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RATIONAL POLYNOMIALS WITH A C*-FIBER

SHULIM KALIMAN

Up to polynomial coordinate substitutions, we find the list
of all rational primitive polynomials in two complex variables
whose zero fiber is isomorphic to C*.

1. Introduction.

Let p(x, y) and q(x, y) be polynomials in two complex variables. We shall say
that these polynomials are equivalent if there exists a polynomial automor-
phism a of C 2 and an afiine automorphism β of C for which p = β o q o α.
Consider the set of polynomials which have a fiber isomorphic to a given
algebraic curve R. It is natural to look for a list of non-equivalent polyno-
mials such that every polynomial from this set is equivalent to one of the
polynomials from the list. If such a list exists we shall say that there is a clas-
sification of polynomials with this fiber R. This problem is equivalent to the
problem of classification of all smooth polynomial embeddings of R into C 2

up to a polynomial automorphism. The remarkable Abhyankar-Moh-Suzuki
theorem [AM], [Sul] says that all smooth polynomial embeddings of the
complex line into C 2 are equivalent to linear embeddings. Moreover, V. Lin
and M. Zaidenberg [LZ] obtained the classification of polynomial injections
of C into C 2 (i.e. they found a description of all polynomials whose zero
fiber is homeomorphic to C). Later W. Neumann and L. Rudolph [NR]
reproved these theorems and W. Neumann obtained the classification for all
polynomials whose zero fiber is diffeomorphic to a once punctured Riemann
surface of genus < 2.

The papers [AM], [NR], and [N] use the following theorem [AS]: if the
zero fiber of a polynomial is a once punctured Riemann surface, then every
other fiber of this polynomial is once punctured. The situation is drastically
changed when the zero fiber R has two or more punctures. The behavior
of punctures on the other fibers becomes more complicated and there is no
analogue of the above theorem.

The Lin-Zaidenberg theorem is based on the following elegant fact. If a
polynomial has at most one degenerate fiber (and it is so in the case of a
contractible fiber) then the polynomial is isotrivial, i.e. its generic fibers
are pairwise isomorphic. Isotrivial polynomials form a narrow class and its
classification was obtained later in [Kl], [Zl].
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In this paper we shall study the case when R is isomorphic to C* (the
simplest case of a twice punctured surface). None of the above approaches
works. The number of punctures on the generic fiber of the corresponding
polynomial may be arbitrarily large and the polynomial may have a sec-
ond degenerate fiber. This makes the problem difficult and we can obtain a
classification for polynomials with a C*-fiber only under some additional con-
ditions on the generic fibers of polynomials. Namely, we assume that these
polynomials are rational, i.e. their generic fibers are m times punctured Rie-
mann spheres. Even under this assumption the problem is complicated and
only the cases when m = 1 or 2 were considered earlier [Sal, Sa2, Zl, Z3].
The final classification for m = 2 was obtained in [Zl, Z3] by Zaidenberg.
"Deformations" of Zaidenberg's polynomials were used later [ACL] to ob-
tain examples of polynomials which are not equivalent to linear ones and
have all fibers smooth and irreducible. These examples are important in
connection with the Jacobian conjecture. P. Cassou-Nogues also noted that
the coordinate functions in the recent counterexample of Pinchuk [P] to
the real Jacobian Conjecture are deformations of Zaidenberg's polynomials.
This shows that the study of rational polynomials with a C*-fiber may lead
to interesting consequences. In this paper we shall prove the following fact.

Main theorem. Let p: C2 -» C be a primitive rational polynomial whose
zero fiber Γo is isomorphic to C*. Suppose that Γo is degenerate. Then
there is a polynomial coordinate system (x, y) in C 2 for which the polynomial
p(x,y) coincides with one of the following forms

(2) a(ψnm-1 + {φn + x)m)/xm

where a G C*,n and m are natural, m > 2,n > 1, in formula (2) n > 2
in the case of m — 2, ψ(x,y) = xmy + arn^ιxrn~1 + + aλx — 1, and all
coefficients α m _ l 5 . . . ,αχ are determined uniquely by the condition that each
of the above forms must be a polynomial.

Let us describe briefly the scheme of the proof. The technique from [Zl],
[Z2], and [Sal] in combination with the Ramanujam-Morrow Theorem [R],
[M] enables us to show that there is some "symmetry" between the fibers
over 0 and oo for an extension p : X -> C P 1 of p. The proof of this fact is
long and computational, and, therefore, we place it in the Appendix. Using
this symmetry, we find the dual graph of the curve D = X — C 2 where
p : X —>> C P 1 is another extension of p such that D is of simple normal
crossing type (which will be abbreviated by SNC-type in what follows). The
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form of this graph implies that the second degenerate fiber of p contains
a C*-component which does not meet some line. After this step the Main
Theorem can be obtained from the following result which is interesting by
itself.

Proposition. Let Γo and C be closed disjoint affine algebraic curves in C 2 .
Suppose that Γo is isomorphic to C* and C is isomorphic to C. Then there
exists a coordinate system (x,y) in C 2 for which C is the y-axis and the
curve Γo is given by one of the following equations
(i) xn + σk(x,y) = 0;

(ii) xnσk{x,y) + l=0;
where n,k are relatively prime natural numbers, σ(x,y) = xmy + g(x) with
g e C[x], deg g <m, and g(0) Φ 0 for m > 0.

Note that the polynomials given by (ΐ) correspond to non-rational poly-
nomials. It is worth mentioning that there exist non-rational polynomials
with a C*-fiber which are not equivalent to polynomials of this type. Exam-
ples of such polynomials were constructed recently by P. Russell and by P.
Cassou-Nogues.

2. Preliminaries.

In this section we introduce notation, terminology, recall some known the-
orems, and prove several simple facts. The ground field is always C in this
paper.

2.1. Let p : X -> B be a morphism from a smooth algebraic surface X into
a smooth algebraic curve B. (For instance, X = C 2 , B = C, and p is a
polynomial.) Put Γb = p~λ(b) for every b G B.

Definition. We shall say that a fiber Γ6 is generic if for a certain neighbor-
hood U of b in B the following commutative diagram holds

u

where ψ is a C^-diffeomorphism and p is the natural projection. If a fiber
is not generic we shall call it degenerate.

2.2. Definition. A polynomial p is primitive if its generic fibers are con-
nected, otherwise it is nonprimitive (for example, p(x, y) = x2 is nonprimi-
tive).

The study of nonprimitive polynomials can be reduced to the primitive
case due to the following fact which is actually the Stein factorization.
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Theorem ([F], [LZ]). For every non-primitive polynomial q(x,y) there exist
a primitive polynomial p(x, y) and a polynomial in one variable h(z) so that
q{x,y) = h(p(x,y)).

Therefore, from now on we shall restrict ourselves to primitive polynomials
only.

2.3. Let p be a primitive polynomial, let Γ be the generic fiber of p, and let
χ(Γ&) be the Euler characteristics of Γb. Suppose that the set S C C is such
that Tb is degenerate iff b £ 5. We shall call S the degeneration set of p. It
is well-known that S is finite [T]. :

Theorem ([Sul], [Su2], see also [Z2]). For every primitive polynomial p
in two variables the following formula holds

- χ(Γ)) = 1 - χ(Γ)
bes

where S is the degeneration set of p. Moreover, χ(Tb) > χ(T), and this
inequality becomes the equality if and only if Γb is generic.

Remark. When p is not primitive the first statement of the theorem is still
true, but the second statement holds only when generic fibers do not contain
components isomorphic to C or C*. (We do not use this remark further.)

Corollary. Let the zero fiber Γo of a primitive polynomial p be isomorphic
to C*. Then either Γo is generic or there is only one degenerate fiber other
than Γo.

Proof Suppose that Γo is degenerate. Since χ(Γ0) = 0, we have, by Theorem
2 3

Σ ( χ ( Γ , ) - χ ( Γ ) ) - χ ( Γ ) = l -
bes-o

Hence

bes-o
Since every term in the above sum is a positive integer, by Theorem 2.3,
there is only one term. D

Notation. Multiplying the polynomial by a constant, if necessary, we shall
always suppose that under the assumption of Corollary the second degener-
ate fiber is I\ = p~1(l).

2.4. Let p : X -> B be as in 2.1. Standard results of the theory of resolution
of singularities yield the existence of smooth compactifications X of X and B
of B so that the mapping p : X -» B can be extended to a regular mapping
p: X -* B. (When B = C then B coincides, of course, with CP1.)
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Definition. We shall call the mapping p an extension of p. An irreducible
component E of the curve D = X — X is called horizontal if the restriction
of p to E is not a constant mapping (which implies automatically that this
restriction is surjective). Otherwise, it is called vertical

A degenerate fiber of a polynomial p can be reducible even when p is
primitive, in other words this fiber can consist of more than one irreducible
algebraic curve (component). We shall need information about the number
of irreducible components of the degenerate fibers of a polynomial p, and we
can define this number in terms of extensions of the polynomial p. Since p -
is primitive, the generic fiber of p is connected, i.e. it is a smooth compact
Riemann surface. Recall that the polynomial p is rational if the generic fiber
of p is isomorphic to the Riemann sphere. The following theorem was proved
in [Sal] for rational polynomials and in [K2] for the general case.
Theorem. Let p : X —> CP 1 be an extension of a primitive polynomial
p, and let S be the degeneration set of p. Suppose that 75 is the number of
irreducible components in the fiber Γ& ofp, and n is the number of horizontal
components in the curve D = X — C 2 . Then

bes

Moreover, if p is rational, then n — 1 = Σbesiib ~ 1)

2.5. Let p : X —> B be an extension of a morphism p : X —> B from a

smooth algebraic surface X into a smooth curve B.

Definition. This extension is called pseudominimal if there are no (-In-

curves among the vertical components of D = X — X. (Recall that a (-

l)-curve in a compact smooth algebraic surface is a rational curve whose

selfintersection number is -1. The surface remains smooth after contracting

this curve to a point.)

Proposition [Z2, Lemma 3.5]. Let p be a pseudominimal extension of p.
Suppose that the generic fiber ofp is connected and that g is its genus. Let To

be the closure of the fiber Γo = p'1^) in X where o G B. Then the arithmetic
genus of Γo is < g and the equality holds if and only if the divisors Γo and
p*(o) coincide, i.e the fiber p~λ\ό) contains no vertical components of D.

Since the arithmetical genus of a smooth non-multiple rational curve is

zero we have

Corollary. Suppose that p is pseudominimal. Let g = 0 and Γo be a smooth
rational curve. Suppose that Γo is not a multiple fiber of the mapping p.
Then the fiber p'1 (o) contains no vertical components of D.



146 SHULIM KALIMAN

2.6. Let p be a rational polynomial and let p : X —> C P 1 be an extension
(may be non-pseudominimal). Let C be a non-multiple component of Γo

where o £ C and let C be its closure in p~1(o). By Corollary 2.5, one
may reduce the fiber p - 1(o) to this component C by blowing X down. The
following fact shows that every fiber of p can be reduced to one component
without any extra assumption since X is a rational ruled surface.
Theorem ([GH, Chap. 4, Sec. 3]). There exists a commutative diagram

X A Q

p \ v/ q :

CP1

where Q is a Hirzebruch surface, q is the natural projection, and δ is a
composition of blowing-ups.

2.7. If p : X -» B is a pseudominimal extension of p : X —• B then X is not
necessarily an NC-completion of X, i.e. the divisor D = X — X may be not
of normal crossing type.

Definition. An extension p : X —> B of a morphism p : X —> B is
called quasiminimal if X is an NC-completion of X and it is minimal, i.e.
the completion stops being an NC-completion after contracting any vertical
(—l)-curve in the divisor D — X — X.

It is clear that for every pseudominimal extension p : X -> B of p :
X —> B there exists a composition of blowing-ups σ : X -> X such that the
extension p = poσ is quasi-minimal and the restriction of σ is an isomorphism
between X — Dυ and X — Dv where Dv and Dυ are the unions of the vertical
components of the divisors D and D respectively. Vice versa, for every quasi-
minimal extension p one can find a pseudominimal extension p such that the
above properties hold. By construction, the curve D is simply connected if
the curve D is simply connected. When D is simply connected (and this is
the case we shall deal with) it has no non-smooth components (i.e. there is
no component which has ordinary double points). In this case X is called
an SNC-completion of X and the divisor D is of SNC-type (simple normal
crossing type).

2.8. Definition. We shall say that a fiber Tb of p is generic relative to
the extension p, if the fiber p~1(b) is not a degenerate fiber of p and the
horizontal components of the curve D meet the fiber p- 1(6) normally.

Since we permanently work with polynomial extensions we shall need to
know the connection between the generic fibers of the polynomial p and its
generic fibers relative to the extension p. It is not difficult to check the
following fact (e.g., see [Z2, Proposition 3.6]).
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Proposition. Let p be a pseudominimal extension of a polynomial p. Then
Tb (where b φ oo) is a generic fiber of p iff p~ι(b) is generic relative to p.

Corollary. Let p be a quasi-minimal extension of a polynomial p. Then Γb

(where b φ oo) is a generic fiber of p iff p~λ(b) is generic relative to p.

2.9. Let D be a complete algebraic curve of SNC-type in a compact al-
gebraic surface X. The dual graph G(D) of D is a weighted graph whose
vertices are the irreducible components of D, edges between vertices are the
ordinary double points that belong to the corresponding components, and
the weights over vertices are the selfintersection numbers of the correspond-
ing components. The valency of a vertex in the graph is the number of the
incident edges. A vertex is called an endpoint, a linear point, or a branch
point of the graph if its valency is 1,2, or > 2 respectively. Two vertices in
the graph are neighbors if they are joined by an edge (i.e. the corresponding
components in D have a common point). The dual graph is linear if it has
no branch points.

Let E be a vertex of G(t>). By G(D) — E we denote the graph obtained
from G(D) by removing E and deleting the edges at E. Each connected
component of the graph G(D) — E is called a branch at E.

It is well known that for every SNC-completion X of C 2 the graph of
the curve D is a tree of rational curves. In particular, D is connected and
simply connected. (In fact the curve D = X — C 2 is connected and simply
connected for every completion X of C2.) Note that if D contains a (-1)-
component which corresponds to a linear point or an endpoint E of G(D)
then by contracting this component we obtain a new curve D which is still
of SNC-type and whose graph is a tree. When E is an endpoint then the
graph G(D) coincides with G(D) — E , except for the weight of the former
neighbor of E which is increased by 1. If E is a linear point then G(D)
can be obtained from G(D) — E by joining the former neighbors of E with
an edge and increasing their weights by 1. The graph G(D) may contain
a linear or end point of weight -1, and one can contract the corresponding
component again.

Definition. By an RM-procedure, we understand a sequence of successive
contractions of (-l)-components which correspond to linear points and end-
points in the graph G(D) and in subsequent images of G(D) during these
contractions. This procedure keeps going until we obtain a graph which has
no linear points and endpoints of weight -1.

The remarkable Ramanujam-Morrow theorem shows that the final graph
is linear and gives its complete description. Here is the part of this theorem
which will be used later in this paper.
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Theorem (Ramanujam-Morrow [R], [M]). Let X be a smooth algebraic
compact surface and let D be a divisor of SNC-type in X. Suppose X — D
is isomorphic to C 2 . Then every RM-procedure reduce D to a curve whose
dual graph has one of the following representations in Fig. 1

lι n 0 —n — 1 ί i t>k-ι
f \ ^ ^ Ĉ  f f

Figure 1. Ramanujam-Morrow graphs.

where l{ < —2, tj < —2, n > 0, and k and m are nonnegative integers.
Moreover, lγ and £χ cannot be simultaneously —2.

2.10. Lemma. Let p be a primitive polynomial and let p : X -> C P 1 be
an extension. For each b E C and every connected component A of the set
p~ι{b) — p""1(6) there exists exactly one horizontal irreducible component H
of the curve D = X — C 2 for which AΓ\ H φ 0. Moreover, the set H Π A
consists of one point, and each horizontal component of D meets the fiber
p~1(oo) at one point as well.

Proof. Since p is primitive, the generic fiber of p, and, therefore, the generic
fiber of p are connected. Since X is compact this implies that every fiber of
p is connected. After a sequence of blowing-ups one may suppose that D is
of SNC-type. (These blowing-ups do not change the number of connected
components k i p " 1 (6) — p~ι(b) and the number of horizontal irreducible com-
ponent in D.) Each horizontal component meets p-^oo) C D. Since p-^oo)
is connected, the statement of this lemma follows from the fact that D is
connected simply connected. D

2.11. Definition. Let D be as in the previous lemma. A horizontal

component E of D is called a section if the restriction of p to E is a one-to-

one mapping.

Suppose that p is a primitive polynomial whose zero fiber Γo is isomorphic

to C*. Recall that if Γo is degenerate, then p has one more degenerate fiber

Γi, by Corollary 2.3.

Lemma. Let p, Γo be as above. Suppose that Γo is degenerate and I\ is
the second degenerate fiber. Let p : X —> C P 1 be an extension of p. Then
both the number of horizontal components of D and the number of irreducible
components in Γ\ do not exceed 2. In the case of a rational polynomial p
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both these numbers are 2, and at least one of the horizontal components is
not a section.

Proof. Let f0 be the closure of Γo in X. After some blowing-ups (if nec-
essary) one may suppose that the curve f0 is smooth in X. Since Γo has
two punctures, the set f0 — Γo consists of two points. The fiber p~ι(ϋ) is
connected and, hence, the number of connected components in p~1(0) — Γo

is < 2. By Lemma 2.10, there are at most two horizontal components in
D. By Theorem 2.4, the number of irreducible components in the second
degenerate fiber does not exceed two. If p is rational and D has only one
horizontal component then I\ is irreducible. Therefore, p must be equivalent
to a linear polynomial ([Sal, Theorem A]), i.e. p cannot have a C*-fiber.
This shows that in the case of rational p there are two horizontal components
in D. By Theorem 2.4, there are two irreducible components in the second
degenerate fiber. If both horizontal components are sections then the generic
fiber of p is C* and Γo must be generic, by Theorem 2.3. This contradicts
the assumption that the zero fiber is not generic. D

It is worth mentioning that there was a wrong claim in [K] that at most
one horizontal component in an extension of any rational polynomial may
be different from a section. An example of a rational polynomial whose
extension has more than one horizontal component different from a section
was constructed in [AC].

2.12. Lemma. Let the assumption be as in 2.11. Suppose that Hi and H2

are horizontal components of D. Then for each k = 1,2 and each b φ 0,oo
the component Hk meets the fiber p~ι (b) normally, the set Hk Πp~ι(b) con-
tains only smooth points of p~1(b) which belong to non-multiple components
of p*(b). (In other words the local intersection index of Hk and p~λ(b) is
1.) Moreover, if the horizontal component is a section, the same is true for
6 = 0,oo.

Proof. Let H be one of the horizontal components. Let the mapping p\a :
H -> C P 1 be ra-sheeted. The set p'1^) — Γo consists of two connected
components. Since D has two horizontal components and each of them
intersects p " 1 ^ ) , the set p - 1(0) Π H consists of one point, by Lemma 2.10.
The same is true for the set p-^oo) Π H. If m > 1 these points are branch
points of index m for the projection p\H : H -> CP 1 . By the Riemann-
Hurwitz formula, there is no other branch point. In the case of m = 1 there
is no branch point at all. It remains to note that if the local intersection
index of H and p~ι{b) at a point x e H Πp~ι(b) is > 2 then x must be a
branch point of the mapping p\jj- Π



150 SHULIM KALIMAN

Remark. The fact that for b φ 0,1, oo the fiber p~λ(b) meets H normally
can be easily obtained from Proposition 2.8. The only new information,
which we get from Lemma 2.12, is that p~x(l) meets H normally as well.

2.13. The next proposition enables us to describe polynomials with a C*-
fiber in many cases.

Proposition. Let Γo and C be disjoint closed affine algebraic curves in C 2 .
Suppose that Γo is isomorphic to C* and C is isomorphic to C. Then there
exists a coordinate system (x,y) in C 2 for which C is the y-axis and the
curve Γo is given by one of the following equations
(i) xn + σk(x,y) = 0;

(ii) xnσk(x,y) + l = 0;
where n, k are relatively prime natural numbers, σ(x,y) = xmy + g(x) with
g e C[x], deg g < m, and g(0) ψ 0 for m > 0.

Proof According to the Abhyankar-Moh-Suzuki Theorem [AM], [Sul] one
may suppose that C coincides with the axis x = 0. Let Γo be the zero fiber
of a primitive polynomial p{x,y) = ΈaijX

ty:>. Note that there exists jo > 0
such that aijo φ 0 for some i since otherwise Γo is a line. Choose natural
s > 0 so that sj > i for every pair (i,j) such that j > 0 and α^ φ 0. Then
one can represent p(x,x~sy) as xeh(xjy), where e is an integer, x does not
divide the polynomial h(x,y), and /ι(0,0) = 0.

It is clear that the curve Γ'o = {(x,y)\h(x,y) = 0} is homeomorphic to
C. (It is so since the birational mapping (x,y) -> (x,x~sy) establishes
an isomorphism between Γo and Γ'o — (0,0). More precisely: Γo is the
proper transform of Γo under this mapping.) By the Lin-Zaidenberg The-
orem [LZ], one may suppose that the curve Γo U C is given by the zero
fiber of a quasi-homogeneous polynomial ur(uι +vk) in a certain coordinate
system {u,v) (u = fx(x,y),v = /2(x,y), where fx and f2 are polynomials
giving an automorphism). In this system C = {u = 0}. Thus we may
suppose /i(x,y) = x and, therefore, /2(#,y) = y + φ(x). In particular,
h(x, y) = xι + (y + φ(x))k. Passing to p(x, y), we obtain the desired conclu-
sion. D

Remark. In the above proposition one may assume that C is only home-
omorphic to C. In order to show that C is actually smooth one may use
the following argument. If C is not smooth then it follows from the Lin-
Zaidenberg Theorem that C2 — C admits a natural C*-action. It is not
difficult to check that Γ must be an orbit of this action. But these orbits are
not closed which is a contradiction. We do not need this stronger version
of Proposition later. It is also worth mentioning that this Proposition is a
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generalization of Saito's Theorem on C*-polynomials [Sa2] and Zaidenberg's
Theorem on C*-actions [Z4].

Corollary. Let Γo and C be as in the above proposition. Suppose that Γo

is the zero fiber of a primitive polynomial. Then either Γo is generic or p is
non-rational

Proof. Suppose that p is equivalent to one of the polynomials (ii) from
Proposition 2.13. Then p~1(c) is given by y = x~m[(c — l)x~n/k — g(x)]
which implies that Γo is generic. If p is equivalent to one of the polynomials
(i) then the generic fiber of p is isomorphic to the curve xn+yk — 1 with extra
punctures. (In order to see this it suffices to note that (x, y) -> (rr, σ(x, y)) is
a birational morphism.) When neither n nor k is 1 then the curve xn+yk — 1
has a positive genus, i.e. p is non-rational. Consider n = 1. Then p~x{c) is
given by y = x~m[(c — x)λ/k — g(x)] which implies that Γo is generic. The
case when k = 1 is similar. D

2.14. Notation and Terminology. We conclude this section with citing
notation we shall use in the remainder of this article. We always denote by
p a primitive rational polynomial with fibers Tb — p- 1(6) for b G C. The
zero fiber Γo is degenerate and is isomorphic to C*. By p : X -» C P 1 and
p : X —> C P 1 we denote extensions of p. The complement of C 2 in X
(respectively X) is denoted by D (respectively D). Recall that these curves
are always simply connected. The extension p is always quasi-minimal and,
therefore, the curve D is of SNC-type. For every SNC-curve D its dual
graph is denoted by G(D). By Lemma 2.11, we know that D (resp. D)
has only two horizontal components Hi and H2 (resp. Hi,H2). At least
one of them is not a section, by Lemma 2.11. We always suppose that H2

(resp. jy^) is not a section. Due to Corollary 2.3 we know that there is one
more degenerate fiber of p, which is always Tx = p~x(l). It contains two
irreducible components C\ and C2, by Lemma 2.11. The closures of these
components in X are C\, C2 respectively. Later we shall see that either CΊ
or C2 is a non-multiple component of p~ι{l). After proving this we shall
always suppose that C2 is not multiple.

Since we shall work a lot with graphs we have to introduce some termi-
nology. Let Gi, G2 be subgraphs of the graph G = G(ί)). The subgraph Gx

is contractible if the curve that consists of components corresponding to its
vertices is contractible. (Recall that an algebraic curve C in a smooth closed
algebraic surface Y is called contractible if there exist another smooth closed
algebraic surface Z, a point z G Z, and a morphism φ : Y -> Z which is
a composition of blowing-ups ofZ&kz and infinitely near points to z such
that φ~λ{z) = C.) By Gi U G2 we denote the subgraph of G that contains
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all vertices of G\ and G2 and all edges between these vertices that belong to
G. The graph G — Gγ is obtained form G by removing all vertices of Gx from
G and deleting all edges incident to these vertices. Let E be a component
in D. We denote the corresponding vertex of G = G(ί)) by the same letter
E. We say that E is a (—l)-vertex if its weight is -1, i.e. E is a (—l)-curve.
Let D be the curve obtained from D after several contractions in an RM-
procedure. Suppose that a component F is not contracted after these steps.
Then, by abusing notation, we denote the image of the vertex F in D and
in G(D) by the same letter F unless it may cause misunderstanding. Some
subgraphs are denoted by rectangles in the figures of graphs. A rectangle
may correspond to an empty subgraph unless the opposite is stated.

We shall consider later linear graphs with n vertices, each of which has
weight —2. We call such a graph standard and denote it by S(n).

3. The first description of G(D).

The central result of this section is Proposition 3.6 which gives some essential
features of graph G(D) (see Fig. 2). In particular, this first description of
G(D) implies that the fiber p~ι(0) is irreducible (Proposition 3.7) which is
a key for obtaining the graph of the fiber p-^oo) in Section 4.

3.1. By Theorem 2.6, for every b G C P 1 the fiber p~λ(b) can be contracted
to a smooth rational irreducible curve (since the fibers of morphism q from
Theorem 2.6 are irreducible). In other words there exists a morphism δ :
X —> X which is a composition of blowing-ups of a smooth closed algebraic
surface X so that δ"1(E) = p~λ(b) where E is a smooth irreducible rational
curve in X and the restriction of δ to X — p~ι{b) is an isomorphism between
X— p~λ(b) and X — E. By the universal property of blowing-ups, there exists
a morphism p : X -* C P 1 such that p = p o δ and E = p - 1 (6) . Suppose
we have compositions of blowing-ups δι : X -ϊ X and δ2 : X -> X for
which δ = δ2 o δλ. Put p = p o δ2 : X -> C P 1 . Since the preimage of every
SNC-curve under blowing up remains an SNC-curve we may speak about
the graphs of p - 1 (6) andp~ 1(6).

Lemma, Let G be the graph of a fiber p~x (b). Suppose that this fiber contains
at least two irreducible components. Then

(1) all weights of G are negative and G contains a (—l)-vertex;
(2) if E is a (—l)-vertex in G then E is a linear point or an endpoint;
(3) two (—\)-vertices in G cannot be neighbors when p~ι(b) consists of

more than two components;
(4) if E is a linear point of weight —1 then it is a multiple component

of the divisor p*(b)j and, therefore, all components of the curve δ^ι(E) are
multiple in the divisor p* (b).
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Proof. In order to obtain the fiber p~λ{b) from E one has to blow X up at
a point from E and, perhaps, to repeat blowing up the resulting surfaces at
points from the fibers over b several times (we need at least one blowing-up
since p~λ{b) is not irreducible). After each blowing-up we obtain a fiber
over b whose dual graph is a tree of rational curves and which contain a
(—l)-curve as a result of the last blowing-up. Since E is a fiber of p its
self-intersection number E E = 0. Hence the weights of the dual graph
of the fiber over b in the first blowing-up of X are already negative which _
implies (1). Assume now that a (—l)-vertex E is a branch point of G. In
order to reduce the fiber over b to an irreducible curve one has to contract a
branch of G at E. After this the weight of E becomes non-negative, i.e. this
component cannot be shrunk further. Thus one need to contract all other
branches at E. This makes the weight of E positive in contradiction with
the fact that the selfintersection of the fiber must be 0. Thus (2) holds. The
same reason implies (3).

If E is a linear point of G it appears in the blowing-up procedure after
blowing up an ordinary double point of the fiber over b. Hence the multi-
plicity of E in p*(b) is at least 2. D

3.2. Proposition. Let E be a branch point of G = G(D) of weight — 1.
Then

(i) the irreducible component E of the curve D cannot be contracted in
any Ramanujam-Morrow procedure, and after this procedure the weight of E
becomes non-negative;

(ii) at most two branches of G at E are non-contractible.

Proof. One cannot contract E at once in an RM-procedure since it is a
branch point. Thus in order to contract E one must contract a branch at E
first. We have to contract a neighbor of E at some step while contracting this
branch. But the weight of E becomes non-negative after this step. Hence
E cannot be contracted. This implies that if more than two branches are
non-contractible at E then the graph G cannot be reduced to a linear graph
via an RM-procedure which is a contradiction. D

Corollary, (i) Let E and F be branch points of G. Suppose that E is a
(—1)-vertex. Consider all branches at F that do not contain E. Then all of
them except possibly for one are contractible.

(ii) Let E be a branch point of G of weight —1 and valency > 4 (we do
not assume the existence of another branch point now), and let Gι,G2 be
branches of at E. Then G1 U G2 contains either a non-branch (—1)-vertex
or a vertex of zero weight.

Proof. Note that the branch at F that contains E is non-contractible, by
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Proposition 3.2 (i). If there exist two other non-contractible branches at F,
then F remains a branch point after any RM-procedure. Contradiction.

Assume that G1 and G2 do not contain (—1)-vertices which are not branch
points of G. Hence none of the vertices in these subgraphs can be contracted.
Moreover, since E is non-contractible these vertices have no contractible
neighbors in an RM-procedure, i.e. all of these vertices preserve their weights
during this procedure. By Proposition 3.2 (ii), all other branches are con-
tractible and after contracting them we obtain a positive weight of £J, since
the number of these contractible branches is > 2. Hence one of the neighbors
of E from G1 or G2 must have a zero weight, by Theorem 2.9. D

3.3. Lemma. There is no linear point or endpoint of weight —1 in G(D)
except for, possibly. Hi and H2.

Proof. Let E be a linear point or an endpoint in G(D) of weight -1. If it is
different from Hi and H2 it corresponds to a vertical component of D. After
contracting E we obtain a new extension p : X —> C P 1 such that the curve
D — X — C 2 is of SNC-type. This contradicts quasi-minimality of p. D

3.4. By quasi-minimality of the extension p, horizontal components Hi and
H2 meets the fiber ̂ ^(oo) normally. Denote by G^ the subgraph of G(D)
that corresponds to the fiber p~1(oo).

Lemma. The curves Hi and H2 meet p~λ (oo) at different components de-
noted by Eι and E2 respectively. All weights of the graph G^ — (Eι U E2)
are < —2. The weights of Eι and E2 are also negative and at least one of
them is —1.

Proof. By Theorem 2.6, the fiber p~1(oo) can be contracted to an irreducible
curve in the way we did in the proof of Lemma 3.1. After this contraction
we obtain a new extension p : X —> C P 1 with the following properties: the
fiber E = p ^ o o ) is irreducible and non-multiple (since the same is true for
the fibers of the morphism q from Theorem 2.6), and X — E is isomorphic
to X — p~ι(oo). Then the curve D is simply connected and its horizontal
components Hι,H2 meet E at points αi,α2 respectively, by Lemma 2.10.
(May be αL = α2.) Since H2 is not a section its intersection index with E
is not 1. Since E is not a multiple fiber of p the curve H2 cannot meet E
normally. This means that in order to obtain the quasi-minimal extension
p : X —> CP 1 we have to blow X up at a2. In particular, p~1(oo) is not
irreducible. By Lemma 3.1, all the weight of G^ are negative and it contains
a (—l)-vertex E. This vertex must be either a linear point or an endpoint of
Goo. Note that E must be a branch point of G(D), by Lemma 3.3, i.e. E is
a neighbor of at least one of the vertices Hι,ίϊ2, by Lemma 3.1 (2). Assume
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that Jϊi and H2 are neighbors of E simultaneously. In particular, there is
no other (—l)-vertex in Goo. Assume that E is a linear point of G^. Then
the valency of E in G(D) is 4. Consider the two branches at E whose union
is Goo — E. By Corollary 3.2 (ii), one of them has a vertex of zero weight
which is a contradiction. Assume E is an endpoint of G^. Since the other
vertices of G^ have weights < —2 it cannot be a linear graph, otherwise
induction by the number of vertices shows that the fiber p~1{oo) cannot be
contracted to the irreducible component E with selfintersection 0. Thus G^
has a branch point F. The branches of Goo at F that do not contain E are
not contractible. This contradicts Corollary 3.2 (i). Thus Hi and H2 meets
p~ι{o6) at different components Ex and E2. As we mentioned before each
(—l)-vetex from G^ must be a neighbor of either Hi or H2 in G(D). Hence
Lemma 3.1 (1) concludes the proof. D

3.5 Lemma. Under the assumption of Lemma 3.4 one of the weights of Eι
and E2 must be < —2. When Hλ is a section the weight of Eλ is < —2 and,
therefore, the weight of E2 is — 1.

Proof. By Lemma 3.4, these weights are negative. Assume that both Ex

and E2 are (—l)-vertices. By Lemma 3.1 (3), there are no more vertices
in GQO and, by Lemma 3.3, Eλ and E2 are branch points of G(D). By
Proposition 3.2 (i), the weights of Eι and E2 become non-negative after
an RM-procedure. By Theorem 2.9, Eλ and E2 must become neighbors
after this procedure. Note that the weights of the vertices in the connected
component of G(D) - (Ex U E2) that is between Eλ and E2 are < -2, by
Lemma 3.4, i.e. none of these vertices can be contracted in an RM-procedure.
Thus there is no vertices between Eλ and E2 in G(l)), i.e. they are neighbors
in G{ί)) and in G^. This contradicts Lemma 3.1 (3). Therefore, one of the
weights is < — 2.

Suppose that Hi is a section and assume that the weight of Eλ is -1. By
Lemma 3.3, Eι cannot be an end point of Goo (Otherwise it is a linear
point of G(£>).) Hence Eλ is a linear point in G^ and, therefore, a multiple
component of the divisor p*(oo), by Lemma 3.1 (4). In particular, the inter-
section number of Eι and Hi is > 2 which contradicts Lemma 2.12. Thus
the weight of Eι must be < —2 when Hi is a section. D

Convention. Prom now on we always suppose now that the weight of E2

is-1.

3.6. Proposition. The graph G(D) looks like the graph in Fig. 2. More
precisely:

(i) The subgraph G^ coincide with G^ U Ex U G^ U E2 U G^.
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(ii) The subgraph G ^ is non-empty.

(iii) The subgraphs E2 U G^, Hλ U G\, H2 U G\, and G ^ are linear.

(iv) One 0/ the branches at E2 which is different from G ^ must be con-
tractible.

(v) The weight of H2 is > —1 and Hi is a (—l)-υertex.

Proof. The first two statements follow from Lemmas 3.3, 3.4, and 3.5, and
from Convention 3.5. Assume that the graph E2 U G^ contains a branch
point F which should be different from E2, by Lemma 3.1 (2). The branches
at F which do not contain E2 are non-contractible, by Lemma 3.4. But this
contradicts Corollary 3.2 (i) (in order to see this put E = E2). Thus the
subgraph E2 U G^ is linear. Exactly the same argument implies the rest of
the statement (iii).

Since G^ does not contain (—l)-vertices it is non-contractible. By Propo-
sition 3.2, one of the branches at E2 which is different from G^ must be
contractible, i.e (iv) is proven.

G\

- 1

-1 <!
> - 1

G G\

Figure 2. The first description of G(D).

First consider the case when the branch H2 U G\ is contractible. It follows
from Lemma 3.3 that we cannot contract vertices from G\ at the first step
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of an RM-procedure. Hence H2 should be a (—l)-vertex in this case. After
contracting H2 U G\ the weight of E2 becomes non-negative (see Proposition
3.2). By Theorem 2.9, the neighbor of E2 after an RM-procedure must have
a non-negative weight as well. Hence, since the weights of G^ — E2 are
< —2, by Lemmas 3.4 and 3.5, we have to contract some vertices in H1 UG{.
Lemma 3.3 implies that Hi should be contracted first, i.e. it is a (—l)-vertex
in this case.

In the second case we can contract the branch at E2 that contains Hi.

Same argument as above shows that Hx must be a (—l)-vertex and the

weight of H2 is > —1. D

Corollary. The subgraphs G\ and G\ from Fig. 2 do not contain linear

points and endpoints of weight — 1.

Proof Assume the contrary and let F be such (—l)-vertex in, say, G\. Since

Hi U G\ is linear one can see that F must be a linear point or an end point

of G(D) which contradicts Lemma 3.3. D

3.7. L e m m a . The vertices of the subgraphs G\ and G\ from Fig. 2 corre-

spond to components of the fiber p~ι(1).

Proof. By Corollary 2.8, the vertices from G\ U G\ correspond to compo-
nents from either p~ 1(l) or p~λ(0) since all other fibers are generic. Assume
that one of subgraphs, say G\, corresponds to components from p"~1(0). By
Corollary 2.5, p-^O) can be contracted to the component that is the clo-
sure of Γo in X. Hence the subgraph G\ is contractible, i.e. it contains a
(—l)-vertex F. This contradicts Lemma 3.3. By an analogous argument,
the vertices of G\ cannot correspond to components from p~ι(ϋ). D

This implies the following fact.

Proposition. The fiber p'1 (ϋ) consists of one irreducible component. More-

over, suppose that mk is the intersection number of Hk and the fiber of p

where k = 1,2. Then Hi and H2 meet p~1(0) at different points ax and a2

respectively, and the contact order between Hk and p~ι(ϋ) at ak is mk.

4. The fiber over oo.

4.1. The aim of this section is to describe the graph G^ of the fiber p~ι (oo).
First we introduce some notation which will be used in the rest of this paper.

Let Q,g,# be the same as in Theorem 2.6. We consider the following
subvarieties of Q: Q1 =q~1{C), Q2 = ^ ( C * ) , and Q 3 = q r ^ C - {0,1}).

We put also Hk = δ(Hk) (k = 1,2). Since the fibers p - 1 (6) are irreducible
for b e C - {0,1}, by Corollary 2.8, the restriction of δ to p~ι(C - {0,1}) is
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an isomorphism between p~x(C — {0,1}) and Q3. Moreover, since the fiber
p " 1 ^ ) is irreducible, by Proposition 3.7, the restriction of δ to p - 1 ( C — {1})
is also isomorphism between p~ι(C — {1}) and Q1 — ς r~1(l). Hence Hλ and
H2 meets q~λ(0) at different points C\ and c2 respectively, Hk is smooth at
ck, and the contact order between Hk and ςr~1(0) and Hk is mk where mk is
the same as in Proposition 3.7.

Introduce a coordinate system (rr, (yi : y2)) in Q1 = C x C P 1 so that
q(x, (yι : y2)) — x and the coordinates of C\ and c2 in ^~1(0) are (0 : 1) and
( 1 : 0 ) respectively. Consider the antiholomorphic mapping 'φ : Q1 -ϊ Q1

given by

(where a means the complex conjugate of number α) and consider the iso-

morphism "φ : Q2 —>• Q2 given by

"φ(χ, ( y i : V2)) = (l/a?, (y i : w)).

Let Ήk be the closure of fφ(Hk) in Q and "ίffc be the closure of "φ(Hk) in

Q.

Convention. For every curve F in Q (or in Qι with / < k) we denote by
F f c the curve F ΠQk. Similarly, if ψ is a morphism from Q (or Q*) then ^ Λ

is the restriction of φ to Qk. For instance, ' ^ = Ήk Π Q 3 and qz — q |QS.

L e m m a . There exists an isomorphism ξ: Q3 —̂  Q 3
 5Ϊ/CΛ ίΛαί ξ('fίΛ) = "ifj.

4.2. The proof of Lemma 4.1 is very computational and, therefore, we
prefer to hide it in the Appendix. In this section we extract a consequence
from it. In order to do this we need an intermediate step.

Let XuX2iXuX2 be smooth algebraic surfaces such that Xk C Xk, and
let pk : Xk -» C P 1 be nonconstant morphisms such that every non-empty
fiberp%ι{c) is compact. Put pk = pk\χk and suppose that K : X\ —>• X2 is an
isomorphism so that α o pλ = p2 o AC where α is an automorphism of C P 1 .
Suppose also that ^2(^2) does not contain a(b) for some point b G C P 1 .
Let F l f e , . . . , F/fc be irreducible curves in Xk such that pk is not constant on
any of them. Put Fik = Fik Γ)Xk and suppose that κ(Fji) = Fj2. Denote by
pk : Xk —>- C P 1 an extension of p* and by Fjk the closure of Fjk in Xfc. -

L e m m a . Suppose that Fn,... ,Fn meet PiX{b) at different points
Λn,... , an, that Fji is smooth at α^i, and that the contact order between Fji
and Pϊ1^) is rtj. Then one may choose an extension p2 so that F i 2 , . . . , Fϊ2

meet the fiber p2

x (a(b)) at different points α 1 2 , . . . ,af2, that Fj2 is smooth at
dj2 , and that the contact order of Fj2 and p2

1(a(b)) is Πj.
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Proofs Let 5 = arx{QVx - p2(X2)). Put X[ = p^(S) U Xx. Glue X[
and X2 along Xι « X2 via K and we obtain the desired compactification of
X2. Π

4.3. Now we are ready to extract a consequence from Lemma 4.1.
Proposition. Letp be the restriction ofp to X—p~1(oo)(= ί~1(Q1)). Then
there exists an extension p : X —> C P 1 of p such that
(i) the fiber p~λ (oo) is irreducible;

(ii) Hi and H2 meetp~1(oo) at different points aι and α2 respectively;

(iii) /or eαcΛ A: = 1,2 the curve Hk is smooth at ak and the contact order
between Hk and p~1(oo) is πik where rrik is the same as in Proposition
3.7.

Proof. Recall that the contact order of Hi and ςf~1(0) at cι is mi and Hi
is smooth at ci. Hence Hi is given by x = ym i/(y) in the local coordinate
system (x,y) with origin at cx where y = yi/y2 and / is a holomorphic
function such that /(0) 7̂  0. The definitions of Ήι and 'φ imply that the
local equation for 'Hi is x = ymif(y) (where "bar" means the complex
conjugate). Hence Ήι is smooth at Cι and has the contact order mi with
q~ι(0). Similar fact holds, of course, for Ή2. Application of Lemma 4.2
to the isomorphism ξ implies the existence of an extension of q3 such that
the closures of "Hi and "H\ meet the fiber over 0 at different points with
multiplicities mi and m2 respectively and, moreover, these points are smooth
points of the closures of "H^ and "H\ in Q1 respectively. Application of
Lemma 4.2 to the isomorphism "φ implies the existence of an extension
of q3 with similar properties of the curves Hf and Hi over 00. The last
application of Lemma 4.2 to the isomorphism δ |<*-i(Q3) yields the desired
conclusion. D

4.4. Recall that by S(m) (where m > 0) we denote a linear graph with
m vertices each of which has weight —2. Such graphs will be referred as
standard in the sequel.

Lemma. There exists a quasi-minimal extension p : X —> C P 1 of p such
that the graph G^ of the fiber p-^oo) is linear and looks like in Fig. 3a.
One of the horizontal components of D is a section.

Proof. Let p : X —)> C P 1 be as in Lemma 4.3. In particular H± and H2

meet p~1(oo) at different points with multiplicities mi and m2 respectively.
Consider two cases: (1) mi and m2 > 1 and (2) mx = 1. Note that D —
p~1(oo) consists of two connected components each of which is an SNC-type
curve (since D — P-1(CXD) is isomorphic to D — p~1(oo), by construction and



160 SHULIM KALIMAN

Lemma 3.6). Hence in case (1) in order to obtain a quasi-minimal extension
from p we have to keep blowing X up at a\, a2 and infinitely near points
until the horizontal components meets the fiber over oo normally.

(b)

(a)
- 1

—m o

- 1 i - 1

E1

E2

Figure 3. The graph G^.

It happens when the graph of the fiber over oo looks like in Fig. 3b. Note this
graph contains two (—l)-vertices which contradicts Lemma 3.5. Thus this
case does not hold. In (2) m2 must be > 2 since otherwise both horizontal
components are sections which contradicts Lemma 2.11. Replace further m2

by m. In order to obtain a quasi-minimal extension from p we have to blow
X up at a2 and m — 1 infinitely near points to a2. This leads to the graph
GQO looking as in Fig. 3a. D

5. The fiber Γ^

From now on we suppose that Gι is the graph of p'1^). Let the notation
be as in Section 2.14. Note that due to Corollary 2.13 neither CΊ nor C2 is
isomorphic to C. Recall that Ck is the closure of Ck in X.

5.1. Lemma. Either C\ or C2 is a non-multiple component ofp*(l).

Proof. Let mk be the intersection number Hk -p~ι (0). (We know already that
mi = 1 but it is not essential here.) Note that πii + m2 > 3 since otherwise
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the generic fiber of p is C* which contradicts our assumption about p. Thus
HιUH2 meets p~ι(l) at m1+m2 different points which belong to non-multiple
components of p~1(l), by Lemma 2.12. Note that p~ι(l) Π D consists of at
most two connected components, by Lemma 3.7. The curve H\ U H2 meets
each of these components at one point, by Lemma 2.10. Thus Hx U H2 must
meet either CΊ or C2 which concludes the proof. D

Convention. Prom now on we suppose that C2 is not a multiple component
of p.

5.2. Recall that we denote the closure of Ck in X by Ck.

Lemma,
(i) The subgraph G\ — C2 is contractible,

(ii) C2 is an endpoint,

(iii) CΊ is a linear point or an end point in this graph with weight —1,

(iv) the subgraph Gι — (CΊ U C2) coincides with G\ U G\ and all its weights
are < -2,

(v) the graph Gι is linear.

Proof. Let Gf be a connected component of the subgraph G\ — C2. Since
C2 is not a multiple component of the fiber I\, all components of the curve
corresponding to the subgraph G1 can be shrunk one after another, by Corol-
lary 2.5, which implies (i). Thus G1 contains a (—l)-vertex F. Assume it
is different from CΊ. Note that G' C G\ U G\ U CΊ, by Lemma 3.7, i.e. F
belongs to G\ U G\. This contradicts Corollary 3.6. Thus the only way to
contract G1 is to require that it contains CΊ which is a linear point or an
endpoint of weight -1. In particular, G\ — C2 consist of one connected com-
ponent only (if there are two components one of them does not contain CΊ
and, therefore, cannot be shrunk). Thus C2 is an endpoint, i.e. (ii) and (iii)
hold. By Lemma 3.1 (1) and Corollary 3.6, the weights of G1 - (CΊ U C2)
are < —2, i.e. (iv) holds.

Assume that Gλ is not linear and F is a branch point. Let G be the
branch of Gi at F that contains CΊ. Assume that G contains C2. Then
the other branches of G\ at F are non-contractible, by (iv), and one cannot
contract p - 1 ( l ) to C2 in contradiction with Corollary 2.5. Hence G does not
contain C2. While contracting Gi — C2 one must contract G first due to (iv).
After this we obtain a new graph in which F must be a linear (—l)-vertex
otherwise this graph cannot be contracted further. By Lemma 3.1 (4), all
vertices of G correspond to multiple components of p*(l). By Lemma 2.12,
Hk cannot meet any vertex of G. Assume that G — Cχ contains a non-empty
connected component which does not contain any neighbor of F. Then this
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component must be either G\ or G\. But Fig. 2 implies Hk meets G\ when
this subgraph is non-empty. Hence this connected component does not exist
and CΊ is an endpoint of G and G\. This implies that D Π CΊ consists of
one point a and CΊ = CΊ — a is isomorphic to C in contradiction with the
remark in the beginning of 5.1. Hence (v) is true. •

5.3. Lemma. Suppose that G\ does not coincide with CΊ U C 2 . Then CΊ

and C2 are not neighbors in G\.

Proof. Assume that CΊ and C2 are neighbors. Since G\ is linear and C% is

an endpoint, by Lemma 5.2, only one vertex of G\ — ίCΊ U C2) is a neighbor

of CΊ, and let us say that the corresponding irreducible components meet

at a point a. Note that CΊ = CΊ - (oU (CΊ Π (i3Ί U f f 2 ) ) ) . Recall that

CΊ is not isomorphic to C, by Corollary 2.13. Hence CΊ Π (Hx U H2) is not
empty and CΊ is a non-multiple component of j5*(l), by Lemma 2.12. Hence,
by Lemma 5.2, CΊ is an endpoint of G\ which means that GΊ = CΊ U C2.
Contradiction. D

5.4. The following fact can be proven easily by induction.

Proposition. IfG is a linear contractible graph with no (—1)-vertex, except

for possibly an endpoint, then this endpoint is indeed a (—l)-vertex and the

rest of weights is —2.

Corollary. // the graph G\ — (CΊ UC2) consists of one connected component

then it is standard. Moreover, C2 is a (—l)-vertex in this case.

Proof. The first statement follows immediately from Proposition 5.4, Lem-
mas 5.3 and 5.2 (i), (iv), and (v). The second statement follows from the
fact that the selfintersection of the fiber p~ 1(l) is 0. D

We shall need the description of G\ under some additional assumption
which will be used in the next section.

L e m m a . Let the notation be as in Lemma 5.2. Suppose that neither G\ nor

G\ is empty. Let m and n be natural, and m > 2, n > 2.

(a) // G\ (resp. G\) is a standard graph S(n — 1), then the subgraph G\
(resp. G\) is the union of a standard graph S(m — 1) and the neighbor V\ of
CΊ whose weight —n — 1.

(b) // G\ is a linear graph such that it consists of standard graphs S(m —
2), S(n — 2), a vertex F of weight —3 between these two standard graphs,
and if an endpoint of S(n — 2) is a neighbor of C\, then the neighbor Vι of
CΊ in G\ has weight —n and
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(b;) either the subgraph G\ — VΊ is empty,

(b") or it consists of a standard graph and the neighbor V2 ofVχ whose weight
is —m — 1.

Therefore in all these cases the graph G\ — C2 coincides with one of the
graphs in Fig. 4.

Proof. Consider (a). Recall that G\ U CΊ U G\ is contractible and CΊ is the
only (—l)-vertex in this subgraph, by Lemma 5.2. Assumption (a) implies
that we can contract to CΊ \JG\ first. After this contraction we obtain a new
graph such that all vertices except for Vi have the same weight as in Gι (since
we have not contracted their neighbors, by construction). In particular, all
weights in this new graph except for the weight of Vi are different from —1,
by Lemma 5.2. The weight of V\ in this new graph is —1 and the rest of
the weights must be —2, by Proposition 5.4. Note that while contracting
CΊ U G\ we shrink n neighbors of Vi. Hence the weight of Vi in Gx is —n — 1
which implies (a).

Consider (b). One may contract S(n — 2) U CΊ. After this we obtain a
new graph in which all vertices except for F and Vi have the same weights
as in Gι — C 2, i.e they are < —2, by Lemma 5.2. The weight of F in this
new graph is —2, by construction. Thus the weight of Vi in this new graph
is -1. Note that while contracting CΊ U S(n — 2) we shrink n — 1 neighbors of
VΊ. Hence the weight of Vx in Gx is - n . Note we may contract G\ U CΊ U Vi
now. Indeed, since after contracting CΊ U S(n — 2) the weight of Vi becomes
— 1 and the weight of F becomes —2, one can contract the vertices from
Vi U F U S(m - 2) as well. If G\ ψ Vx then after this contraction the weight
of V2 must be — 1 and the rest of the weights are —2, by Proposition 5.4.
This implies that the weight of V2 in Gx was — m — 1 and that the graph
G\ - (Vx U V2) is standard. D

5.5. Suppose that Gi — C2 looks like one of the graphs in Fig. 4. There are
two ways for C2 to be connected with this graph. Namely, C2 is either the
upper endpoint or the lower endpoint of G\.
L e m m a . Let G\ and G\ be non-empty.

(a) Suppose that G\ — C2 looks like in Fig. 4α. // C2 is the upper endpoint
of G\ then Vi and all vertices of S(n — 1) are multiple components of the
divisor p* (1). If C2 is the lower endpoint of Gx then all vertices of S(n — 1)
except for the upper endpoint of G\ are multiple components ofp*(l).

(b') Suppose that G\ — C2 looks like in Fig 4b' and C2 is the upper endpoint
of G\. Then Vi is a multiple component of the divisor p*(l).

(b';) Suppose that Gι — C2 looks like in Fig 4b". Then Vi is a multiple
component of the divisor p* (1). If C2 is the lower endpoint then all vertices
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below V\ are also multiple components of p*(l).

Proof. The proof of the statements (a), (b'), and (b") is based on the same
idea. We contract some components in G\ — C2 so that Vx becomes a linear
(—1)-vertex in the image of G\. This contraction generates a morphism
σ : X —> X which in its turn generates p : X —> C P 1 so that p — p o σ.
By Lemma 3.1 (4), σ(Vί) is a multiple component of p and, therefore, Vί is
a multiple component of p. In order to make V\ a linear (—1)-vertex one
must contract CΊ U S(n — 1) in the case of the first statement from (a), and
Ci U S(n - 2) U F in cases (b') and (b"). The rest of statement (a) can be
checked in the same manner. D

(a)
S-(n-l)

- 1

- n - 1

(b')
—no

- 1

(b")
S(k)

—m — 1

S(n - 2)

S{m -

—n

- 1

S(m - 2) S(n - 2)

S(m - 2)

Figure 4. The graph Gx - C2

6. The graph £

In this section we still denote the graph of p~λ (1) by Gλ. We also use notation
from Fig. 2 and Lemma 3.6. By Lemma 4.4, the graph G^ looks like in
Fig. 3a. In particular, G ^ and G1^ are empty and the weight of Eλ is -m.
As we mentioned in 3.1 j3~x(l) is an SNC-curve and it meets D normally, by
Lemma 2.12. Hence D Up~ 1 ( l ) = D U C\ U C2 is an SNC-curve and we may
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speak about its graph. The aim of this section is the following

Theorem. The graph G(D U CΊ U C2) looks like one of the graphs in Fig.
5.

It is worth mentioning that the righ-hand side vertical parts of these
graphs correspond to the subgraph Gλ and in each of these graphs the num-
ber of edges between vertices C2 and H2 is m — 1.

6.1. We prove this Theorem in several steps using the fact that either H2ΌG\
or Eχ\J HiU G\ is contractible, by Lemma 3.6 (iv).

6.1.1. Lemma. Suppose that H2 U G\ is contractible and that G\ and G\
are not empty. Then the graph G(D U CΊ U C2) looks like in Fig. 5a.

Proof. By Proposition 5.4, the weight of ϊl2 is -1, and G\ is a standard graph,
say S(n — 1) where n > 1. By Lemma 5.4, G\ is a linear graph consisting of
a standard graph S(k) and a vertex Vx of weight —n — 1. After contracting
H2 U G\ the weight of the image of E2 becomes n — 1 and one can see that
this new graph can be reduced further to a graph from Theorem 2.9 via an
RM-procedure only if k = m — 1 and Hi and Vi are not neighbors in G(£>),
i.e. G(D) looks like in Fig. 5a.

It remains to check the position of CΊ and C2. Note that, since G\ and G\
are not empty, CΊ is a multiple component of the divisor j3*(l), by Lemma
3.1 (4) and Lemma 5.4. Therefore, H2 does not meet CΊ, by Lemma 2.12.
Since Gx — C2 looks like in Fig. 4a, C2 cannot be the upper endpoint of (?i.
Otherwise, all vertices of G\ are multiple components of p*(l), by Lemma
5.5, i.e. H2 meets a multiple component which contradicts again Lemma
2.12. Since Hλ is a section and since it meets G\ it does not meet CΊ or
C2. According to Proposition 3.6 it meets G\ at an endpoint, and, as we
mentioned above, this endpoint is not Vi. This yields Fig. 5a. Note also
that the intersection number of H2 and each fiber of p is m since m is the
same as m2 in Proposition 3.7. (Recall that we replaced m2 by m in 4.4.)
By Lemma 2.12, H2 meets jp~1(l) at m different points. It follows from Fig.
5a that only one of these points does not belong to C2. Hence the number
of edges between C2 and H2 is m — 1. D

Remark. The argument at the end of the proof about the number of edges
between C2 and H2 will be valid for all graphs in Fig. 5 and 6.
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—771

- 1

Figure 5a. The graph G(D U (CΊ U C2))
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—n

Figure 5b. The graph G(D U (CΊ U C 2 )) .
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—m
E1

Figure 5c. The graph G(D U (CΊ U C^)). (In this graph m > 2).
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E1
—m c

- 1 cΈ2

- i )

si

-1

Figure 5d. The graph G{D U (Ci U C 2)).
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6.1.2. Lemma. Suppose that Eλ{J H1VJ G\ is contractible, but Hx U G\ is
non-contractible. Let G\ and G\ be non-empty. Then G(ί) U CΊ U C2) looks
like in Fig. 5b or like in Fig. 6a and 6b.

Proof. By the assumption of Lemma, in some step of an RM-procedure we
have to contract the image of Ex while the image of Hi U G\ is not empty
yet. Therefore, G\ = S(m - 2) U G'. After contracting E1UH1U S(m - 2),
the image of G' must be contractible. If F is the vertex in Gf which is the
neighbor of S(m — 2) then one can see that the weights of G' — F in this
last image are the same as in the original graph G(D), i.e. none of them is
-1, by Lemma 5.2. By Proposition 5.4, this means that the weight of F in
this image is —1 and all other weights are —2, i.e. G' — F — S[n — 2). By
construction, only two neighbors of F are shrunk before F while contracting
EλV}HιΌ S(m - 2). This means that the weight of F in G(D) is - 3 . Note
also that after contracting of Eλ U H\ U G\ the weight of E2 becomes n — 1.
Since the weights of G\ are < —2 (Lemma 5.2) the weight of H2 must be 0,
by Theorem 2.9. There are two possible forms of the subgraph G\ described
in Lemma 5.4 (b')-(b"). Form (b7) and Theorem 2.9 yield the same G{D)
as in Fig. 5b. The same argument, which was used at the end of the proof
of Lemma 6.1.1, shows that in Fig. 5b H2 does not meet CΊ and that C2 is
the lower endpoint of Gx which concludes the description of Fig. 5b.

Assume that G\ has form (b"). This graph has two endpoints one of
which is Vι. Assume that the weight of the other endpoint is different from
- n . By Theorem 2.9, Vλ must be a neighbor of H2. On the other hand Vi
is a multiple component of p*(l), by Lemma 5.5, and it cannot meet H2, by
Lemma 2.12. Hence case (b") does not hold unless the other endpoint of G\
is a neighbor of H2 and, therefore, has weight —n. The last condition holds
only when n — 2 and k > 1 or when n = m + 1 and k = 0. When n — 2 the
last statement from Theorem 2.9 implies also that k — 1. This yields G(D)
as in Fig. 6a and 6b.

The same argument as in 6.1.1 shows that in Fig. 6a and 6b C2 must
be the lower endpoint of Gλ and H2 does not meet CΊ which concludes the
description of Fig. 6a and 6b. D
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—m p-

Figure 6a. The graph G(D U (CΊ U C2)). (When m = 2 the vertices above
F are absent and ίϊi is a neighbor of F.)
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—m o.

Figure 6b. The graph G(ί) U (CΊ UC2)) (When m = 2 the vertices above
F are absent and Hx is a neighbor of F.)
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—m o

Figure 6c. The graph G(D U (CΊ U (%)). (In this graph m > 2.)
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- 1 c

-2 o

E2

O

Hi

1
o

H2

S(n 1)

Figure 6d. The graph G(ί>).

6.1.3. Lemma. Let G\ and G\ be non-empty. Suppose that Eχ\J H1U G\
is contractible and Hi U G\ is contractible. Then G(D U CΊ U C2) looks like
in Fig. 6c.

Proof. By Proposition 5.4, G\ must be a standard graph S(k). After con-
tracting ίϊi U G\ in an RM-procedure we have to contract the image of £Ί,
i.e. its weight must be —1. This implies that k = m — 2. In particular, since
G\ is non-empty m > 2. After contracting Ex U ίϊi U G} the weight of E2

becomes 0. Hence E2 survives an RM-procedure and it must have a neighbor
of a non-negative weight after this procedure, by Theorem 2.9. Since G\ has
weights < —2, by Lemma 5.2, the weight of H2 is 1, by Theorem 2.9. By
Lemma 5.4, G\ is a linear graph consisting of a standard graph S(n — 1)
and a vertex Vi of weight — m < —2. The last statement of Theorem 2.9
implies that H2 is a neighbor of Vι. This leads to G(D) as in Fig. 6c. The
position of Cι and C2 may checked in a manner similar to 6.1.1 {Hi meets
the upper endpoint of S(m — 2) since it is the only non-multiple component,
by Lemma 5.5). D

6.1.4. Lemma. Let either G\ or G\ be empty. Then G(D) looks like one
of the graphs in Fig 5c, Fig. 5d (without vertices CΊ and C2), and Fig. 6d.

Proof. Recall that Gx - (CΊ U C2) is standard, by Corollary 5.4. Thus
G\ = S{k),Gl = S(l) where k,l > 0 and kl = 0. We need to consider
several possibilities.

Case 1: the graph H2 U G\ is contractible, i.e. H2 is a (—l)-vertex, by
Proposition 5.4. After contracting this subgraph and the subgraph Hi U G\
we obtain the linear graph EιUE2US(m—l) where the weights of Eλ and E2

become k — m 4-1 and I respectively. Theorem 2.9 implies that k = ra, / = 0,
(i.e. G\ is empty), and G(D) looks like in Fig 5d.
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Case 2: the graph H2 U G\ is non-contractible, the weight of H2 is > 0 (by
Lemma 3.6), and Eλ U Hi U G\ is contractible.

Subcase 2a: k = 0,1 > 0. One can contract EiΌHi. This means that m = 2.
After this contraction the weight of E2 becomes 0 and Theorem 2.9 implies
that the weight of H2 is 1. Hence G(D) looks as in Fig. 6d with n = l + l.

Subcase 2b: k > 0,I = 0. One can see that the only way to contract
£?! U Hi U 5(fc) is to require that k = m — 2, i.e. m > 2. After this
contraction the weight of JE?2 becomes 0. Thus the weight of H2 is 1, by
Theorem 2.9, and we deal with Fig. 5c. D

6.2. We shall need the following procedure. Contract all components of
p~1(l) except for C2 (we can do this, by Lemma 5.2) and contract all com-
ponents of p-^oo) except for one. We obtain a morphism δ : X -> Q where
δ and Q are the same as in Theorem 2.6. Put Hk = δ{Hk) and let q be the
same as in 2.6. Then E = q~λ(oo) and Hi generate a basis in the second
homology group of Q. (Recall Hi is a section, i.e. Hi - E = 1.) This implies
that H2 = mHi + sE since the intersection H2 E is m. This also implies
that a basis of the second homology group in X consists of CΊ, Hi, and the
components of the curve B which is the union of all components of D except
for Hi and H2.

Lemma. Let H2 be homology equivalent to A CΊ + IHi + U where U is a
linear combination of components of B and Hi. Then k — ±1.

Proof. We have another basis of the second homology group of X generated
by the components of D [R]. Note that in order to obtain the second basis
from the first one it suffices to replace C\ by H2. Hence the determinant
of the transition matrix coincides with k. This transition matrix must be
invertible and, therefore, the determinant must be ±1. D

Convention. From now on we suppose that (/"^(oo) = δ(Ex) where Eλ is
from Fig. 2, i.e. in the description of δ we have to contract all components
of p~1(oo) except for E\ (we can do this since the graph of the fiber p~ι{po)
looks like in Fig. 3a).
6.3. Lemma. Let the notation be as in 6.2.

(a) Suppose that the subgraph Gι of G(D U CΊ U C2) looks like in Fig. 6a.
Then

and
δ*{H2) <*H2 + (2m - 1)CΊ + U2

where U\ and U2 are linear combinations of components of B.
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(b) Suppose that the subgraph Gλ of G(D U CΊ U C2) looks like in Fig. 6b.
Then

δ*(Hx) 9* Hλ + m(m + 2)C1 + Ux

and

δ*(H2) ^H2 + (m2 + m- ΐ)Cλ + U2

where Uι and U2 are linear combinations of components of B.

(c) Suppose that the subgraph G\ of G(D U CΊ U C2) looks like in Fig. 6c.
Then

δ*(Hx) ^Hλ + ((m - l)n + 1)CΊ + Ux

and

δ*(H2) ^H2 + (m- l)nCi + ^ 2

where Uι and U2 are linear combinations of components of B.

(d) Suppose that CΊ and C2 are endpoints of G\, i.e. G± — (CΊ U C2) is
a standard graph S(n — 1), by Corollary 5.4. Let n > 1 and /e£ V̂  &e ίΛe
endpoint of S(n — 1) W/MCΛ is the neighbor of Cj in Gι (may be Vi = V2).
Suppose that H2 meets CΊ at I points.

(d') If the section Hi meets CΊ and H2 meets V2 then

δ*{H2) S H2 + (nl + l)Ci + U2

where U\ and U2 are linear combinations of components of B.

(d") // the section Hi meets V2 (and, therefore, H2 does not meet S(n — 1),

by Lemma 2.10) then

where Όι and U2 are linear combinations of components of B.

Proof. All cases are similar and we consider (a) only. Recall that morphism

δ is a composition of blowing-ups δs o o δλ. Put σj = δj o o δx : Xj —> Q

and let Ej be the exceptional divisor of δj. Suppose that D is an SNC-

divisor in Q and that the blowing-up δj takes place at the common point of

components E' and E" of the divisor σ^__λ(D). Then the multiplicity of Ej

in σ*j(D) is the sum of multiplicities of E' and E" in σ^.^jD). Hence the

multiplicity of CΊ in the divisor δ*(Hk) (which is the coefficient before CΊ in

the formula (a) for δ*(Hk) (k = 1,2) in the statement of the Lemma) must

be the sum of multiplicities of its neighbors JP and Vi in the graph from Fig.
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6a. Let H[,H'2,F' and Vj be the images of £*(#!), £*(iϊ2),F, and Vό after

contracting CΊ.
When m = 2an easy computation shows that the multiplicities of F' in

H[ and H2 are 3 and 1 respectively, the multiplicities of V{ in H[ and H2

are 5 and 2 respectively, and the multiplicities of V2 in H[ and H2 are 2 and
1 respectively.

Note that in general case after contracting CΊ the graph of the fiber over
1 is the union of S(m — 1), V[ which is a (—1)-vertex, V2 whose weight is
—m — 1, a vertex of weight —2, and the image of C2. The vertex F' is the
endpoint of S(m — 1) that is a neighbor of V{. One may contract V[ and
obtain a similar linear graph but with m replaced by m — 1. Therefore, we
may apply induction which shows that the multiplicities of JF', V/, and V2

in iϊ{ are 2ra — 1,2m + 1, and 2 respectively, and in H2 they are m — 1, m,
and 1 respectively. Hence the multiplicities of C2 in i ^ and H2 are 4m and
2m — 1 respectively. D

6.4. The Proof of Theorem 6.1.
We need to check the position of CΊ and C2 in Fig. 5c and 5d (in particular,

the fact that there is only one edge between CΊ and H2) and we have to show
that none of graphs from Fig. 6 can hold.

Case of Fig. 5c. Recall that in this case G\ — S(m — 2) with m > 2 and
G\ is empty. Since H\ meets S(m — 2) and since Hi is a section it does not
meet CΊ and C2. The second horizontal component H2 meets p~1(l) only at
points from CΊ or C2, by Lemma 2.10. Let it meet CΊ at I points and, thus,
C2 at m — / points. Let Vi and V2 be the endpoints of S(m — 2). Suppose
that Vj is the neighbor of Cj in G\. One may always suppose that Hi meets
V2 (otherwise just switch indices of CΊ and C2). Let δ,Q,q,Hj,E be as in
6.2. Since H2 = πιHλ + sE, Lemma 6.3 (d") implies

H2 £ mHi + (m-(m- 1)Z)CΊ + U

where U is again a combination of components of B. The coefficient before
CΊ is ±1, by Lemma 6.2. Hence either I = 1 and we deal with Fig. 5c or
m = 3 and I — 2. But in this case V\ = V2 and switching the indices of CΊ
and C2 we obtain again Fig. 5c.

Case of Fig. 5d. Similar argument implies that

H2 S mHi + (m-{m + l)f)Ci + U

where U is a linear combination of components of B. Hence I = 1 which
shows that the position of CΊ and C2 in Fig. 5d is correct.
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Case of Fig 6a. Since H2 = mHλ + sE Lemma 6.3 (a) implies

H2 ^ mHi + (4m2 - 2m + ΐ)Cλ + U

where U is again a combination of components of B. Hence the coefficient
before CΊ is not ± 1 and we have to disregard this case, by Lemma 6.2.

Case of Fig 6b. Since H2 = mHλ + sE Lemma 6.3 (b) implies

H2 = mHi + (m3 + m2 -m + 1)CΊ + U

where U is again a combination of components of B. Hence the coefficient

before CΊ is not ± 1 and we have to disregard this case, by Lemma 6.2.

Case of Fig 6c. Since H2 = mHx + sE Lemma 6.3 (c) implies

H2 ^ mHi + [{m - ΐ)2n + m]Cι + U

where U is again a combination of components of B. Hence the coefficient
before CΊ is not ± 1 and we have to disregard this case, by Lemma 6.2.

Case of Fig. 6d. (We owe the argument in this case to the referee.) First
consider n > 1. Since G\ is empty and since H2 meets S(n — 1) the section
Hi meets jp~1(l) only at one point of CΊ U C2. One may suppose that it
meets CΊ since the components CΊ and C2 are symmetric in this case. Note
that H2 cannot meet CΊ. Otherwise, since m = 2, it does not meet C2.
Hence C2 is obtained from C2 by deleting one point, i.e. it is isomorphic to
C in contradiction with Corollary 2.13. Let Vι and V2 be the endpoints of
S(n — l). Suppose that Vj is the neighbor of Cj in Gι. First consider the case
when H2 meets Vλ. Again δ,Q,q,Hj are the same as in 6.2. Recall that the
morphism δ is obtained by contracting all components in the fiber p~1(oo)
but Eι and all components in the fiber p~1(l) but C2. Hence one may check
that H2 is smooth and meets Hλ at one point with contact order n — 1, i.e
Hi H2 = n — 1. The description of δ easily implies that Hi Hi — n — 1 and
H2 H2 = n + 2. Recall that H2 = mHλ + sE and m = 2. Since Hι E = 1
in order to get Hi H2 = n — 1 we must require that s = — (n — 1), i.e
H2 = 2Hι - (n - ΐ)E. Since E E = 0 we have H2 H2 = 0 in contradiction
with the result of our previous computation.

Thus H2 meets V2. Since ff2 — mHx + «sJE7, 771 = 2, and since jy2 does not
meet CΊ Lemma 6.3 (d') implies that

H2 ^ 2 ^ 4- (2n - 1)CΊ + U

where U is again a combination of components of B. Hence the coefficient
before CΊ is not ± 1 and we have to disregard this case.
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Now consider Fig 6d with n = 1. Hence p~1(l) = CΊ U C2. Since m = 2
the fiber p~1(l) meets l) at three points none of which is CΊ ΠC2, by Lemma
2.12. Thus D meets either CΊ or C2 at one point, i.e. either CΊ or C2 is
isomorphic to C. This contradicts Corollary 2.13. D

The graphs G(D U CΊ U C2) from Fig. 5 imply that H2 meets p ' H 1 ) ~ ̂ 2
at one point b2 and that CΊ Π JD consists of two points. Hence we have

6.4.1. Corollary. The curve CΊ is isomorphic to C* and H2 meets p~ι(l) —
C2 at one point b2.

Let the notation be as in 6.2. Recall that morphism δ from 6.2 implies

the contraction of all components of p~1(l) but C2 and all components of

p - ^oo) but Eλ.

6.4.2. Corollary. The surface Q is a quadric C P 1 x C P 1 such that q is
the projection to the second factor and Hi is a section for this projection.

Proof. One can see from Fig. 5 that Hi Hi = 0. The statement of Lemma
follows from the fact that the only Hirzebruch surface which admits a zero
section is the quadric. D

6.4.3. Put Q1 =Q- gΉoo), H\ =HkΠ Q\ and b = Hi Π H\.

Corollary. In the above notation there exists a coordinate system (u,v) in
C 2 = Q1 — Hi so that q(u, v) — u and the curve H\ — b is given by the
parametric equations u = tm and υ — (t — I ) " 1 with t G C — {1}.

Proof. It follows also from Corollary 6.4.1 and the description of the mor-
phism δ that H2 meets the fiber q~ι(0) at one point α, the fiber g-^oo)
at one point c, and the curve Hi at one point b with contact order 1, i.e
Hi H2 = 1. Therefore, every section of the projection q which is homo-
logically equivalent to Hi meets H2 at one point. Thus one may consider
the morphism r : Q -> H2 = C P 1 that assigns to each point in Q the in-
tersection of H2 with the section through this point which is homologically
equivalent to Hλ. (The existence of such a section follows from Corollary
6.4.2.) Choose a coordinate on H2 so that a corresponds to —1, c corresponds
to 0, and 6 corresponds to oo. Then the restriction of functions q and r to
C 2 = Q — (Hi U g-^oo)) produces the desired coordinate system. D

7. Main Theorem.

7.1. Let K be the curve that consists of all components of D but H2 and
let Q1, g, Hi be as in 6.4.3. Note that X — (K U CΊ) is naturally isomorphic
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to Qι — Hi and, therefore, it is isomorphic to C 2 . Under this isomorphism
the curve H* := H2 — ({^2} U (H2 Π K)) (where b2 is from 6.4.1) is mapped
onto H\ — b from 6.4.3. Our construction of the polynomial forms is based
on the following simple observation.

L e m m a . Let Xλ = X — (K U CΊ) and X2 = X — D. Let φ be a primitive
polynomial on Xλ such that H2 Γ\ X\ = φ~ι(ϋ) and let φ be the rational
function on X which extends φ. Let L be an irreducible curve in X such
that L := L Π Xι is isomorphic to C and disjoint from H2 Π X\. Let f be a
primitive polynomial on Xx such that L = f~x(0) and let f be the rational
function on X which extends f. Then

(1) the curve CΊ Π X2 is the zero fiber of a polynomial that coincides with

the restriction of either φ to X2 or φ~ι to X2;

(2) the curve LΠ X2 is the zero fiber of a polynomial that is the restriction

of a rational function fψm where m G Z.

Proof. We denote by Uk (where k is natural) a divisor which is an integer
combination of irreducible components of K. Suppose that the zero fiber of
a primitive polynomial ψ on X2 is the curve CΊ Π X2 and ψ is the rational
function on X which extends φ. Then the divisor of φ is CΊ + IH2 + Uι and
the divisor of ψ is nCi + H2 + U2 where n, / G Z. Hence the divisor of φrφ~n

is (1 — nΐ)H2 + U3. Since the divisor of a rational function is homologically
trivial we see that (nl — 1)H2 is homologically equivalent to E/3. But the
components of D form a basis of the second homology group of X [R]. Thus
Us is the zero divisor, nl = 1, i.e. n = ± 1 , and φ = cφ±ι where c is a
nonzero constant.

Suppose that h{x) — 0 is a polynomial equation of the curve L Π X2 in
X2 and h is the rational function on X which extends h. The divisor of / is
L+sCi + Ut and the divisor of h is L-\-mH2 + U5 where s, m G Z. Using again
the fact that irreducible components of K U CΊ are linearly independent as
elements of the second homology group of X, one can see that h coincides
with fφm up to a nonzero constant factor. D

7.2. Since Xx is isomorphic to the surface Q1 —Hi from Corollary 6.4.3 there
exists a coordinate system (n, v) on Xλ such that p(ix, v) — u and the curve
H* is given by the parametric equations u = tm and υ = (t — I ) " 1 . Thus
H* is given by the zero fiber of the polynomial φ{u,υ) = vmu — (v + l)m.
Note that the line L = {υ = 0} does not meet H* and matches with the
hypothesis of 7.1. We would like to emphasize that the existence of this line
L is a key of the proof of Main Theorem.

Lemma. Let φ,u,v,L be as above, let Xχ,X2 be as in 7.1? and let φ and v
be the rational functions on X that extend φ and v respectively.
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(1) IfG(D) looks like in Fig. 5a, then the primitive polynomial on X2 whose

zero fiber is C\ coincides with the restriction of φ to X2, and the primitive

polynomial on X2 whose zero fiber is L coincides with the restriction of vφn

toX2.

(2) IfG(D) looks like in Fig. 5b, then the restriction of φ~ι to X2 is a prim-
itive polynomial whose zero fiber is C\, and the zero fiber of the polynomial
that is the restriction of vφ~n to X2 is L.

(3) IfG(D) looks like in Fig. 5c, then a primitive polynomial whose zero fiber
is C\ coincides with the restriction of φ~ι to X2, and a primitive polynomial
on X2 whose zero fiber is L coincides with the restriction vφ'1 to X2.

(4) IfG(ί)) looks like in Fig. 5d, then a primitive polynomial whose zero fiber

is C\ coincides with the restriction of φ to X2, and a primitive polynomial

on X2 whose zero fiber is L coincides with the restriction vφ to X2.

Proof. Embed Xλ into the surface Q ^ C x C P 1 so that υ can be extended
to a regular mapping Q1 -* C P 1 and the natural projection q1 : Q1 -> C
is the extension of the function u. Put Hi = Q1 — X\ and H\ equal to the
closure of H* in Q1. The divisor of the extension of ψ to Qι is H\ — mH{.
Note that the point b = H\Γ\Hl corresponds to u — 1, υ = oo. Consider the
local coordinate system (u,v) — (u — l ,^" 1 ) at b. The function

Γ (υ + l)m _ υmi

φ(u,υ) = uv™ - (t; + l)m = vm [ιx - 1 - * ^ J

can be rewritten in this new coordinate system as v~m(u — g(v)) where g
is a polynomial. Hence H\ meets H\ normally at b which is a point of
indeterminacy of type x/ym for the extension of φ. In order to obtain the
surface X — p-^oo) we need to blow Q1 up at b and infinitely near points
in such a way that after this blowing-up the graph of the fiber over 1 looks
like a subgraph Gi in Fig. 5. Let n and m be as in Fig. 5. Then induction
in n and m shows that the divisor of φ contains the component C\ with
coefficient 1 in cases (a) and (d), and with coefficient —1 in cases (b) and
(c). Hence φ \χ2 is a polynomial on X2 in cases (a) and (d), and φ~ι \χ2 is
a polynomial in cases (b) and (c). It is also easy to check using induction
in n and m that the divisor of the extension v of v to X contains C\ with
coefficient —n in cases (a) and (b), and with coefficient —1 in cases (c) and
(d). Hence in case (a) vφn is a polynomial on X2 which does not equal zero
on C\. In case (d) we have the same with n — 1. In cases (b) and (c) such a
polynomial on X2 is given by vφ~n with n > 1. Note that these polynomials
on X2 have zero fiber equal to L. D

Remark. Note that L = L Π X2 is isomorphic to C.
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7.3. Recall that CΊ is isomorphic to C*, by Corollary 6.4.1. Consider the
case when the subgraph of G1 looks like in Fig. 5a. By the Abhyankar-Moh-
Suzuki Theorem [AM], [Su] and Proposition 2.13, there is a coordinate
system (x,y) in X2 such that vφn\X2 = x and

σ
k xι

(a) φ\X2 = < or
[ xισk - 1

where σ(x,y) = xsy + g(x),degg < s and g(0) = —1. (When s = 0 we
suppose that σ(x,y) — y.) For Fig 5d we have the same formulas but with
n = \.

For Fig. 5b we have vφ~n\X2 = x and

( σk +xι

or
xισk - 1.

For Fig 5c we have the same formulas but with n = 1.

Lemma. The number k equals 1 in formulas (a) and (b) above, i.e. one can

suppose that in case (a) φ = xsy + as-ιxs~~ι H + axx — 1 and in case (b)

φ~ι = xsy + as_λx
s~ι H h aλx — 1.

Proof. Consider the first expression for φ in case (a). Note that k = 1 if the
system σk(x, y) + xι — d = x — c = 0 has one root for every generic complex
numbers c and d. Since σk + xι = ψ = d and vφn = x = c, one has v = c/dn.
Putting this value of v in the equation φ(u,v) = υmu — (1 + v)m — d = 0,
we can see that this equation has only one root. Thus k = 1. If I > s we
replace y by y + xι~s+1 and obtain the desired form of φ. Same argument
enables us to obtain the desired conclusion in the other case. D

7.4. Main theorem. Let p: C2 —> C be a primitive rational polynomial
whose zero fiber Γo is isomorphic to C*. Suppose that Γo is degenerate. Then
there is a polynomial coordinate system (x, y) in C 2 for which the polynomial
p(x, y) coincides with one of the following forms

(1) a{φnm+ι + (φn + x)rn)lxm

where a G C*, n and m are natural, m > 2,n > I, in formula (2) n > 2
in the case of m = 2, ψ(x,y) = xmy + α m _ 1 j : m ~ 1 + + a\X — 1, and all
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coefficients α m _ 1 ? . . . , αx are determined uniquely by the condition that each

of the above forms must be a polynomial.

Proof. Multiplying p by a nonzero number we may suppose that I\ is the
second degenerate fiber of p. Let (u, v) be the coordinate system that we
used in Lemma 7.2. Recall that p(x, y) = u, by construction, and φ{u, v) —
vmu—(v+l)m. Hence p(x,y) = (φ+(l+v)m)/υτn. According to the argument
in 7.3 υ = xψ~n incases (a) and (d). Thusp(x,y) = (φ1^nm + (xΛ-φn)rn)/xrn.
In cases (b) and (c) v = xψn andp(α;,y) = (φi-Mn+V + (φ~(n+1)-{-χ)m)/χm.
Putting φ = φ in cases (a), (d) and φ = φ~ι in cases (b), (c) we obtain the
formulas (1) and (2). The polynomial φ(x, y) coincides with xsy+as_1x

s~1 +
" - + aix — 1. If s < ra then one can see that the numerator in forms (1)
and (2) contains the monomial xsy with a nonzero coefficient, i.e., p is not
a polynomial. Hence s > m. If s > m and the numerator does not contain
the monomial xm then it is easy to check that Γo contains the line x — 0,
but it is not so. If this monomial belongs to the numerator with a nonzero
coefficient then Γo does not meet the line x = 0. Hence either Γo is not
degenerate or p is not rational, by Corollary 2.13. Contradiction. Hence
m = s. When n — 1 in formula (2) we deal with Fig. 5c and, therefore, m
must be > 2. Note also that the coefficient before xj in the numerator for
0 < j < m is of form ka,j + gj(aΐj... , αj_χ) where A: is a nonzero integer and
gj is a polynomial (and gι is constant). If we want p to be a polynomial we
have to require that these coefficients are zero which yields the claim about
αi, . . . ,.αm_i D

7.5. Let /,# be polynomials given by forms (1) or (2) in Main Theorem. If
these forms have different discrete parameters then there is no automorphism
β of C 2 for which / o β = g. We shall follow [Zl] in the proof of this fact.
Let a,n,m be the same as in Main Theorem. We say that / G A1(a,n, m)
if / is given by form (1) with the corresponding parameters ayn,m. If / is
given by form (2) with given a,n,m we say that / G A2{a,n,m).

Theorem. Let f G Ak(a,n,m) and h G Aι(a',n',m'). If f is equivalent to h
up to a polynomial automorphism of C2 then k = /,α = a1\n = n!\m = vnl'.

Proof. Note that f~1(a) is the second degenerate fiber for / and h~ι(o!)
is the second degenerate fiber for h. Since any automorphism preserves
degenerate fibers, a — o!. By construction, the generic fiber of / is the ra-f 1
times punctured Riemann sphere. Hence we must have the same for h and
m = ra'. One can see that the fiber /""1(α) has a component of multiplicity
n. Therefore n = nf.

Assume, to reach a contradiction that / G ^4i(α, n, ra) and h G A2(α, n, ra),
and there is a polynomial automorphism β(x,y) — (βι(x^y),β2(x^y)) for
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which / o β = h. By Lemma 7.3, the multiple component of f~1{a) is given
by r(rr, y) = xmy + g(x) = 0 and the multiple component of h~ι(ά) is given
by τ(x,y) = xmy + g(x) = 0. By Nullstellensatz, roβ = cr(cE C*). Hence
it is easy to show that deg^^i = l,degy/?i = 0, deg^/^ = 0, degy/?2 = 1.
Moreover, βx(x,y) = c'x and β2(x,y) = c"y (c',c" G C*) . (Indeed, if
βι(x,y) = c'x + d! with d' ^ 0, then roβ contains the monomial xm~1y with
a nonzero coefficient, but this is not so.) Let / = (φ1+nm + (φn + x)rn)/xm

and h = (φnm"1 + (ψn + x)m)/xm. Since φ = 0 is the multiple component of
/~1(α) and ^ = 0 is the multiple component of h~1(a) , we have cψoβ — φ.
Put z — ψo β. Then the mapping (#,y) -* (x,2r) is birational. Note that
/ o β has the form (^1+n m + (z

n + x)m)/xm in the coordinate system (x, z)
and h has the form ((cz)71771"1 + ((cz)n + x)m)/xm. These two expressions
are not equal, i.e., / o β φ h. D

A. Appendix: The proof of Lemma 4.1.

The proof of the existence of the isomorphism ξ from Lemma 4.1 consists
of two steps. First, we reduce the problem to a question about some Laurent
polynomials. Second, we establish some symmetry of the coefficients of these
polynomials which enables us to solve this question.

A.I. Reduction.

We revive notation from Section 4.1. We introduce also Q4 = Q2—q~1(ωι)
where ω^ (k = 1,2) is the group of m^-roots of unity.

A. 1.1. Lemma. The numbers mx and m2 are relatively prime.

Proof. The mapping δ generates a homomorphism δ* of the second homology
groups. Recall that a basis of the second homology group of Q consists of two
elements E and F where E may be viewed as a fiber of q. The irreducible
components of D generate a basis in the second homology group of X [R].
Obviously, the image of every vertical component of D under δ* is a multiple
of E and δ*(Hk) = mkF + nkE. Since δ* is surjective its image contains F.
This is possible only if mi and ra2 are relatively prime. D

Remark. Note that either ra2 > 1 or mx > 1 since otherwise the generic
fiber of p is isomorphic to C* in contradiction with our assumption about
this polynomial. We suppose in this section that ra2 > 2. (If this condition
does not hold we can switch the numbers mi and m2.) Using the fact that
mi and m2 are relatively prime, we suppose also that ra2 is even if and only
if mi = 1. (If the last condition does not hold we can again switch mi and
ra2.)

A.1.2. Recall that in the notation of 4.1 for every curve F in Q (or in Qι

with / < k) the curve Fk is F Π Qk. Similarly, if ψ is a morphism from Q
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(or Qι) then φk is the restriction of φ to Qk. Consider the action μ of ω\ on
Q1 given by με(x, (yx : y2)) = {ex, {yx : y2)) for every ε € ωτ. It generates
a natural morphism r : Q1 -» Qι /ωλ = Q1. Note that r2 : Q2 -> Q2 is an
unramified covering of Q2 and that Q4 = T - 1 ^ 3 ) . Let H^k = r'1^).
Denote by #Hj.|fc (resp. "Hι

τk) the image of iϊ£ fc under 'φ (resp. "<p) where
V a n d 'V a r e defined in 4.1. It is easy to see that ; i ϊ | Λ = r " 1 ^ ^ ) and
"Hι

τk = r " 1 ^ ^ ) . The proof of the next lemma uses some properties of the
curve Ά\2 which will be checked in A. 1.3.

Lemma. Suppose that there exists an automorphism ζ : Q4 —> QA such that

(i) C('#4

r,*) = " < * fork = 1,2;

(ii) q±oζ = qA.

Then Lemma 4.1 z*5 true.

Proof. Let μj = ( - 1 o μe o (. We need to show that μQ

ε = με for every
ε € ωx Then one can see from definitions that ζ can be pushed down to an
automorphism ξ of Q3 with the desired properties.

By construction, με and μ°ε preserve Ή4

 2 and we consider the restriction
of both actions to this curve. In Lemma A. 1.3 (Hi) below we shall show that
there exists a normalization v : C —> H\ 2 such that qov(s) = s1712 where s is a
coordinate on C. This implies the existence of normalization 'u : C —> Ή^2

so that q o 'v{s) = sm2. Since qo με = εq and q o μ° = εg the restrictions of
με and //̂  to Ή]. 2 generate automorphisms of C which preserve the origin
5 = 0. Hence these automorphisms are homothetic transformations and,
therefore, they are commutative. Thus the restrictions of με and μQ

ε to
Ήl 2 are commutative and we may view the restriction of the mappings
'μe = μ'1 o μ°ε to this curve as an ωx-action.

Note that g4 o 'με = g4. Hence it suffices to show that the restriction of
this mapping to the generic fiber E = C P 1 of q4 is identical. Consider the
set S = E Π ΉA

τ2. By construction, 'με preserves S. Since S C Ή4

2 the
restriction of the mappings 'με to S may be viewed as an ωι -action on S.
Recall that Ή4

2 is irreducible, by Lemma A. 1.3 below. Hence every orbit
of 'με in S is of the same size I and, of course, I is a divisor of πiχ. But S
consists of m2 points. Since mλ and m2 are relatively prime this implies that
/ = 1, i.e. the restriction of 'με to S is identity. If ra2 > 3 we are done since
the restriction of 'με to E is a linear fractional transformation and thus it is
identity as well. When m2 — 2 then rrii = 1, by Remark A. 1.1. Hence the
group ωλ is trivial which implies again the desired conclusion. D

A.1.3. We need to consider the curves Hi x and H\ 2 from A.1.2 more closely.
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L e m m a , (i) The curves H*k (k = 1,2) are smooth and do not meet each
other;

(ii) the curve Hlλ consists of πii irreducible components each of which is a

section, i.e. the i-th component (i = 1,... ,rai) has a normalization given
in the coordinate system (x, (yι : y2)) on Q1 = C x C P 1 by formulas x =

?̂2/2/2/1 = eiyί(t) where t runs over C and β\^ is a rational function of t
(which may be identically 00);
(iii) there exists a normalization C —> Hi 2 C Q1 = C x C P 1 of H\ 2 given
by x = 5m 2,y2/yi — e 2 (s m i ) where s is a coordinate on C and e2 is a rational
function (in particular, Hl2 is irreducible);
(iv) the function e2(t) has a simple zero at t = 0 and the function eι^(t) has
a pole at t = 0 for every i = 1,... , mi .

Proof. The curve Hi = lfΛ —J5~1({CXD}) is isomorphic to C since p~ι (00) Γ)Hk
is a point, by Lemma 2.12. Since the restriction of δ to X — p~1({l,oo})
is an isomorphism the mapping δ |#i may be viewed as a normalization of
the curve Hi — Hk Π Q1. Moreover, Hi — q~x(l) is smooth and H\ does
not meet H\ outside the fiber q~λ(l). By construction, τ 2 : Q

2 —> Q2 is an
unramified covering and the restriction of r to each fiber of q2 generates an
isomorphism of fibers of q2. This implies that the curves H*k (k = 1,2) are
smooth and and do not meet each other which yields (i).

The restriction of p to Hk is an ra^-sheeted cyclic covering of C*. In
particular, one may introduce a coordinate t on Hi so that p(t) = tmk. Hence
the curve Hi C Qι = C x C P 1 has the following parametric representation
x — tmi

1y2/y1 = ek(t) where e& is a rational function. Since the mapping r
in the coordinate system (x, (yx : y2)) has the following form (x, (yι,y2)) ->
(xmi, (y1 : y2)) the curve Hi k — τ~λ(Hl) (k = 1,2) is given by the equations

x^ =tm\y2/yi=ek(t).

For k — 1 this implies that HlΛ consists of mx components and a normal-
ization of the i-th component may be chosen in the form x = t, y2/yι = e\ (εt)
where ε G ωλ. This yields (ii).

For k = 2 the curve ίf^ 2 ^s irreducible since mi and m 2 are relatively
prime and, by putting t = s m i , we obtain the normalization of this curve
given in (iii).

Recall that Hi and H\ meet the fiber ^ - 1 (0) at different points Ci and
c2 which coincide with the points ( 0 : 1 ) and ( 1 : 0 ) respectively in the
coordinate system (yλ : y2) on q~λ(0) = C P 1 (see 4.1). Hence e M ( ί ) has a
pole at t = 0 for every i. As we mentioned in the beginning of the proof
the curve H\ is smooth at c2. Hence e2(t) must have a simple zero at t = 0
unless ra2 = 1. But m2 cannot be 1 due to Remark A. 1.1 which concludes
the proof. D
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A. 1.4. Let F be a component of if* x and let A be the union of H*2 and the
other components of Hlv We want to modify these curves using birational
mappings described in the following

Lemma. Let F be a section in Q1, i.e it meets each fiber of qι at one point.
Suppose that A is another closed curve in Q1 such that qλ is non-constant
on each component of A. Let a £ Aί) F and b = qι(a). Then there exists a
birational mapping of Q1 into itself such that

(i) its restriction to Qι — qΐι{b) is an automorphism which preserves the

function q |QI-9-I(&);

(ii) the proper transforms of A and F do not meet in the fiber over b.
Moreover, suppose that the mapping qλ \A is m-sheeted, m > 1, and ̂ 1 ( α )

consists of rn points where v& - ̂ 4norm —y A is a normalization of A. Then
(iii) the proper transform of A meets the fiber over b at more than one point.

Proof. Our main tool will be Nagata's elementary operations between ruled
surfaces. Let E — q~x{b). Since F is a section F meets E at one point a
which belongs to A, by assumption. Choose a local coordinate system (z, t)
with origin at a so that q(z, t) = t. Since F is a section one may suppose
that its local equation is z = 0. The local equation of A is zk = tιg(t) where
g is holomorphic and #(0) Φ 0. Consider the following birational mapping.
First we blow Q1 up at a. After this the curve E is replaced by two (—In-
curves Eι and E2 where Eγ is the proper transform of E2. Contract Eλ.
As a result we obtain a new sample of Q1 in which the fiber E is replaced
by Eι and the curves F and A are replaced by their proper transforms F'
and A1. One may choose a local coordinate (z',tι) system with origin at
a1 — E1 Π F1 so that z' — z/t and t' = t. In this system the local equation
of F' is z' — 0. When I < k one can check that A' does not contain a'
and, therefore, does not meet F'. When I > k the local equation of A' is
zlk = t'ι~kg(t'). We see that the contact order between A' and F' at a'
is less than the contact order between A and F at a. Thus repeating this
procedure we finally obtain proper transforms F" and A" of F and A which
do not meet each other in the fiber over b. Suppose that A" meets the fiber
over b at one point a". Assumption on normalization implies that A consists
of m branches in a neighborhood of a" such that their local equations are
z" = gj(t") (j = 1,... , m). Repetition of blowing-ups and blowing-downs in
the fiber over b makes some of these branches disjoint eventually. D

A.1.5. Recall that F is a component of if*x and A is the union of Ά\2

and the other components of H\γ. By Lemma A. 1.4, we may find a bira-
tional mapping θ of Q1 into itself so that θ \Qi__q-i(ωi) is an automorphism
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which preserves q |Qi-g-i(W l), the proper transforms of F and A do not meet,
and the proper transform of A meets q~ι{b) at least at two points for every
b E α>i. Suppose that the proper transform of H\ λ consists of components
JPI, . . . , Fmι where Fmi is the proper transform of F , and the proper trans-
form of Hi 2 is H. In order to make notation shorter denote by H the
curve H2 = H Π Q2. The advantage of the long trip from Hi and H2 to
these curves is that we can represent H,FU... , F m i _ i as affine curves in
Q2 — Fmi = C* x C. Introduce a coordinate system (x, y) in Q1 — F m i so
that the restriction of q to Q1 —Fmi is the projection to the α>axis. It follows
from Lemma A.1.3 (iii) that H\2 meets the fiber q~λ(0) at one point only.
Hence H meets ^ ( O ) at one point only.

L e m m a . There exists a coordinate system (x,y) in Q2 — Fmi = C* x
C such that the y-coordinate of the point H Π q~x(0) is 0 and the curves
H, Fι,... , F m i _ i have the following properties:

(i) the curves F* (i — 1,... , mi — 1) do not meet each other, and H4 is
smooth;

(ii) H U UHV1 R mee^s Q'1^) at least at two points for every b 6 ωλ;

(iii) for each i = 1,... ,mi — 1 £Λere ezώfc α normalization Vi : C* -^ F{ C

C * x C o/Fi 5ί/cΛ that Vi(t) — (t,fi(t)) where t is a coordinate on C* and

fi(t) = a^n.t
ni + a^ni-ιtni~ι + . . . + a^kit

ki is a Laurent polynomial;

(iv) there exists a normalization v : C* -> H C C* x C of H so that
u(t) = (tm2,h(t)) where h(t) = dnt

n + dn^t71'1 + ••• + dkt
k is a Laurent

polynomial;

(v) k = rrii and, in particular, m2 and k are relatively prime.

Proof. Properties (i)-(iv) follow immediately from Lemma A.1.3 and the
description of θ. For (v) we need to consider the birational mapping θ
more accurately. It is more convenient to denote now our usual coordinate
system (which was used in A. 1.1 and A. 1.3) on the first sample of Q1 by
(x',(y[ : y'2))> Put y' — y'2/y[ Recall that qλ is the projection to the x'-
axis in the first sample of Q1. Since θ is an isomorphism outside the set
qΐ 1(ωi) which preserves q\ the restriction of θ to Q1 — ( ^ f 1 ^ ) U Fmi) has
form (x',(y[ : y2)) -> (x,y) such that x = x' and y = L(x\yr) where for
every x ' G C - U i the mapping L(x'1 y

1) is a linear fractional transformation
(rι(x')y1 + r2(x'))l(rz(x')y' + r±(x')) and rι,r2,r3,r4 are polynomials^ for
which the roots of the polynomial r 0 = rλr4 — r2r3 are contained in ωx.
Hence H which is the proper transform of H\ 2 is given by x = t™2, y =
h(t) = (rx(i m 2 )e 2 (t m i ) + r 2 ( * m 2 ) ) / ( r 3 ( ί m 2 ) e 2 ( * m i j +u{tm2)) where e2 is from
Lemma A. 1.3 (iii). Recall that e2(t) has a simple zero at t — 0. Hence, since
the y-coordinate of the point H Π ̂ ( O ) is zero we have h(0) = 0. This
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implies r2(0) = 0. The assumption on r0 implies that r*i(0)r4(0) φ 0. If
πiχ < m2 then, using again the fact that e2 has a simple zero at the origin,
one can show that the first nonzero term of the Taylor series of h(t) at t — 0
is dtmi which yields (v). If ra2 < mi then the same argument implies that
this Taylor series contains a nonzero term dtmi. It may also contain terms
of form diύ where i < mλ, but i must be divisible by m2. Due to the remark
after this theorem the coordinate system (x, y) can be changed so that all
terms whose exponents are multiples of m2 have zero coefficients which yields
the desired conclusion. D

Remark, We have some freedom in the choice of the coordinate system
(x,y) from Lemma A. 1.5 since we can always use a substitution (x, y) —>
(x,cxιy + g(x)) where c is a nonzero constant, I G Z, and g is a Laurent
polynomial. Using this freedom we can suppose further that dι — 0 for i
divisible by ra2.

A.l 6. Lemma. Suppose that
(i) n = -fc;

(ii) Ui — -hi for every i = 1,... , m1 - 1;

(iii) GLJ = dj and aiy-j = α ^ for every j and every i = 1,... , mλ — 1.
Then Lemma 4.1 is true.

Proof. As usual, put 'Fi = 'ψ^F^^'Fi = 'V2(Ή)> 'H = V2(#)> a n d "H =
ψ2{H). Assumptions (i)-(iϋ) and the description of H and F{ given in A.I.5
immediately imply that 'Fi = "Fi and Ή = "H. We are going to show that
this implies the existence of ζ from Lemma A. 1.2 and, therefore, the existence
of ξ form Lemma 4.1. Put ζ = "φ4 o θ±ι o "φ4 o *φ4 oβ4o ιφ4 where θ is from
A. 1.5. By construction, this mapping is a diffeomorphism which preserves
the function g4, and ζ(Ή*k) — "H*k. We need to check also that this
mapping is an automorphism which is equivalent to the fact that 'ψ^oθ^o'φ^
is an automorphism. This is obvious. Indeed, in the local coordinate system
(x,y) from A.1.5 the mapping θ is given by (x,y) —> (x,L(x,y)) where L
is a rational function. Hence 'φ4 o 04 o fφ4 is given by (x,y) -> (x,L(x,y))
which is a regular mapping and, therefore, an automorphism. D

A.2. Symmetry of the coefficients.

We put ε = exp (2π\/^ϊ/m2) and suppose that "bar" means complex con-
jugate for the rest of the paper. Most of the computation in this section is
based on the following observation.

A.2.1 Lemma. Let g(t) = bht
h + ^ - i ^ 2 " 1 + + bht

h <E Cft,*""1] be a
Laurent polynomial where b^b^ Φ 0. Suppose that all roots of g have absolute
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value one. Then for every i between 0 and l2 — h we have 6 ί 26|1 + ί = 6/2_ί6ί1.
In particular, if bί2_j = h1+j for some j such that 0 < j < l2 — h then
bh-i = bll+i for every i.

Proof. Consider the Laurent polynomials g(t x) and g(t). Clearly, if λ is a

root of g(t) then λ" 1 is a root of the above two polynomials, i.e. they have

common roots. Hence g(t~ι) = ctιg(t) where c is a nonzero constant and

I = —lχ — l2. This implies the desired conclusion. D

A.2.2. L e m m a . Let the notation be as in A.1.5. Then n = ±fc(mod m2),

and n and m2 is relatively prime.

Proof. Since the ̂ -coordinates of the singular points of H belong to ωλ, the
roots of the Laurent polynomial hs(t) = h(εst)—h(t) have absolute value 1 for

every s which is not a multiple of m2. Note that hs(t) = bs

nt
n-\ \-bs

kt
k where

b\ = {εsi - l)di. Suppose that εns φ 1 and εks φ 1. Then &J, bs

n φ 0. By the
Vieta Theorem, \bs

n/bs

k\ = 1. Suppose first that n and k φ (ra2/2)(mod m2).
Then s can be chosen 2, and \b2jb2

k\ - |6^/6J| |(1 + ε n )/( l + εk)\. Hence
|1 -|- en\ = |1 + ε l̂ which is possible only when n = ±fc(mod m2).

Now let either n oτ k = (m2/2)(mod m 2 ) . In particular, m2 is even and
πii — 1, by Remark A. 1.1. Hence k — 1. The case ra2 = 2 is trivial since
di = 0 for i divisible by m 2 (see Remark A. 1.5). We want to show that
m2 cannot be greater than 2 when n — (m2/2)(mod m 2 ) , and we need to
consider two cases.

Case 1: assume that m2 > 6. By comparing \tfn/b\\ and |6^/&^|, one can see

that |1 + εn + ε2n\ = |1 + εk + ε2k\. Since εn = - 1 the left-hand side of this

equality is 1. Since εk — ε the right-hand side is |1 + ε + ε 2 | which is not 1

when m2 > 6. Contradiction.

Case 2: assume that m2 = 4. Since mi = 1 we have ωλ = {1}. Hence the
^-coordinate of every singular point of H is 1. This means that the only
root of each Laurent polynomial hs is 1. Consider hγ(t) = h(y/—lt) — h(t)
and h3(t) = h{—y/^Λt) — h(t). Due to the remark about the roots of these
polynomials both of them coincide with tk(t — \)n~k up to constant factors.
On the other hand h3(t) = —hι{—\f^Λt) which is a contradiction. (The
original argument in this last case was very complicated. The proof above
belongs to the referee.)

Since n = ±fc(mod m2) and k — m 1 ? by Lemma A.1.5 (v), the numbers n
and m 2 must be relatively prime, by Lemma A. 1.1. D

A.2.3. L e m m a . In the notation of Lemma A.1.5 \dk\ = \dn\.
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Proof. Let b* be as in the proof of Lemma A.2.2. Since |ί>JJ = \b\\, by the
Vieta Theorem, we have |cJn(l — ε n ) | = 1*4(1 — εk)\. Hence \dn\ = \dk\ since
|1 - ε

n\ = |1 - εk\ in the virtue of Lemma A.2.2. D

Convention. Prom now on we suppose that dn = dk. Due to the above
Corollary we can always achieve this by a coordinate substitution from Re-
mark A. 1.5.

A.2.4. Lemma. Let the notation be as in Lemma A.I.5. Then dn_i — dk+i

for every i between 0 and n — k. Ifn = A; (mod ra2) then di φ 0 only if
i — k = 0(mod ra2).
Proof Suppose first that n = — fc(mod ra2). As in Lemma A.2.2 introduce

n

the Laurent polynomial hs(t) = h(εst) — h(t) = ŷ &?<* where 5 φ 0(mod m 2)

and b\ = (εsi — l)d<. Recall that the absolute value of every root of hs is
1. Since dn = dk, by Convention A.2.3, and εsn = εks we have 6* = Vk.
Lemma A.2.1 implies that bs

n_i = bk+i for every s. Hence dn_i(εn~ι — 1) =
dk+i(εk*1 — 1), i.e. dn_i = dk+i. (We use the fact that di — 0 when i is
divisible by ra2.)

Consider the case when n = A;(mod m 2 ) . By Lemma A.2.1, b^bk+i =

K-ibli but now ε s n = εks. Suppose that 2n 7̂  0(mod m 2 ) . Then 5 can be

chosen 2 and 6̂  = fti(e< +1) . Hence ^ ^ + i ( ε n + l j ϊ ε " * ^ +1) = fei-i6i(εn~< +

l)(ε~* + 1) and for nonzero 6's we have ε~n + εn~* - εn - ε~n~' = (1 -

ε-OO-r" - εn) = 0. The last equality holds only if i = 0(mod m 2 ) . Thus

b\+i = 0 when i 7̂  0(mod m 2) and δ] = (εfc — 1 ) ^ . Hence dn_; = d fc+ί.

Let 2n = 0(mod m 2 ) . Then, by Lemma A.2.2 and Remark A. 1.1, n =

±l(mod ra2), i.e. m 2 = 2. Hence di = 0 for even i, by Remark A.1.5. The

equality dn_i = d λ + i holds since n — — A;(mod 2). D

A.2.5. Note that if n = —fc(mod m 2) then, using automorphism (#,?/) —>
(x,xιy) (where (x,y) is a coordinate system from A.I.5), we may suppose
that n = —A;.

Lemma. Let fi(t) be as in A.1.5. Suppose that n = —k. Then for every
i = 1 , . . . , m i — 1

(i) Ui ~ —ki and

(ii) for every j we have CLit-j — a»j.

Proof. First note that since the ̂ -coordinates of the intersection points of

Fi and H has absolute value 1 the Laurent polynomial f(t) = h(t) — fi{tm2)
s

has only roots with absolute value 1. Let f(t) — ^^CjP with crcs φ 0. We
j=r

have to consider several cases
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(1) s = 7̂ 7712 > n > —n > kim2 = r;

(2) s = n > nim2 > Km^ > —n = r;

(3) s = UiTni > n > kim2 > —n = r; and

(4) s = n > 7̂ 7712 > —n > /^m2 = r.

Consider (1). Assume that j 0 = 5 — n < —n — r. Then, by definition
of /, we have cs_JO ^ 0 and c r + J 0 = 0 which contradicts Lemma A.2.1.
Similarly, one cannot have s — n > —n — r, i.e. s — n = —n — r and,
therefore, s = —r and n^ = —&*. By construction and by Convention A.2.3,
cs-j0 = dn = cLn = c_ 5 + J 0 . Hence c5_^ = c_ s + J for every j , by Lemma A.2.1.
Since rfjm2 = 0, by Remark A. 1.5, we have cjπi2 = aitj which implies (ii) in
this case.

Exactly the same argument works in (2) and we consider (3). One may
suppose that j 0 = Πim2 — n φ kim2 — r = n + kim2. Indeed, otherwise
2n = 0(mod ra2), i.e. m2 is even and, by Remark A.1.1, m\ = 1. The
statement of Lemma is true since m1 — l = 0. Assume j 0 < kim2 — r. Then,
by definition of /, we have cs_JO φ 0 and cr+jo = 0 which contradicts Lemma
A.2.1. Similarly one cannot have j 0 > kim2 — r and we have to disregard (3)
unless m2 = 2. Exactly the same argument shows that (4) does not hold,
except for the case m2 = 2 which is obvious. D

A.2.6. Lemma, Under the assumption of Lemma A.1.5 n φ fc(mod m2)

unless m2 = 2.

Proof. Assume the contrary. The second statement of Lemma A.2.4 implies

that dj φ 0 only if j — k = 0(mod ra2). We are going to show that this fact
s

contradicts Lemma A.1.5 (ii). Let f(t) = ^^Cjtj has the same meaning as
j=r

in the proof of Lemma A.2.5. We have again cases

(1) s = Πim2 > n> k > kim2 = r;

(2) s = n > Πim2 > kim2 > k = r;

(3) s = Πim2 > n > k{m2 > k = r; and

(4) s = n > riim2 > k > kim2 — r.
Consider (1). Note that j o = s — nφk — r. Indeed, otherwise 2n =

0(mod ra2). Since m2 φ 2 this implies that n and m2 are not relatively
prime which contradicts Lemmas A. 1.5 (v) and A.2.2. Assume j 0 < k - r.
Then, by definition of /, we have cs_JO φ 0 and c r + J O = 0 which contradicts
Lemma A.2.1. Similarly, one cannot have s — n > k — r. Therefore, we have
to disregard (1) and, similarly, (2).

The second statement of Lemma A.2.4 and the construction of / imply
that Cj = dj when j — k = 0(mod ra2), Cj = a^i when j = m2l-) and Cj = 0
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in all other cases. Consider (3). Note that cs = a i ? n. and cr = dk. Put λf =

cs/cr. By Lemma A.2.1, cs^ = λiC r + i. Put j = m 2 ί then α i ) T l i _^= A i d ^ . ^ .

Since dn = dfc, by Convention A.2.3, and, therefore, dn_j = d fc+J we have

a>i,m-ι — λidn-m2i' Hence

\ifi(tm2)=tnim2-nh(t).

Same argument in case (4) gives similar formula. Suppose that v is a root of
h. Then in notation from A. 1.5 the above formula implies then that the point
b = (υ,0) (in coordinate system (x,y) from A. 1.5) is a selfintersection point
of H and the multiplicity of H at this point is > m2. Moreover, for every
i the curve Fι must meet this point as well. Hence the curve if U USα"1 F%
from A. 1.5 meets the fiber q~ι{b) at this point only which is a contradiction.
Thus this case does not hold. D

Combination of the above Lemma and Lemmas A.2.2, A.2.5 gives

A 2.7. Lemma. Applying an automorphism of (x,y) —> (x,xιy) (where
(x,y) is the coordinate system from A.1.5 and I G Z) one may suppose that
conditions (i)-(iii) from Lemma A.I.6 hold, and, therefore, Lemma 4.1 is
true.
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