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LINEAR COMBINATIONS OF LOGARITHMIC
DERIVATIVES OF ENTIRE FUNCTIONS WITH

APPLICATIONS TO DIFFERENTIAL EQUATIONS

J. MILES AND J. ROSSI

Let Fi, i<2,... ,FL be entire functions of finite order and let
ci, C2,... ,C£, be complex numbers whose convex hull does not
contain 0. A lower bound in terms of the counting functions
of the zeros of the FjS is obtained for

valid for r in a set of positive logarithmic density and θ in a set
Ur C [0,2τr] of fixed positive measure. This bound is used to
extend a result of Bank and Langley concerning the exponent
of convergence of the zero sequences of solutions of certain
linear differential equations with entire coefficients.

1. Introduction.

In this paper we are concerned with the behavior of the logarithmic derivative
F'/F of an entire function F of finite order, and most particularly with lower
bounds for \F'/F\. Prom the argument principle it follows that if F has no
zeros on \z\ = r, then

where n(r, 0, JP) denotes the number of zeros of F in \z\ < r counting mul-
tiplicity. Our principal result implies for most values of r that if 0 < β <
1, then the modulus of the above integrand is greater than or equal to
βn(r, 0, F) on a substantial portion of the circle \z\ — r.

For applications to the behavior of solutions of certain differential equa-
tions it is useful to formulate our result in terms of linear combinations of
logarithmic derivatives.

Theorem 1. Suppose Fj, 1 < j < L, are entire functions each with order
not exceeding p < oo. Suppose Cj, 1 < j < L, are complex numbers lying in a
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sector with vertex at the origin and angle opening 2η for some 7 in [0, π/2).
For β e (0,1) and r > 0, let

r = {θe[0,2π} : > c«re —*—.—^7-
£ί FΛreιβ)

>β

Then for M > ZL there exists E = EM C [1, oo) with lower logarithmic
density at least 1 — 3L/M such that

(1.1)

Here ?n denotes Lebesgue measure. The upper and lower logarithmic
density of E C [i?o> oo) for some RQ > 0 are defined by

log dens E r~ 1 ί dt

= limr_^oo / —
logr yj5n[Λo,r] *

and

log dens E = limr_>oo /
logry£

dt

/^n[Λo,r] *

respectively.
We make several observations concerning Theorem 1. First, Theorem 1

asserts that m(Ur) is bounded away from 0 for r E E whenever 0 does not
lie in the convex hull of {c^}. That this hypothesis on the {CJ} is essential
can be seen by considering the example with C\ — 1, c2 = — 1, F\{z) = sin z,
and F2(z) = cos z. For these choices, easy calculations yield

= 1

and

Σ c i r e i l
oo,

implying m(Ur) —> 0 as r —>• oo for any choice of 9̂ in (0,1).
Secondly, we note in the case L = 1 that Theorem 1 indeed provides a

lower bound in terms of n(r,0,F) for \reiθF'(reiθ)/F(reiθ)\. Theorem 1 with
L = 1 should be compared with earlier results of Hellerstein, Miles, and Rossi
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[9, Lemma 4], and of Fuchs [6, (17)]. Each of these results, after appropriate
modifications, implies m(Ur) > δ > 0 as r tends to oo through a sizeable
set of values, but neither appears to give an estimate for δ comparable to
(1.1). Perhaps more importantly, neither extends to linear combinations of
logarithmic derivatives, a feature of Theorem 1 critical for our application
in Section 3.

The elementary example cx = c2 = 1 with Fx = exp P and F2 = exp(—JP)
for any polynomial P shows that while a lower bound for

is available in terms of the functionals n(r, 0, F^), no such bound is possible
in terms of other measures of growth such as the characteristics T(r, Fj) or
their derivatives. Here again comparison with [9, Lemma 4] and [6, (17)] is
worthwhile, as each of these estimates for \zF'(z)/F(z)\ is given in terms of
growth functionals other than n(r,0,F).

Finally, Theorem 1 fails for entire functions of infinite order even in the
case L = 1. Such an example can be constructed by modifying Mittag-
Leffler's function [4, p. 50]

Σ = o . 0 < o < 2

Ea(z) is an entire function of order I/a for which, with L = 1 and β G
(0,1) arbitrary, Uτ C (-(1/2 + o(l))απ, (1/2 + o(l))απ). By considering a
sequence α*. tending to zero and by considering appropriate large sections of
the Maclaurin series of Eak, one can construct (by specifying the Maclaurin
series) an entire function of infinite order for which there exists E C [1, oo)
with upper logarithmic density 1 for which Ur (with L = 1 and β € (0,1)
arbitrary) satisfies m(Ur) -»0asr—»oo, r € E.

In Section 3 we apply Theorem 1 to prove

Theorem 2. Consider the differential equation

(1.2) y w + X > i y ϋ ) = ° » fc^3>
i=o

where Aj(z) are entire, the order p(A0) of Ao is not greater than 1/2, and
p{Aj) < p(A0) for 1 < j < k — 2. Then (1.2) cannot have two linearly
independent solutions each with zero sequence having finite exponent of con-
vergence.

Earlier Bank and Langley [2] obtained this result under the assumption
that p(Aj) < ρ(A0) < 1/2 for 1 < j < k - 2. Our approach combines
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their method with Theorem 1. It is known [1, p. 165] that Theorem 2 does
not hold if p(A0) = 1. The question of whether Theorem 2 holds if 1/2 <
p(A0) < 1 remains open. Theorem 2 is already known in the case k — 2.
This was established in [1] for ρ(A0) < 1/2 and, independently, in [11] and
[12] when p(A0) = 1/2.

In Section 4 we extend two earlier results of Langley concerning solutions
of linear differential equations with entire coefficients where the dominant
coefficient has order strictly less than 1/2. Our extensions to the case where
the dominant coefficient has order 1/2 require some of the ideas involved
in the proof of Theorem 2, but do not require Theorem 1. Because the
arguments parallel those of Langley very closely, we provide only sketches of
the proofs.

We assume throughout familiarity with the usual concepts and notation
of value distribution theory.

2. Proof of Theorem 1.

We begin with a growth lemma establishing the existence of what may be
regarded as sequences of modified Pόlya peaks.

Lemma. Let n(t) be a nondecreasing integer-valued function of order at
most p, 0 < p < oo, continuous from the right. Suppose M > 3 and suppose
Ro > 0 is such that n(Ro) > 0 and n(t) = 0 for 0 < t < Ro. Then there
exists E = EM C [ϋo, oo) having lower logarithmic density at least 1 — 3/M
such that if r £ E, then

(2.1) n(t) < n(r)(ί/r) 2 M ( p + 1 ) , t > r

and

(2.2) n{t) > n(r)( ί/r) 2 M ^ + 1 ) , R0<t<r.

Proof. We define

A = [r > Ro : 3ί = tr > r 3 n(t) > n{r){t/r)M{p+l)) .

It is trivial that (2.1) holds for r G [i?o, oo) — A, and our first objective is to
show that

(2.3) log dens A < 1/M.

Certainly (2.3) holds if A is bounded, and we thus concern ourselves with
the case that A is unbounded.
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For each r G A, let

(2.4) r* = sup {t > r : n(t) > n(r)(*/r)M ( p + 1 )} .

We note that r* < oo since n(t) has order at most p. Since n{t) is nonde-
creasing, we certainly have

(2.5) n(r*) > n(r)(r*/r)M(p+1)

for r G A.
Let r 0 = inf A. Certainly r 0 G A since n(t) is continuous from the right

and integer-valued with n(t)/tM^p+1^ approaching 0 as t approaches oo. Let-
ting

ri =inf(AΠ(rj;,oo)),

we similarly note that rλ G A. Trivially rλ > r^. In fact rx > ΓQ in view of

(2.4), (2.5), and the fact that rx G A. We define the sequence rk inductively

by

rk+ι = inf (A n (r*, oo)), A: = 0,1,2...,

noting at each step that i Π ( r ^ o o ) Φ φ, rk G -A, and r fc+i > r£.

Certainly rk -» oo since n(r£) > n(r*) and n(t) is integer-valued. Thus

Λc\J[rktrl).

Since rk G A, we have by (2.5) for all k that

logrl - \ogrk < ^n(rt)-logn(rk)
M(p+ 1)

Combining these two observations and recalling that the intervals [rfc, rl] are
disjoint, we have

(2.6) ϊ ^ d ^ i A < Π

T ^ ^ t o g n ( r ; ) - l o g n(r, )
lim*->oo V 1

ΪΠΓ log n ( r ; ) - log n(rQ ^ 1
11111 logr,* < M
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We now consider (2.2). Let

B = {r > R* : 3t = tr G [Ro^r) 3 n(t) < n(r)(t/r)2M^} .

It is elementary due to order considerations that B is bounded if A is
bounded. Our goal is to show that

log dens B < 2/M,

and thus we may assume that A is unbounded.
Defining

we first establish that

(2-7) BcjJh.rJ ].

We suppose

j=l

and seek a contradiction. Since r G B, there exists t = tΓ G [JRO, r) such that

(2.8) n(t) < n(r)(t/r)2M(p+ι) < n(r)( ί/r) M ( p + 1 ) .

Thus t G A and we may suppose t G [^j,^]- Consequently

r > r** — (r*)2/r- > t2Ir

which implies

t/r < {rjΊ

Prom (2.8) we conclude

n(r3) < n(ί) < n(

implying r < r?, which is a contradiction and thus establishes (2.7).
Since log(r^*/r3) = 21og(rjc/r:/) and the upper logarithmic density of the

union of the disjoint intervals [r̂ -, rj] is shown in (2.6) to be less than 1/M,
we conclude from (2.7) that

oo

log dens B < log dens (J [rj,r**] < 2/M.
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We remark that the intervals [rj.ry} need not be disjoint.
Finally set

Then the lower logarithmic density of E is at least 1 — 3/M and (2.1) and
(2.2) hold for all r e E. Ώ

Proof of Theorem 1. Let Πj{t) = n(t,0,Fj) and let

3=1

Without loss of generality we may suppose Fj(0) Φ 0 for 1 < j < L.
(This can be verified easily be considering separately the cases where n(t) is
bounded and n(t) is unbounded.) Trivially we may suppose n(t) ψ 0.

For 1 < j < L such that nά(t) = 0, define E(j) = [0,oo) and Ro{j) = 0.
For all other j , 1 < j < L, let Ro(j) be the modulus of the zero of Fj of
smallest modulus and apply the Lemma to rij(t) to obtain a set E(j) of lower
logarithmic density at least 1 — 3/M on which rij(t) satisfies (2.1) and (2.2)
with Ro replaced by Ro(j). We let

L

R!o = maxRoU) and E' = Π E{j),

and note that each rij(t) satisfies (2.1) and (2.2) on E' and that E' has lower
logarithmic density at least 1 — 3L/M.

Let q — [2M(p + 1) + 2] and let zuj denote the zeros of Fj. We write

where Pj is a polynomial of degree at most q. (The reader will note that

this is not the usual Hadamard factorization.) We let

(2.9) E = ( [ 2 Λ £ + l , o o ) f i F ) - {\zvj\ : l < j < L , v > l } .

For r G E we have

(2.10) re?1fi-1± = rί*P}(reP)+ ^ bm(r, F^e^,
r3\Te ) m=-oo

where 6m(r, F^) = 0 for all m if Πj(t) = 0 and otherwise [13, p. 350]
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and

bm(r,Fj)=

For m > q we have by (2.1) for r G E and for 1 < j < L (including those j
for which rij (t) = 0) that

/ r \ m r°° /r\ m

ΰ-T $ 7 dnj(t)

dt

<-nAr)+mnj{r)j~ (Q" (ί)

2M(p + l)

t
2M(+1) dt

Thus

(2.11) J ] M r ) ί J ) | 1 < 7 ( M f ( p + l ) n , ( r ) ) 2

I 1 < j < L.
m>q

Now consider 6m(r, F )̂ for r E £? and m < 0. From (2.2) we have for

1 < j < £

r / Ά f2M(p+l) dt

2M(p

AM{p +1)
<nj[V)\m\+2M(p+iy

where in the last step we have used the fact that M > 3 and used (2.9) to
infer that Ro(j)/r < \. Thus for r £ E

(2.12) ] Γ |6m(r,F., )|2 < — (4M(p + l K ( r ) ) 2 , 1 < j < L.
m<0
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For r G E we thus have for 1 < j < L that

F'(reiθ) q

b4( 2 1 3 )

m = 0

where

(2.14) | | S i | |

by (2.11) and (2.12). Here if

n = 0

then by (2.10)

Let

,F,) = 6m(r,F, ) + mα m j r
m, 0 < m < 9 .

and, for 0 < m < g,

From (2.13) we thus obtain

L F'(rρiθ) 9

(2.15)

m=o

and note for r 6 E and 0 € Ur that

(2.16)
m—Q

We now set

Amθ

m = 0

_ ŷ Amθ

and note for 0 < m < q that /ι_m(r) = hm(r) and that

q—m

(2.17) \hm{r)\ =
k=0
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We have for — q < m < q, m φ 0, that

/ hm(r)eimθ dθ = - f hm(r)eime
dθ.

Thus by (2.17)

dθ(2-18) /
Jvr

= ho{r)jϋ dθ- Σ j v M0<eimθ dθ

>ho(r)(m(Ur)-2qm(Ur)),

where in the last line m of course refers to Lebesgue measure.
For r G E for which (1.1) is not satisfied, we conclude from (2.18) that

(2.19) Amθ

m=0

dθ.

The combination of (2.14), (2.16), and (2.19) implies

(2.20)

Σ d^r>e

m=0

Λmθ dθ

dθ] +βΣ\cj\nj(r)

+β)\cj\nj(r).

Prom the definition of Ur and the argument principle we have for r E E
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that

2π F'(rf>iθ\

rciβ j [ ' dθ

2 .re

,re

F'(reiθ)

<β
L

Σ

Fj(reiβ)

hi

dθ

dθ

dθ.

Rearranging this inequality and appealing to (2.14), (2.15), (2.17), (2.20),
and the Schwarz Inequality, we find for r € E that

< m(Ur)

U = 0

Σ(V2 2πM(p+l) +
3=1

2πM{p

The hypothesis on the arguments of the {CJ} implies

Combining the last two inequalities yields (1.1) for r G ϋJ, proving Theorem
1.

3. An Application.

Our proof of Theorem 2 is a modification of the proof of the corresponding
result in [2] in the case that p(A0) < 1/2. The additional ingredients in our
proof are Theorem 1 and results concerning the behavior of entire functions
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of order 1/2 previously applied in [8] and [9] to the growth of solutions of
certain linear differential equations. We concern ourselves only with the case
p(Ao) = 1/2.

We begin by recalling two key aspects of the argument in [2]. The first
is an upper bound for the modulus of the logarithmic derivative of a mero-
morphic function of finite order outside of a small exceptional set. If G is
meromorphic of finite order in the plane, k is a positive integer, and d > 0,
then there exists a sequence of disks

Dn = {z : \z - zn\ < \zn\-d}

and a constant M > 0 such that

(3.1) \G^(z)/G(z)\ < \z\M

oo

for all z of large modulus in C — (J Dn and for 1 < j < k. The sequence
π = l

zn and the constant d > 0 can be chosen so that the sum of the radii of
the disks is finite. When this sum is finite, we shall call the union D of
the sequence of disks Dn the i?-set associated with the sequence zn and the
constant d > 0. The centers zn of the disks D — n comprising the i2-set may
in fact be chosen to be the poles of G and the zeros of G^\ 0 < j < k — 1.
The estimate (3.1) follows from straightforward calculations based on the
differentiated Poisson-Jensen formula [7, p. 22].

Let Cr ~ {z : \z\ = r}, and, for a given i?-set Z), let

Lr := {0e[O,2π) :reiθ € D} .

Let G be meromorphic of order p and let e > 0. If D is the jR-set associated
with the constant d > p and with the poles of G and the zeros of any finite
number of its derivatives, then using order considerations and elementary
geometry it is easy to verify that

(3.2) m{Lr) = o(rp+€-d-1).

The second element of the argument in [2] we wish to recall follows from
the classical cosπp theorem combined with results of Barry [3]. If τ <
p(A0) < 1/2 and D denotes an i?-set associated with the zero and pole sets
of any finite collection of meromorphic functions of finite order, then there
exists rn -> oo for which

DΠCrn=φ

and

(3-3) log\A0(rne
iθ)\ > rT

n, 0 < θ < 2τr.
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Hellerstein, Miles, and Rossi observed, based on a result of Drasin and Shea
[5, Theorem 8.1], that a variant of (3.3) holds if p(A0) = 1/2. Specifically,
in [8, Section 2] it is shown that if p(A0) = 1/2 and τ < 1/2 then one of
two possibilities must occur. The first (which throughout the remainder of
the paper we shall call Case I) is that there exists rn —> oo for which (3.3)
holds. The second possibility (henceforth designated Case II) is that there
exists E C [1, oo) of logarithmic density one such that for r G E

{θ G [0,2π) : \og\A0{reiθ)\ < rT} C

0 aswhere Hr is some single interval (modulo 2τr) satisfying m(Hr)
r —> oo, r G E.

For later use we now make an elementary estimate concerning the charac-
teristic of an entire function G. Suppose Jr C [0,2π) and Jr — [0,2π) — Jr.
Then we have

dθ(3.4) T(r,G) = — I log+ \G(reiθ)\ dθ + ^- ί log+ \G{reiθ)\
2τr Jjr 2π Jjτ

< T ^ log+ M(r, G) + ±-l log+ \G(reiθ)\ dθ

, G) _ log+ \G(reiθ)\ dθ.

If in addition there exists M > 0 such that |G(re i θ)| < rM for θ € Jr, we
may further conclude

3m(Jr),
(3.5) T{r,G)<

2π

Following [2], we now suppose that

Λ = Ve9 and f2 = Weh

are linearly independent solutions of (1.2) whose zero sequences have finite
exponent of convergence. By standard arguments [2, Section 2] we may
suppose V, W, g, and h all have finite order. In [2] it is shown that to
obtain the desired contradiction, it is sufficient to show that /1//2 has finite
order.

We let d > 0 be such that d/2 is greater than the maximum p of the orders
of F, W, g, and h. Let D be the U-set associated with d and the sequence
zn formed from the zeros of Vu\ Wu\ g(j), and h& for 0 < j < k -1. From
(3.1) we conclude there exists M > 0 such that

(3.6)
^("")(z)

W(z)
+

V(z)
+

g(ma){z)

9'(z)
+

h'(z)
= O(\z\M)
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for z £ D and all choices of ra^, 1 < rrij , < k. We note for this β-set and
this choice of p and d that (3.2) holds with any choice of e > 0. Using the
principal hypothesis of Theorem 2, we now choose e > 0 to satisfy

Jfc-2
max p(Aj) < 1/2 - 4e.

Following the argument in [2], we insert y — fλ into (1.2) and collect terms

to obtain

(3.7) +
k-2

+ A<> = 0,

where each Bj is a polynomial in ^41? A2,... ,Ab-2 and the logarithmic
derivatives V^/V and g^/g1 for 1 < m < k - 1. Similarly, the inser-
tion of y = / 2 into (1.2) yields

(3.8) + + + +A = 0,

where the Bό are polynomials in Au A2,..., Afc_2, W{m)/W, and h(m)/ti for
1 < m < j b - l .

We now consider the two types of behavior which AQ may exhibit (Case I
or Case II). In each case we wish to establish three properties of g and h.
These are that (i) the lower order of h' is at most 1/2, (ii) there exists a
complex number α, \α\ = 1, such that g — αh is a polynomial, and (iii) there
exists rΰ -* 00 such that g' dominates all coefficients of (g'Y, 0 < j < k — 1,
in (3.7) and h! dominates all coefficients of (h')j, 0 < j < k — 1, in (3.8) on
all of CΓn in Case I and on most of CTn in Case II.

We first consider Case I, i.e. we suppose that there exists rn —> 00 such
that (3.3) holds with r = 1/2 — e. It is useful to have control of the quantity
on the left side of (3.6) on all of CΓn, and to this end we appeal to Lemma
6 of [9] to presume with no loss in generality that

(3.9)
W(z)

+
y(»*>(z)

Viz)
+

9{m3)(z)

9'(z)
+

h(m*\z)

h'(z)

for all z E CTn and all choices of m^ , 1 < rrij < k.
By (3.9) and our choie of 6, we have

(3.10) |Bi(*)| + \Bj(z)\ = o

From (3.3), (3.7), (3.9), and (3.10) it is immediate that

(3.11) \g'(z)\ > exp (\z\^2ΐ) , z€Crn,n>n0.
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Similarly (3.3), (3.8), (3.9), and (3.10) imply

(3.12) \h'(z)\ > exp (\z\i'2ή , zeCΓn,n>n0.

From (3.9), (3.10), (3.11), and (3.12) we have for all z € CTn that

(3.13) V'(z)
V(z)

+ 9"(z)
9'(z)

+ W'(z)
W(z)

+ h"(z)
h'(z)

= o(exp(\zn)min(\h'(z),\g'(z)\).

In view of (3.13), division of (3.7) by (g')k yields

AQ(Z)

(g'(z))k u ' r""

Thus there exists an analytic A th root A0(z)1^k of AQ(z) defined on C'rn

Crn — {rn} and an with a\ = — 1 such that

g'(z)

We furthe note from (3.6) and (3.13) that for z £ CTn - D, (3.7) takes the
form

AQ(Z)

(9'(z))k

\M
= -1 + 0

We conclude

Ao{z)1/k \M

g'{z) ™r'

which we rearrage to obtain

(3.14) \g'(z) - a^Aoi

\9'{z)\.

\9'{z)\ r

, zeC'r -D,

), zeC'Tn-D.

A similar analysis leads to the existence of bn with ί>£ = — 1 such that

(3.15) \h'(z) - b-χM{zf'k\ = O(\z\M), zeCrn- D.

By passing to a subsequence we conclude there exists a with ak = 1 such
that

\g'(z)-ah'(z)\ =
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for z G Cvn — D. We apply (3.5) with G = g1 — ah' and JΓn — LΓτi to conclude
from (3.2) and the definitions of p and d that

T{rn, G) < o(r^-d-ι)(2rny^ + O(logrn)

= o(l) + O(logrn),

implying G — g' — ah1 is a polynomial.
We apply (3.4) to conclude that h' has lower order at most 1/2. Indeed

setting G — hf, we have

n,Λ') + ±f log+ |Λ'(rne"

where we have used (3.2) and (3.15).
We next consider Case II. Since E C [l,oo) has logarithmic density one

and {r : Cr Π D ^ 0} has finite measure, with no loss of generality we may
assume for all r G E that Cr Π D = 0. Recalling that Hr is an interval
modulo 2τr, we let AQ^Z)1^ be an analytic fc-th root of AΌ(z) for z — reιθ,
r e E, and θ £ Hr. Our arguments from Case I apply to yield

(3.16) ^ ( z ) ! + \B3(z)\ = o (exp (\z\i~*ή) , | z | = r , r G S,

and, for large r,

(3.17)

and

(3.18)

= re i β , r € E, θ $ Hr,

= ei iϊ r.

From (3.6), (3.16), (3.17), and (3.18) we conclude as before for r G E and
θ g Hr that

(3.19)

V'(retθ)

V(reiθ) +
g"{re")
g'(reiθ) +

Wire*)
W{reiθ)

h"(reiθ)

h'{reiθ)

|, \g'(reiθ)\).

Prom (3.19) we deduce by reasoning similar to that in Case I that (3.14)
and (3.15) hold for z = rez<9, r £ E, and θ 0 Hr with an and bn replaced by
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ar and br satisfying α* = 6* = — 1. It follows that there exists Eλ C E with
upper logarithmic density at least 1/fc and there exists a with ak = 1 such
that for r eEx

\g'(z) - ah'(z)\ = O{\z\M\ z = reiβ', θ £ Hr.

An application of (3.5) with G — g' — ah1 and Jr == Hr yields that if (7 is
not a polynomial then

(3.20) lim TJ?V'% = oo,

implying that G has infinite order since Eλ has positive logarithmic density.
We conclude that G is in fact a polynomial.

We now apply the ideas involved in (3.4) with G — h! and Jr — HΓ to
deduce that the lower order of h! is at most 1/2. First suppose that there
exists E C E having positive upper logarithmic density for which

limr->oo / log+ \ti(reiθ)\ dθ/T(r,ti) > 0.
r€E JHr

Then the reasoning used to obtain (3.4) yields

T(2r,h')
lim —-.——r1 = oo,

implying the order of h! is infinite. We conclude that there exists a set
E2 C E having logarithmic density one such that

\og+\h'(reiθ)\dθ = o

for r £ E2. Prom (3.4) and (3.15) (which in Case II holds for z = reiθ, r G E,
and θ ^ Hr with bn replaced by &r), we conclude that the lower order of h!
is at most 1/2.

This establishes our goal of showing in both Case I and Case II that g'—ah'
is a polynomial, that the lower order of h' is at most 1/2, and that (3.13)
holds in Case I for z e CΓn and (3.19) holds in Case II for r e E and θ (£ Hr.

Our argument now follows that of Bank and Langley very closely. We
first show that without loss of generality we may presume in fact g — ah.
Indeed note that V = Vep has finite order for any polynomial P — g — ah.
Next observe in Case I that (3.9) holds with V replaced by V and thus as
before that (3.13) holds for z G CΓn In Case II our previous arguments apply
to show that (3.19) holds for z — reiθ, r e E3, and θ £ Hr for a set E3 of
logarithmic density one.
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Having justified that (3.13) and (3.19) hold under the presumption that
g = ah, we next show that a = 1. This is sufficient to prove Theorem 2, for
a =• 1 implies /1//2 = V/W has finite order, which as observed earlier is a
contradiction. Clearly we need concern ourselves only with the situation in
which h is transcendental.

We substitute fx = Veah and f2 = Weh into (1.2) to conclude from (3.7),
(3.8), (3.13), and (3.19) that

k-l

for z E Crn in Case I and z ~ reiΘ\ r E E3, and θ £ Hr in Case II. Since
ak = 1, (3.21) may be rearranged to obtain

V h / W h\
(3.22) 2A;^ + fc(* - 1 ) ^ - α ̂ 2 * ^ + *(* " l ) ^ r ) = O(\z\~2).

We now let JF\ = ̂ (/^( fc- i) a n d ̂  = w2k{h!)h^"^. We note that both
Fι and F 2 have zeros since the lower order of the transcendental function
h' is at most 1/2. In Case I we multiply both sides of (3.22) by rne

iθ and
observe that the integral of the left side over [0,2π] cannot be o(l) unless
a = 1 since Fγ and F2 each have zeros. In Case II we recall that (3.22) is
valid for all r in a set of logarithmic density one. This fact, in combination
with Theorem 1 applied to Fx and F2 with Cι = 1 and c2 = —α, implies
a = 1. Thus a = 1 in both cases, which as observed above is sufficient to
prove the theorem.

4. Concluding Remarks.

In this section we indicate how our analysis of the two possible types of
behavior of an entire function of order 1/2 (Case I and Case II) can be used
to extend two previous results of Langley. We obtain the following theorems.

Theorem 3. For k > 3, consider

(4.1) y(fc) +
j=0

where Aj is entire and there exists s G {1,2,..., k — 2} such that p(As) — 1/2
and p(Aj) < 1/2 for 0 < j < k — 2, j φ s. Then (4.1) cannot have k
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linearly independent solutions each of whose zero set has finite exponent of
convergence.

Theorem 4 For k > 2, consider

(4.2) yw+Aylk-» +
j=0

where p(A) = 1/2 and p(Bj) < 1/2 for 0 < j < k — 2. Then the zero sequence
of any transcendental solution of (4.2) has infinite exponent of convergence.

Earlier Langley [10] obtained each of these results under the assumption
that the dominant coefficient has order strictly less than 1/2.

We now sketch the minor modifications of Langley's arguments required
to prove Theorem 3 and Theorem 4. We designate the dominant coefficient
in each theorem by A. A careful analysis of entire functions A of order 1/2
(see the discussion [9, p. 355]) shows that if Case II does not hold for A,
then if r < 1/2 there in fact exists E' C [1, oo) of infinite measure such that

for r € E' and 0 < θ < 2π. Thus if Case II does not hold for A and D is any
i?-set, there exists rn —>• oo, rn £ E\ and CTn Γ)D = φ. Langley's arguments
apply verbatim in this context for both Theorem 3 and Theorem 4.

If Case II holds for A, then for any i?-set D and any r < 1/2, there exists
E' C [1, oo) having logarithmic density one and such that for r G E' we have
Cr Π D = φ and

lpgμi( rβ") |>r τ , θ£Hr,

where m(Hr) -> 0 and Hr is an interval. It is routine to verify that Langley's
estimates, which apply in his context on circles for which (3.3) holds with
Ao replaced by A, hold in our context on Cr — {reιθ : θ £ Hr} for r E E'.
The only estimate needing additional comment is (6.9) in [10] in the proof
of our Theorem 4, for which we now have

for z = reiθ, r e E1, and θ £ HΓ. We apply (3.5) with G = ti+A to conclude
by reasoning identical to that in (3.20) that G is a polynomial.

Both Theorem 3 and Theorem 4 are proved by contradiction. A collection
of linearly independent entire solutions (consisting of one member in the
case of Theorem 4 and of k members in the case of Theorem 3) having zero
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sequences with finite exponent of convergence is presumed to exist. For both
Theorem 3 and Theorem 4 Langley's arguments produce an entire function
F (known to have zeros by construction) satisfying for r E E'

\F'(reiθ)/F(reiθ)\ = o(r-2), θ £ HΓ.

This is impossible by Lemma 4 of [9] as well as by our Theorem 1, completing
the proof of both theorems.
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