup JV^(n, d) < 10.
(4) If X is a compact manifold with boundary and n >2, then

4.14 Theorem. (1) P^(C(X)®Mn) = P'u(C(X)®Mn) = {a G U0(C(X)®
Mn) : det(u) = 1}.

(2) Nlt(n, d) < oo for n > 1 and 0 < d < oo.
(3) For fixed d < oo we have lim^oo sup iV^(n, d) < 9.
(4) If X is a compact manifold with boundary and n>2, then

Proof of Theorems 4.12. 4.13. and 4.14. (1) This is immediate from Propo-
sition 4.5 and the remark before Definition 4.7 in all three cases.
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(2), (3) The proof of part (3) of Proposition 4.5 shows, in exactly the same
way, that the same inequalities hold for τkr

c in place of rkc and eel7 in place
of eel. Part (2) now follows in all three cases from the corresponding part of
Theorem 4.10. For (3), use Theorem 4.10(3) to choose N such that n > N
and dim(X) < d imply cel'(C(X) ® Mn) < 9π/2. For such n and X,we have
τk'Λ(C(X) 0 Mn),τk's(C(X) 0 Mn) < 11 and rk^(C(X) 0 Mn) < 10.

(4) In Theorem 4.12, we note that if α, b E C(X) 0 Mn are accretive,
then Theorem 2.22 of [29] implies that sp(a(x)b(x)) contains no nonpositive
real numbers. Therefore products of two accretive elements are exponen-
tials. Now use Proposition 2.2. In Theorem 4.13, we simply observe that
elements with spectrum in the right half plane have logarithms, and apply
Proposition 2.2. In Theorem 4.14, we note that the product of two accretive
unitaries has exponential length less than π by Lemma 4.4(4), and so is the
exponential of a skewadjoint element. Use Proposition 3.2. D
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